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Abstract
We study the parameter estimation problem for discretely observed Ornstein–Uhlenbeck
processes driven by α-stable Lévy motions. A method of moments via ergodic theory and
via sample characteristic functions is proposed to estimate all the parameters involved in the
Ornstein–Uhlenbeck processes. We obtain the strong consistency and asymptotic normality
of the proposed joint estimators when the sample size n → ∞ while the sampling time
step h remains arbitrarily fixed. We also design a procedure to select the grid points in the
characteristic functions in certain optimal way for the proposed estimators.
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normality
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1 Introduction

Let (Ω,F,P) be a basic probability space equipped with a right continuous and increasing
family of σ -algebras (Ft , t ≥ 0) and let (Zt , t ≥ 0) be a standard α-stable Lévy motion
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with Z1 ∼ Sα(1, β, 0), where α is the stability index and β ∈ [−1, 1] is the skewness
parameter (we shall briefly recall the relevant definitions in next section). The so-called α-
stable Ornstein–Uhlenbeck motion X = (Xt , t ≥ 0), starting from a point x0 ∈ R is defined
as an Ornstein–Uhlenbeck processes driven by the α-stable Lévy motion Zt . It satisfies the
following stochastic Langevin equation

dXt = −θXtdt + σdZt , t ∈ [0,∞), X0 = x0, (1.1)

where θ , σ are some constants. It is well-known (see Theorem 17.5 in Sato 1999) that if
θ > 0, Xt is ergodic and it converges in law to the random variable Xo = σ

∫∞
0 e−θsd Zs .

From the above definitionwe see that theα-stableOrnstein–Uhlenbeckmotion Xt depends
on the following parameters: the stability index α, the skewness parameter β, the drift param-
eter θ and the dispersion parameter σ . In this work we assume that the values of these
parameters are unknown but the α-stable Ornstein–Uhlenbeck motion (Xt , t ≥ 0) can be
observed at discrete time tk (For simplicity, we let tk = kh for some fixed h > 0). We want
to use the available data {Xtk , k = 1, 2, . . . , n} to estimate the parameters α, β, θ , and σ

simultaneously.
The parametric estimation problems for diffusion processes driven by a Lévy process such

as compound Poisson process, gamma process, inverse Gaussian process, variance gamma
process, normal inverse Gaussian process or some generalized tempered stable processes
have been studied earlier. Let us mention the following works: Brockwell et al. (2007),
Masuda (2005), Ogihara and Yoshida (2011), Shimizu (2006), Shimizu and Yoshida (2006),
Spiliopoulos (2008), and Valdivieso et al. (2009). In these works it is considered the quasi-
maximum likelihood, least squares estimators, or trajectory-fitting estimator and it is also
established the consistency and asymptotic normality for those estimators. Masuda (2010)
proposed a self-weighted least absolute deviation estimator for discretely observed ergodic
Ornstein–Uhlenbeck processes driven by symmetric Lévy processes. For some recent devel-
opments on estimation of drift parameters for stochastic processes driven by small Lévy
noises, we refer to Long (2009) and Long et al. (2013, 2017) as well as related references
therein.

However, all aforementioned papers did not cover the case that the noise is given by an
α-stable Lévy motion. When the noise is an α-stable Lévy motion the process does not have
the second moment which makes the parametric estimation problem more difficult. In this
case there are limited papers dealing with the parametric estimation problem. Let us first
summarize some relevant work. Hu and Long (2007, 2009) proposed the trajectory fitting
estimator and least squares estimators for the drift parameter θ assuming other parameters
α, β, and σ are known and under both continuous or discrete observations. They discovered
that the limiting distributions are stable distributions which are different from the classical
ones where asymptotic distributions are normal. Fasen (2013) extended the results of Hu and
Long (2009) to high dimensions.

To deal with the discrete time observations, which is the common practice and the main
focus of this paper, in most literature, one needs to assume that the time step h depends
on n and converges to 0 as n goes to infinity. This means that a high frequency data must
be available for the estimators to be effective. In some situations such as in finance high
frequency data collection is possible. But in many other situations high frequency data
collection may be impossible or too expensive. To construct estimators applicable to this
situation, one has to find consistent estimators which allow h to be an arbitrarily fixed con-
stant. Along with this line, some progresses have been made in Hu and Song (2013) and Hu
et al. (2015) for Ornstein–Uhlenbeck processes or reflected Ornstein–Uhlenbeck processes
driven by Brownian motion or fractional Brownian motions as well as Zhang and Zhang
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(2013) for Ornstein–Uhlenbeck processes driven by symmetric α-stable motions. The idea
is to use the ergodic theorems for the underlying Ornstein–Uhlenbeck processes to construct
ergodic type estimators. The strong consistency and the asymptotic normality are proved
when the time step h remains constant (as the number of sample point n goes to infinity).
However, in the above papers, one can only estimate the drift parameter θ . There have been
no available estimators simultaneously for all parameters. The main goal of the present paper
is to fill this gap. We want to simultaneously estimate all the parameters θ, α, σ and β in the
α-stable Ornstein–Uhlenbeck motion (1.1). We still use the generalized method of moments
via ergodic theory. But since the α-stable motion has no second or higher moments we shall
use the sample characteristic functions. Namely, we use the following the ergodic theorem:
limn→∞ 1

n

∑n
k=1 f (Xtk ) = E f (X̃o) almost surely, where we recall that the distribution of

X̃o is the invariant measure of the α-stable Ornstein–Uhlenbeck motion Xt . However, this
cannot be used to estimate all the parameters θ, α, σ and β since we cannot separate all the
parameters in the stationary distribution of X̃o (see Remark 1). The idea is then to use a more
sophisticated ergodic theorem: limn→∞ 1

n

∑n
k=1 f (Xtk , Xtk+1) = E f (X̃0, X̃t1), where X̃t

satisfies (1.1) with initial condition X̃0 having the invariant measure (namely, X̃0 and X̃o

have the same probability measure) and being independent of the α-stable motion Zt . Note
that the explicit forms of the probability density functions of X̃o and the joint probability
density function of X̃0, X̃t1 are unknown except for some very special parameters. However,
it is possible to find the explicit forms of the characteristic functions of X̃o and that of X̃0, X̃t1 .
These characteristic functions will be used to construct estimators for θ, α, σ and β.

To validate our approachwe have done a number of simulations to illustrate our estimators.
First, we simulate some data from (1.1) assuming some given values of α, β, θ and σ . Then
we apply our estimators to estimate these parameters. The numerical results show that our
estimators are accurate and converge fast to all the true parameters. Our estimators work for
all fixed h > 0 (even large h) although we list only h = 0.5 (which is already big enough).
As discussed in Rosinski (2002) and Zhang (2011), the Euler scheme in simulating Ornstein–
Uhlenbeck process driven by a Lévy process is seldom used. To save computation time we
find a way to simulate the α-stable Lévy motion {Xkh, k = 1, . . . , n} in a straightforward
way without any extra computations.

We note that another method of estimating all the parameters for time series models is the
ECF (empirical characteristic function) method discussed in Knight and Yu (2002) and Yu
(2004). They fit the ECF to the theoretical one continuously in frequency by minimizing a
distance measure between the joint CF (characteristic function) and joint ECF. Under certain
regularity conditions, they established consistency, asymptotic normality, and the asymptotic
efficiency of the proposed ECF estimators. The i.i.d. case was discussed much earlier by
Paulson et al. (1975) and Heathcote (1977), where they called it the integrated squared error
method.

In this paper we employ the well-known generalized method of moments (GMM) for
parameter estimation. GMM is referred to a class of estimators which can be constructed
by utilizing the sample moment counterparts of population moments. It nests the classical
method of moments, least squares method, andmaximum likelihoodmethod. GMMhas been
extensively studied and widely used in many applications since the seminal work of Hansen
(1982). In particular, GMM has been successfully applied to parameter estimation and infer-
ence for stochastic models in finance including foreign exchange markets and asset pricing
in Hansen and Hodrick (1980), Hansen and Singleton (1982), Harvey (1989), Zhou (1994),
Brandt (1999), Cochrane (2001), and Singleton (2006). For a comprehensive treatment of
GMM, we refer to Hall (2005). For generalization and improvement on GMM, we refer to
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Qian and Schmidt (1999), Carrsasco and Florens (2000), Duffie and Glynn (2004), Newey
and Smith (2004), Smith (2005), Hall et al. (2007), Bravo (2011), and Lynch and Wachter
(2013).

The paper is organized as follows. In Sect. 2, we recall some basic results forα-stable Lévy
motions which we need in this paper. In Sect. 3, we construct estimators for all the parameters
in theα-stable Ornstein–Uhlenbeckmotion by using ergodic theory and sample characteristic
functions. The consistency of the estimators is established. The asymptotic normality of the
joint estimators is obtained and the asymptotic covariancematrix is computed.The asymptotic
covariance depends on the parameterswe choose in the characteristic function.We also design
a procedure of selecting the four grid points used for the parameter estimation in certain
optimal way. Section 4 provides validation of our estimators from numerical simulations.
The values of the (true) parameters are given and then they are used to simulate the α-stable
Ornstein–Uhlenbeck motion Xt . With these simulated values we compute our estimators and
compare themwith the true parameters. Numerical results show that our estimators converges
fast to the true parameters. Finally, all the lemmas with their proofs, proof of Theorem 1,
and the explicit expression of the crucial covariance matrix defined in Sect. 3 are provided
in Sect. 5 (“Appendix”).

2 Limiting distributions of ˛-stable Ornstein–Uhlenbeckmotions

We first recall some basic definitions. A random variable η is said to follow a stable distri-
bution, denoted by η ∼ Sα(σ, β, γ ), if its characteristic function has the following form:

φη(u) = E[eiuη] =
{
exp
{−σα|u|α (1 − iβsgn(u) tan απ

2

)+ iγ u
}
, if α �= 1,

exp
{−σ |u| (1 + iβ 2

π
sgn(u) log |u|)+ iγ u

}
, if α = 1.

In the above definition α ∈ (0, 2], σ ∈ (0,∞), β ∈ [−1, 1], and γ ∈ (−∞,∞) are called
the index of stability, the scale, skewness, and location parameters, respectively.

We shall assume γ = 0 throughout the paper. This means that we consider only strictly
α-stable distribution. If in addition β = 0, we call η symmetric α-stable.

Definition 1 An Ft -adapted stochastic process {Zt }t≥0 is called a standard α-stable Lévy
motion if

(i) Z0 = 0, a.s.;
(ii) Zt − Zs ∼ Sα((t − s)1/α, β, 0), t > s ≥ 0;
(iii) For any finite time points 0 ≤ s0 < s1 < · · · < sm < ∞, the random variables

Zs0 , Zs1 − Zs0 , . . . , Zsm − Zsm−1 are independent.

Stochastic analysis with respect to α-stable motion has been studied by many authors.
We refer to Janicki and Weron (1994), Samorodnitsky and Taqqu (1994), Sato (1999), and
Zolotarev (1986) for more references.

When Z is an α-stable Lévy motion, the stochastic Langevin equation (1.1) has a unique
solution which is given explicitly by

Xt = e−θ t x0 + σ

∫ t

0
e−θ(t−s)dZs . (2.1)

It is known that the α-stable Ornstein–Uhlenbeck motion Xt has a limiting distribution
which coincides with the distribution of X̃o = σ

∫∞
0 e−θsd Zs . It is also well-known that Xt
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is ergodic. This means that for any function f : R d→ R such that E| f (X̃o)| < ∞ we have

lim
n→∞

1

n

n∑

j=1

f (Xt j ) = E

[
f (X̃o)

]
(2.2)

almost surely. The explicit computation of the above right hand side is usually difficult
for general function f since the the explicit form of the probability density function of
X̃o is not available. But when f has some specific form (the characteristic function), it is
explicit which is given below. The limiting random variable X̃o is α-stable with distribution
( 1
αθ

)1/αSα(σ, β, 0) = Sα(σ ( 1
αθ

)1/α, β, 0) (via time change technique and self-similarity).

So the characteristic function of X̃o in this one-dimensional case is given by

φ(u) = E[exp(iu X̃o)] =
⎧
⎨

⎩

exp
{
− σα

αθ
|u|α (1 − iβsgn(u) tan απ

2

)}
, if α �= 1,

exp
{− σ

θ
|u| (1 + iβ 2

π
sgn(u) log |u|)} , if α = 1.

(2.3)

Remark 1 Since the probability distribution is uniquely determined by its characteristic func-
tion we see from the above expression (2.3) that the probability distribution function of X̃0 is
a function of σα

αθ
. We cannot separate α, σ , and θ . This further implies that for anymeasurable

function f the expectation E| f (X̃o)| is also a function of σα

αθ
when it is finite.

The ergodic theorem (2.2) can then be written as

lim
n→∞

1

n

n∑

j=1

exp(iuXt j ) = φ(u), u ∈ R, a.s. (2.4)

This identity will be used to construct statistical estimators of the parameters appeared in
(1.1).

One may think to use the ergodic theorem (2.2) to estimate all the parameters: There
are reasons to support this thought; one may choose f differently to obtain sufficient large
number of different equations, which may be used to obtain all the unknown parameters.
However, this is impossible in our current situation since in the stationary distribution, as

we can see from its characteristic function (2.3), one can only estimate σα

αθ
as a whole. For

example, one can not separate σ and θ in the characteristic function φ(u) of X̃o. This forces
us to seek other possibilities. To this end we shall use the ergodic theorem for Xtk − Xtk−1 .
More precisely, from Theorem 1.1 of Billingsley (1961), it follows

lim
n→∞

1

n

n∑

k=1

exp[iu(Xtk − Xtk−1)] = E[eiu(X̃h−X̃0)] almost surely, (2.5)

for arbitrarily fixed u ∈ R, where X̃t satisfies the Langevin equation (1.1) with X̃0 = X̃o.
To make this formula (2.5) useful for the statistical estimation of the parameters, we need to
find the explicit form of the characteristic function of X̃h − X̃0. From (1.1), we have

X̃h = e−θh X̃0 + σe−θh
∫ h

0
eθsd Zs

and

X̃h − X̃0 = (e−θh − 1)X̃0 + σe−θh
∫ h

0
eθsd Zs .
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Note that X̃0 = X̃o and σe−θh
∫ h
0 eθsd Zs ∼ σ

(
1−e−αθh

αθ

)1/α
Z1. Note also that X̃0 and

σe−θh
∫ h
0 eθsd Zs are independent. Therefore, we find

ψ(u) := E[exp{iu(X̃h − X̃0)}]
= E[exp{iu(e−θh − 1)X̃0)}]E[exp{iuσe−θh

∫ h

0
eθsd Zs}]

=

⎧
⎪⎪⎨

⎪⎪⎩

exp
{
− σα |u|α

αθ

[
(1 − e−θh)α

(
1 + iβsgn(u) tan απ

2

)

+(1 − e−αθh)
(
1 − iβsgn(u) tan απ

2

)]}
, if α �= 1 ;

exp
{
− 2σ(1−e−θh)

θ
|u|
}

, if α = 1 .

(2.6)

3 Moment estimation of all parameters

In this section, we assume that all the parameters θ , σ , α and β involved in the α-stable
Ornstein–Uhlenbeckmotion (Xt , t ≥ 0) are unknown andwe follow Press (1972) to estimate
them based on the discrete time observations {Xt1 , . . . , Xtn }, where as in the last section
tk = kh for some fixed time step h.

As we explained in Remark 1 or paragraphs after that remark, we cannot use (2.4) alone
to estimate all the parameters in the α-stable Ornstein–Uhlenbeck motion Xt given by (1.1).
As indicated in Sect. 2, we shall use (2.5) which motivates us to set 1

n

∑n
j=1 e

iu(Xt j −Xt j−1 ) =
ψ(u).

We define the empirical characteristic functions φ̂n(u) and ψ̂n(v) as follows:

φ̂n(u) := 1

n

n∑

j=1

exp(iuXt j ), ψ̂n(v) := 1

n

n∑

j=1

exp [iv(Xt j − Xt j−1)].

Motivated by (2.4) and (2.5), we can estimate all the parameters bymatching the empirical
characteristic functions φ̂n(u) and ψ̂n(v) with the corresponding theoretical characteristic
functions φ(u) and ψ(v), respectively as given as follows

φ̂n(u) = φ(u) ; (3.1)

ψ̂n(v) = ψ(v), (3.2)

where u, v are two constants to be appropriately chosen so that the parametric estimators for
all parameters can be constructed.

3.1 Methodology of parameter estimation

Now we provide the details to obtain the estimators for the parameters in the order of α, θ ,
σ , and β. We shall first find the moment estimator for α.

3.1.1 Estimator for˛

Choose any arbitrarily two non-zero values u1 and u2 such that u1 �= u2. Then, we have

log(− log |φ(u1)|2) = log

(
2σα

αθ

)

+ α log |u1|, (3.3)
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log(− log |φ(u2)|2) = log

(
2σα

αθ

)

+ α log |u2|, (3.4)

where φ(u) is defined in (2.3). Subtracting the Eq. (3.4) from (3.3), and replacing φ(u) with
its estimated value φ̂n(u) as indicated in (3.1), we find an estimator of α as follows

α̂n =
log
(
log |φ̂n(u2)|
log |φ̂n(u1)|

)

log |u2||u1|
. (3.5)

Since for any fixed u ∈ R, φ̂n(u) converges to φ(u) almost surely, we see that α̂n converges
to α almost surely.

3.1.2 Estimator for� given˛

To construct an estimator for θ (which depends on the estimation of α), we need to use the
characteristic function ψ(u) of X̃t1 − X̃0. It is easy to verify from the expressions (2.3) and
(2.6) of φ(u) and ψ(u)

log |ψ(u)|2
log |φ(u)|2 = (1 − e−θh)α + 1 − e−αθh . (3.6)

For any arbitrarily u, denote

δ = log |ψ(u)|2
log |φ(u)|2 (3.7)

and rewrite Eq. (3.6) as
(1 − e−θh)α + 1 − e−αθh = δ. (3.8)

This is a nonlinear algebraic equation of θ , when α and δ are considered as given. To simplify
notation, we denote λ = e−θh and then θ is related to λ via

θ = − log λ/h.

With this substitution, the Eq. (3.8) can be written as an equation for λ:

(1 − λ)α + 1 − λα = δ. (3.9)

Let ζλ(α, δ) denote the solution of the above equation. Then we can construct an estimator
for θ by

θ̂n = − log
(
λ̂n

)
/h, where λ̂n = ζλ(α̂n, δ̂n). (3.10)

Here α̂n is the estimator for α defined by (3.5) and

δ̂n = log |ψ̂n(u3)|2
log |φ̂n(u3)|2

(3.11)

with φ̂n(u3) and ψ̂n(u3) being defined by (3.1) and (3.2) when u = u3 �= u2 �= u1. Since
α̂n → α a.s. and δ̂n → δ a.s., we have λ̂n → λ a.s. and θ̂n → θ a.s.

Our estimator θ̂n depends on the function ζλ(α, δ), which is the solution to (3.9). This
is a simple algebraic equation. There are many methods to solve general algebraic equation
numerically. Here we shall use the Newton’s method. Denote

g(λ) = g(λ, α̂n, δ̂n) = (1 − λ)α̂n + 1 − λα̂n − δ̂n .
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For any fixed value of θ , we can always choose h fixed but small enough (e.g. 0 < h <

ln 2/θ ) such that λ = e−θh ∈ ( 12 , 1) and 0 < δ̂n < 1. Note that g is decreasing with

derivative g
′
(λ) = −α̂n[λα̂n−1 + (1 − λ)α̂n−1] < 0 for λ ∈ ( 12 , 1), g(

1
2 ) = 1 − δ̂n > 0 and

g(1) = −δ̂n < 0. Hence there is a unique root for g(λ) in the interval ( 12 , 1). Namely, there

exists a unique λ̂n ∈ ( 12 , 1) such that g(λ̂n) = 0. Then, the Newton’s method to approximate

λ̂n is as follows. First, we define λn,0 = 1
2 . Then, we define

λn,m+1 = λn,m − g(λn,m)

g′
(λn,m)

, m = 0, 1, 2, . . . (3.12)

Note that g
′′
(λ) = α̂n(α̂n − 1) λ2−α̂n−(1−λ)2−α̂n

λ2−α̂n (1−λ)2−α̂n
> 0 if 1 < α̂n < 2 and λ ∈ (1/2, 1). In

this case, we have global convergence of the Newton’s iterations {λn,m}∞m=1. In fact, let the
approximation error at the (m + 1)-th interation be εn,m+1 = λn,m+1 − λ̂n . By (3.12), we
have

εn,m+1 = εn,m − g(λn,m)

g′
(λn,m)

. (3.13)

Then by Taylor expansion we find that εn,m+1 = 1
2
g

′′
(ξn,m )

g′
(λn,m )

ε2n,m < 0, where ξn,m is between

λn,m and λ̂n . This implies that λn,m < λ̂n for each m ≥ 1. Since g is decreasing, we have
g(λn,m) > g(λ̂n) = 0. Thus εn,m+1 > εn,m and λn,m+1 > λn,m for each m ≥ 1. Hence, the
two sequences {εn,m}∞m=1 and {λn,m}∞m=1 are increasing and bounded from above. Thus there
exist ε∗

n and λ∗
n such that

lim
m→∞ εn,m = ε∗

n, lim
m→∞ λn,m = λ∗

n .

Thus, by (3.13), it follows that

ε∗
n = ε∗

n − g(λ∗
n)

g′
(λ∗

n)
. (3.14)

This implies that g(λ∗
n) = 0 and consequently λ∗

n = λ̂n .
Now, when 0 < α̂n < 1, we can use similar arguments to show that Newton’s method

converges to the unique root λ̂n of g(λ) from any starting point (namely we have global
convergence of the Newton’s method).

3.1.3 Estimator for � given˛ and�

Next we turn to the estimation of σ . Let τ = 2σα

αθ
and σ is related to τ by

σ = exp

{
log τ + logα + log θ − log 2

α

}

or

log σ = log τ + logα + log θ − log 2

α
. (3.15)

Thus, the estimation of σ is reduced to the estimation of τ since we already have estimators
for α and θ .

To obtain an estimator for σ (or for log σ ), we may use any one of the Eqs. (3.3) and (3.4).
However, we shall use both of these two equations in the following way, which will eliminate
the explicit dependence on α. Multiply Eqs. (3.3) by log |u2| and multiply Eqs. (3.4) by
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log |u1|. Taking the difference yields

log τ = log (|u1|) log
(− log |φ(u2)|2

)− log (|u2|) log
(− log |φ(u1)|2

)

log |u1||u2|
. (3.16)

From this identity, we construct the estimator for τ as follows

log τ̂n =
log (|u1|) log

(
− log |φ̂n(u2)|2

)
− log (|u2|) log

(
− log |φ̂n(u1)|2

)

log |u1||u2|
, (3.17)

where φ̂n(u) is given by (3.1) . Thus, we can construct the estimator for σ by

σ̂n = exp

{
log τ̂n + log α̂n + log θ̂n − log 2

α̂n

}

. (3.18)

Based on the almost sure convergence of φ̂n(u) to φ(u), we see easily that σ̂n → σ almost
surely.

3.1.4 Estimator forˇ given˛,�, and �

Finally, we discuss the estimation of the skewness parameter β ∈ [−1, 1]. Note from (2.3)
that for α �= 1, we have

arctan

(�(φ(u))

�(φ(u))

)

= β
σα

αθ
tan
(απ

2

)
|u|αsgn(u), (3.19)

where �(φ(u)) and �(φ(u)) are the imaginary and real parts of the complex valued function
φ(u), respectively. In order to make sure that the right hand side is in the range of arctan,
choose u = u4 in (3.19) such that −π

2 < σα

αθ
tan
(

απ
2

) |u|αsgn(u) < π
2 . Replacing φ(u4), α,

θ , and σ by φ̂n(u4),α̂n , θ̂n , and σ̂n , we can construct an estimator of β as follows

β̂n = α̂n θ̂n arctan[(∑n
j=1 sin u4Xt j )/(

∑n
j=1 cos u4Xt j )]

σ̂
α̂n
n tan(α̂nπ/2)|u4|α̂n sgn(u4)

. (3.20)

When α = 1, we have

β̂n = − θ̂n arctan[(∑n
j=1 sin u4Xt j )/(

∑n
j=1 cos u4Xt j )]

σ̂n
2
π
log |u4|sgn(u4)

. (3.21)

By the almost sure convergence of α̂n , θ̂n , σ̂n and φ̂n(u4), we can easily get the almost sure
convergence of β̂n to β.

3.2 Joint asymptotic behavior of all the obtained estimators

In this subsection, we are going to study the joint behavior of the estimators of all the
parameters α, θ, σ , and β. We let η = (α, θ, σ, β)T and η̂n = (α̂n, θ̂n, σ̂n, β̂n)

T . Our main
task is to compute the asymptotic covariance of the estimators of all the parameters α, θ, σ ,
and β. We want to compute the covariance matrix of the limiting distribution of

√
n(η̂n −η).

Due to the difficulty that the α-stable Ornstein–Uhlenbeck motion has no second moment,
we shall discuss how to find the asymptotic covariance matrix of

√
n(η̂n − η) in detail.
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For any nice function f denote

Sn( f ) = 1

n

n∑

j=1

f (Xt j ) and Tn( f ) = 1

n

n∑

j=1

f (Xt j − Xt j−1). (3.22)

Let Fu(x) = cos(ux) andGu(x) = sin(ux). Then φ̂n(u) = Sn(Fu)+i Sn(Gu) and |φ̂n(u)|2 =
S2n (Fu) + S2n (Gu). Let Vn1 = Sn(Fu1), Vn2 = Sn(Gu1), Vn3 = Sn(Fu2), Vn4 = Sn(Gu2),
Vn5 = Sn(Fu3), Vn6 = Sn(Gu3), Vn7 = Tn(Fu3), Vn8 = Tn(Gu3), Vn9 = Sn(Fu4), Vn10 =
Sn(Gu4). We need first to compute the asymptotic covariance matrix associated with

Vn = (Vn1, Vn2, Vn3, Vn4, Vn5, Vn6, Vn7, Vn8, Vn9, Vn10)
T .

Then we shall use this computation to find the asymptotic covariance matrix of η̂n .
To compute the asymptotic covariance matrix associated with Vn we consider the func-

tional Sn( f ) and Tn( f ) as a special case of

Rn( f ) = 1

n

n∑

j=1

f (Xt j−1 , Xt j ),

where f (x, y) is a function of two variables. It is well-known that for two functions f (x, y)
and g(x, y), the asymptotic covariance cov(

√
nRn( f ),

√
nRn(g))of

√
nRn( f ) and

√
nRn(g)

is given by

σ f g := lim
n→∞ cov(

√
nRn( f ),

√
nRn(g)) = cov( f (X̃0, X̃h), g(X̃0, X̃h))

+
∞∑

j=1

[cov( f (X̃0, X̃h), g(X̃ jh, X̃( j+1)h)) + cov(g(X̃0, X̃h), f (X̃ jh, X̃( j+1)h))].

The asymptotic covariance matrix of Vn will then be given by the covariance matrix

Σ10 := lim
n→∞ (cov(Vnk, Vnl))1≤k,l≤10 = (σgkgl )1≤k,l≤10, (3.23)

where
⎧
⎪⎪⎨

⎪⎪⎩

g1(x, y) = Fu1(x), g2(x, y) = Gu1(x), g3(x, y) = Fu2(x),
g4(x, y) = Gu2(x), g5(x, y) = Fu3(x), g6(x, y) = Gu3(x),
g7(x, y) = Fu3(y − x), g8(x, y) = Gu3(y − x),
g9(x, y) = Fu4(x), g10(x, y) = Gu4(x).

Let v = (v1, v2, . . . , v10)
T , where v j = E[g j (X̃0, X̃h)], j = 1, 2, . . . , 10 . The explicit

expressions of the elements in the covariance matrix Σ10 will be provided in “Appendix”.
For z = (z1, . . . , z10)T , we define the following functions

⎧
⎨

⎩

γ̂1(z) = log
(− log(z21 + z22)

)
, γ̂2(z) = log

(− log(z23 + z24)
)
,

γ̂3(z) = log(z27+z28)

log(z25+z26)
, γ̂4(z) = arctan

(
z10
z9

)
.

Then, basic calculation shows that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ1(η) := γ̂1(v) = log
(
2σα

αθ

)
+ α log |u1|,

γ2(η) := γ̂2(v) = log
(
2σα

αθ

)
+ α log |u2|,

γ3(η) := γ̂3(v) = (1 − e−θh)α + 1 − e−αθh,

γ4(η) := γ̂4(v) = β σα

αθ
tan
(

απ
2

) |u4|αsgn(u4).
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Let γ̂ (z) = (γ̂1(z), γ̂2(z), γ̂3(z), γ̂4(z))T for z ∈ R
10, γ̂ (1)(z) =

(
∂γ̂ j
∂zk

)

1≤ j≤4,1≤k≤10
, and

γ (η) = (γ1(η), γ2(η), γ3(η), γ4(η))T . We have

∂γ 1

∂z1
= −2z1

(z21 + z22) log(z
2
1 + z22)

,
∂γ 1

∂z2
= −2z2

(z21 + z22) log(z
2
1 + z22)

∂γ 1

∂z3
= · · · = ∂γ 1

∂z10
= 0;

∂γ 2

∂z3
= −2z3

(z23 + z24) log(z
2
3 + z24)

,
∂γ 2

∂z4
= −2z4

(z23 + z24) log(z
2
3 + z24)

∂γ 2

∂z1
= 0,

∂γ 2

∂z2
= 0,

∂γ 2

∂z5
= · · · = ∂γ 2

∂z10
= 0;

∂γ 3

∂z5
= −2z5 log(z27 + z28)

(z25 + z26) log
2(z25 + z26)

,
∂γ 3

∂z6
= −2z6 log(z27 + z28)

(z25 + z26) log
2(z25 + z26)

∂γ 3

∂z7
= 2z7

(z27 + z28) log(z
2
5 + z26)

,
∂γ 3

∂z8
= 2z8

(z27 + z28) log(z
2
5 + z26)

∂γ 3

∂z1
= · · · = ∂γ 3

∂z4
= 0,

∂γ 3

∂z9
= ∂γ 3

∂z10
= 0

∂γ 4

∂z9
= −z10

z29 + z210
,

∂γ 4

∂z10
= z9

z29 + z210
,

∂γ 4

∂z1
= · · · = ∂γ 4

∂z8
= 0.

Let Φn(η) = (Φ1,n(η),Φ2,n(η),Φ3,n(η),Φ4,n(η))T , where Φ j,n(η) = γ̂ j (Vn) −
γ j (η), j = 1, 2, 3, 4. Then, we know that η̂n is the generalized moment estimator of η,
which satisfies

Φn(η̂n) = 0. (3.24)

Basic calculation gives

∂γ1

∂α
= log σ − 1

α
+ log |u1|, ∂γ1

∂θ
= −1

θ
,

∂γ1

∂σ
= α

σ
,

∂γ1

∂β
= 0;

∂γ2

∂α
= log σ − 1

α
+ log |u2|, ∂γ2

∂θ
= −1

θ
,

∂γ2

∂σ
= α

σ
,

∂γ2

∂β
= 0;

∂γ3

∂α
= (1 − e−θh)α log(1 − e−θh) + θhe−αθh,

∂γ3

∂θ
= αhe−θh(1 − e−θh)α−1 + αhe−αθh,

∂γ3

∂σ
= 0,

∂γ3

∂β
= 0;

∂γ4

∂α
= βσα|u4|αsgn(u4)

αθ

[
log(σ |u4|) tan

(απ

2

)
− α−1 tan

(απ

2

)
+ π

2
sec2

(απ

2

)]
,

∂γ4

∂θ
= −β

σα

αθ2
tan
(απ

2

)
|u4|αsgn(u4),

∂γ4

∂σ
= β

σα−1

θ
tan
(απ

2

)
|u4|αsgn(u4),

∂γ4

∂β
= σα

θ
tan
(απ

2

)
|u4|αsgn(u4).
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Note that
∇ηΦn(η) = −∇ηγ (η), (3.25)

where

∇ηγ (η) =

⎛

⎜
⎜
⎜
⎜
⎝

∂γ1(η)
∂α

∂γ1(η)
∂θ

∂γ1(η)
∂σ

∂γ1(η)
∂β

∂γ2(η)
∂α

∂γ2(η)
∂θ

∂γ2(η)
∂σ

∂γ2(η)
∂β

∂γ3(η)
∂α

∂γ3(η)
∂θ

∂γ3(η)
∂σ

∂γ3(η)
∂β

∂γ4(η)
∂α

∂γ4(η)
∂θ

∂γ4(η)
∂σ

∂γ4(η)
∂β

⎞

⎟
⎟
⎟
⎟
⎠

. (3.26)

For convenience, let I (η) = ∇ηγ (η).
Finally we have the following main result.

Theorem 1 Fix an arbitrary h > 0. Denote η = (α, θ, σ, β)T and η̂n = (α̂n, θ̂n, σ̂n, β̂n)
T ,

where α̂n, θ̂n, σ̂n, β̂n are given by (3.5), (3.10), (3.18), (3.20) and (3.21), respectively. Then
we have the following statements. (i) The ergodic estimators η̂n converges to η almost surely
as n → ∞. (ii) As n → ∞ we have the following central limit type theorem:

√
n(η̂n − η)

d→ N (0,Σ4), (3.27)

where

Σ4 = (I (η))−1γ̂ (1)(v)Σ10(γ̂
(1)(v))T ((I (η))−1)T .

3.3 Optimal selection of the four grid points {u1, u2, u3, u4}

Following some ideas in Zhang and He (2016), we shall discuss how to select the four grid
points {u1, u2, u3, u4} in certain optimal way. We first choose a relatively extensive grid set
consisting of K grid points defined by

ΔK =
{
ka

K
, k = 1, 2, . . . , K

}

,

where a is a fixed positive number, and K is a relatively large positive integer. For example,
we can set a = 5 (or 8, 10 etc) and K = 200 (or 400, 500 etc). For a finite set A, we use
min− argminx∈A f (x) to denote the minimal value of x ∈ A that minimizes f (x). Note that
the values that minimize f (x) are not always unique. We will use the following two steps to
select four grid points {u1, u2, u3, u4} optimally.
Step 1. We choose

{u∗
1, u

∗
2, u

∗
3, u

∗
4} = {û∗

1,n, û
∗
2,n, û

∗
3,n, û

∗
4,n} ⊂ ΔK

arbitrarily in an increasing order, i.e. u∗
1 < u∗

2 < u∗
3 < u∗

4. Then we compute η̂n =
(α̂n, θ̂n, σ̂n, β̂n), Σ∗

4,n = Σ4(η̂n, {û∗
1,n, û

∗
2,n, û

∗
3,n, û

∗
4,n}) (which is the matrix Σ4 computed

by replacing η with η̂n in Theorem 1) as well as the closeness measure m(Σ∗
4,n) = tr(Σ∗

4,n)

(namely the trace of Σ∗
4,n).

Step 2. Adjust the location of {u∗
1, u

∗
2, u

∗
3, u

∗
4} to {u∗∗

1 , u∗∗
2 , u∗∗

3 , u∗∗
4 } by

u∗∗
1 = û∗∗

1,n = min− arg min
u∈{u∈ΔK :u<û∗

2,n ,u �=û∗
1,n}

m(Σ4(η̂n, {u, û∗
2,n, û

∗
3,n, û

∗
4,n})),

u∗∗
2 = û∗∗

2,n = min− arg min
u∈{u∈ΔK :û∗∗

1,n<u<û∗
3,n ,u �=û∗

2,n}
m(Σ4(η̂n, {û∗∗

1,n, u, û∗
3,n, û

∗
4,n})),
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u∗∗
3 = û∗∗

3,n = min− arg min
u∈{u∈ΔK :û∗∗

2,n<u<û∗
4,n ,u �=û∗

3,n}
m(Σ4(η̂n, {û∗∗

1,n, û
∗∗
2,n, u, û∗

4,n})),

u∗∗
4 = û∗∗

4,n = min− arg min
u∈{u∈ΔK :u>û∗∗

3,n ,u �=û∗
4,n}

m(Σ4(η̂n, {û∗∗
1,n, û

∗∗
2,n, û

∗∗
3,n, u})).

Step 3. Compute m(Σ∗∗
4,n), where

Σ∗∗
4,n = Σ4(η̂n, {u∗∗

1 , u∗∗
2 , u∗∗

3 , u∗∗
4 }).

Then compute

ρ̂n = m(Σ∗
4,n) − m(Σ∗∗

4,n)

m(Σ∗
4,n)

.

Step 4. If ρ̂n > ε (a pre-specified error value like 0.001), then set {u∗∗
1 , u∗∗

2 , u∗∗
3 , u∗∗

4 } to be
{u∗

1, u
∗
2, u

∗
3, u

∗
4} and repeat steps 2-3; else stop and output

{u1, u2, u3, u4} = {u∗∗
1 , u∗∗

2 , u∗∗
3 , u∗∗

4 }.
Thus, we get our optimal selection of four grid points {u1, u2, u3, u4} and the correspond-

ing estimator η̂n in terms of these four points.

4 Simulation

In this section we shall validate our estimators discussed in Sects. 3 and 4. We consider
the following specific α-stable Ornstein–Uhlenbeck motion determined by (1.1) which we
restate as follows:

dXt = − θXtdt + σdZt , X0 is given. (4.1)

First we describe our approach to simulate the above process. There have been numerous
schemes to simulate the above process. However, in all the existing schemes one needs to
divide the interval [0, T ] into small intervals 0 = t0 < t1 < · · · < tN = T = nh̃ such that
the partition step size tk+1 − tk = h̃ goes to zero. This means that we would need to simulate
nh/h̃ many random variables. As we need n → ∞ and we allow h to be a constant, this
will require too large amount of computations. For this specific Eq. (4.1), we shall use the
following scheme. This scheme may also be useful in other applications. For our scheme we
can allow h̃ = h.

From (4.1) we see easily that

Xt = e−θ(t−s)Xs + σ

∫ t

s
e−θ(t−r)dZr .

Thus

Xtk+1 = e−θh Xtk + σ

∫ (k+1)h

kh
e−θ((k+1)h−r)dZr .

Since f (r) = σe−θ((k+1)h−r) is a deterministic function we see that

σ

∫ (k+1)h

kh
e−θ((k+1)h−r)dZr

d=
(∫ (k+1)h

kh
f α(t)dt

) 1
α

DZk,

where DZk are iid α-stable random variables. Janicki andWeron (1994) proposed numerical
simulation of independent α-stable random variables. However, there is an error in Janicki
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andWeron (1994), which is corrected inWeron andWeron (1995).We shall use the following
formula to simulate DZk :

DZk = D sin (αUk + αC)

(
cos(Uk − α(Uk + C))

Wk

) 1−α
α

/ cos(Uk)
1
α .

Here,Uk are iid uniformly distributed on (−π
2 , π

2 ),Wk are iid exponentially distributed with

mean 1, D = (1 + β2 tan2 απ
2

) 1
2α and C = (arctan(β tan απ

2 )
)
/α.

Then, we have the iteration as

Xtk+1 = e−θh Xtk + σ
1

(θα)
1
α

(1 − e−αθh)
1
α DZk .

To be specific we choose the following baseline parameter values and simulate the process
in the interval [0, T ] with nh = T = 10000. We shall fix h = 0.5. For the four grid points
u1, u2, u3 and u4, we select them in a certain optimal way which is discussed in detail in
the Sect. 3.3 and here we choose the a = 12, K = 120 and ε = 10−3. Values of the four
parameters used are given in Table 1. Here we use two sets of values.

Tables 2 and 3 give the mean and standard deviation of the estimators with the first set of
assumed values of the parameters as the value of n changing from a smaller value to a larger
value. For the grid points, we are choosing them in the optimal way. So they are different for
different sample paths, here we just list one set of values. The optimal grid points we got from
one sample path are {5.0, 5.9, 6.0, 10.8}. We can see that as the value of n is getting larger,

Table 1 True parameter values
for the following tables

Variable β α σ θ

Assumed value 0.4 1.7 0.2 2

Assumed value − 0.6 0.6 0.4 5

Table 2 Mean of the estimators
α̂, θ̂ , σ̂ , β̂ with h = 0.5 through
500 paths at different value of n

Mean n (×104)

0.8 1.2 1.6 2

α 1.7008 1.69458 1.6980 1.6994

θ 2.0158 2.0117 2.0087 2.0049

σ 0.2007 0.1989 0.1997 0.1998

β 0.3975 0.4063 0.4009 0.4029

Case: α = 1.7, θ = 2, σ = 0.2, β = 0.4

Table 3 Standard deviation of the
estimators α̂, θ̂ , σ̂ , β̂ with
h = 0.5 through 500 paths at
different value of n

Std n (×104)

0.8 1.2 1.6 2

α 0.0233 0.0229 0.0169 0.0162

θ 0.0716 0.0604 0.0492 0.0405

σ 0.0069 0.0066 0.0060 0.0051

β 0.0573 0.0435 0.0312 0.0278

Case: α = 1.7, θ = 2, σ = 0.2, β = 0.4
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Table 4 Mean of the estimators
α̂, θ̂ , σ̂ , β̂ with h = 0.5 through
500 paths at different value of n

Mean n (×104)

0.8 1.2 1.6 2

α 0.5926 0.5874 0.5907 0.5958

θ 5.0948 5.1334 5.1137 5.0479

σ 0.3933 0.3888 0.3919 0.3925

β − 0.6378 − 0.6560 − 0.6442 − 0.6018

Case: α = 0.6, θ = 5, σ = 0.4, β = −0.6

Table 5 Standard deviation of the
estimators α̂, θ̂ , σ̂ , β̂ with
h = 0.5 through 500 paths at
different value of n

Std n (×104)

0.8 1.2 1.6 2

α 0.0188 0.0185 0.0160 0.0118

θ 0.5300 0.3922 0.2761 0.2101

σ 0.0547 0.0312 0.0279 0.0271

β 0.0639 0.0627 0.0515 0.0446

Case: α = 0.6, θ = 5, σ = 0.4, β = −0.6

our estimators converge to the true values of the parameters and their standard deviations
become smaller.

Tables 4 and 5 give the mean and standard deviation of the estimators with the second
set of assumed values of the parameters as the value of n changing from a smaller value to
a larger value. In this case, 0 < α < 1 and β < 0. And the optimal grid points we got from
one sample path are {0.2, 3.1, 6.1, 9.0}. They are different for other paths. We see that the
estimators also have good consistency with relatively small standard deviations.

5 Appendix

5.1 Lemmas and proofs

In this subsection, we provide all the necessary lemmas with their proofs and the proof of
our main result (Theorem 1) presented in Sect. 3.

Let U = (U1,U2, . . . ,U10)
T ∼ N (0,Σ10). Then, we have the following result:

Lemma 1 We have the CLT √
n(Vn − v)

d→ U . (5.1)

Proof Let U = (U1,U2, . . . ,U10)
T be a normally distributed random vector with mean 0

and covariance matrix Σ10. Then for any non-zero vector a = (a1, a2, . . . , a10)T ∈ R
10,

we have aTU ∼ N (0, aTΣ10a). By the Cramer–Wold device (Theorem 29.4 of Billingsley
1995), it suffices to prove that

aT
√
n(Vn − v)

d→ aTU .

Define K = aT (g1, g2, . . . , g10)T and K̄ = K − E[K (X̃0, X̃h)] = aT (ḡ1, ḡ2, . . . , ḡ10)T .
Note that the underlying Ornstein–Uhlenbeck process is stationary and exponentially α-
mixing (see Theorem 2.6 of Masuda 2007). Then by the univariate CLT Theorem 18.6.3 of
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Ibragimov and Linnik (1971) for stationary process with α-mixing condition, we have

aT
√
n(Vn − v) = √

nTn(K̄ )
d→ N (0, σ 2

K ), (5.2)

where

σ 2
K = Eμ[K̄ 2(X̃0, X̃h)] + 2

∞∑

j=1

Eμ[K̄ (X̃0, X̃h)K̄ (X̃ jh, X̃( j+1)h)] = aTΣ10a.

Therefore, we have aT
√
n(Vn−v)

d→ aTU for any non-zero a ∈ R
10. The proof is complete.

��
Lemma 2 We have the following CLT

√
nΦn(η)

d→ γ̂ (1)(v)U . (5.3)

Proof Note that
√
nΦn(η) = √

n(γ̂ (Vn)− γ̂ (v)). The result follows directly from Lemma 1
and the delta method (see, e.g., Lemma 5.3.3 of Bickel and Doksum 2001). ��

Now we are ready to prove our main result (Theorem 1).

Proof of Theorem 1 (i) It is obvious since each component of η̂n converges to the corre-
sponding component of η almost surely as n → ∞ as discussed in Sects. 3.1.1–3.1.4.

(ii) By Taylor’s formula, we have

Φn(η̂n) − Φn(η) =
∫ 1

0
∇ηΦn(η + s(η̂n − η))ds · (η̂n − η). (5.4)

Let In(η) = − ∫ 10 ∇ηΦn(η + s(η̂n − η))ds be invertible. Note that Φn(η̂n) = 0. Then,
we have √

n(η̂n − η) = (In(η))−1 · √
nΦn(η). (5.5)

Note that (In(η))−1 → (I (η))−1 a.s. since η̂n → η a.s. Therefore by using Lemma 2
and Slutsky’s Theorem, we have

√
n(η̂n − η)

d→ (I (η))−1 γ̂ (1)(v)U .

The proof is complete.
��

5.2 Computation of the covariancematrix 610

The explicit expressions of the elements in the covariance matrix Σ10 are given in this
subsection.
By using the characteristic function φ(u) given in (2.3), we define

A0(u) = E(cos u X̃0)

= exp

{

− σα

αθ
|u|α

}

cos

(
σα

αθ
|u|αβsign (u) tan

απ

2

)

. (5.6)

B0(u) = E(sin u X̃0)

= exp

{

− σα

αθ
|u|α

}

sin

(
σα

αθ
|u|αβsign (u) tan

απ

2

)

. (5.7)
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Computation of σg1g1 . From the definition of g1 we have

σg1g1 = cov(cos u1 X̃0, cos u1 X̃0),+2
∞∑

j=1

[cov(cos u1 X̃0, cos u1 X̃ jh)]

= E((cos u1 X̃0)
2) − (E(cos u1 X̃0))

2

+ 2
∞∑

j=1

{
E(cos u1 X̃0 cos u1 X̃ jh) − E(cos u1 X̃0)E(cos u1 X̃ jh)

}
. (5.8)

The first term in (5.8) is given by

E((cos u1 X̃0)
2) = E

(
cos 2u1 X̃0 + 1

2

)

= 1

2
+ 1

2
E(cos 2u1 X̃0)

= 1

2
+ 1

2
A0(2u1). (5.9)

To compute the second term in (5.8) one needs

E(cos u1 X̃0) = A0(u1). (5.10)

Notice that E(cos u1 X̃ jh) = E(cos u1 X̃0) and then the second summand in the sum of (5.8)
is also given by the above formula. We write

u X̃0 + v X̃ jh = (u + ve−θ jh)X̃0 + vσe−θ jh
∫ jh

0
eθsd Zs

and then we see

E

[
exp{iu X̃0 + iv X̃ jh}

]

= E

[
exp{i(u + ve−θ jh)X̃0}

]
E

[

exp{ivσeθ jh
∫ jh

0
eθsd Zs}

]

= exp

{

− σα

αθ

[
|u + ve−θ jh |α

(
1 − iβsign (u + ve−θ jh) tan

απ

2

)

+ |v|α(1 − e−αθ jh)
(
1 − iβsign (v) tan

απ

2

)]}

. (5.11)

Let

A j (u, v) = E(cos(u X̃0 + v X̃ jh))

= exp

{

− σα

αθ

[
|u + ve−θ jh |α + |v|α(1 − e−αθ jh)

] }

cos

(
σα

αθ
β tan

απ

2

[
|u + veθ jh |αsign (u + ve−θ jh) + |v|α(1 − e−αθ jh)sign (v)

])

,

(5.12)

Bj (u, v) = E(sin(u X̃0 + v X̃ jh))

= exp

{

− σα

αθ

[
|u + ve−θ jh |α + |v|α(1 − e−αθ jh)

] }

sin

(
σα

αθ
β tan

απ

2

[
|u + veθ jh |αsign (u + ve−θ jh) + |v|α(1 − e−αθ jh)sign (v)

])

.

(5.13)
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From this computation we have the following formula for the first summand in the sum
of (5.8).

E(cos u1 X̃0 cos u1 X̃ jh) = E(cos u1(X̃0 + X̃ jh)) + E(cos u1(X̃0 − X̃ jh))

2

= A j (u1, u1) + A j (u1,−u1)

2
. (5.14)

Substituting (5.9)–(5.10), (5.12), and (5.14) into (5.8) gives the computation for σg1g1 .
Computation of σg2g2 . From the definition of g2 we have

σg2g2 = cov(sin u1 X̃0, sin u1 X̃0) + 2
∞∑

j=1

[cov(sin u1 X̃0, sin u1 X̃ jh)]

= E((sin u1 X̃0)
2) − (E(sin u1 X̃0))

2

+ 2
∞∑

j=1

E(sin u1 X̃0 sin u1 X̃ jh) − E(sin u1 X̃0)E(sin u1 X̃ jh). (5.15)

The first term in (5.15) is given by

E((sin u1 X̃0)
2) = E

(
1 − cos 2u1 X̃0

2

)

= 1

2
− 1

2
E(cos 2u1 X̃0)

= 1

2
− 1

2
A0(2u1). (5.16)

The other terms appeared in (5.15) are given by

E(sin u1 X̃0) = B0(u1) (5.17)

and

E(sin u1 X̃0 sin u1 X̃ jh) = E(cos u1(X̃0 − X̃ jh)) − E(cos u1(X̃0 + X̃ jh))

2

= A j (u1,−u1) − A j (u1, u1)

2
(5.18)

We can get σg2g2 from Eq. (5.15).
The method of getting σg3g3 , σg4g4 , σg5g5 , σg6g6 , σg9g9 and σg10g10 are essentially the same

as σg1g1 and σg2g2 by simply changing the value of u.
Computation of σg7g7 . From the definition of g7 we have

σg7g7 = cov(cos u3(X̃h − X̃0), cos u3(X̃h − X̃0))

+ 2
∞∑

j=1

[cov(cos u3(X̃h − X̃0), cos u3(X̃( j+1)h − X̃ jh))]

= E((cos u3(X̃h − X̃0))
2) − (E cos u3(X̃h − X̃0))

2

+ 2
∞∑

j=1

E(cos u3(X̃h − X̃0) cos u3(X̃( j+1)h − X̃ jh))

−E(cos u3(X̃h − X̃0))E(cos u3(X̃( j+1)h − X̃ jh)). (5.19)

123



Statistical Inference for Stochastic Processes (2020) 23:53–81 71

The first term in (5.19) is given by

E((cos u3(X̃h − X̃0))
2) = E

(
cos 2u3(X̃h − X̃0) + 1

2

)

= 1

2
+ 1

2
E(cos 2u3(X̃h − X̃0))

= 1

2
+ 1

2
A1(−2u3, 2u3). (5.20)

The second term in (5.19) is given by

E(cos u3(X̃h − X̃0)) = A1(−u3, u3). (5.21)

For any real numbers u and v we have

u(X̃h − X̃0) + v(X̃( j+1)h − X̃ jh)

= [u(e−θh − 1) + v(e−θ( j+1)h − e−θ jh)]X0

+
∫ ∞

0
uσe−θheθs1[0,h](s)dZs +

∫ ∞

0
vσe−θ( j+1)heθs1[0,( j+1)h](s)dZs

−
∫ ∞

0
vσe−θ jheθs1[0, jh](s)dZs . (5.22)

Therefore, we have

w j (u, v) := E[exp{iu(X̃h − X̃0) + iv(X̃( j+1)h − X̃ jh)}]
= E[exp{i[u(e−θh − 1) + v(e−θ( j+1)h − e−θ jh)]X0]

E[exp{i(uσe−θh
∫ ∞

0
eθs1[0,h](s)dZs − vσe−θ jh

∫ ∞

0
eθs1[0, jh](s)dZs

+ vσe−θ( j+1)h
∫ ∞

0
eθs1[0,( j+1)h](s)dZs}]

= exp

{

− σα

αθ
[|u(e−θh − 1) + v(e−θ( j+1)h − e−θ jh)|α

(
1 − iβsign (u(e−θh − 1) + v(e−θ( j+1)h − e−θ jh)) tan

απ

2

)

+ |ue−θh + ve−θ( j+1)h − ve−θ jh |α(eαθh − 1)
(
1 − iβsign (ue−θh + ve−θ( j+1)h − ve−θ jh) tan

απ

2

)

+ |v|α(1 − e−θh)α(1 − e−αθ( j−1)h)(1 + iβsign (v) tan
απ

2
)

+ |v|α(1 − e−αθh)(1 − iβsign (v) tan
απ

2
)]
}

. (5.23)

Then the first summand of the sum in (5.19) is given by

E(cos u3(X̃h − X̃0) cos u3(X̃( j+1)h − X̃ jh))

= 1

2

[

E(cos u3((X̃h − X̃0) + (X̃( j+1)h − X̃ jh))

+E(cos u3((X̃h − X̃0) − (X̃( j+1)h − X̃ jh))

]

= 1

2
� [w j (u3, u3) + w j (u3,−u3)

]
. (5.24)

Then we can get σg7g7 from Eq. (5.19).
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Computation of σg8g8 . From the definition of g8 we have

σg8g8 = cov(sin u3(X̃h − X̃0), sin u3(X̃h − X̃0))

+ 2
∞∑

j=1

[cov(sin u3(X̃h − X̃0), sin u3(X̃( j+1)h − X̃ jh))]

= E((sin u3(X̃h − X̃0))
2) − (E sin u3(X̃h − X̃0))

2

+ 2
∞∑

j=1

E(sin u3(X̃h − X̃0) sin u3(X̃( j+1)h − X̃ jh))

−E(sin u3(X̃h − X̃0))E(sin u3(X̃( j+1)h − X̃ jh)).

(5.25)

E((sin u3(X̃h − X̃0))
2) = E

(
1 − cos 2u3(X̃h − X̃0)

2

)

= 1

2
− 1

2
E(cos 2u3(X̃h − X̃0))

= 1

2
− 1

2
A1(−2u3, 2u3). (5.26)

E sin u3(X̃h − X̃0) = B1(−u3, u3). (5.27)

E(sin u3(X̃h − X̃0) sin u3(X̃( j+1)h − X̃ jh)) = 1

2

[
E(cos(u3(X̃h − X̃0) − u3(X̃( j+1)h − X̃ jh)))

− E(cos(u3(X̃h − X̃0) − u3(X̃( j+1)h − X̃ jh)))
]

= 1

2
� [w j (u3,−u3) − w j (u3, u3)

]
. (5.28)

Then we can get σg8g8 from Eq. (5.25).
Computation of σg1g2 . From the definition of g1 and g2 we have

σg1g2 = cov(cos u1 X̃0, sin u1 X̃0) +
∞∑

j=1

[cov(cos u1 X̃0, sin u1 X̃ jh)

+ cov(sin u1 X̃0, cos u1 X̃ jh)]
= E(cos u1 X̃0 sin u1 X̃0) − E(cos u1 X̃0)E(sin u1 X̃0)

+
∞∑

j=1

[E(cos u1 X̃0 sin u1 X̃ jh) − E(cos u1 X̃0)E(sin u1 X̃ jh)

+E(sin u1 X̃0 cos u1 X̃ jh) − E(sin u1 X̃0)E(cos u1 X̃ jh)], (5.29)

where

E(cos u1 X̃0 sin u1 X̃0) = E(sin 2u1 X̃0)

2
= 1

2
B0(2u1), (5.30)

E(cos u1 X̃0) = A0(u1), (5.31)

E(sin u1 X̃0) = B0(u1), (5.32)

E(cos u1 X̃0 sin u1 X̃ jh) = E(sin u1(X̃0 + X̃ jh)) − E(sin u1(X̃0 − X̃ jh))

2

= Bj (u1, u1) − Bj (u1,−u1)

2
, (5.33)
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E(sin u1 X̃0 cos u1 X̃ jh) = E(sin u1(X̃0 + X̃ jh)) + E(sin u1(X̃0 − X̃ jh))

2

= Bj (u1, u1) + Bj (u1,−u1)

2
. (5.34)

Similarly, we can get σg3g4 , σg5g6 , σg9g10 by changing u1 to u2, u3 and u4.
Computation of σg1g3 . From the definition of g1 and g3 we have

σg1g3 = cov(cos u1 X̃0, cos u2 X̃0) +
∞∑

j=1

[cov(cos u1 X̃0, cos u2 X̃ jh)

+ cov(cos u2 X̃0, cos u1 X̃ jh)]
= E(cos u1 X̃0 cos u2 X̃0) − E(cos u1 X̃0)E(cos u2 X̃0)

+
∞∑

j=1

[

E(cos u1 X̃0 cos u2 X̃ jh) − E(cos u1 X̃0)E(cos u2 X̃ jh)

+E(cos u2 X̃0 cos u1 X̃ jh) − E(cos u2 X̃0)E(cos u1 X̃ jh)

]

, (5.35)

where

E(cos u1 X̃0 cos u2 X̃0) = 1

2
[E(cos(u1 + u2)X̃0) + E(cos(u1 − u2)X̃0)]

(5.36)

= 1

2
[A0(u1 + u2) + A0(u1 − u2)] ,

E(cos u1 X̃0) = A0(u1), E(cos u2 X̃0) = A0(u2), (5.37)

E(cos u1 X̃0 cos u2 X̃ jh) = E cos(u1 X̃0 + u2 X̃ jh) + E cos(u1 X̃0 − u2 X̃ jh))

2

= A j (u1, u2) + A j (u1,−u2)

2
, (5.38)

E(cos u2 X̃0 cos u1 X̃ jh) = E cos(u2 X̃0 + u1 X̃ jh) + E cos(u2 X̃0 − u1 X̃ jh))

2

= A j (u2, u1) + A j (u2,−u1)

2
. (5.39)

Then we can get σg1g3 from Eq. (5.35).
Similarly, we can get σg1g5 , σg1g9 , σg3g5 , σg3g9 , and σg5g9 .
Computation of σg1g4 . From the definition of g1 and g4 we have

σg1g4 = cov(cos u1 X̃0, sin u2 X̃0) +
∞∑

j=1

[cov(cos u1 X̃0, sin u2 X̃ jh)

+ cov(sin u2 X̃0, cos u1 X̃ jh)]
= E(cos u1 X̃0 sin u2 X̃0) − E(cos u1 X̃0)E(sin u2 X̃0)

+
∞∑

j=1

E(cos u1 X̃0 sin u2 X̃ jh) − E(cos u1 X̃0)E(sin u2 X̃ jh)

+
∞∑

j=1

E(sin u2 X̃0 cos u1 X̃ jh) − E(sin u2 X̃0)E(cos u1 X̃ jh), (5.40)
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where

E(cos u1 X̃0 sin u2 X̃0) = 1

2
[E(sin(u1 + u2)X̃0) − E(sin(u1 − u2)X̃0)]

= 1

2
[B0(u1 + u2) − B0(u1 − u2)] ,

E(cos u1 X̃0) = A0(u1), E(sin u2 X̃0) = B0(u2), (5.41)

E(cos u1 X̃0 sin u2 X̃ jh) = E sin(u1 X̃0 + u2 X̃ jh) − E sin(u1 X̃0 − u2 X̃ jh))

2

= Bj (u1, u2) − Bj (u1,−u2)

2
, (5.42)

E(sin u2 X̃0 cos u1 X̃ jh) = E sin(u2 X̃0 + u1 X̃ jh) − E sin(u2 X̃0 − u1 X̃ jh))

2
(5.43)

= Bj (u2, u1) − Bj (u2,−u1)

2
. (5.44)

Then we can get σg1g4 from Eq. (5.40).
Similarly, we can get σg1g6 , σg1g10 , σg3g2 , σg3g6 , σg3g10 , σg5g2 , σg5g4 , σg5g10 , σg9g2 , σg9g4 ,

and σg9g6 by changing the value of u1 and u2.
Computation of σg2g4 . From the definition of g2 and g4 we have

σg2g4 = cov(sin u1 X̃0, sin u2 X̃0) +
∞∑

j=1

[cov(sin u1 X̃0, sin u2 X̃ jh)

+ cov(sin u2 X̃0, sin u1 X̃ jh)]
= E(sin u1 X̃0 sin u2 X̃0) − E(sin u1 X̃0)E(sin u2 X̃0)

+
∞∑

j=1

E(sin u1 X̃0 sin u2 X̃ jh) − E(sin u1 X̃0)E(sin u2 X̃ jh)

+
∞∑

j=1

E(sin u2 X̃0 sin u1 X̃ jh) − E(sin u2 X̃0)E(sin u1 X̃ jh), (5.45)

where

E(sin u1 X̃0 sin u2 X̃0) = 1

2
[E(cos(u1 − u2)X̃0) − E(cos(u1 + u2)X̃0)]

= 1

2
[A0(u1 − u2) − A0(u1 + u2)] , (5.46)

E(sin u1 X̃0) = B0(u1), E(sin u2 X̃0) = B0(u2), (5.47)

E(sin u1 X̃0 sin u2 X̃ jh) = E cos(u1 X̃0 − u2 X̃ jh) − E cos(u1 X̃0 + u2 X̃ jh))

2

= A j (u1,−u2) − A j (u1, u2)

2
, (5.48)

E(sin u2 X̃0 sin u1 X̃ jh) = E cos(u2 X̃0 − u1 X̃ jh) − E cos(u2 X̃0 + u1 X̃ jh))

2

= A j (u2,−u1) − A j (u2, u1)

2
. (5.49)

Then we can get σg2g4 from Eq. (5.45).
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Similarly, we can get σg2g6 , σg2g10 , σg4g6 , σg4g10 , and σg6g10 by changing the value of u1
and u2.
Computation of σg7g8 . From the definition of g7 and g8 we have

σg7g8 = cov(cos u3(X̃h − X̃0), sin u3(X̃h − X̃0))

+
∞∑

j=1

[cov(cos u3(X̃h − X̃0), sin u3(X̃( j+1)h − X̃ jh))

+ cov(sin u3(X̃h − X̃0), cos u3(X̃( j+1)h − X̃ jh))]
= E(cos u3(X̃h − X̃0) sin u3(X̃h − X̃0))

−E cos u3(X̃h − X̃0))E sin u3(X̃h − X̃0))

+
∞∑

j=1

[E(cos u3(X̃h − X̃0) sin u3(X̃( j+1)h − X̃ jh))

−E(cos u3(X̃h − X̃0))E(sin u3(X̃( j+1)h − X̃ jh))

+E(sin u3(X̃h − X̃0) cos u3(X̃( j+1)h − X̃ jh))

−E(sin u3(X̃h − X̃0))E(cos u3(X̃( j+1)h − X̃ jh))], (5.50)

where

E(cos u3(X̃h − X̃0) sin u3(X̃h − X̃0)) = E

(
sin 2u3(X̃h − X̃0)

2

)

= 1

2
B1(−2u3, 2u3), (5.51)

E(cos u3(X̃h − X̃0)) = A1(−u3, u3), (5.52)

E(sin u3(X̃h − X̃0)) = B1(−u3, u3), (5.53)

E(cos u3(X̃h − X̃0) sin u3(X̃( j+1)h − X̃ jh)) = 1

2

[

E(sin(u3(X̃h − X̃0)) + u3(X̃( j+1)h − X̃ jh))

−E(sin(u3(X̃h − X̃0) − u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [w j (u3, u3) − w j (u3,−u3)

]
,

(5.54)

E(sin u3(X̃h − X̃0) cos u3(X̃( j+1)h − X̃ jh)) = 1

2

[

E(sin(u3(X̃h − X̃0)) + u3(X̃( j+1)h − X̃ jh))

+E(sin(u3(X̃h − X̃0) − u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [w j (u3, u3) + w j (u3,−u3)

]
. (5.55)

Then we can get σg7g8 from Eq. (5.50).
Computation of σg1g7 . From the definition of g1 and g7 we have

σg1g7 = cov(cos u1 X̃0, cos u3(X̃h − X̃0))

+
∞∑

j=1

[cov(cos u1 X̃0, cos u3(X̃( j+1)h − X̃ jh))
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+ cov(cos u3(X̃h − X̃0), cos u1 X̃ jh)]
= E(cos u1 X̃0 cos u3(X̃h − X̃0)) − E cos u1 X̃0E cos u3(X̃h − X̃0))

+
∞∑

j=1

[E(cos u1 X̃0 cos u3(X̃( j+1)h − X̃ jh))

−E(cos u1 X̃0)E(cos u3(X̃( j+1)h − X̃ jh))

+E(cos u3(X̃h − X̃0) cos u1 X̃ jh)

−E(cos u3(X̃h − X̃0))E(cos u1 X̃ jh))]. (5.56)

Note that

E cos u3(X̃h − X̃0) = A1(−u3, u3),E cos u1 X̃0 = A0(u1). (5.57)

We write

u X̃0 + v(X̃( j+1)h − X̃ jh) = (u + ve−θ( j+1)h − ve−θ jh)X̃0

+ vσe−θ( j+1)h
∫ ( j+1)h

0
eθsd Zs − vσe−θ jh

∫ jh

0
eθsd Zs .

Let

ρ j (u, v) := E[exp{iu X̃0 + iv(X̃( j+1)h − X̃ jh)}]
= E[exp{i[u + v(e−θ( j+1)h − e−θ jh)]X0]
= E[exp{i(vσe−θ( j+1)h

∫ ∞

0
eθs1[0,( j+1)h](s)dZs

− vσe−θ jh
∫ ∞

0
eθs1[0, jh](s)dZs})]

= exp

{

− σα

αθ

[
|u + v(e−θ( j+1)h − e−θ jh)|α

(
1 − iβsign (u + v(e−θ( j+1)h − e−θ jh)) tan

απ

2

)

+ |v|α
(
1 − e−θh

)α (
1 − e−αθ jh

) (
1 + iβsign (v) tan

απ

2

)

+|v|α(1 − e−αθh)
(
1 − iβsign (v) tan

απ

2

)]}

. (5.58)

Then

E(cos u1 X̃0 cos u3(X̃( j+1)h − X̃ jh))

= 1

2

[

E(cos(u1 X̃0 + u3(X̃( j+1)h − X̃ jh))

+E(cos(u1 X̃0 − u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [ρ j (u1, u3) + ρ j (u1,−u3)

]
. (5.59)

We write
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u X̃ jh + v(X̃h − X̃0) = (ue−θ jh + v(e−θh − 1))X̃0

+ uσe−θ jh
∫ jh

0
eθsd Zs + vσe−θh

∫ h

0
eθsd Zs .

Let

κ j (u, v) := E[exp{iu X̃ jh + iv(X̃h − X̃0)}]
= E[exp{i[ue−θ jh + v(e−θh − 1)]X̃0]

×E[exp{i(uσe−θ jh
∫ jh

0
eθsd Zs + vσe−θh

∫ h

0
eθsd Zs)]

= exp

{

− σα

αθ

[

ue−θ jh + v(e−θh − 1)|α
(
1 − iβsign (ue−θ jh + v(e−θh − 1)) tan

απ

2

)

+ |ue−θ jh + ve−θh |α(eαθh − 1)
(
1 − iβsign (ue−θ jh + ve−θh) tan

απ

2

)

+ |u|α(1 − e−αθ( j−1)h)
(
1 − iβsign (u) tan

απ

2

) ]}

. (5.60)

Then

E(cos u3(X̃h − X̃0) cos u1 X̃ jh) = 1

2

[

E(cos(u1 X̃ jh + u3(X̃h − X̃0)))

+E(cos(u1 X̃ jh − u3(X̃h − X̃0)))

]

= 1

2
� [κ j (u1, u3) + κ j (u1,−u3)

]
. (5.61)

Then we can get σg1g7 from Eq. (5.56). By changing the value of u1, we can get σg3g7 , σg5g7 ,
and σg9g7 .
Computation of σg1g8 . From the definition of g1 and g8 we have

σg1g8 = cov(cos u1 X̃0, sin u3(X̃h − X̃0))

+
∞∑

j=1

[cov(cos u1 X̃0, sin u3(X̃( j+1)h − X̃ jh))

+ cov(cos u3(X̃h − X̃0), sin u1 X̃ jh)]
= E(cos u1 X̃0 sin u3(X̃h − X̃0)) − E cos u1 X̃0E sin u3(X̃h − X̃0))

+
∞∑

j=1

[E(cos u1 X̃0 sin u3(X̃( j+1)h − X̃ jh))

−E(cos u1 X̃0)E(sin u3(X̃( j+1)h − X̃ jh))

+E(sin u3(X̃h − X̃0) cos u1 X̃ jh)

−E(sin u3(X̃h − X̃0))E(cos u1 X̃ jh))], (5.62)

where

E cos u1 X̃0 = A0(u1), E sin u3(X̃h − X̃0) = B1(−u3, u3). (5.63)
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By Eqs. (5.58) and (5.60), we get

E(cos u1 X̃0 sin u3(X̃( j+1)h − X̃ jh)) (5.64)

= 1

2

[

E(sin(u1 X̃0 + u3(X̃( j+1)h − X̃ jh))

−E(sin(u1 X̃0 − u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [ρ j (u1, u3) − ρ j (u1,−u3)

]
,

E(sin u3(X̃h − X̃0) cos u1 X̃ jh)

= 1

2

[

E(sin(u1 X̃ jh + u3(X̃h − X̃0)))

−E(sin(u1 X̃ jh − u3(X̃h − X̃0)))

]

= 1

2
� [κ j (u1, u3) − κ j (u1,−u3)

]
. (5.65)

Then we can get σg1g8 from Eq. (5.62). By changing the value of u1, we can get σg3g8 ,σg5g8 ,
and σg9g8 .
Computation of σg2g7 . From the definition of g2 and g7 we have

σg2g7 = cov(sin u1 X̃0, cos u3(X̃h − X̃0))

+
∞∑

j=1

[cov(sin u1 X̃0, cos u3(X̃( j+1)h − X̃ jh))

+ cov(cos u3(X̃h − X̃0), sin u1 X̃ jh)]
= E(sin u1 X̃0 cos u3(X̃h − X̃0)) − E sin u1 X̃0E cos u3(X̃h − X̃0))

+
∞∑

j=1

[E(sin u1 X̃0 cos u3(X̃( j+1)h − X̃ jh))

−E(sin u1 X̃0)E(cos u3(X̃( j+1)h − X̃ jh))

+E(cos u3(X̃h − X̃0) sin u1 X̃ jh)

−E(cos u3(X̃h − X̃0))E(sin u1 X̃ jh))]. (5.66)

Note that

E sin u1 X̃0 = B0(u1), E cos u3(X̃h − X̃0) = A1(−u3, u3). (5.67)

By Eqs. (5.58) and (5.60), we get

E(sin u1 X̃0 cos u3(X̃( j+1)h − X̃ jh))

= 1

2

[

E(sin(u1 X̃0 + u3(X̃( j+1)h − X̃ jh))

+E(sin(u1 X̃0 − u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [ρ j (u1, u3) + ρ j (u1,−u3)

]
(5.68)
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and

E(cos u3(X̃h − X̃0) sin u1 X̃ jh)

= 1

2

[

E(sin(u1 X̃ jh + u3(X̃h − X̃0)))

+E(sin(u1 X̃ jh − u3(X̃h − X̃0)))

]

= 1

2
� [κ j (u1, u3) + κ j (u1,−u3)

]
. (5.69)

Then we can get σg2g7 from Eq. (5.66). By changing the value of u1, we can get σg4g7 , σg6g7 ,
and σg10g7 .
Computation of σg2g8 . From the definition of g2 and g8 we have

σg2g8 = cov(sin u1 X̃0, sin u3(X̃h − X̃0))

+
∞∑

j=1

[cov(sin u1 X̃0, sin u3(X̃( j+1)h − X̃ jh))

+ cov(sin u3(X̃h − X̃0), sin u1 X̃ jh)]
= E(sin u1 X̃0 sin u3(X̃h − X̃0))

−E sin u1 X̃0E sin u3(X̃h − X̃0))

+
∞∑

j=1

[E(sin u1 X̃0 sin u3(X̃( j+1)h − X̃ jh))

−E(sin u1 X̃0)E(sin u3(X̃( j+1)h − X̃ jh))

+E(sin u3(X̃h − X̃0) sin u1 X̃ jh)

−E(sin u3(X̃h − X̃0))E(sin u1 X̃ jh))]. (5.70)

Note that

E sin u1 X̃0 = B0(u1), E sin u3(X̃h − X̃0) = B1(−u3, u3). (5.71)

By Eqs. (5.58) and (5.60), we find

E(sin u1 X̃0 sin u3(X̃( j+1)h − X̃ jh))

= 1

2

[

E(cos(u1 X̃0 − u3(X̃( j+1)h − X̃ jh))

−E(cos(u1 X̃0 + u3(X̃( j+1)h − X̃ jh))

]

= 1

2
� [ρ j (u1,−u3) − ρ j (u1, u3)

]
. (5.72)

E(sin u3(X̃h − X̃0) sin u1 X̃ jh)

= 1

2

[
E(cos(u1 X̃ jh − u3(X̃h − X̃0)))

− E(cos(u1 X̃ jh + u3(X̃h − X̃0)))
]

= 1

2
� [κ j (u1,−u3) − κ j (u1, u3)

]
. (5.73)
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Then we can get σg2g8 by Eq. (5.70). Similarly, we can get σg4g8 ,σg6g8 ,and σg10g8 .
Thus, we have obtained the explicit expression of Σ10 = (σgkgl )1≤k,l≤10.
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