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Abstract
This paper deals with the consistency and a rate of convergence for a Nadaraya–Watson esti-
mator of the drift function of a stochastic differential equation driven by an additive fractional
noise. The results of this paper are obtained via both some long-time behavior properties of
Hairer and some properties of the Skorokhod integral with respect to the fractional Brownian
motion. These results are illustrated on the fractional Ornstein–Uhlenbeck process.
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1 Introduction

Consider the stochastic differential equation

X(t) = X0 +
∫ t

0
b(X(s))ds + σ B(t), (1)

where B is a fractional Brownian motion of Hurst index H ∈]1/2, 1[, b : R → R is a
continuous map and σ ∈ R

∗.
Along the last 2 decades, many authors studied statistical inference from observations

drawn from stochastic differential equations driven by fractional Brownian motion.
Most references on the estimation of the trend component in Eq. (1) deals with parametric

estimators. Kleptsyna and Le Breton (2001) and Hu and Nualart (2010), estimators of the
trend component in Langevin’s equation are studied. Kleptsyna and LeBreton (2001) provide
a maximum likelihood estimator, where the stochastic integral with respect to the solution of
Eq. (1) returns to an Itô integral. Tudor and Viens (2007) extend this estimator to equations
with a drift function depending linearly on the unknown parameter. Hu and Nualart (2010)
provide a least square estimator, where the stochastic integral with respect to the solution of
Eq. (1) is taken in the sense of Skorokhod. Hu et al. (2018) extend this estimator to equations
with a drift function depending linearly on the unknown parameter.

Neuenkirch and Tindel (2014), the authors study a least square-type estimator defined by
an objective function tailor-maid with respect to the main result of Tudor and Viens (2009)
on the rate of convergence of the quadratic variation of the fractional Brownian motion.
Chronopoulou and Tindel (2013) provide a likelihood based numerical procedure to estimate
a parameter involved in both the drift and the volatility functions in a stochastic differential
equation with multiplicative fractional noise.

On the nonparametric estimation of the trend component in Eq. (1), there are only few ref-
erences. Saussereau (2014) andMishra and PrakasaRao (2011) study the consistency of some
Nadaraya–Watson’s-type estimators of the drift function b in Eq. (1). On the nonparametric
estimation in Itô’s calculus framework, the reader is referred to Kutoyants (2004).

Let K : R → R+ be a kernel that is a nonnegative function with integral equal to 1.
The paper deals with the consistency and a rate of convergence for the Nadaraya–Watson
estimator

b̂T ,h(x) :=

∫ T

0
K

(
X(s) − x

h

)
δX(s)

∫ T

0
K

(
X(s) − x

h

)
ds

; x ∈ R (2)

of the drift function b in Eq. (1), where the stochastic integral with respect to X is taken in
the sense of Skorokhod. Since to compute the Skorokhod integral is a challenge, by denoting
by Xx0 the solution of Eq. (1) with initial condition x0 ∈ R, the following estimator is also
studied:
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b̂T ,h,ε(x) :=

∫ T

0
K

(
Xx0(s) − x

h

)
d Xx0(s)

∫ T

0
K

(
Xx0(s) − x

h

)
ds

−αH σ 2

1

h

∫ T

0

∫ u

0
K ′

(
Xx0(u) − x

h

)
Xx0+ε(u) − Xx0(u)

Xx0+ε(v) − Xx0(v)
|u − v|2H−2dvdu

∫ T

0
K

(
Xx0(s) − x

h

)
ds

(3)

with ε > 0 and x ∈ R. In this second estimator, the stochastic integral is taken pathwise. It
depends on H , but an estimator of this parameter is for instance provided in Kubilius and
Skorniakov (2016).

Asdetailed inSect. 2.2, theSkorokhod integral is definedvia the divergence operatorwhich
is the adjoint of the Malliavin derivative for the fractional Brownian motion. If H = 1/2,
then the Skorokhod integral coincides with Itô’s integral on its domain. When H ∈]1/2, 1[,
it is more difficult to compute the Skorokhod integral, but not impossible as explained at the
end of Sect. 2.2. Note that, the pathwise stochastic integral defined in Sect. 2.1 would have
been a more natural choice, but unfortunately, it does not provide a consistent estimator (see
Proposition 3.3).

Clearly, to be computable, the estimator b̂T ,h,ε(x) requires an observed path of the solution
of Eq. (1) for two close but different values of the initial condition. This is not possible in
any context, but we have in mind the following application field: if t �→ Xx0(ω, t) denotes
the concentration of a drug along time during its elimination by a patient ω with initial dose
x0 > 0, t �→ Xx0+ε(ω, t) could be approximated by replicating the exact same protocol on
patient ω, but with initial dose x0 + ε after the complete elimination of the previous dose.

We mention that we do not study the additional error which occurs when only discrete
time observations with step � on [0, T ] (T = n�) are available. Formula (3) has then to be
discretized and a study in the spirit of Saussereau (2014) (Sect. 4.3) must be conducted.

Section 2 deals with some preliminary results on stochastic integrals with respect to
the fractional Brownian motion and an ergodic theorem for the solution of Eq. (1). The
consistency and a rate of convergence of the Nadaraya–Watson estimator studied in this
paper are stated in Sect. 3. Almost all the proofs of the paper are provided in Sect 4.

Notations:

(1) The vector space of Lipschitz continuous maps from R into itself is denoted by Lip(R)

and equipped with the Lipschitz semi-norm ‖.‖Lip defined by

‖ϕ‖Lip := sup

{ |ϕ(y) − ϕ(x)|
|y − x | ; x, y ∈ R and x �= y

}

for every ϕ ∈ Lip(R).
(2) For every m ∈ N,

Cm
b (R) :=

{
ϕ ∈ Cm(R) : max

k∈�0,m�
‖ϕ(k)‖∞ < ∞

}
.
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(3) For every m ∈ N
∗,

Lipm
b (R) :=

{
ϕ ∈ Cm(R) : ϕ ∈ Lip(R) and max

k∈�1,m�
‖ϕ(k)‖∞ < ∞

}

and for every ϕ ∈ Lipm
b (R),

‖ϕ‖Lipm
b

:= ‖ϕ‖Lip ∨ max
k∈�1,m�

‖ϕ(k)‖∞.

The map ‖.‖Lipm
b
is a semi-norm on Lipm

b (R).

Note that for every m ∈ N
∗,

Cm
b (R) ⊂ Lipm

b (R).

(4) Consider n ∈ N
∗. The vector space of infinitely continuously differentiable maps f :

R
n → R such that f and all its partial derivatives have polynomial growth is denoted by

C∞
p (Rn,R).

2 Stochastic integrals with respect to the fractional Brownianmotion
and an ergodic theorem for fractional SDE

On the one hand, this section presents twodifferentmethods to define a stochastic integralwith
respect to the fractional Brownian motion. The first one is based on the pathwise properties
of the fractional Brownian motion. Even if this approach is very natural, it is proved in
Proposition 3.3 that the pathwise stochastic integral is not appropriate to get a consistent
estimator of the drift function b in Eq. (1). Another stochastic integral with respect to the
fractional Brownian motion is defined via the Malliavin divergence operator. This stochastic
integral is called Skorokhod’s integral with respect to B. If H = 1/2, which means that B
is a Brownian motion, the Skorokhod integral defined via the divergence operator coincides
with Itô’s integral on its domain. This integral is appropriate for the estimation of the drift
function b in Eq. (1). On the other hand, an ergodic theorem for the solution of Eq. (1) is
stated in Sect. 2.3.

2.1 The pathwise stochastic integral

This subsection deals with some definitions and basic properties of the pathwise stochastic
integral with respect to the fractional Brownian motion of Hurst index greater than 1/2.

Definition 2.1 Consider x and w two continuous functions from [0, T ] into R. Consider a
partition D := (tk)k∈�0,m� of [s, t] with m ∈ N

∗ and s, t ∈ [0, T ] such that s < t . The
Riemann sum of x with respect to w on [s, t] for the partition D is

Jx,w,D(s, t) :=
m−1∑
k=0

x(tk)(w(tk+1) − w(tk)).

Notation.With the notations of Definition 2.1, the mesh of the partition D is

δ(D) := max
k∈�0,m−1�

|tk+1 − tk |.
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The following theorem ensures the existence and the uniqueness of Young’s integral (see
Friz and Victoir 2010, Theorem 6.8).

Theorem 2.2 Let x (resp. w) be a α-Hölder (resp. β-Hölder) continuous map from [0, T ]
into R with α, β ∈]0, 1] such that α + β > 1. There exists a unique continuous map Jx,w :
[0, T ] → R such that for every s, t ∈ [0, T ] satisfying s < t and any sequence (Dn)n∈N of
partitions of [s, t] such that δ(Dn) → 0 as n → ∞,

lim
n→∞ |Jx,w(t) − Jx,w(s) − Jx,w,Dn (s, t)| = 0.

The map Jx,w is the Young integral of x with respect to w and Jx,w(t) − Jx,w(s) is denoted
by ∫ t

s
x(u)dw(u)

for every s, t ∈ [0, T ] such that s < t .

The following proposition is a change of variable for Young’s integral.

Proposition 2.3 Let x be a α-Hölder continuous map from [0, T ] into R with α ∈]1/2, 1[.
For every ϕ ∈ Lip1b(R) and s, t ∈ [0, T ] such that s < t ,

ϕ(x(t)) − ϕ(x(s)) =
∫ t

s
ϕ′(x(u))dx(u).

For any α ∈]1/2, H [, the paths of B are α-Hölder continuous (see Nualart 2006, Section
5.1). So, for every process Y := (Y (t))t∈[0,T ] with β-Hölder continuous paths from [0, T ]
into R such that α + β > 1, by Theorem 2.2, it is natural to define the pathwise stochastic
integral of Y with respect to B by(∫ t

0
Y (s)d B(s)

)
(ω) :=

∫ t

0
Y (ω, s)d B(ω, s)

for every ω ∈ 
 and t ∈ [0, T ].

2.2 The Skorokhod integral

This subsection deals with some definitions and results on Malliavin calculus in order to
define and to provide a suitable expression of Skorokhod’s integral.

Consider the vector space

H :=
{
ϕ : R+ → R :

∫ ∞

0

∫ ∞

0
|t − s|2H−2|ϕ(s)| · |ϕ(t)|dsdt < ∞

}
.

Equipped with the scalar product

〈ϕ,ψ〉H := H(2H − 1)
∫ ∞

0

∫ ∞

0
|t − s|2H−2ϕ(s)ψ(t)dsdt ; ϕ,ψ ∈ H,

H is the reproducing kernel Hilbert space of B. Let B be the map defined on H by

B(h) :=
∫ .

0
h(s)d B(s); h ∈ H

which is the Wiener integral of h with respect to B. The family (B(h))h∈H is an isonormal
Gaussian process.
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Definition 2.4 The Malliavin derivative of a smooth functional

F = f (B(h1), . . . ,B(hn))

where n ∈ N
∗, f ∈ C∞

p (Rn,R) and h1, . . . , hn ∈ H is the H-valued random variable

DF :=
n∑

k=1

∂k f (B(h1), . . . ,B(hn))hk .

Proposition 2.5 The map D is closable from L2(
,A,P) into L2(
;H). Its domain in
L2(
,A,P) is denoted by D

1,2 and is the closure of the smooth functionals space for the
norm ‖.‖1,2 defined by

‖F‖21,2 := E(|F |2) + E(‖DF‖2H) < ∞
for every F ∈ L2(
,A,P).

For a proof, see Nualart (2006, Proposition 1.2.1).

Definition 2.6 The adjoint δ of the Malliavin derivative D is the divergence operator. The
domain of δ is denoted by dom(δ) and u ∈ dom(δ) if and only if there exists a deterministic
constant c > 0 such that for every F ∈ D

1,2,

|E(〈DF, u〉H)| � cE(|F |2)1/2.

For every process Y := (Y (s))s∈R+ and every t > 0, if Y1[0,t] ∈ dom(δ), then its
Skorokhod integral with respect to B is defined on [0, t] by

∫ t

0
Y (s)δB(s) := δ(Y1[0,t]).

With the same notations:∫ t

0
Y (s)δX(s) :=

∫ t

0
Y (s)b(X(s))ds + σ

∫ t

0
Y (s)δB(s).

The following proposition provides the link between the Skorokhod integral and the path-
wise stochastic integral of Sect. 2.1.

Proposition 2.7 If b ∈ Lip1b(R), then Eq. (1) with initial condition x ∈ R has a unique
solution Xx with α-Hölder continuous paths for every α ∈]0, H [. Moreover, for every ϕ ∈
Lip1b(R),

∫ t

0
ϕ(Xx (u))δXx (u) =

∫ t

0
ϕ(Xx (u))d Xx (u) (4)

−αH σ 2
∫ t

0

∫ u

0
ϕ′(Xx (u))

∂x Xx (u)

∂x Xx (v)
|u − v|2H−2dvdu,

where αH = H(2H − 1).

Moreover, we can prove the following Corollary, which allows us to propose a computable
form for the estimator.
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Corollary 2.8 Assume that b ∈ Lip2b(R) and there exists a constant M > 0 such that

b′(x) � −M; ∀x ∈ R.

For every ϕ ∈ Lip1b(R), x ∈ R and ε, t > 0,
∣∣∣∣
∫ t

0
ϕ(Xx (u))δXx (u) − Sϕ(x, ε, t)

∣∣∣∣ � Cϕεt2H−1,

where

Sϕ(x, ε, t) :=
∫ t

0
ϕ(Xx (u))d Xx (u)

−αH σ 2
∫ t

0

∫ u

0
ϕ′(Xx (u))

Xx+ε(u) − Xx (u)

Xx+ε(v) − Xx (v)
|u − v|2H−2dvdu

and

Cϕ := Hσ 2 ‖b′′‖∞‖ϕ′‖∞
2M2 .

As mentioned in the Introduction, the formula for Sϕ(x, ε, t) can be used if two paths of
X can be observed with different but close initial conditions.

Lastly, the following theorem, recently proved by Hu et al. (2018) (see Proposition 4.4),
provides a suitable control of Skorokhod’s integral to study its long-time behavior.

Theorem 2.9 Assume that b ∈ Lip2b(R) and there exists a constant M > 0 such that

b′(x) � −M; ∀x ∈ R.

There exists a deterministic constant C > 0, not depending on T , such that for every ϕ ∈
Lip1b(R):

E

(∣∣∣∣
∫ T

0
ϕ(X(s))δB(s)

∣∣∣∣
2)

� C

((∫ T

0
E(|ϕ(X(s))|1/H )ds

)2H

+
(∫ T

0
E(|ϕ′(X(s))|2)1/(2H)ds

)2H
)

< ∞.

2.3 Ergodic theorem for the solution of a fractional SDE

On the ergodicity of fractional SDEs, the reader can refer to Hairer (2005), Hairer and Ohashi
(2007) and Hairer and Pillai (2013) (see Sect. 4.3 for details).

In the sequel, the map b fulfills the following condition.

Assumption 2.10 The map b belongs to Lip∞
b (R) and there exists a constant M > 0 such

that
b′(x) � −M; ∀x ∈ R. (5)

Remark (1) Since b ∈ Lip1b(R), Eq. (1) has a unique solution.
(2) Under Assumption 2.10, the dissipativity conditions of Hairer (2005), Hairer and Ohashi

(2007) and Hu et al. (2018) are fulfilled by b:

(x − y)(b(x) − b(y)) � −M(x − y)2; ∀x, y ∈ R
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and there exists a constant M ′ > 0 such that

xb(x) � M ′(1 − x2); ∀x ∈ R.

Therefore, Assumption 2.10 is sufficient to apply the results proved in Hairer (2005),
Hairer and Ohashi (2007) and Hu et al. (2018) in the sequel.

Proposition 2.11 Consider a measurable map ϕ : R → R+ such that there exists a nonempty
compact subset C of R satisfying ϕ(C) ⊂]0,∞[. Under Assumption 2.10, there exists a
deterministic constant l(ϕ) > 0 such that

1

T

∫ T

0
ϕ(X(t))dt

a.s./L2−−−→
T →∞ l(ϕ) > 0.

3 Convergence of the Nadaraya–Watson estimator of the drift function

This section deals with the consistency and rate of convergence of the Nadaraya–Watson
estimator of the drift function b in Eq. (1).

In the sequel, the kernel K fulfills the following assumption.

Assumption 3.1 supp(K ) = [−1, 1] and K ∈ C1
b (R,R+).

3.1 Why is pathwise integral inadequate

First of all, let us prove that, even if it seems very natural, the pathwise Nadaraya–Watson
estimator

b̃T ,h(x) :=

∫ T

0
K

(
X(s) − x

h

)
d X(s)

∫ T

0
K

(
X(s) − x

h

)
ds

=
1

T h

∫ T

0
K

(
X(s) − x

h

)
d X(s)

f̂T ,h(x)

where

f̂T ,h(x) := 1

T h

∫ T

0
K

(
X(s) − x

h

)
ds. (6)

is not consistent.
For this, we need the following lemma providing a convergence result for f̂T ,h(x). It will

also be used to prove Proposition 3.4.

Lemma 3.2 Under Assumptions 2.10 and 3.1, there exists a deterministic constant lh(x) > 0
such that

f̂T ,h(x)
a.s./L2−−−→
T →∞ lh(x) > 0.

Proof Under Assumption 3.1, the map

y ∈ R �−→ 1

h
K

(
y − x

h

)

satisfies the condition on ϕ of Proposition 2.11, which applies thus here and gives the result.
��

123



Statistical Inference for Stochastic Processes (2019) 22:359–382 367

Now, we state the result proving that b̃T ,h(x) is not consistent to recover b(x).

Proposition 3.3 Under Assumptions 2.10 and 3.1:

b̃T ,h(x)
P−−−→

T →∞ 0.

Proof Let K be a primitive function of K . By the change of variable formula for Young’s
integral (Proposition 2.3):

K
(

X(T ) − x

h

)
− K

(
X(0) − x

h

)
= 1

h

∫ T

0
K

(
X(s) − x

h

)
d X(s)

= T f̂T ,h(x )̃bT ,h(x).

Then,

b̃T ,h(x) = 1

T f̂T ,h(x)

(
K

(
X(T ) − x

h

)
− K

(
X(0) − x

h

))
.

Since K is differentiable with bounded derivative K :

|̃bT ,h(x)| � ‖K‖∞
T h f̂T ,h(x)

|X(T ) − X(0)|.

Finally, as we know by Hairer (2005, Proposition 3.12) that

t ∈ R+ �−→ E(|X(t)|)
is uniformly bounded, and by Lemma 3.2 that f̂T ,h(x) converges almost surely to lh(x) > 0
as T → ∞, it follows that b̃T ,h(x) converges to 0 in probability, when T → ∞. ��

This is why the Skorokhod integral replaces the pathwise stochastic integral in b̂T ,h(x).

3.2 Convergence of the Nadaraya–Watson estimator

This subsection deals with the consistency and rate of convergence of the estimators.
TheNadaraya–Watson estimator b̂T ,h(x)defined byEq. (2) can be decomposed as follows:

b̂T ,h(x) − b(x) = BT ,h(x)

f̂T ,h(x)
+ ST ,h(x)

f̂T ,h(x)
, (7)

where f̂T ,h(x) is defined by (6),

BT ,h(x) := 1

T h

∫ T

0
K

(
X(s) − x

h

)
(b(X(s)) − b(x))ds.

and

ST ,h(x) := σ

T h

∫ T

0
K

(
X(s) − x

h

)
δB(s).

By using the Lipschitz assumption 2.10 on b together with the technical lemmas proved
in Sect. 2, the estimators b̂T ,h(x) and b̂T ,h,ε(x) can be studied.
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Proposition 3.4 Under Assumptions 2.10 and 3.1,

|̂bT ,h(x) − b(x)| � ‖b‖Liph + |ST ,h(x)|
f̂T ,h(x)

,

and there exists a positive constant C such that

E(ST ,h(x)2) � C

h4T 2(1−H)
.

As a consequence, for fixed h > 0, we have

T β VT ,h(x)
P−−−→

T →∞ 0; ∀β ∈ [0, 1 − H [, where VT ,h(x) :=
∣∣∣∣ ST ,h(x)

f̂T ,h(x)

∣∣∣∣ . (8)

Moreover, for b̂T ,h,ε defined by (3), ∀ε > 0,

|̂bT ,h,ε(x) − b̂T ,h(x)| � C
εh−2T 2H−2

f̂T ,h(x)
. (9)

Heuristically, Proposition 3.4 says that the pointwise quadratic risk of the kernel estimator
b̂T ,h(x) involves a squared bias of order h2 and a variance term of order 1/(h4T 2(1−H)). The

best possible rate is thus T − 2
3 (1−H) with a bandwidth choice of order T − 1

3 (1−H). A more
rigorous formulation of this is stated below.

Note also that it follows from (9) that the rate of b̂T ,h,ε(x) is preserved for any small ε.
We want to emphasize that no order condition is set on the kernel, and the bias term is not

bounded in the usual way for kernel setting (see e.g. Tsybakov (2004), Chapter 1). Indeed,
we can not refer to the expectation of the numerator as a convolution product, because the
existence of a stationary density is not ensured. Would it exist, it would be difficult to set
adequate regularity conditions on it.

Now, consider a decreasing function h : [t0,∞[→]0, 1[ (t0 ∈ R+) such that

lim
T →∞ h(T ) = 0 and lim

T →∞ T h(T ) = ∞

and assume that f̂T ,h(T )(x) fulfills the following assumption.

Assumption 3.5 There exists l(x) ∈]0,∞] such that f̂T ,h(T )(x) converges to l(x) in proba-
bility as T → ∞.

Section 3.3 deals with the special case of fractional SDE with Gaussian solution in order
to prove that Assumption 3.5 holds in this setting.

In Proposition 3.6, the result of Proposition 3.4 is extended to the estimator b̂T ,h(T )(x)

under Assumption 3.5.

Proposition 3.6 Under Assumptions 2.10, 3.1 and 3.5:

(1) If there exists β ∈]0, 1 − H [ such that T −β =T →∞ o(h(T )2), then

b̂T ,h(T )(x)
P−−−→

T →∞ b(x).

(2) For every γ ∈]0, β[ such that

h(T ) =T →∞ o(T −γ ) and T H−1+γ =T →∞ o(h(T )2),

then

T γ |̂bT ,h(T )(x) − b(x)| P−−−→
T →∞ 0.

123



Statistical Inference for Stochastic Processes (2019) 22:359–382 369

Example Consider

β ∈
]
2

3
(1 − H), 1 − H

[
and h(T ) := T

H−1
3 .

• T h(T ) = T H+ 2
3 (1−H) −−−→

T →∞ ∞.

• T −β/h(T )2 = T −β+ 2
3 (1−H) −−−→

T →∞ 0.

• For every γ ∈]0, (1 − H)/3[, h(T )/T −γ = T
H−1
3 +γ −−−→

T →∞ 0.

• For every γ ∈]0, (1 − H)/3[, T H−1+γ /h(T )2 = T
H−1
3 +γ −−−→

T →∞ 0.

In Corollary 3.7, the result of Proposition 3.6 is extended to b̂T ,h(T ),ε(T )(x) where

lim
T →∞ ε(T ) = 0.

Corollary 3.7 Under Assumptions 2.10, 3.1 and 3.5:

(1) If there exists β ∈]0, 1 − H [ such that

T −β =T →∞ o(h(T )2) and ε(T ) =T →∞ o(h(T )−2T 2H−2),

then

b̂T ,h(T ),ε(T )(x)
P−−−→

T →∞ b(x).

(2) For every γ ∈]0, β[ such that⎧⎨
⎩

h(T ) =T →∞ o(T −γ ),

T H−1+γ =T →∞ o(h(T )2)

ε(T ) =T →∞ o(h(T )−2T 2H−2+γ )

,

then

T γ |̂bT ,h(T ),ε(T )(x) − b(x)| P−−−→
T →∞ 0.

Example Example One can take ε(T ) := h(T )2.

3.3 Special case of fractional SDE with Gaussian solution

The purpose of this subsection is to show that Assumption 3.5 holds when the drift function in
Eq. (1) is linear with a negative slope. Note also that if H = 1/2, then f̂T ,h(T ) is a consistent
estimator of the stationary density for Eq. (1) (see Kutoyants 2004, Section 4.2).

Assume that Eq. (1) has a centered Gaussian stationary solution X and consider the
normalized process Y := X/σ0 where σ0 := √

var(X0).
Throughout this subsection, ν is the standard normal density and the autocorrelation

function ρ of Y fulfills the following assumption.

Assumption 3.8
∫ T

0

∫ T

0
|ρ(v − u)|dvdu =T →∞ O(T 2H ).

The following proposition ensures that under Assumption 3.8, f̂T ,h(T ) fulfills Assumption
3.5 for every x ∈ R

∗.
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Proposition 3.9 Under Assumptions 2.10 and 3.1, if Eq. (1) has a centered, Gaussian, sta-
tionary solution X, the autocorrelation function ρ of Y := X/σ0 satisfies Assumption 3.8
and T 2H−2 =T →∞ o(h(T )), then

f̂T ,h(T )(x)
P−−−→

T →∞
1

σ0
ν

(
x

σ0

)
> 0 (10)

for every x ∈ R
∗.

Now, consider the fractional Langevin equation

X(t) = X0 − λ

∫ t

0
X(s)ds + σ B(t), (11)

where λ, σ > 0. Equation (11) has a unique solution called Ornstein–Uhlenbeck’s process.
On the one hand, the drift function of Eq. (11) fulfills Assumption 2.10. So, underAssump-

tion 3.1, by Proposition 3.4,

|̂bT ,h(x) + λx | � ‖b‖Liph + VT ,h(x),

where

T β VT ,h(x)
P−−−→

T →∞ 0; ∀β ∈ [0, 2H − 1[.

On the other hand, by Cheridito et al. (2003, Section 2), Eq. (11) has a centered, Gaussian,
stationary solution X such that:

X(t) = σ

∫ t

−∞
e−λ(t−u)d B(u); ∀t ∈ R+.

Moreover, Cheridito et al. (2003, Theorem 2.3), the autocorrelation function ρ of Y :=
X/σ0 satisfies

ρ(T ) =T →∞ O(T 2H−2).

So, ρ fulfills Assumption 3.8.
Consider β ∈]0, 2H − 1[ and γ ∈]0, 2H − 1 − β[ such that

h(T ) =T →∞ o(T −γ ) and T H−1+γ =T →∞ o(h(T )2).

Then,

lim
T →∞

T 2H−2

h(T )
= lim

T →∞ h(T )T H−1−γ T H−1+γ

h(T )2
= 0.

Therefore, by Propositions 3.6 and 3.9:

T γ |̂bT ,h(T )(x) + λx | P−−−→
T →∞ 0; ∀x ∈ R

∗.
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4 Proofs

4.1 Proof of Proposition 2.7

On the existence, uniqueness and regularity of the paths of the solution of Eq. (1), see Lejay
(2010).

Now, let us prove (4).
Let Xx be the solution of Eq. (2.7) with initial condition x ∈ R. Consider alsoϕ ∈ Lip1b(R)

and t > 0. By Nualart (2006), Proposition 5.2.3:
∫ t

0
ϕ(Xx (u))δXx (u) =

∫ t

0
ϕ(Xx (u))b(Xx (u))du + σ

∫ t

0
ϕ(Xx (u))δB(u)

=
∫ t

0
ϕ(Xx (u))d Xx (u)

−αH σ

∫ t

0

∫ t

0
ϕ′(Xx (u))Dv Xx (u)|u − v|2H−2dvdu.

Consider u, v ∈ [0, t]. On the one hand,

Dv Xx (u) = σ1[0,u](v) +
∫ u

0
b′(Xx (r))Dv Xx (r)dr .

Then,

Dv Xx (u) = σ1[0,u](v) exp

(∫ u

v

b′(Xx (r))dr

)
.

On the other hand,

∂x Xx (u) = 1 +
∫ u

0
b′(Xx (r))∂x Xx (r)dr .

Then,

∂x Xx (u) = exp

(∫ u

0
b′(Xx (r))dr

)
.

Therefore,

Dv Xx (u) = σ1[0,u](v)
∂x Xx (u)

∂x Xx (v)

and ∫ t

0
ϕ(Xx (u))δXx (u) =

∫ t

0
ϕ(Xx (u))d Xx (u)

−αH σ 2
∫ t

0

∫ u

0
ϕ′(Xx (u))

∂x Xx (u)

∂x Xx (v)
|u − v|2H−2dvdu.

4.2 Proof of Corollary 2.8

Consider x ∈ R and ε, t > 0. For every s ∈ [0, t],

∂x Xx (s) = 1 +
∫ s

0
b′(Xx (r))∂x Xx (r)dr
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and, by Taylor’s formula,

Xx+ε(s) − Xx (s) = ε +
∫ s

0
(Xx+ε(r) − Xx (r))

∫ 1

0
b′(Xx (r) + θ(Xx+ε(r) − Xx (r)))dθdr .

So, for every (u, v) ∈ [0, t]2 such that v < u,

∂x Xx (u)

∂x Xx (v)
= exp

(∫ u

v

b′(Xx (r))dr

)

and

Xx+ε(u) − Xx (u)

Xx+ε(v) − Xx (v)
= exp

(∫ u

v

∫ 1

0
b′(Xx (r) + θ(Xx+ε(r) − Xx (r)))dθdr

)
.

For a given ϕ ∈ Lip1b(R), by Proposition 2.7,

�S
ϕ(x, ε, t) � αH σ 2

∫ t

0

∫ u

0
|ϕ′(Xx (u))|�ϕ(x, ε, u, v)(u − v)2H−2dvdu,

where

�S
ϕ(x, ε, t) :=

∣∣∣∣
∫ t

0
ϕ(Xx (u))δXx (u) − Sϕ(x, ε, t)

∣∣∣∣
and, for every (u, v) ∈ [0, t]2 such that v < u,

�ϕ(x, ε, u, v) :=
∣∣∣∣∂x Xx (u)

∂x Xx (v)
− Xx+ε(u) − Xx (u)

Xx+ε(v) − Xx (v)

∣∣∣∣ .
Since b′(R) ⊂] − ∞, 0] and b is two times continuously differentiable,

�ϕ(x, ε, u, v) =
∣∣∣∣exp

(∫ u

v

b′(Xx (r))dr

)

− exp

(∫ u

v

∫ 1

0
b′(Xx (r) + θ(Xx+ε(r) − Xx (r)))dθdr

)∣∣∣∣
� sup

z∈b′(R)

ez

×
∫ u

v

∣∣∣∣b′(Xx (r)) −
∫ 1

0
b′(Xx (r) + θ(Xx+ε(r) − Xx (r)))dθ

∣∣∣∣ dr

�
∫ u

v

∫ 1

0
|b′(Xx (r)) − b′(Xx (r) + θ(Xx+ε(r) − Xx (r)))|dθdr

� ‖b′′‖∞
2

∫ u

v

|Xx+ε(r) − Xx (r)|dr .

Consider s ∈ R+. By Eq. (1):

(Xx+ε(s) − Xx (s))
2 = ε2 + 2

∫ s

0
(Xx+ε(r) − Xx (r))d(Xx+ε − Xx )(r)

= ε2 + 2
∫ s

0
(Xx+ε(r) − Xx (r))(b(Xx+ε(r)) − b(Xx (r)))dr .

By the mean-value theorem, there exists xs ∈ R such that

∂s(Xx+ε(s) − Xx (s))
2 = 2(Xx+ε(s) − Xx (s))

2 b(Xx+ε(s)) − b(Xx (s))

Xx+ε(s) − Xx (s)
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= 2(Xx+ε(s) − Xx (s))
2b′(xs) � −2M(Xx+ε(s) − Xx (s))

2

and then,

|Xx+ε(s) − Xx (s)| � εe−Ms .

Therefore,

�ϕ(x, ε, u, v) � ‖b′′‖∞
2

ε

∫ u

v

e−Mr dr

= ‖b′′‖∞
2M

ε(e−Mv − e−Mu) � ‖b′′‖∞
2M

εe−Mv.

Finally, using the above bounds, and in a second stage, the integration by parts formula,
we get:

�S
ϕ(x, ε, t) � αH σ 2 ‖b′′‖∞

2M
ε

∫ t

0

∫ u

0
|ϕ′(Xx (u))|e−Mv(u − v)2H−2dvdu

� αH σ 2 ‖b′′‖∞‖ϕ′‖∞
2M

ε

∫ t

0
e−Mv

∫ t

v

(u − v)2H−2dudv

= αH σ 2 ‖b′′‖∞‖ϕ′‖∞
2M(2H − 1)

ε

∫ t

0
e−Mv(t − v)2H−1dv

= αH σ 2 ‖b′′‖∞‖ϕ′‖∞
2M2 ε

(
t2H−1

2H − 1
−

∫ t

0
e−Mv(t − v)2H−2dv

)

� αH σ 2 ‖b′′‖∞‖ϕ′‖∞
2M2(2H − 1)

εt2H−1 = Cϕεt2H−1.

4.3 Proof of Proposition 2.11

Consider γ ∈]1/2, H [, δ ∈]H − γ, 1− γ [ and 
 := 
− × 
+, where 
− (resp. 
+) is the
completion of C∞

0 (R−,R) (resp. C∞
0 (R+,R)) with respect to the norm ‖.‖− (resp. ‖.‖+)

defined by

‖ω−‖− := sup
s<t�0

|ω−(t) − ω−(s)|
|t − s|γ (1 + |s| + |t |)δ ; ∀ω− ∈ 
−

(resp.

‖ω+‖+ := sup
0�s<t

|ω+(t) − ω+(s)|
|t − s|γ (1 + |s| + |t |)δ ; ∀ω+ ∈ 
+).

By Hairer (2005, Section 3) or more clearly by Hairer and Ohashi (2007, Lemmas 4.1
and 4.2), there exist a Borel probability measure P on 
 and a transition kernel P from 
−
to 
+ such that:

• The process generated by (
,P) is a two-sided fractional Brownian motion B̃.
• For every Borel set U (resp. V ) of 
− (resp. 
+),

P(U × V ) =
∫

U
P(ω−, V )P−(dω−)

where P− is the probability distribution of (B̃(t))t∈R− .
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Let I : R × 
+ → C0(R+,R) be the Itô (solution) map for Eq. (1). In general, I (x, .)

with x ∈ R is not a Markov process. However, the solution of Eq. (1) can be coupled with
the past of the driving signal in order to bypass this difficulty. In other words, consider the
enhanced Itô map I : R× 
 → C0(R+,R× 
−) such that for every (x, ω−, ω+) ∈ R× 


and t ∈ R+,

I(x, ω−, ω+)(t) := (I (x, ω+)(t), p
−(θ(ω−, ω+)(t)))

where p
− is the projection from 
 onto 
−,

θ(ω−, ω+)(t) := (ω− � ω+)(t + ·) − (ω− � ω+)(·)
and ω− �ω+ is the concatenation of ω− and ω+. By Hairer (2005, Lemma 2.12), the process
I(x, .) is Markovian and has a Feller transition semigroup (Q(t))t∈R+ such that for every
t ∈ R+, (x, ω−) ∈ R × 
− and every Borel set U (resp. V ) of R (resp. 
−),

Q(t; (x, ω−), U × V ) =
∫

V
δI (x,ω+)(t)(U )P(t;ω−, dω+)

where δy is the delta measure located at y ∈ R and P(t;ω−, .) is the pushforward measure
of P(ω−, .) by θ(ω−, .)(t).

In order to prove Proposition 2.11, let us first state the following result from Hairer (2005)
and Hairer and Ohashi (2007).

Theorem 4.1 Under Assumption 2.10:

(1) (Irreducibility) There exists τ ∈]0,∞[ such that for every (x, ω−) ∈ R× 
− and every
nonempty open set U ⊂ R,

Q(τ ; (x, ω−), U × 
−) > 0.

(2) There exists a unique probability measure μ on R × 
− such that μ(p
− ∈ ·) = P−
and

Q(t)μ = μ; ∀t ∈ R+.

For a proof of Theorem 4.1.(1), see Hairer and Ohashi (2007, Proposition 5.8). For a proof
of Theorem 4.1.(2), see Hairer (2005, Theorem 6.1) which is a consequence of Proposition
2.18, Lemma 2.20 and Proposition 3.12.

Since the Feller transition semigroup Q has exactly one invariant measure μ by Theorem
4.1, μ is ergodic, and since the first component of the process generated by Q is a solution
of Eq. (1), by the ergodic theorem for Markov processes:

1

T

∫ T

0
ϕ(X(t))dt = 1

T

∫ T

0
(ϕ ◦ pR)(I(X0, .)(t))dt

a.s./L2−−−→
T →∞ μ(ϕ ◦ pR).

Moreover, μ = Q(τ )μ. So,

μ(ϕ ◦ pR) =
∫
R×
−

(ϕ ◦ pR)(x, ω−)(Q(τ )μ)(dx, dω−)

=
∫
R×
−

ϕ(x)

∫
R×
−

Q(τ ; (x̄, ω̄−), (dx, dω−))μ(dx̄, dω̄−)
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� min
x∈C

ϕ(x) ·
∫

C×
−

∫
C×
−

Q(τ ; (x̄, ω̄−), (dx, dω−))μ(dx̄, dω̄−)

� min
x∈C

ϕ(x) ·
∫

C×
−
Q(τ ; (x̄, ω̄−), int(C) × 
−)μ(dx̄, dω̄−).

Since

Q(τ ; (x̄, ω̄−), int(C) × 
−) > 0; ∀(x̄, ω̄−) ∈ R × 
−
by Theorem 4.1.(1), then∫

C×
−
Q(τ ; (x̄, ω̄−), int(C) × 
−)μ(dx̄, dω̄−) > 0.

Therefore, μ(ϕ ◦ pR) > 0.

4.4 Proof of Proposition 3.4

First write that, under Assumption 2.10, for any s ∈ [0, T ] such that X(s) ∈ [x − h, x + h],
|b(X(s)) − b(x)| � ‖b‖Liph.

So, ∣∣∣∣ BT ,h(x)

f̂T ,h(x)

∣∣∣∣ � ‖b‖Liph. (12)

Next, the following Lemma provides a suitable control of E(|ST ,h(x)|2).
Lemma 4.2 Under Assumptions 2.10 and 3.1, there exists a deterministic constant C > 0,
not depending on h and T , such that:

E(|ST ,h(x)|2) � CT 2(H−1)h−4.

Proof Since K belongs to C1
b (R,R+), the map

ϕh : y ∈ R �−→ ϕh(y) := K

(
y − x

h

)

belongs to Lip1b(R). Moreover, since K and K ′ are continuous with bounded support [−1, 1],
(∫ T

0
E(|ϕh(X(s))|1/H )ds

)2H

� ‖K‖2∞T 2H

and
(∫ T

0
E(|ϕ′

h(X(s))|2)1/(2H)ds

)2H

� ‖K ′‖2∞T 2H h−2.

Therefore, by Theorem 2.9, there exists a deterministic constant C > 0, not depending
on h and T , such that:

E(|ST ,h(x)|2) = 1

T 2h2E

(∣∣∣∣
∫ T

0
ϕh(X(s))δB(s)

∣∣∣∣
2)

� CT 2(H−1)h−4.

��
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First, by Inequality (12) and Eq. (7),

|̂bT ,h(x) − b(x)| � ‖b‖Liph + VT ,h(x)

where VT ,h(x) is defined by (8).
Consider β ∈ [0, 1 − H [. By Lemma 4.2:

T 2β
E(|ST ,h(x)|2) � CT 2(H−1+β)h−4 −−−→

T →∞ 0.

So,

T β |ST ,h(x)| P−−−→
T →∞ 0.

Moreover, by Lemma 3.2:

1

f̂T ,h(x)

D−−−→
T →∞

1

lh(x)
> 0.

Therefore, by Slutsky’s lemma:

T β VT ,h(x)
P−−−→

T →∞ 0.

Lastly, the bound (9) follows from the following Lemma.

Lemma 4.3 Under Assumptions 2.10 and 3.1, there exists a deterministic constant C > 0,
not depending on ε, h and T , such that:

|̂bT ,h,ε(x) − b̂T ,h(x)| � C
εh−2T 2H−2

f̂T ,h(x)
.

Proof Since K belongs to C1
b (R,R+), the map

ϕh : y ∈ R �−→ ϕh(y) := K

(
y − x

h

)

belongs to Lip1b(R). Consider

Sh(x0, ε, T ) :=
∫ T

0
ϕh(Xx0(u))d Xx0(u)

−αH σ 2
∫ T

0

∫ u

0
ϕ′

h(Xx0(u))
Xx0+ε(u) − Xx0(u)

Xx0+ε(v) − Xx0(v)
|u − v|2H−2dvdu.

By Corollary 2.8:∣∣∣∣
∫ T

0
ϕh(Xx0(u))δXx0(u) − Sh(x0, ε, T )

∣∣∣∣ � Hσ 2 ‖b′′‖∞‖ϕ′
h‖∞

M2 εT 2H−1

� Cεh−1T 2H−1,

where

C := Hσ 2‖b′′‖∞‖K ′‖∞
M2 .

Therefore,

|̂bT ,h,ε(x) − b̂T ,h(x)| � C
εh−2T 2H−2

f̂T ,h(x)
.

��
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4.5 Proof of Proposition 3.6

On the one hand, assume that there exists β ∈]0, 1 − H [ such that
T −β =T →∞ o(h(T )2)

in order to show the consistency of the estimator b̂T ,h(T )(x). First, let us prove that

ST ,h(T )(x)

f̂T ,h(T )(x)

P−−−→
T →∞ 0. (13)

For ε > 0 arbitrarily chosen:

P

(∣∣∣∣ ST ,h(T )(x)

f̂T ,h(T )(x)

∣∣∣∣ � ε

)
� P(|ST ,h(T )(x)| � εT H+β−1) + P( f̂T ,h(T )(x) < T H+β−1).

By Lemma 4.2:

P(|ST ,h(T )(x)| � εT H+β−1) � Cε−2|h(T )−2T −β |2 −−−→
T →∞ 0.

So, since

f̂T ,h(T )(x)
P−−−→

T →∞ l(x) ∈]0,∞],
the convergence result (13) is true.

Moreover, by Inequality (12):

BT ,h(T )(x)

f̂T ,h(T )(x)

a.s.−−−→
T →∞ 0. (14)

Therefore, by the convergence results (13) and (14) together with Eq. (7):

b̂T ,h(T )(x)
P−−−→

T →∞ b(x).

On the other hand, let γ ∈]0, β[ be arbitrarily chosen such that

h(T ) =T →∞ o(T −γ ) and T H−1+γ =T →∞ o(h(T )2)

in order to show that
T γ |̂bT ,h(T )(x) − b(x)| D−−−→

T →∞ 0. (15)

First, by Inequality (12) and Eq. (7):

T γ |̂bT ,h(T )(x) − b(x)| � ‖b‖LipT γ h(T ) + T γ VT ,h(T )(x). (16)

By Lemma 4.2:

T 2γ
E(|ST ,h(T )(x)|2) � C |h(T )−2T H−1+γ |2 −−−→

T →∞ 0.

So, since

f̂T ,h(T )(x)
P−−−→

T →∞ l(x) ∈]0,∞],
by Slutsky’s lemma:

T γ VT ,h(T )(x)
D−−−→

T →∞ 0.

Finally, since h(T ) =T →∞ o(T −γ ), by Eq. (16), the convergence result (15) is true.
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4.6 Proof of Corollary 3.7

In order to establish a rate of convergence for b̂T ,h,ε(x), Lemmas 4.2 and 4.3 provide a
suitable control.

Indeed, by Lemma 4.3, there exists a deterministic constant C > 0 such that:

|̂bT ,h(T ),ε(T )(x) − b(x)| � |̂bT ,h(T ),ε(T )(x) − b̂T ,h(T )(x)| + |̂bT ,h(T )(x) − b(x)|
� C

ε(T )h(T )−2T 2H−2

f̂T ,h(T )(x)
+ |̂bT ,h(T )(x) − b(x)|.

Proposition 3.6 allows to conclude.

4.7 Proof of Proposition 3.9

Consider a random variable U � N (0, 1) and

G := {G : R → R : E(G(U )) = 0 and E(G(U )2) < ∞},
which is a subset of L2(R, ν(y)dy).

The Hermite polynomials

Hq(y) := (−1)qey2/2 dq

dyq
e−y2/2; y ∈ R, q ∈ N

form a complet orthogonal system of functions of L2(R, ν(y)dy) such that

E(Hq(U )Hp(U )) = q!δp,q ; ∀p, q ∈ N.

By Taqqu (1975) (see p. 291) and Puig et al. (2002, Lemma 3.3):

(1) For any G ∈ G and y ∈ R,

G(y) =
∞∑

q=m(G)

J (q)

q! Hq(y) (17)

in L2(R, ν(y)dy), where

J (q) := E(G(U )Hq(U )); ∀q ∈ N

and

m(G) := inf{q ∈ N : J (q) �= 0}.
(2) (Mehler’s formula) For any centered, normalized and stationary Gaussian process Z of

autocorrelation function R:

E(Hq(Z(u))Hp(Z(v))) = q!R(v − u)qδp,q ; ∀u, v ∈ R+, ∀p, q ∈ N. (18)
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Consider the map KT : R → R defined by:

KT (y) := 1

h(T )
K

(
y

h(T )

)
; ∀y ∈ R.

In order to use (17) and (18) to prove the convergence result (10), note that f̂T ,h(T )(x) can
be rewritten as

f̂T ,h(T )(x) = 1

T

∫ T

0
GT ,x (Y (s))ds − RT ,x ,

where

RT ,x := 1

σ0

(
KT ∗ ν

(
.

σ0

))
(x); ∀y ∈ R

and

GT ,x (y) := KT (σ0y − x) − RT ,x .

Lemma 4.4 The map GT ,x belongs to G and there exists Tx > 0 such that

m(GT ,x ) = 1; ∀T > Tx .

Proof On the one hand, since KT is continuous and its support is compact, GT ,x ∈
L2(R, ν(y)dy). Moreover,

E(GT ,x (U )) =
∫ ∞

−∞
GT ,x (y)ν(y)dy

=
∫ ∞

−∞
KT (σ0y − x)ν(y)dy − RT ,x = 0.

So, GT ,x ∈ G.
On the other hand, for every q ∈ N, by putting JT ,x (q) := E(GT ,x (U )Hq(U )),

JT ,x (1) =
∫ ∞

−∞
GT ,x (y)H1(y)ν(y)dy

=
∫ (x+h(T ))/σ0

(x−h(T ))/σ0

KT (σ0y − x)ν(y)ydy − RT ,x

∫ ∞

−∞
H0(y)H1(y)ν(y)dy

=
∫ (x+h(T ))/σ0

(x−h(T ))/σ0

KT (σ0y − x)ν(y)ydy.

For any x > 0, there exists T +
x > 0 such that for every T > T +

x ,

IT ,x :=
[

x − h(T )

σ0
; x + h(T )

σ0

]
⊂]0,∞[.

For every T > T +
x , since y �→ KT (σ0y − x), ν and IdR are continuous and strictly

positive on I ◦
T ,x , JT ,x (1) > 0. Symmetrically, for every x < 0, there exists T −

x > 0 such
that for every T > T −

x , JT ,x (1) < 0. This concludes the proof. ��
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Lemma 4.5 For every x ∈ R
∗,

∞∑
q=1

JT ,x (q)2

q! =T →∞ O

(
1

h(T )

)
.

Proof Since GT ,x ∈ L2(R, ν(y)dy), by Parseval’s inequality:

∞∑
q=1

JT ,x (q)2

q! = E(GT ,x (U )2)

=
∫ ∞

−∞
(KT (σ0y − x) − RT ,x )

2ν(y)dy

� 2
∫ ∞

−∞
KT (σ0y − x)2ν(y)dy + 2R2

T ,x .

On the one hand,

RT ,x −−−→
T →∞

1

σ0
ν

(
x

σ0

)
.

So,

R2
T ,x =T →∞ O(1).

On the other hand,
∫ ∞

−∞
KT (σ0y − x)2ν(y)dy = 1

σ0h(T )

∫ 1

−1
K (y)2ν

(
h(T )y + x

σ0

)
dy

� 2‖K‖2∞‖ν‖∞
σ0h(T )

.

Therefore,

∞∑
q=2

JT ,x (q)2

q! =T →∞ O

(
1

h(T )

)
.

��
In order to prove the convergence result (10), since

RT ,x −−−→
T →∞

1

σ0
ν

(
x

σ0

)
,

let us prove that ∣∣∣∣ 1T
∫ T

0
GT ,x (Y (s))ds

∣∣∣∣ L2−−−→
T →∞ 0. (19)

By the decomposition (17) and Mehler’s formula (18) applied to GT ,x and Y , for every
u, v ∈ [0, T ],

E(GT ,x (Y (u))GT ,x (Y (v))) =
∞∑

q=1

JT ,x (q)2

q! ρ(v − u)q .
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So, since ρ is a [−1, 1]-valued function,

E

(∣∣∣∣
∫ T

0
GT ,x (Y (s))ds

∣∣∣∣
2)

=
∫ T

0

∫ T

0
|E(GT ,x (Y (u))GT ,x (Y (v)))|dudv

�
∞∑

q=1

JT ,x (q)2

q!
∫ T

0

∫ T

0
|ρ(v − u)|qdudv

�
(∫ T

0

∫ T

0
|ρ(v − u)|dudv

) ∞∑
q=1

JT ,x (q)2

q! .

Then, by Assumption 3.8 and Lemma 4.5:

lim
T →∞E

(∣∣∣∣ 1T
∫ T

0
GT ,x (Y (s))ds

∣∣∣∣
2)

= lim
T →∞

T 2H−2

h(T )
= 0.

Therefore, the convergence result (19) is true.
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