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Abstract
Weconsider the nonparametric robust estimationproblem for regressionmodels in continuous
time with semi-Markov noises. An adaptive model selection procedure is proposed. Under
general moment conditions on the noise distribution a sharp non-asymptotic oracle inequality
for the robust risks is obtained and the robust efficiency is shown. It turns out that for semi-
Markovmodels the robustminimax convergence ratemaybe faster or slower than the classical
one.
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1 Introduction

Let us consider a regression model in continuous time

d yt = S(t)d t + d ξt , 0 ≤ t ≤ n , (1.1)
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where S(·) is an unknown 1-periodic function from L2[0, 1] defined on R with values in R,
the noise process (ξt )t≥ 0 is defined as

ξt = �1wt + �2Lt + �3zt , (1.2)

where �1, �2 and �3 are unknown coefficients, (wt )t≥ 0 is a standard Brownian motion,
(Lt )t≥ 0 is a jump Lévy process (with EL2

t = t cf. Eq. (2.3)) and the pure jump process
(zt )t≥ 1, defined in (2.5), is assumed to be a semi-Markov process (see, for example, Barbu
and Limnios 2008).

The problem is to estimate the unknown function S in the model (1.1) on the basis of
observations (yt )0≤t≤n . Firstly, this problem was considered in the framework of the “sig-
nal+white noise” models (see, for example, Ibragimov and Khasminskii 1981 or Pinsker
1981). Later, in order to study dependent observations in continuous time, were introduced
“signal+color noise” regressions based on Ornstein-Uhlenbeck processes (cf. Höpfner and
Kutoyants 2009, 2010; Konev and Pergamenshchikov 2003, 2010).

Moreover, to include jumps in such models, the papers Konev and Pergamenshchikov
(2012) and Konev and Pergamenshchikov (2015) used non Gaussian Ornstein-Uhlenbeck
processes introduced in Barndorff-Nielsen and Shephard (2001) for modeling of the risky
assets in the stochastic volatility financial markets. Unfortunately, the dependence of the
stable Ornstein-Uhlenbeck type decreases with a geometric rate. So, asymptotically when
the duration of observations goes to infinity, we obtain very quickly the same “signal+white
noise” model.

The main goal of this paper is to consider continuous time regression models with depen-
dent observations for which the dependence does not disappear for a sufficient large duration
of observations. To this end we define the noise in the model (1.1) through a semi-Markov
process which keeps the dependence for any duration n. This type of models allows, for
example, to estimate the signals observed under long impulse noise impact with a memory
or in the presence of “against signals”.

In this paper we use the robust estimation approach introduced in Konev and Pergamen-
shchikov (2012) for such problems. To this end, we denote by Q the distribution of (ξt )0≤t≤n
in the Skorokhod space D[0, n]. We assume that Q is unknown and belongs to some distri-
bution family Qn specified in Sect. 4. In this paper we use the quadratic risk

RQ(˜Sn, S) = EQ,S ‖˜Sn − S‖2 , (1.3)

where ‖ f ‖2 = ∫ 1
0

f 2(s)ds and EQ,S is the expectation with respect to the distribution PQ,S
of the process (1.1) corresponding to the noise distribution Q. Since the noise distribution Q
is unknown, it seems reasonable to introduce the robust risk of the form

R∗
n(
˜Sn, S) = sup

Q∈Qn

RQ(˜Sn, S) , (1.4)

which enables us to take into account the information that Q ∈ Qn and ensures the quality
of an estimate ˜Sn for all distributions in the family Qn .

To summarize, the goal of this paper is to develop robust efficient model selectionmethods
for the model (1.1) with the semi-Markov noise having unknown distribution, based on
the approach proposed by Konev and Pergamenshchikov (2012, 2015) for continuous time
regression models with semimartingale noises. Unfortunately, we cannot use directly this
method for semi-Markov regression models, since their tool essentially uses the fact that the
Ornstein-Uhlenbeck dependence decreases with geometrical rate and the “white noise” case
is obtained sufficiently quickly.
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Thus in the present paper we propose new analytical tools based on renewal methods to
obtain the sharp non-asymptotic oracle inequalities. As a consequence, we obtain the robust
efficiency for the proposed model selection procedures in the adaptive setting.

The rest of the paper is organized as follows. We start by introducing the main conditions
in the next section. Then, in Sect. 3 we construct the model selection procedure on the basis
of the weighted least squares estimates. The main results are stated in Sect. 4; here we also
specify the set of admissible weight sequences in the model selection procedure. In Sect. 5
we derive some renewal results useful for obtaining other results of the paper. In Sect. 6 we
develop stochastic calculus for semi Markov processes. In Sect. 7 we study some properties
of the model (1.1). A numerical example is presented in Sect. 8. Most of the results of the
paper are proved in Sect. 9. In “Appendix” some auxiliary propositions are given.

2 Main conditions

In the model (1.2) we assume that the jump Lévy process Lt is defined as

Lt =
∫ t

0

∫

R∗
x(μ(ds, dx) − μ̃(ds, dx)) , (2.1)

where μ(ds, dx) is the jump measure with the deterministic compensator μ̃(ds dx) =
ds�(dx), where �(·) is the Levy measure on R∗ = R \ {0} (see, for example Jacod and
Shiryaev 2002; Cont and Tankov 2004 for details) for which we assume that

�
(

x2
) = 1 and �

(

x8
)

< ∞ , (2.2)

where we use the usual notation �(|x |m) = ∫

R∗
|z|m �(dz) for any m > 0. Note that, using

the Ito formula for the martingales (see, for example, Liptser and Shiryaev 1986, p.185) we
can obtain directly that

EQL
2
t = E

∑

0≤s≤t

(�Ls)
2 = EQ

∫ t

0

∫

R∗
x2μ(ds, dx) = �(x2)t = t , (2.3)

where �Ls = Ls − Ls− and Ls− is the left limit to s in probability. Moreover, the last
condition in (2.2) and the inequality (A.1) imply that for some positive constant C∗ the
expectation

E L8
t ≤ C∗ (1 + �(x8)

)

t < ∞ . (2.4)

Note that �(R∗) may be equal to +∞. Moreover, we assume that the pure jump process
(zt )t≥ 0 in (1.2) is a semi-Markov process with the following form

zt =
Nt
∑

i=1

Yi , (2.5)

where (Yi )i≥ 1 is an i.i.d. sequence of random variables with

EQYi = 0 , EQY
2
i = 1 and EQY

4
i < ∞ .

Here Nt is a general counting process (see, for example, Mikosch 2004) defined as

Nt =
∞
∑

k=1

1{Tk≤t} and Tk =
k
∑

l=1

τl , (2.6)
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where (τl)l≥ 1 is an i.i.d. sequence of positive integrated random variables with distribution η

andmean τ̌ = EQτ1 > 0.We assume that the processes (Nt )t≥0 and (Yi )i≥ 1 are independent
between them and are also independent of (Lt )t≥0.

Note that the process (zt )t≥ 0 is a special case of a semi-Markov process (see, e.g., Barbu
and Limnios 2008; Limnios and Oprisan 2001).

Remark 2.1 It should be noted that if τ j are exponential random variables, then (Nt )t≥0
is a Poisson process and, in this case, (ξt )t≥0 is a Lévy process for which this model has
been studied in Konev and Pergamenshchikov (2009a, b) and Konev and Pergamenshchikov
(2012). But, in the general case when the process (2.5) is not a Lévy process, this process
has a memory and cannot be treated in the framework of semi-martingales with independent
increments. In this case, we need to develop new tools based on renewal theory arguments,
what we do in Sect. 5. This tools will be intensively used in the proofs of the main results of
this paper.

Note that for any function f from L2[0, n], f : [0, n] → R, for the noise process (ξt )t≥ 0
defined in (1.2), with (zt )t≥ 0 given in (2.5), the integral

In( f ) =
∫ n

0
f (s)dξs (2.7)

is well defined with EQ In( f ) = 0. Moreover, as it is shown in Lemma 6.2,

EQ I 2n ( f ) ≤ κQ ‖ f ‖2n and κQ = �̄ + �2
3 |ρ|∗ , (2.8)

where ‖ f ‖2t = ∫ t
0
f 2(s)d s, �̄ = �2

1 + �2
2 and |ρ|∗ = supt≥0 |ρ(t)| < ∞. Here ρ is the

density of the renewal measure η̌ defined as

η̌ =
∞
∑

l=1

η(l) , (2.9)

where η(l) is the lth convolution power for η.

Remark 2.2 In Proposition 5.2 we will prove that, under Conditions (H1)–(H4), the the
renewal measure η̌ hase a density ρ.

To study the series (2.9) we assume that the measure η has a density g which satisfies the
following conditions.

(H1) Assume that, for any x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)

and, for any K > 0, there exists δ = δ(K ) > 0 for which

sup
|x |≤K

∫ δ

0

|g(x + t) + g(x − t) − g(x+) − g(x−)|
t

dt < ∞.

(H2) For any γ > 0,

sup
z≥0

zγ |2g(z) − g(z−) − g(z+)| < ∞.

(H3) There exists β > 0 such that
∫

R
eβx g(x) dx < ∞.
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Remark 2.3 It should be noted that Condition (H3) means that there exists an exponential
moment for the random variable (τ j ) j≥1, i.e. these random variables are not too large. This
is a natural constraint since these random variables define the intervals between jumps, i.e.,
the frequency of the jumps. So, to study the influence of the jumps in the model (1.1) one
needs to consider the noise process (1.2) with “small” interval between jumps or large jump
frequency.

For the next condition we need to introduce the Fourier transform of any function f from
L1(R), f : R → R, defined as

̂f (θ) = 1

2π

∫

R

eiθx f (x) dx . (2.10)

(H4) There exists t∗ > 0 such that the function ĝ(θ − i t) belongs to L1(R) for any
0 ≤ t ≤ t∗.

It is clear that Conditions (H1)–(H4) hold true for any continuously differentiable function
g, for example for the exponential density.

Now we define the family of the noise distributions for the model (1.1) which is used in
the robust risk (1.4). In our case the distribution familyQn consists in all distributions on the
Skorokhod space D[0, n] of the process (1.2) with the parameters satisfying the conditions
(2.11) and (2.12). Note that any distribution Q fromQn is defined by the unknown parameters
in (1.2) and (2.1). We assume that

ς∗ ≤ σQ ≤ ς∗ , (2.11)

where σQ = �2
1 + �2

2 + �2
3/τ̌ , the unknown bounds 0 < ς∗ ≤ ς∗ are functions of n, i.e.

ς∗ = ς∗(n) and ς∗ = ς∗(n), such that for any ε̌ > 0,

lim
n→∞

nε̌ ς∗(n) = +∞ and lim
n→∞

ς∗(n)

nε̌
= 0 . (2.12)

Remark 2.4 Aswe will see later, the parameter σQ is the limit for the Fourier transform of the
noise process (1.2). Such limit is called variance proxy (see Konev and Pergamenshchikov
2012).

Remark 2.5 Note that, generally (but it is not necessary) the parameters �1, �2 and �3 can
be dependent on n. Condition (2.12) means that we consider all possible cases, i.e. these
parameters may go to the infinity or be constant or to zero as well. See, for example, the
conditions (3.32) in Konev and Pergamenshchikov (2015).

3 Model selection

Let (φ j ) j≥ 1 be an orthonormal uniformly bounded basis in L2[0, 1], i.e., for some constant
φ∗ ≥ 1, which may be depend on n,

sup
0≤ j≤n

sup
0≤t≤1

|φ j (t)| ≤ φ∗ < ∞ . (3.1)

We extend the functions φ j (t) by periodicity, i.e., we set φ j (t) := φ j ({t}), where {t} is the
fractional part of t ≥ 0. For example, we can take the trigonometric basis defined as Tr1 ≡ 1
and, for j ≥ 2,

Tr j (x) = √
2

{

cos(2π [ j/2]x) for even j;
sin(2π [ j/2]x) for odd j,

(3.2)
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where [x] denotes the integer part of x .
To estimate the function S we use here the model selection procedure for continuous

time regression models from Konev and Pergamenshchikov (2012) based on the Fourrier
expansion. We recall that for any function S from L2[0, 1] we can write

S(t) =
∞
∑

j=1

θ j φ j (t) and θ j = (S, φ j ) =
∫ 1

0
S(t)φ j (t)dt . (3.3)

So, to estimate the function S it suffices to estimate the coefficients θ j and to replace them
in this representation by their estimators. Using the fact that the function S and φ j are 1 -
periodic we can write that

θ j = 1

n

∫ n

0
φ j (t) S(t)dt .

If we replace here the differential S(t)dt by the stochastic observed differential dyt we obtain
the natural estimate for θ j on the time interval [0, n]

̂θ j,n = 1

n

∫ n

0
φ j (t)d yt , (3.4)

which can be represented, in view of the model (1.1), as

̂θ j,n = θ j + 1√
n

ξ j,n , ξ j,n = 1√
n
In(φ j ) . (3.5)

Now (see, for example, Ibragimov and Khasminskii 1981) we can estimate the function S
by the projection estimators, i.e.

̂Sm(t) =
m
∑

j=1

̂θ j,n φ j (t) , 0 ≤ t ≤ 1 , (3.6)

for some number m → ∞ as n → ∞. It should be noted that Pinsker in Pinsker (1981)
shows that the projection estimators of the form (3.6) are not efficient. For obtaining efficient
estimation one needs to use weighted least square estimators defined as

̂Sλ(t) =
n
∑

j=1

λ( j)̂θ j,nφ j (t) , (3.7)

where the coefficients λ = (λ( j))1≤ j≤n belong to some finite set � from [0, 1]n . As it is
shown in Pinsker (1981), in order to obtain efficient estimators, the coefficients λ( j) in (3.7)
need to be chosen depending on the regularity of the unknown function S. In this paper we
consider the adaptive case, i.e. we assume that the regularity of the function S is unknown.
In this case we chose the weight coefficients on the basis of the model selection procedure
proposed in Konev and Pergamenshchikov (2012) for the general semi-martingale regression
model in continuous time. These coefficients will be obtained later in (3.19). To the end, first
we set

ι̌n = #(�) and |�|∗ = 1 + max
λ∈�

Ľ(λ) , (3.8)

where #(�) is the cardinal number of � and Ľ(λ) = ∑n
j=1 λ( j). Now, to choose a weight

sequence λ in the set � we use the empirical quadratic risk, defined as

Errn(λ) =‖ ̂Sλ − S ‖2,
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which in our case is equal to

Errn(λ) =
n
∑

j=1

λ2( j)̂θ2j,n − 2
n
∑

j=1

λ( j)̂θ j,nθ j +
∞
∑

j=1

θ2j . (3.9)

Since the Fourier coefficients (θ j ) j≥ 1 are unknown, we replace the termŝθ j,nθ j by

˜θ j,n = ̂θ2j,n − σ̂n

n
, (3.10)

where σ̂n is an estimate for the variance proxy σQ defined in (2.11). If it is known, we take
σ̂n = σQ ; otherwise, we can choose it, for example, as in Konev and Pergamenshchikov
(2012), i.e.

σ̂n =
n
∑

j=[√n]+1

̂t 2j,n , (3.11)

wherêt j,n are the estimators for the Fourier coefficients with respect to the trigonometric
basis (3.2), i.e.

̂t j,n = 1

n

∫ n

0
Tr j (t)dyt . (3.12)

Finally, in order to choose the weights, we will minimize the following cost function

Jn(λ) =
n
∑

j=1

λ2( j)̂θ2j,n − 2
n
∑

j=1

λ( j)˜θ j,n + δ Pn(λ), (3.13)

where δ > 0 is some threshold which will be specified later and the penalty term is

Pn(λ) = σ̂n |λ|2
n

. (3.14)

We define the model selection procedure as

̂S∗ = ̂S
λ̂

and ̂λ = argmin
λ∈�

Jn(λ) . (3.15)

We recall that the set � is finite so λ̂ exists. In the case when λ̂ is not unique, we take one of
them.

Let us now specify the weight coefficients (λ( j))1≤ j≤n . Consider, for some fixed 0 <

ε < 1, a numerical grid of the form

A = {1, . . . , k∗} × {ε, . . . ,mε} , (3.16)

where m = [1/ε2]. We assume that both parameters k∗ ≥ 1 and ε are functions of n, i.e.
k∗ = k∗(n) and ε = ε(n), such that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

limn→∞ k∗(n) = +∞ , limn→∞
k∗(n)

ln n
= 0 ,

limn→∞ ε(n) = 0 and limn→∞ nδ̌ε(n) = +∞
(3.17)

for any δ̌ > 0. One can take, for example, for n ≥ 2

ε(n) = 1

ln n
and k∗(n) = k∗

0 + √
ln n , (3.18)
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where k∗
0 ≥ 0 is some fixed constant. For each α = (β, l) ∈ A, we introduce the weight

sequence

λα = (λα( j))1≤ j≤n

with the elements

λα( j) = 1{1≤ j< j∗} + (

1 − ( j/ωα)β
)

1{ j∗≤ j≤ωα}, (3.19)

where j∗ = 1 + [

ln υn
]

, ωα = (dβ lυn)
1/(2β+1),

dβ = (β + 1)(2β + 1)

π2ββ
and υn = n/ς∗ .

and the threshold ς∗(n) is introduced in (2.11). Now we define the set � as

� = {λα , α ∈ A} . (3.20)

It will be noted that in this case the cardinal of the set � is

ι̌n = k∗m . (3.21)

Moreover, taking into account that dβ < 1 for β ≥ 1 we obtain for the set (3.20)

|�|∗ ≤ 1 + sup
α∈A

ωα ≤ 1 + (υn/ε)
1/3 . (3.22)

Remark 3.1 Note that the form (3.19) for the weight coefficients in (3.7) was proposed by
Pinsker in Pinsker (1981) for the efficient estimation in the nonadaptive case, i.e. when
the regularity parameters of the function S are known. In the adaptive case these weight
coefficients are used in Konev and Pergamenshchikov (2012, 2015) to show the asymptotic
efficiency for model selection procedures.

4 Main results

In this sectionweobtain inTheorem4.3 the non-asymptotic oracle inequality for the quadratic
risk (1.3) for the model selection procedure (3.15) and in Theorem 4.4 the non-asymptotic
oracle inequality for the robust risk (1.4) for the same model selection procedure (3.15),
considered with the coefficients (3.19). We give the lower and upper bound for the robust
risk in Theorems 4.5 and 4.7, and also the optimal convergence rate in Corollary 4.8.

Before stating the non-asymptotic oracle inequality, let us first introduce the following
parameters which will be used for describing the rest term in the oracle inequalities. For the
renewal density ρ defined in (2.9) we set

ϒ(x) = ρ(x) − 1

τ̌
and |ϒ |1 =

∫ +∞

0
|ϒ(x)| dx , (4.1)

where τ̌ = EQτ1. In Proposition 5.2 we show that |ρ|∗ = supt≥0 |ρ(t)| < ∞ and |ϒ |1 < ∞.
So, using this, we can introduce the following parameters

�Q = 4κQ ι̌n + 5σQ τ̌ φ2
max |ϒ |1 + 4ι̌

σQ
φ4
max (1 + σ 2

Q)2 ľ (4.2)

and

c∗
Q = κQ + σQ (1 + τ̌ φ2

max |ϒ |1) + φ2
max (1 + σ 2

Q)

√

ľ , (4.3)
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where ľ = 5(1 + τ̌ )2(1 + |ρ|2∗)
(

2 + |ϒ |1 + EY 4
1 + �(x4)

)

. We recall that ι̌n is cardinal of
�, the noise variance σQ is defined in (2.11) and the parameter κQ is given in (2.8). First, let
us state the non-asymptotic oracle inequality for the quadratic risk for the model selection
procedure (3.15) introduced in (1.3) by RQ(˜Sn, S) = EQ,S ‖˜Sn − S‖2.

Theorem 4.1 Assume that Conditions (H1)–(H4) hold. Then, for any n ≥ 1 and 0 < δ <

1/6, the estimator of S given in (3.15) satisfies the following oracle inequality

RQ(̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈�

RQ(̂Sλ, S) + �Q + 12|�|∗ ES |̂σn − σQ |
nδ

. (4.4)

Now we study the estimate (3.11).

Proposition 4.2 Assume that Conditions (H1)–(H4) hold and that the function S(·) is con-
tinuously differentiable. Then, for any n ≥ 2,

EQ,S |̂σn − σQ | ≤ 5‖Ṡ‖2 + c∗
Q√

n
, (4.5)

where Ṡ is the differential of S.

Theorem 4.1 and Proposition 4.2 implies the following result.

Theorem 4.3 Assume that Conditions (H1)–(H4) hold and that the function S is continuously
differentiable. Then, for any n ≥ 1 and 0 < δ ≤ 1/6, the procedure (3.15), (3.11) satisfies
the following oracle inequality

RQ(̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈�

RQ(̂Sλ, S) + 60˜�n ‖Ṡ‖2 + ˜�Q,n

nδ
, (4.6)

where ˜�Q,n = 12˜�nc
∗
Q + �Q and ˜�n = |�|∗/

√
n.

Remark 4.1 Note that the coefficient κQ can be estimated as κQ ≤ (1 + τ̌ |ρ|∗)σQ . There-
fore,taking into account that φ4

max ≥ 1, the remainder term in (4.6) can be estimated as

˜�Q,n ≤ C∗

(

1 + σ 4
Q + 1

σQ

)

(1 + ˜�n)ι̌nφ
4
max , (4.7)

where C∗ > 0 is some constant which is independent of the distribution Q.

Furthermore, let us study the robust risk (1.4) for the procedure (3.15). In this case, the
distribution family Qn consists in all distributions on the Skorokhod space D[0, n] of the
process (1.2) with the parameters satisfying the conditions (2.11) and (2.12).

Moreover, we assume also that the upper bound for the basis functions in (3.1)may depend
on n ≥ 1, i.e. φ∗ = φ∗(n), such that for any ε̌ > 0

lim
n→∞

φ∗(n)

nε̌
= 0 . (4.8)

The next result presents the non-asymptotic oracle inequality for the robust risk (1.4) for
the model selection procedure (3.15), considered with the coefficients (3.19).
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Theorem 4.4 Assume that Conditions (H1)–(H4) hold and that the unknown function
S is continuously differentiable. Then, for the robust risk defined by R∗

n(
˜Sn, S) =

supQ∈Qn
RQ(˜Sn, S), through the distribution family (2.11–2.12), the procedure (3.15) with

the coefficients (3.19) for any n ≥ 1 and 0 < δ < 1/6, satisfies the following oracle
inequality

R∗
n(
̂S∗, S) ≤ 1 + 3δ

1 − 3δ
min
λ∈�

R∗
n(
̂Sλ, S) + U∗

n(S)

nδ
, (4.9)

where the sequence U∗
n(S) > 0 is such that, under the conditions (2.12), (3.17) and (4.8),

for any r > 0 and δ̌ > 0,

lim
n→∞

sup
‖Ṡ‖≤r

U∗
n(S)

nδ̌
= 0. (4.10)

Now we study the asymptotic efficiency for the procedure (3.15) with the coefficients
(3.19), with respect to the robust risk (1.4) defined by the distribution family (2.11–2.12). To
this end, we assume that the unknown function S in the model (1.1) belongs to the Sobolev
ball

Wk
r =

⎧

⎨

⎩

f ∈ Ckper [0, 1] :
k
∑

j=0

‖ f ( j)‖2 ≤ r

⎫

⎬

⎭

, (4.11)

where r > 0 and k ≥ 1 are some unknown parameters, Ckper [0, 1] is the set of k times

continuously differentiable functions f : [0, 1] → R such that f (i)(0) = f (i)(1) for all
0 ≤ i ≤ k. The function class Wk

r can be written as an ellipsoid in L2[0, 1], i.e.,

Wk
r =

⎧

⎨

⎩

f ∈ Ckper [0, 1] :
∞
∑

j=1

a j θ
2
j ≤ r

⎫

⎬

⎭

, (4.12)

where a j = ∑k
i=0 (2π [ j/2])2i and θ j = ∫ 1

0
f (v)Tr j (v)dv. We recall that the trigonometric

basis (Tr j ) j≥1 is defined in (3.2).
Similarly toKonev andPergamenshchikov (2012, 2015)wewill showhere that the asymp-

totic sharp lower bound for the robust risk (1.4) is given by

r∗
k = ((2k + 1)r)1/(2k+1)

(

k

(k + 1)π

)2k/(2k+1)

. (4.13)

Note that this is the well-known Pinsker constant obtained for the nonadaptive filtration
problem in “signal + small white noise” model (see, for example, Pinsker 1981). Let �n
be the set of all estimators ̂Sn measurable with respect to the σ - field σ {yt , 0 ≤ t ≤ n}
generated by the process (1.1).

The following two results give the lower and upper bound for the robust risk (1.4) defined
for the distribution family (2.11–2.12).

Theorem 4.5 Under Conditions (2.11) and (2.12),

lim inf
n→∞

υ2k/(2k+1)
n inf

̂Sn∈�n

sup
S∈Wk

r

R∗
n(
̂Sn, S) ≥ r∗

k , (4.14)

where υn = n/ς∗.
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Note that if the parameters r and k are known, i.e. for the non adaptive estimation case,
then to obtain the efficient estimation for the “signal+white noise” model Pinsker (1981)
proposed to use the estimate ̂Sλ0

defined in (3.7) with the weights

λ0 = 1{1≤ j< j∗} + (

1 − ( j/ωα0
)β
)

1{ j∗≤ j≤ωα0
}, (4.15)

where α0 = (k, l0) and l0 = [r/ε]ε. For the model (1.1–1.2) we show the same result.

Proposition 4.6 The estimator ̂Sλ0
satisfies the following asymptotic upper bound

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(
̂Sλ0

, S) ≤ r∗
k . (4.16)

Remark 4.2 Note that the inequalities (4.14) and (4.16) imply that the estimator ̂Sλ0
is effi-

cient.Butwe can’t use theweights (4.15) directly because the parameters k and r are unknown.
By this reason to obtain the efficient estimate in the adaptive setting we use the model selec-
tion procedure (3.15) over the estimate family (3.20) which includes the estimator (4.15).
Then, using the oracle inequality (4.9) and the upper bound (4.16) we can obtain the efficient
property for this model selection procedure.

For the adaptive estimation we use the model selection procedure (3.15) with the parameter
δ defined as a function of n satisfying

lim
n

δn = 0 and lim
n

nδ̌ δn = 0 (4.17)

for any δ̌ > 0. For example, we can take δn = (6 + ln n)−1.
Let̂S∗ be the procedure (3.15) based on the trigonometric basis (3.2) with the coefficients

(3.19) and the parameter δ = δn satisfying (4.17).

Theorem 4.7 Assume that Conditions (H1)–(H4) hold true. Then

lim sup
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(
̂S∗, S) ≤ r∗

k . (4.18)

Theorems 4.5 and 4.7 allow us to compute the optimal convergence rate.

Corollary 4.8 Under the assumptions of Theorem 4.7 the procedure ̂S∗ is efficient, i.e.

lim
n→∞

υ2k/(2k+1)
n inf

̂Sn∈�n

sup
S∈Wk

r

R∗
n(
̂Sn, S) = r∗

k (4.19)

and

lim
n→∞

inf
̂Sn∈�n

supS∈Wk
r
R∗

n(
̂Sn, S)

supS∈Wk
r
R∗

n(
̂S∗, S)

= 1 .

Remark 4.3 It is well known that the optimal (minimax) risk convergence rate for the Sobolev
ballWk

r is n2k/(2k+1) (see, for example, Pinsker 1981; Nussbaum 1985). We see here that the
efficient robust rate is υ2k/(2k+1)

n , i.e., if the distribution upper bound ς∗ → 0 as n → ∞,

we obtain a faster rate with respect to n2k/(2k+1), and, if ς∗ → ∞ as n → ∞, we obtain a
slower rate. In the case when ς∗ is constant, than the robust rate is the same as the classical
non robust convergence rate. The same properties for the robust risks are obtained in Konev
and Pergamenshchikov (2010) and Konev and Pergamenshchikov (2012) for the regression
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model with Ornstein-Uhlenbeck noise process. So, this is typical situation, when we take
the supremum over all noise distribution in (1.4). It is natural that we don’t obtain the same
convergence rate as for the usual risks (1.3) and the difference is given by the coefficient ς∗
which satisfies the “slowly changing” properties (2.12).

5 Renewal density

This section is concerned with results related to the renewal measure η̌ = ∑∞
l=1 η(l) . We

start with the following lemma.

Lemma 5.1 Let τ be a positive random variable with a density g, such that Eeβτ < ∞ for
some β > 0. Then there exists a constant β1, 0 < β1 < β for which,

Ee(β1+iω)τ �= 1 ∀ω ∈ R .

Proof We will show this lemma by contradiction, i.e. assume there exists some sequence of
positive numbers going to zero (γk)k≥1 and a sequence (wk)k≥1 such that

Ee(γk+iωk )τ = 1 (5.1)

for any k ≥ 1. Firstly assume that lim supk→∞ wk = +∞, i.e. there exists (lk)k≥1 for which
limk→∞ wlk

= +∞. Note that in this case, for any N ≥ 1,

∣

∣

∣

∣

∫ N

0
e
γlk

t cos(wlk
t) g(t)dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ N

0
cos(wlk

t) g(t)dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫ N

0
(e

γlk
t − 1) cos(wlk

t) g(t)dt

∣

∣

∣

∣

,

i.e., in view of Lemma A.5, for any fixed N ≥ 1

lim
k→∞

∫ N

0
e
γlk

t cos(wlk
t) g(t)dt = 0 .

Since for some β > 0 the integral
∫ +∞
0

eβt g(t)dt < ∞, we get

lim
k→∞

∫ +∞

0
e
γlk

t cos(wlk
t) g(t)dt = 0 .

Let now lim supk→∞ wk = ω∞ and |ω∞| < ∞. In this case there exists a sequence (lk)k≥1
such that limk→∞ wlk = ω∞, i.e.

1 = lim
k→∞

Eeγlk
τ cos(τwlk ) = EQ cos(τw∞) .

It is clear that, for random variables having density, the last equality is possible if and only
if w∞ = 0. In this case, i.e. when limk→∞ wlk = 0, the Eq. (5.1) implies

lim
k→∞

EQe
γlk

τ sin(τwlk )

wlk

= E τ = 0 .

But, Eτ > 0, under our conditions. These contradictions imply the desired result. �

123



Statistical Inference for Stochastic Processes (2019) 22:187–231 199

Proposition 5.2 Let τ be a positive random variable with the distribution η having a den-
sity g which satisfies Conditions (H1)–(H4). Then the renewal measure (2.9) is absolutely
continuous with density ρ, for which

ρ(x) = 1

τ̌
+ ϒ(x) , (5.2)

where τ̌ = Eτ1 and ϒ(·) is some function defined on R+ with values in R such that

sup
x≥0

xγ |ϒ(x)| < ∞ for all γ > 0 .

Proof First note, that we can represent the renewal measure η̌ as η̌ = η ∗ η0 and η0 =
∑∞

j=0 η( j). It is clear that in this case the density ρ of η̌ can be written as

ρ(x) =
∫ x

0
g(x − y)

∑

n≥0

g(n)(y)dy . (5.3)

Now we use the arguments proposed in the proof of Lemma 9.5 from Goldie (1991). For any
0 < ε < 1 we set

ρε(x) =
∫ x

0
g(x − y)

⎛

⎝

∑

n≥0

(1 − ε)n g(n)(y) − (1 − ε)

τ̌
g0(y)

⎞

⎠ dy − g(x) , (5.4)

where g0(y) = e−εy/τ̌1{y>0}. It is easy to deduce that for any x ∈ R

lim
ε→0

ρε(x) = ρ(x) − 1

τ̌

∫ x

0
g(z) dz − g(x) . (5.5)

Moreover, in view of Condition (H1) we obtain that the function ρε(x) satisfies Condition
D) from Section A.3. So, through Proposition A.6 we get

ρε(x+) + ρε(x−) = 1

π

∫

R

e−i xθ ρ̂ε(θ) dθ ,

where ρ̂ε(θ) = ∫

R
eiθxρε(x)dx . Note that by theBunyakovskii–Cauchy–Schwarz inequality

|̂g(θ)| =
∣

∣

∣

∣

∫

R

eiθx g(x)dx

∣

∣

∣

∣

≤
∫

R

g(x)dx = 1 . (5.6)

It should be noted that this inequality becomes an equality if and only if θ = 0. Therefore,
for any 0 < ε < 1 the module |(1 − ε)ĝ(θ)| < 1 and

∞
∑

n=0

(1 − ε)n(ĝ(θ))n = 1

1 − (1 − ε)ĝ(θ)
.

So, taking into account that

ĝ0(θ) =
∫

R

eiθx g0(x)dx = τ̌

ε − i τ̌ θ
,

we obtain

ρ̂ε(θ) = ĝ(θ)

∞
∑

n=0

(1 − ε)n(ĝ(θ))n −
(

1 − ε

τ̌

)

ĝ(θ)ĝ0(θ) − ĝ(θ) = ĝ(θ)Gε(θ)
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where

Gε(θ) = 1

1 − (1 − ε)ĝ(θ)
− 1 − i τ̌ θ

ε − i τ̌ θ
,

i.e.

ρε(x−) + ρε(x+) = 1

π

∫

R

e−i xθ ĝ(θ)Gε(θ) dθ . (5.7)

In section A.5 we show that

sup
0<ε<1,θ∈R

|Gε(θ)| < ∞ . (5.8)

Therefore, using Condition (H4) and Lebesgue’s dominated convergence theorem, we can
pass to limit as ε → 0 in (5.7), i.e., we obtain that

ρ(x+) + ρ(x−) − 2

τ̌

∫ x

0
g(z) dz − g(x+) − g(x−) = 1

π

∫

R

e−i xθ ĝ(θ)G0(θ) dθ ,

where

G0(θ) = 1

1 − ĝ(θ)
+ 1 − i τ̌ θ

i τ̌ θ
.

Using here again Proposition A.6 we deduce that

ρ(x+) + ρ(x−) = 2

τ̌

∫ x

0
g(z) dz + 1

π

∫

R

e−i xθ ĝ(θ) Ǧ(θ) dθ (5.9)

and

Ǧ(θ) = 1

1 − ĝ(θ)
+ 1

i τ̌ θ
.

Note now that we can represent the density (5.3) as

ρ(x) = g ∗
∑

n≥0

g(n) =
∑

n≥1

g(n)(x) = g(x) +
∑

n≥2

g(n)(x) =: g(x) + ρc(x)

and the function ρc(x) is continuous for all x ∈ R. This means that

ρ̃(x) = ρ(x+) + ρ(x−)

2
− ρ(x) = g(x+) + g(x−)

2
− g(x)

and, therefore, Condition (H2) implies that, for any γ > 0,

sup
x≥0

xγ |ρ̃(x)| < ∞.

Now we can rewrite (5.9) as

ρ(x) − 1

τ̌
= 1

τ̌

∫ +∞

x
g(z) dz + 1

2π

∫

R

e−i xθ ĝ(θ) Ǧ(θ) dθ − ρ̃(x). (5.10)

Taking into account that EQe
βτ < ∞ for some β > 0 we can obtain that

sup
x≥0

xγ

∫ +∞

x
g(z) dz < ∞ .
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To study the second term in (5.10) we will apply Proposition A.4 to the function ĝ(θ)Ǧ(θ).

First, note that the function ĝ(θ) = EQe
iτθ is holomorphic for any θ ∈ C with Im(θ) > −β,

due to Condition (H3); in view of Lemma A.8, there exists 0 < β∗ < β for which the
function Ǧ(θ) is holomorphic. Second, Condition (H4) applied to the function ĝ(θ)Ǧ(θ)

implies the first condition in Eq. (A.2). The second condition of (A.2) follows directly from
Lemma A.5.

Therefore, the conditions of Proposition A.4 hold with β2 = +∞. Thus Proposition A.4
implies that for some 0 < β0 < β∗

∫

R

e−i xθ ĝ(θ) Ǧ(θ) dθ = e−β0x
∫

R

e−i xθ ĝ(θ − iβ0) Ǧ(θ − iβ0) dθ .

Taking into account here Condition (H4) and the bound for Ǧ given in (A.8), we obtain

sup
x≥0

eβ0x
∣

∣

∣

∣

∫

R

e−i xθ ĝ(θ) Ǧ(θ) dθ

∣

∣

∣

∣

< ∞ .

Hence Proposition 5.2. �
Using this proposition we can study the renewal process (Nt )t≥0 introduced in (2.6).

Corollary 5.3 Assume that Conditions (H1)–(H4) hold true. Then, for any t > 0,

E Nt ≤ |ρ|∗ t , E N 2
t ≤ |ρ|∗ t + |ρ|2∗ t2 (5.11)

and, moreover, ENm
t < ∞ for any m ≥ 3.

Proof First, by means of Proposition 5.2, note that we get

E Nt = E
∑

k≥1

1{Tk≤t} =
∫ t

0
ρ(v) dv ≤ |ρ|∗ t .

To estimate the second moment of Nt note that,

E N 2
t = E

∑

k≥1

1{Tk≤t} + 2E
∑

k≥1

1{Tk≤t}
∑

j≥k+1

1{Tj≤t}

= E Nt + 2E
∑

k≥1

1{Tk≤t} E

⎛

⎝

∑

j≥k+1

1{Tj≤t}/Tk

⎞

⎠

= E Nt + 2E
∑

k≥1

1{Tk≤t} �(t − Tk) = E Nt + 2
∫ t

0
�(t − v) ρ(v) dv ,

i.e. we obtain that

E N 2
t ≤ |ρ|∗t + 2|ρ|∗

∫ t

0
�(t − v) dv ,

where �(v) = E
∑

j≥k+1 1{∑ j
i=k+1 τi≤v}. Taking into account that (τk)k≥1 is i.i.d. sequence,

this term can be represented as

�(v) = E
∑

m≥1

1{Tm≤v} = E Nv ≤ |ρ|∗v . (5.12)
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This implies the second inequality in (5.11). Similarly, for m ≥ 3 we obtain that for some
constant Cm > 0

ENm
t ≤ Cm E

∑

k1<···<km

m
∏

j=1

1{Tk j ≤t}

= Cm E
∑

k1<···<km−1

m−1
∏

j=1

1{Tk j ≤t}E

⎛

⎝

∑

l=km−1+1

1{Tl≤t}|Tkm−1

⎞

⎠

= Cm E
∑

k1<···<km−1

m−1
∏

j=1

1{Tk j ≤t}�(t − Tkm−1
) ≤ Cm |ρ|∗ t E Nm−1

t .

Therefore, by induction we obtain that E Nm
t < ∞ for any m ≥ 3. Hence Corollary 5.3. �

6 Stochastic calculus for semi-Markov processes

In this section we give some results of stochastic calculus for the process (ξt )t≥ 0 given in
(1.2), needed all along this paper. As this process is the combination of a Lévy process and
a semi-Markov process, these results are not standard and need to be provided.

Lemma 6.1 Let f and g be any non-random functions from L2[0, n] and (It ( f ))t≥ 0 be the
process defined in (2.7). Then, for any 0 ≤ t ≤ n,

EQ It ( f )It (g) = �̄ ( f , g)t + �2
3 ( f , gρ)t , (6.1)

where ( f , g)t = ∫ t
0
f (s) g(s)ds and ρ is the density of the renewal measure η̌ = ∑∞

l=1 η(l).

Proof First, note that the noise process (1.2) is square integrated martingale which can be
represented as

ξt = ξ ct + ξdt , (6.2)

where ξ ct = �1wt and ξdt = �2 Lt + �3 zt . Note that the process (ξ ct )t≥0 is the square
integrated continuousmartingale with the quadratic characteristic< ξ c >t= �2

1 t . Therefore,
the quadratic variance [ξ ]t is the following:

[ξ ]t =< ξ c >t +
∑

0≤s≤t

(

�ξds

)2 = �2
1 t +

∑

0≤s≤t

(

�ξds

)2
,

where �ξs = ξs − ξs− (see, for example, Liptser and Shiryaev 1986). Recalling that the
processes (Lt )t≥0 and (zt )t≥0 are independent, we obtain that �Lt�zt = 0 for any t > 0,
i.e.

[ξ ]t = �2
1t + �2

2

∑

0≤s≤t

(

�Ls

)2 + �2
3

∑

0≤s≤t

(

�zs
)2

. (6.3)

Moreover, note that we can represent the stochastic integral It ( f ) as

It ( f ) = �1 I
w
t ( f ) + �2 I

L
t ( f ) + �3 I

z
t ( f ) , (6.4)
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where the stochastic integrals Iw
t ( f ) = ∫ t

0
f (s)dws I Lt ( f ) = ∫ t

0
f (s)dLs and I zt ( f ) =

∫ t
0

f (s)dzs are independent square integrated martingales. Therefore,

EQ It ( f )It (g) = �2
1E Iw

t ( f )Iw
t (g) + �2

2E I Lt ( f )I Lt (g) + �2
3E I zt ( f )I zt (g) .

Taking into account that E Iw
t ( f )Iw

t (g) = ( f , g)t and that the expectation of the product
of square integrated martingales equals to the expectation of their mutual covariance, i.e.
E I Lt ( f ) I Lt (g) = E [I L( f ), I L (g)]t and E I zt ( f ) I zt (g) = E [I z( f ), I z(g)]t , we obtain
that

EQ It ( f )It (g) = �2
1( f , g)t + �2

2E [I L( f ), I L (g)]t + �2
3E [I z( f ), I z(g)]t .

In view of (6.3) the mutual covariances may be calculated as
[

I L( f ), I L (g)
]

t
=

∑

0≤s≤t

f (s)g(s)
(

�Ls

)2

and

[I z( f ), I z(g)]t =
∑

0≤s≤t

f (s)g(s)
(

�zs
)2 =

∞
∑

l=1

f (Tl)g(Tl)Y
2
l 1{Tl≤t} .

Taking into account that �(x2) = 1 and that the sequences (Yk)k≥1 and (Tk)k≥1 are inde-
pendent, we find

E
[

I L( f ) I L (g)
]

t
= �

(

x2
)

( f , g)t = ( f , g)t (6.5)

and

E [I z( f ) I z(g)]t = E
∞
∑

l=1

f (Tl)g(Tl)1{Tl≤t} =
∫ t

0
f (s)g(s)ρ(s)ds = ( f , gρ)t .

Hence the conclusion follows. �
Corollary 6.2 Assume that Conditions (H1)–(H4) hold true. Then, for any n ≥ 1 and for any
non random function f from L2[0, n], the stochastic integral (2.7) exists and satisfies the
inequality (2.8).

Proof This lemma follows directly from Lemma 6.1 with f = g and Proposition 5.2 which
ensures that supt≥0 ρ(t) < ∞. �
Lemma 6.3 Let f and g be bounded functions defined on [0,∞) × R. Then, for any k ≥ 1,

EQ

(

ITk− ( f ) ITk− (g) | G
)

= �̄( f , g)Tk + �2
3

k−1
∑

l=1

f (Tl) g(Tl),

where G is the σ -field generated by the sequence (Tl)l≥1, i.e., G = σ {Tl , l ≥ 1}.
Proof Using (6.5) and, taking into account that the process (Lt )t≥0 is independent of G, we
obtain

EQ

(

ITk− ( f ) ITk− (g) | G
)

= �̄( f , g)Tk + �2
3E

(

I zTk−
( f ) I zTk−

(g) | G
)

.
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Moreover,

E
(

I zTk−
( f ) I zTk−

(g) | G
)

= E

((

k−1
∑

l=1

f (Tl)Yl

)(

k−1
∑

l=1

g(Tl)Yl

)

| G
)

=
k−1
∑

l=1

f (Tl) g(Tl) .

Then we obtain the desired result. �

Lemma 6.4 Assume that Conditions (H1)–(H4) hold true. Then, for anymeasurable bounded
non-random functions f and g, we have

∣

∣

∣

∣

EQ

∫ n

0
I 2t−( f ) g(t) dmt

∣

∣

∣

∣

≤ 2�2
3|g|∗| f |2∗ |ϒ |1 n,

where mt = ∑

0≤s≤t (�zs)
2 − ∫ t

0
ρ(s)ds and the norm |ϒ |1 is given in (4.1).

Proof Using the definition of the process (mt )t≥0 we can represent this integral as

∫ n

0
I 2t−( f ) g(t) dmt =

∑

k≥1

I 2Tk−( f ) g(Tk) Y
2
k 1{Tk≤n}

−
∫ n

0
I 2t ( f ) g(t) ρ(t) dt =: Vn −Un . (6.6)

Note now that

EQVn = EQ

∑

k≥1

g(Tk)E
(

I 2Tk−
( f ) | G

)

1{Tk≤n} .

Now, using Lemma 6.3 we can represent the last expectation as

EQVn = �̄E V ′
n + �2

3 E V ′′
n , (6.7)

where

V
′
n =

∑

k≥1

g(Tk) ‖ f ‖2Tk 1{Tk≤n} and V
′′
n =

∑

k≥2

g(Tk) 1{Tk≤n}
k−1
∑

l=1

f 2(Tl) .

The term E V
′
n can be represented as

E V
′
n =

∫ n

0
g(t) ‖ f ‖2t ρ(t)dt .
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We recall that the norm ‖ · ‖t is defined in (2.8). To estimate E V
′′
n , note that in view of

Fubini’s theorem

E V
′′
n = E

∑

l≥1

f 2(Tl)
∑

k≥l+1

g(Tk) 1{Tk≤n} 1{Tl≤n}

= E
∑

l≥1

f 2(Tl)EQ

⎛

⎝

∑

k≥l+1

g(Tk) 1{Tk≤n}|Tl
⎞

⎠ 1{Tl≤n}

=
∑

l≥1

E f 2(Tl) ḡ(Tl)1{Tl≤n} =
∫ n

0
f 2(v) ḡ(v) ρ(v)dv ,

where, similarly to (5.12), the function ḡ(·) can be represented as

ḡ(v) = E
∑

k≥l+1

g

⎛

⎝v +
k
∑

j=l+1

τ j

⎞

⎠ 1{∑k
j=l+1 τ j≤n−v}

= E
∑

m≥1

g(v + Tm) 1{Tm≤n−v} =
∫ n−v

0
g(v + s) ρ(s)ds =

∫ n

v

g(t) ρ(t − v)dt .

Moreover, using Lemma 6.1, we calculate the expectation of the last term in (6.6), i.e.

EQ Un = �̄

∫ n

0
‖ f ‖2t g(t) ρ(t) dt + �2

3

∫ n

0
‖ f

√
ρ‖2t g(t) ρ(t) dt .

This implies that

|EQ

∫ n

0
I 2t−( f ) g(t) dmt | = �2

3|
∫ n

0
g(t) δ(t)dt | ≤ �2

3|g|∗
∫ n

0
|δ(t)|dt ,

where δ(t) = ∫ t
0

f 2(v) (ρ(t − v) − ρ(t)) ρ(v) dv. Note here that, in view of Proposition
5.2 the function δ(t) can be estimated for any 0 ≤ t ≤ n as

|δ(t)| ≤ | f |2∗ |ρ|∗
∫ t

0
|ϒ(t − v) − ϒ(t)| dv ≤ | f |2∗ |ρ|∗

(|ϒ |1 + n|ϒ(t)|) ,

with ϒ(x) = ρ(x) − 1/τ̌ . So,
∫ n

0
|δ(t)|dt ≤ n| f |2∗ |ρ|∗

(

|ϒ |1 +
∫ n

0
|ϒ(t)|dt

)

≤ 2n| f |2∗ |ρ|∗ |ϒ |1 ,

and, therefore,
∣

∣

∣

∣

EQ

∫ n

0
I 2t−( f ) g(t) dmt

∣

∣

∣

∣

≤ 2�2
3|g|∗| f |2∗ |ϒ |1 n

and this finishes the proof. �
Lemma 6.5 Assume that Conditions (H1)–(H4) hold true. Then, for anymeasurable bounded
non-random functions f and g, one has

EQ

∫ n

0
I 2t−( f )It−(g)g(t)dξt = 0 . (6.8)
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Proof Putting ȟt = I 2t−( f )It−(g)g(t), we can represent the integral in (6.8) as

In(ȟ) = √

�̄I Ľn (ȟ) + �3 I
z
n (ȟ) . (6.9)

where Ľ = �̌1wt + �̌2Lt , �̌1 = �1/
√

�̄ and �̌2 = �2/
√

�̄. First, we will show that

EQ I
Ľ
n (ȟ) = 0 . (6.10)

Using the notations (6.4), we set

J1 =
∫ n

0
I 2t−( f )I Ľt−(g)g(t)dĽ t and J2 =

∫ n

0
I 2t−( f )I zt−(g)g(t)dĽ t ,

we obtain that
∫ n

0
I 2t−( f )It−(g)g(t)dĽ t = √

�̄ J1 + �3 J2 . (6.11)

Taking into account that, for any non random square integrated function g the integral
(

∫ t
0
g(s)dws

)

is Gaussian with the parameters
(

0,
∫ t
0
g2(s)ds

)

, we obtain

sup
0≤t≤n

E
(

Iw
t (g)

)8
< ∞ . (6.12)

By applying inequality (A.1) for the non-random function h(s, x) = g(s)x , and, recalling
that �(x8) < ∞, we obtain,

sup
0≤t≤n

E
(

I Lt (g)
)8

< ∞ .

Therefore, we obtain that

sup
0≤t≤n

EQ

(

I Ľt (g)
)8

< ∞ .

Finally, by using the Cauchy inequality, we can estimate for any 0 < t ≤ n the following
expectation as

EQ(I Ľt ( f ))4(I Ľt (g))2 <

√

EQ(I Ľt ( f ))8
√

EQ(I Ľt (g))4

i.e.,

sup
0≤t≤n

EQ

(

I Ľt ( f )
)4 (

I Ľt (g)
)2

< ∞ .

Moreover, taking into account that the processes (Ľ t )t≥0 and (zt )t≥0 are independent, we
obtain that

EQ(I zt ( f ))4
(

I Ľt (g)
) 2 = EQ(I zt ( f ))4EQ(I Ľt (g))2 =

∫ t

0
g2(s)ds E (I zt ( f ))4 .

One can check directly here that, for t > 0,

E |I zt ( f )|4 ≤ | f |4∗ E Y 4
1 E N 2

t .
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where | f |∗ = sup0≤t≤n | f (t)|. Note that Corollary 5.3 yields E N 2
t < ∞, therefore

sup0≤t≤n EQ(I zt ( f ))4 < ∞ and we obtain,

sup
0≤t≤n

EQ(It ( f ))
4(I Ľt (g))2 < ∞ .

Taking into account that the process (Ľ t )t≥0 is square integratedmartingalewith the quadratic

characteristic < Ľ >t= t , we obtain that EJ1 = 0. As to the last term in (6.11) note that
similarly to the previous reasoning we obtain that

EQ

∫ n

0

(

I Ľt−( f )
)2

I zt−(g)g(t)dĽ t = 0 and EQ

∫ n

0
I Ľt−( f )I zt−( f )I zt−(g)g(t)dĽ t = 0 .

Therefore, to show (6.10) one needs to check that

EQ I
Ľ
n (ȟz) = 0 , (6.13)

where ȟzt = (I zt−( f ))2 I zt−(g)g(t). To this end, note that, for any 0 < t ≤ n

I zt ( f ) =
∞
∑

k=1

f (Tk) Yk 1{Tk≤t} =
Nn
∑

k=1

f (Tk) Yk 1{Tk≤t} , (6.14)

i.e.,

I Ln (ȟz) =
Nn
∑

k=1

Nn
∑

l=1

Nn
∑

j=1

f (Tk) f (Tl) g(Tj ) Y jYl Yk Ikl j ,

where Ikl j = ∫ n
0
1{Tk≤t}1{Tl≤t}1{Tj≤t}g(t)dĽ t . Taking into account that the process (Ľ t )t≥0

is independent of the field Gz = σ {zt , t ≥ 0}, we obtain that EQ

(

Ikl j |Gz
) = 0 and

EQ

(

I 2kl j |Gz
)

=
∫ n

0
1{Tk≤t}1{Tl≤t}1{Tj≤t}g2(t)dt ≤ ‖g‖2n < ∞ .

Moreover,

EQ |I Ľn (ȟz)| ≤ |g|∗| f |2∗‖g‖n E
Nn
∑

k=1

Nn
∑

l=1

Nn
∑

j=1

|Y j ||Yl | |Yk |

≤ E |Y1|3|g|∗| f |2∗‖g‖n EN 3
n .

Corollary 5.3 implies that EN 3
n < ∞, i.e. EQ |I Ľn (ȟz)| < ∞, and, therefore,

EQ I
Ľ
n (ȟz) = EQ

Nn
∑

k=1

Nn
∑

l=1

Nn
∑

j=1

f (Tk) f (Tl) g(Tj ) Y jYl Yk EQ

(

Ikl j |Gz
) = 0.
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So, we obtain (6.13). Furthermore, to study the last term in (6.9) note that the (zt )t≥0 is the

martingale with the bounded variation. Moreover, in view of the definition of ȟ we get

EQ

∫ n

0
|ȟt |d[z]t = EQ

Nn
∑

k=1

|ȟTk |Y 2
k = EQ

Nn
∑

k=1

|ȟTk |

≤ |g|∗
2

⎛

⎝

∑

k≥1

EQ I 4Tk−
( f )1{Tk≤n} +

∑

k≥1

EQ I 2Tk−
(g)1{Tk≤n}

⎞

⎠ .

Reminding here, that the processes (Ľ t )t≥0 and (zt )t≥0 are independent and using (6.12), we
obtain that for 1 ≤ m ≤ 2 and any bounded function f

∑

k≥1

EQ

(

I ĽTk−
( f )

)2m
1{Tk≤n} ≤ sup

0≤t≤n
EQ

(

I Ľt ( f )
)2m

E
∑

k≥1

1{Tk≤n}

= sup
0≤t≤n

EQ

(

I Ľt ( f )
)2m

ENn < ∞ .

Moreover, from (6.14) through the Hölder inequality we obtain that

(

I zTk−
( f )

)2m =
⎛

⎝

k−1
∑

j=1

f (Tj ) Y j

⎞

⎠

2m

≤ | f |2m∗ (k − 1)2m−1
k−1
∑

j=1

Y 2m
j .

Taking into account that the sequences (Y j ) j≥1 and (Tk)k≥1 are independent we obtain
through Corrolary 5.3 that

∑

k≥1

E
(

I zTk−
( f )

)2m
1{Tk≤n} ≤ | f |2m∗ E Y 2m

1 E
∑

k≥1

k2m1{Tk≤n}

= | f |2m∗ E Y 2m
1 E

Nn
∑

k≥1

k2m ≤ | f |2m∗ E Y 2m
1 E N 2m+1

n < ∞ .

Thus EQ

∫ n
0

|ȟt |d[z]t < ∞, therefore, EQ I
z
n (ȟ) = 0 and we get the equality (6.8). �

7 Properties of the regressionmodel (1.1)

In order to prove the non-asymptotic sharp oracle inequalities we use the method proposed
in Konev and Pergamenshchikov (2009a) and Konev and Pergamenshchikov (2012) for the
general semi-martingale model (1.1). To this end we need to study the following functions
of x ∈ R

n

B1,Q,n(x) =
n
∑

j=1

x j
(

EQξ2j,n − σQ

)

and B2,Q,n(x) =
n
∑

j=1

x j˜ξ j,n , (7.1)

where σQ is defined in (2.11),˜ξ j,n = ξ2j,n−EQξ2j,n and ξ j,n is given in (3.5). These functions
describe the behavior for the total noise intensity and variance respectively for the chosen
Fourier coefficients in the estimators (3.7).
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Remark 7.1 The propositions 7.1 – 7.2 given below are used to obtain the oracle inequalities
in Sect. 4 (see, for example, Konev and Pergamenshchikov 2012).

Proposition 7.1 Assume that Conditions (H1)–(H4) hold. Then

sup
x∈[−1,1]n

|B1,Q,n(x)| ≤ C1,Q,n , (7.2)

where C1,Q,n = σQ τ̌ φ2
max |ϒ |1, σQ = �̄ + �2

3/τ̌ and ϒ(x) = ρ(x) − 1/τ̌ .

Proof First, taking into account that ξ j,n = n−1/2 In(φ j ) and ‖φ j‖2n = n, we obtain through
Lemma 6.1 that

EQξ2j,n = �̄ + �2
3

n

∫ n

0
φ2
j (x) ρ(x)dx = σQ + �2

3

n

∫ nτ̌

0
φ2
j (x)ϒ(x)dx .

So, in view of Condition (3.1) and the Eq. (4.1), we obtain

∣

∣

∣EQξ2j,n − σQ

∣

∣

∣ = �2
3

n

∣

∣

∣

∣

∫ n

0
φ2
j (x)ϒ(x)d x

∣

∣

∣

∣

≤ �2
3

n
φ2
max |ϒ |1 .

We bound here �2
3 by σQ τ̌ we obtain the inequality (7.2) and hence the conclusion follows.

�
Proposition 7.2 Assume that Conditions (H1)–(H4) hold. Then

sup
|x |≤1

EQ B2
2,Q,n(x) ≤ C2,Q,n, (7.3)

where |x |2 = ∑n
j=1 x

2
j , C2,Q,n = φ4

max (1 + σ 2
Q)2 ľ and ľ is given in (4.3).

Proof By Ito’s formula one gets

dI 2t ( f ) = 2It−( f )dIt ( f ) + �2
1 f 2(t)dt + d

∑

0≤s≤t

f 2(s)(�ξds )2 . (7.4)

Using the representations (6.2) and (6.3), we can rewrite this differential as

dI 2t ( f ) = 2It−( f )dIt ( f ) + �2
1 f 2(t)d t

+ �2
2d

∑

0≤s≤t

f 2(s)(�Ls)
2 + �2

3d
∑

0≤s≤t

f 2(s)(�zs)
2 . (7.5)

From Lemma 6.1 it follows that EQ I 2t ( f ) = �̄ ‖ f ‖2t + �2
3‖ f

√
ρ‖2t . Therefore, putting

˜It ( f ) = I 2t ( f ) − EQ I
2
t ( f ) , (7.6)

we obtain

d˜It ( f ) = 2It−( f ) f (t)dξt + f 2(t)dm̃t , m̃t = �2
2m̌t + �2

3mt , (7.7)

where m̌t = ∑

0≤s≤t (�Ls)
2− t andmt = ∑

0≤s≤t (�zs)
2−∫ t

0
ρ(s)ds. For any non-random

vector x = (x j )1≤ j≤n with
∑n

j=1 x
2
j ≤ 1, we set

Īt = Īt (x) =
n
∑

j=1

x j˜It (φ j ). (7.8)
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Denoting

At =
n
∑

j=1

x j It (φ j )φ j (t) and Bt =
n
∑

j=1

x jφ
2
j (t) , (7.9)

we get the following stochastic differential equation for (7.8)

d Īt = 2At−dξt + Btdm̃t , Ī0(x) = 0 .

Now, similarly to (7.4) the Ito formula and representation (6.2) yield

d Ī 2t = 2 Īt−d Īt + d < Ī c >t +d
∑

0≤s≤t

(

� Īs
)2

= 2 Īt−d Īt + 4�2
1 A2

t dt + d
∑

0≤s≤t

(

2As−�ξds + Bs �m̃s

)2
.

Taking into account that the processes (Lt )t≥0 and (zt )t≥0 are independent, we obtain that
�Lt�zt = 0, therefore, for any t ≥ 0

(

2At−�ξdt + Bt �m̃t

)2 = (

2�2At−�Lt + �2
2Bt (�Lt )

2)2

+ (

2�3At−�zt + �2
3Bt (�zt )

2)2 .

This implies

EQ Ī
2
n = 2EQ

∫ n

0
Īt−d Īt + 4�2

1EQ

∫ n

0
A2
t d t

+ �2
2 EQ Ďn + �2

3 EQDn , (7.10)

where Ďn = ∑

0≤t≤n

(

2At−�Lt + �2Bt (�Lt )
2
)2

and

Dn =
∑

0≤t≤n

(

2At−�zt + �3Bt (�zt )
2)2 .

It should be noted here that

EQB
2
2,Q,n(x) = 1

n2
EQ Ī

2
n (x) . (7.11)

Let us now show that
∣

∣

∣

∣

EQ

∫ n

0
Īt−d Īt

∣

∣

∣

∣

≤ 2 �4
3φ

3
max |ϒ |1 n2 . (7.12)

To this end, note that by (7.7)
∫ n

0
Īt−d Īt = 2

∑

1≤ j,l≤ n

x j xl

∫ n

0

˜It−(φ j ) It−(φl)φl(t)dξt

+
n
∑

j=1

x j

∫ n

0

˜It−(φ j )Btdm̃t .
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Using here Lemma 6.5, we get EQ

∫ n
0
˜It−(φ j ) It−(φi )φi (t)dξt = 0. Moreover, the process

(m̌t )t≥0 is a martingale, i.e. EQ

∫ n
0
˜It−(φ j )Btdm̌t = 0. Therefore,

EQ

∫ n

0
Īt−d Īt = �2

3

n
∑

j=1

x jEQ

∫ n

0

˜It−(φ j )Btdmt .

Taking into account here that for any non-random bounded function f

EQ

∫ n

0
f (t)dmt = 0,

we obtain EQ

∫ n
0
˜It−(φ j ) Bt dmt = EQ

∫ n
0
I 2t−(φ j ) Bt dmt . So, Lemma 6.4 yields

∣

∣

∣

∣

EQ

∫ n

0

˜It−(φ j ) Btdmt

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

n
∑

l=1

xlEQ

∫ n

0
I 2t−(φ j )φ

2
l (t)dmt

∣

∣

∣

∣

∣

≤ 2 �2
3φ

3
max |ϒ |1

n
∑

l=1

|xl |n .

Therefore,
∣

∣

∣

∣

EQ

∫ n

0
Īt−d Īt

∣

∣

∣

∣

≤ 2 �4
3φ

3
max |ϒ |1 n

∑

1≤l, j≤ n

|xl | |x j |

= 2 �4
3φ

3
max |ϒ |1 n

(

n
∑

l=1

|xl |
)2

.

Taking into account here that
(∑n

l=1 |xl |
)2 ≤ n

∑

l≥ 1 x2l ≤ n, we obtain (7.12). Recall

that �(x2) = 1. Using the definition (2.1) and the properties of the jump measures (see, for
example, Liptser and Shiryaev 1986, chapter 3) we obtain that

EQ

∑

0≤t≤n

(�Lt )
4 = EQ

∫ n

0

∫

R∗
x4 μ(dt, dx) = EQ

∫ n

0

∫

R∗
x4 μ̃(dt, dx) = n�(x4)

and

EQ

∑

0≤t≤n

Bt At−(�Lt )
3 = EQ

∫ n

0

∫

R∗
Bt At−x3 μ(dt, dx)

= EQ

∫ n

0

∫

R∗
Bt At x

3 μ̃(dt, dx) = �(x3)
∫ n

0
Bt EQ At dt = 0 .

From this it follows directly that

EQ Ďn = 4EQ

∫ n

0
A2
t dt + �4

2 �(x4)
∫ n

0
B2
t dt . (7.13)
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Note that, thanks to Lemma 6.1, we obtain

EQ

∫ n

0
A2
t d t =

∑

i, j

xi x j

∫ n

0
φi (t)φ j (t)EQ Itφi (t)Itφ j (t)d t

=
∑

i, j

xi x j

∫ n

0
φi (t)φ j (t)

∫ t

0
φi (v)φ j (v)(�̄ + �2

3ρ(v))dv

= 1

2
�̄
∑

i, j

xi x j

(∫ n

0
φi (t)φ j (t)dt

)2

+ �2
3 A1,n ≤ n2

2
�̄ + �2

3 A1,n ,

where A1,n = ∑

i, j xi x j
∫ n
0

φi (t)φ j (t)
(

∫ t
0

φi (v)φ j (v) ρ(v)dv
)

dt . This term can be esti-

mated through Proposition 5.2 as

∣

∣A1,n

∣

∣ =
∣

∣

∣

∣

∣

∣

n2

2τ̌
+

∑

i, j

xi x j

∫ n

0
φi (t)φ j (t)

(∫ t

0
φi (v)φ j (v)ϒ(v)dv

)

dt

∣

∣

∣

∣

∣

∣

≤ n2

2τ̌
+ n φ4

max |ϒ |1
∑

i, j

|xi ||x j | ≤
(

1

2τ̌
+ φ4

max |ϒ |1
)

n2 .

So, reminding that σQ = �̄ + �2
3/τ̌ and that φmax ≥ 1, we obtain that

EQ

∫ n

0
A2
t d t ≤

(σQ

2
+ �2

3φ
4
max |ϒ |1

)

n2

≤
(

1

2
+ τ̌ |ϒ |1

)

φ4
max σQ n2 . (7.14)

Taking into account that

sup
t≥0

B2
t ≤ φ4

max

⎛

⎝

n
∑

j=1

|x j |
⎞

⎠

2

≤ φ4
max n , (7.15)

that φmax ≥ 1, and that �̄2 ≤ σ 2
Q we estimate the expectation in (7.13) as

EQ Ďn ≤ φ4
max (1 + σ 2

Q)
(

1 + 2τ̌ |ϒ |1 + �(x4)
)

n2 . (7.16)

Moreover, taking into account that the random variable Yk is independent of ATk− and of

the field G = σ {Tj , j ≥ 1} and that EQ

(

ATk− |G
)

= 0, we get

EQ

+∞
∑

k=1

BTk
ATk−Y

3
k 1{Tk≤n} =

+∞
∑

k=1

EQ

(

EQ

(

BTk
ATk−Y

3
k 1{Tk≤n}|G

))

= EQY
3
1 EQ

+∞
∑

k=1

BTk
1{Tk≤n} EQ(ATk− |G) = 0 .

Therefore,

EQ Dn = �2
3D1,n E Y 4

1 + 4D2,n , (7.17)
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where

D1,n =
+∞
∑

k=1

E B2
Tk
1{Tk≤n} and D2,n =

+∞
∑

k=1

EQ A2
Tk−

1{Tk≤n} .

Using the bound (7.15) we can estimate the term D1,n as D1,n ≤ φ4
maxnE Nn . Using here

Corollary 5.3, we obtain

D1,n ≤ |ρ|∗φ4
max n

2 . (7.18)

Now, to estimate the last term in (7.17), note that the process At can be rewritten as

At =
∫ t

0
K(t, s)dξs, K(t, s) =

n
∑

j=1

x jφ j (s)φ j (t). (7.19)

Applying Lemma 6.3 again, we obtain for any k ≥ 1

EQ

(

A2
Tk−

|G
)

= �̄

∫ Tk

0
K2(Tk, s)ds + �2

3

k−1
∑

j=1

K2(Tk, Tj ) .

So, we can represent the last term in (7.17) as

D2,n = �̄ D(1)
2,n + �2

3 D
(2)
2,n , (7.20)

where

D(1)
2,n =

+∞
∑

k=1

E1{Tk≤n}
∫ Tk

0
K2(Tk, s)ds and D(2)

2,n =
+∞
∑

k=1

E1{Tk≤n}
k−1
∑

j=1

K2(Tk, Tj ) .

Thanks to Proposition 5.2 we obtain

D(1)
2,n =

∫ n

0

∫ t

0
K2(t, s)ds ρ(t) dt ≤ |ρ|∗

∫ n

0

∫ n

0
K2(t, s)ds dt .

In view of the definition of K(·, ·) in (7.19), we can rewrite the last integral as

∫ n

0
K2(t, s)ds =

∑

1≤i, j≤n

xi x j φi (t) φ j (t)
∫ n

0
φi (s) φ j (s) ds

=
n
∑

i=1

x2i φ2
i (t)

∫ n

0
φ2
i (s) ds = n

n
∑

i=1

x2i φ2
i (t) .

Since
∑n

j=1 x2j ≤ 1, we obtain that,

∫ n

0
K2(t, s)ds ≤ φ2

max n and D(1)
2,n ≤ φ2

max |ρ|∗ n2 . (7.21)
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Let us estimate now the last term in (7.20). This term can be represented as

D(2)
2,n =

∞
∑

j=1

E1{Tj≤n} E

⎛

⎝

∞
∑

k= j+1

K2(Tk, Tj )1{Tk≤n}|Tj

⎞

⎠

=
∞
∑

j=1

E1{Tj≤n} K̄(Tj ) =
∫ n

0
K̄(t) ρ(t)dt ,

where

K̄(t) = E

⎛

⎝

∞
∑

k= j+1

K2(Tk, Tj )1{Tk≤n}|Tj = t

⎞

⎠ =
+∞
∑

l=1

E1{Tl+t≤n} K2(t + Tl , t)

=
∫ n−t

0
K2(t + v, t) ρ(v)dv =

∫ n

t
K2(u, t) ρ(u − t)du ≤ |ρ|∗

∫ n

0
K2(v, t) dv .

In view of the inequality (7.21) we obtain K̄(t) ≤ |ρ|∗ φ2
max n and, therefore, D(2)

2,n ≤
|ρ|2∗ φ2

max n
2. So, bounding in (7.20) �2

3 by τ̌ σQ we obtain that

D2,n ≤ n2σQ(1 + τ̌ )|ρ|2∗ φ2
max .

Therefore, taking into account in (7.17) that EY 4
1 ≥ 1,

EQ Dn ≤ 5 (1 + τ̌ )φ4
max EY 4

1 (1 + |ρ|2∗) n2σQ . (7.22)

Using all these bound in (7.10) and taking into account that

EQB
2
2,Q,n(x) = 1

n2
EQ Ī

2
n (x) ,

we obtain (7.3) and thus the conclusion follows. �

8 Simulation

In this section we report the results of a Monte Carlo experiment in order to assess the
performance of the proposedmodel selection procedure (3.15). In (1.1) we chose a 1-periodic
function which is defined, for 0 ≤ t ≤ 1, as

S(t) = t sin(2π t) + t2(1 − t) cos(4π t) . (8.1)

We simulate the model

dyt = S(t)dt + dξt ,

where ξt = 0.5wt + 0.5zt .
Here zt is the semi-Markov process defined in (2.5) with a Gaussian N (0, 1) sequence

(Y j ) j≥1 and (τk)k≥1 used in (2.6) taken as τk ∼ χ2
3 .

We use the model selection procedure (3.15) with the weights (3.19) in which k∗ =
100 + √

ln(n), ti = i/ ln(n), m = [ln2(n)] and δ = (3 + ln(n))−2. We define the empirical
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risk as

R = 1

p

p
∑

j=1

Ê
(

̂Sn(t j ) − S(t j )
)2

, (8.2)

where the observation frequency p = 100001 and the expectation was taken as an average
over N = 10000 replications, i.e.,

Ê
(

̂Sn(.) − S(.)
)2 = 1

N

N
∑

l=1

(

̂Sln(.) − S(.)
)2

.

We set the relative quadratic risk as

R∗ = R/||S||2p, with ||S||2p = 1

p

p
∑

j=0

S2(t j ) . (8.3)

In our case ||S||2p = 0.1883601.
Table 1 gives the values for the sample risks (8.2) and (8.3) for different numbers of

observations n.
Figures 1, 2, 3 and 4 show the behaviour of the regression function and its estimates by the

model selection procedure (3.15) depending on the values of observation periods n. The black
full line is the regression function (8.1) and the red dotted line is the associated estimator.

Table 1 Empirical risks
n R R∗

20 0.04430 0.235

100 0.01290 0.068

200 0.00812 0.043

1000 0.00196 0.010

Fig. 1 Estimator of S for n = 20
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Fig. 2 Estimator of S for
n = 100

Fig. 3 Estimator of S for
n = 200

Fig. 4 Estimator of S for
n = 1000
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Remark 8.1 From numerical simulations of the procedure (3.15) with various observation
numbers n we may conclude that the quality of the proposed procedure: (i) is good for
practical needs, i.e. for reasonable (non large) number of observations; (ii) improves as the
number of observations increases.

9 Proofs

We will prove here most of the results of this paper.

9.1 Proof of Theorem 4.1

First, note that we can rewrite the empirical squared error in (3.9) as follows

Errn(λ) = Jn(λ) + 2
∞
∑

j=1

λ( j)θ̌ j,n + ||S||2 − δPn(λ) , (9.1)

where the cost function Jn(λ) and the penalty terms are defined in (3.13) and (3.14) respec-
tively, θ̌ j,n = ˜θ j,n − θ j

̂θ j,n ,

̂θ j,n = θ j + 1√
n

ξ j,n and ˜θ j,n = ̂θ2j,n − σ̂n

n
.

Using the definition of˜θ j,n in (3.10) we obtain that

θ̌ j,n = ̂θ2j,n − σ̂n

n
− θ j

(

θ j + 1√
n

ξ j,n

)

= 1√
n

θ jξ j,n + 1

n
˜ξ2j,n − σ̂n

n

= 1√
n

θ jξ j,n + 1

n
˜ξ j,n + 1

n
ς j,n + σQ − σ̂n

n
,

where ς j,n = EQξ2j,n − σQ and˜ξ j,n = ξ2j,n − EQξ2j,n . Putting

M(λ) = 1√
n

n
∑

j=1

λ( j)θ jξ j,n and P0
n = σQ |λ|2

n
, (9.2)

we can rewrite (9.1) as

Errn(λ) = Jn(λ) + 2
σQ − σ̂n

n
Ľ(λ) + 2M(λ) + 2

n
B1,Q,n(λ)

+ 2
√

P0
n (λ)

B2,Q,n(e(λ))
√

σQn
+ ‖S‖2 − δPn(λ), (9.3)

where e(λ) = λ/|λ|, Ľ(λ) = ∑n
j=1 λ( j) and the functions B1,Q,n(·) and B2,Q,n(·) are given

in (7.1).
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Let λ0 = (λ0( j))1≤ j≤ n be a fixed sequence in � and̂λ = argmin
λ∈�

Jn(λ). Substituting
λ0 and̂λ in Eq. (9.3), we obtain

Errn(̂λ) − Errn(λ0) = J (̂λ) − J (λ0) + 2
σQ − σ̂n

n
Ľ(�) + 2

n
B1,Q,n(�) + 2M(�)

+ 2
√

P0
n (̂λ)

B2,Q,n (̂e)√
σQn

− 2
√

P0
n (λ0)

B2,Q,n(e0)√
σQn

− δPn(̂λ) + δPn(λ0), (9.4)

where � =̂λ − λ0, ê = e(̂λ) and e0 = e(λ0). Note that, by (3.8),

|Ľ(�)| ≤ Ľ(λ̂) + Ľ(λ0) ≤ 2|�|∗.
Using the inequality

2|ab| ≤ δa2 + δ−1b2 (9.5)

and taking into account that P0
n (λ) ≥ 0 we obtain that for any λ ∈ �

2
√

P0
n (λ)

|B2,Q,n(e(λ))|
√

σQn
≤ δP0

n (λ) + B2
2,Q,n(e(λ))

δσQ n
.

Taking into account the bound (7.2) and that J (̂λ) ≤ J (λ0), we get

Errn(λ̂) ≤ Errn(λ0) + 4
|̂σn − σQ |

n
|�|∗ + 2M(�) + 2C1,Q,n

n
+ 2B∗

2,Q,n

δσQ n

+ 1

n
|̂σn − σQ |(|̂λ|2 + |λ0|2) + 2δP0

n (λ0) ,

where B∗
2,Q,n = sup

λ∈�
B2
2,Q,n((e(λ)). Moreover, noting that in view of (3.8) sup

λ∈�
|λ|2 ≤

|�|∗, we can rewrite the previous bound as

Errn(̂λ) ≤ Errn(λ0) + 2M(�) + 2C1,Q,n

n
+ 2B∗

2,Q,n

δσQn

+ 6|�|∗
n

|̂σn − σQ | + 2δP0
n (λ0). (9.6)

To estimate the second term in the right side of this inequality we set

Sx =
n
∑

j=1

x( j)θ jφ j , x = (x( j))1≤ j≤n ∈ R
n .

Taking into account thatM(x) = n−1 In(Sx ), we can estimate this term through the inequality
(2.8) shown in Corollary 6.2 for any x ∈ R

n as

EQM
2(x) ≤ κQ

||Sx ||2
n

, (9.7)
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where, taking into account that the functions (φ j ) j≥1 are orthogonal, the norm ||Sx ||2 =
∫ 1
0
S2x (t)dt = ∑n

j=1 x
2( j)θ2j . To estimate this function for a random vector x ∈ R

n we set

Z∗ = sup
xε�1

nM2(x)

||Sx ||2 , �1 = � − {λ0} = {λ − λ0 , λ ∈ �} .

So, as we did for proving (9.6) and (9.7), through Inequality (9.5), we get

2|M(x)| ≤ δ||Sx ||2 + Z∗

nδ
. (9.8)

It is clear that the last term here can be estimated as

EQ Z
∗ ≤

∑

x∈�1

nEQM
2(x)

||Sx ||2 ≤
∑

x∈�1

κQ = κQ ι̌ , (9.9)

where ι̌ = card(�). Using the equality (3.5), we obtain that for any x ∈ �1,

||Sx ||2 − ||̂Sx ||2 =
n
∑

j=1

x2( j)(θ2j −̂θ2j )

= −
n
∑

j=1

x2( j)

(

2
1√
n

θ jξ j,n +
ξ2j,n

n

)

≤ −2M1(x), (9.10)

where M1(x) = n−1/2 ∑n
j=1 x2( j)θ jξ j,n . Taking into account that, for any x ∈ �1 the

components |x( j)| ≤ 1, we can estimate this term as in (9.7), i.e.,

EQ M2
1 (x) ≤ κQ

||Sx ||2
n

.

Similarly to the previous reasoning we set

Z∗
1 = sup

xε�1

nM2
1 (x)

||Sx ||2
and we get

EQ Z∗
1 ≤ κQ ι̌ . (9.11)

Using the same type of arguments as in (9.8), we can derive

2|M1(x)| ≤ δ||Sx ||2 + Z∗
1

nδ
. (9.12)

From here and (9.10), we get

||Sx ||2 ≤ ||̂Sx ||2
1 − δ

+ Z∗
1

nδ(1 − δ)
(9.13)

for any 0 < δ < 1. Using this bound in (9.8) yields

2M(x) ≤ δ||̂Sx ||2
1 − δ

+ Z∗ + Z∗
1

nδ(1 − δ)
.

Taking into account that

‖̂S� ‖2 = ‖̂Ŝλ −̂Sλ0
‖2 = ‖(̂Ŝλ − S) − (̂Sλ0

− S)‖2 ≤ 2 (Errn(̂λ) + Errn(λ0)) ,
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we obtain

2M(�) ≤ 2δ(Errn(̂λ) + Errn(λ0))

1 − δ
+ Z∗ + Z∗

1

nδ(1 − δ)
.

Using this bound in (9.6) we obtain

Errn(̂λ) ≤ 1 + δ

1 − 3δ
Errn(λ0) + Z∗ + Z∗

1

nδ(1 − 3δ)
+ 2C1,Q,n

n(1 − 3δ)
+ 2B∗

2,Q,n

δ(1 − 3δ)σQn

+ 6|�|∗
n(1 − 3δ)

|̂σ − σQ | + 2δ

(1 − 3δ)
P0
n (λ0).

Moreover, for 0 < δ < 1/6, we can rewrite this inequality as

Errn(̂λ) ≤ 1 + δ

1 − 3δ
Errn(λ0) + 2(Z∗ + Z∗

1)

nδ
+ 4C1,Q,n

n
+ 4B∗

2,Q,n

δσQn

+ 12|�|∗
n

|̂σn − σQ | + 2δ

(1 − 3δ)
P0
n (λ0).

In view of Proposition 7.2 we bound the expectation of the term B∗
2,Q,n in (9.6) as

EQ B∗
2,Q,n ≤

∑

λ∈�

EQB
2
2,Q,n(e(λ)) ≤ ι̌C2,Q,n .

Taking into account that |�|∗ ≥ 1, we get

R(̂S∗, S) ≤ 1 + δ

1 − 3δ
R(̂Sλ0

, S) + 4κQ ι̌

nδ
+ 4C1,Q,n

n
+ 4ι̌C2,Q,n

δσQn

+ 12|�|∗
n

EQ |̂σn − σQ | + 2δ

(1 − 3δ)
P0
n (λ0).

Using the upper bound for P0
n (λ0) in Lemma A.2, one obtains (4.1), that finishes the proof.

�

9.2 Proof of Proposition 4.2

We use here the same method as in Konev and Pergamenshchikov (2009a). First of all note
that the definition (3.12) implies that

̂t j,n = t j + 1√
n

η j,n , (9.14)

where

t j =
∫ 1

0
S(t) Tr j (t)dt and η j,n = 1√

n

∫ n

0
Tr j (t) dξt .

So, we have

σ̂n =
n
∑

j=[√n]+1

t2j + 2Mn + 1

n

n
∑

j=[√n]+1

η2j,n , (9.15)
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where

Mn = 1√
n

n
∑

j=[√n]+1

t j η j,n .

Note that, for continuously differentiable functions (see, for example, Lemma A.6 in Konev
and Pergamenshchikov 2009a), the Fourier coefficients (t j ) satisfy the following inequality,
for any n ≥ 1,

∞
∑

j=[√n]+1

t2j ≤
4
(

∫ 1
0

|Ṡ(t)|dt
)2

√
n

≤ 4‖Ṡ‖2√
n

. (9.16)

In the same way as in (9.7) we estimate the term Mn , i.e.,

EQ M2
n ≤ κQ

n

n
∑

j=[√n]+1

t2j ≤ 4κQ‖Ṡ‖2
n
√
n

,

while the absolute value of this term for n ≥ 1 can be estimated as

EQ |Mn | ≤ κQ + ‖Ṡ‖2√
n

.

Moreover, using the functions (7.1) for the trigonometric basis (3.2), i.e. with ξ j,n = η j,n

and˜ξ j,n = η2j,n − Eη2j,n we can represent the last term in (9.15) as

1

n

n
∑

j=[√n]+1

η2j,n = σQ(n − √
n)

n
+

∑n
j=[√n]+1 (Eη2j,n − σQ +˜ξ j,n)

n

= σQ(n − √
n)

n
+ B1,Q,n(x

′)
n

+ B2,Q,n(x
′′)√

n
,

with x ′
j = 1{√n< j≤n} and x ′′

j = 1{√n< j≤n}/
√
n. Therefore, using Propositions 7.1 and 7.2,

we obtain

EQ

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=[√n]+1

η2j,n − σQ

∣

∣

∣

∣

∣

∣

≤ σQ√
n

+ C1,Q,n

n
+

√

C2,Q,n√
n

.

From here we obtain the bound (4.5) and hence the desired result. �

9.3 Proof of Theorem 4.4

Note, that Theorem 4.1 implies directly the oracle inequality (4.9) with

U∗
n(S) = 60˜�n ‖Ṡ‖2 + ˜�∗

n and ˜�∗
n = sup

Q∈Qn

˜�Q,n .

Using the bound (4.7) and the conditions (2.11) we obtain that for some positive constant
C∗

˜�∗
n ≤ C∗

(

1 + (ς∗)4 + 1

ς∗

)

(

1 + ˜�n

)

ι̌nφ
4
max . (9.17)
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Moreover, note, that in view of (3.21) and (3.17)

lim
n→∞

ι̌

nε̌
= lim

n→∞
k∗m
nε̌

= 0 for any ε̌ > 0 ,

where m = [1/ε2]. Furthermore, the bound (3.22) and Conditions (2.12) and (3.17) yield

lim
n→∞

|�|∗
n1/3+ε̌

= 0 for any ε̌ > 0 ,

where |�|∗ = 1 + maxλ∈� Ľ(λ), i.e.

˜�n = |�|∗
n1/2

→ 0 as n → ∞ .

So, taking into account in (9.17) the condition (4.8) we obtain the convergence (4.10). �

9.4 Proof of Theorem 4.5

First, we denote by Q0 the distribution of the noise (1.2) and (2.1) with the parameter �1 = ς∗
and �1 = �2 = 0, i.e. the distribution for the “signal + white noise” model, i.e. for any n ≥ 1
this distribution belongs to the familyQn defined in (2.11–2.12) and, therefore, for any n ≥ 1

R∗
n(
˜Sn, S) = sup

Q∈Qn

ES,Q‖˜Sn − S‖2 ≥ ES,Q0
‖˜Sn − S‖2 .

Now, taking into account the conditions (2.12) Theorem A.9 yields the lower bound (4.14).
Hence this finishes the proof. �

9.5 Proof of Proposition 4.6

Putting λ0( j) = 0 for j ≥ n we can represent the quadratic risk for the estimator (3.7) as

‖ ̂Sλ0
− S ‖2=

∞
∑

j=1

(1 − λ0( j))
2θ2j − 2Hn + 1

n

n
∑

j=1

λ20( j)ξ
2
j,n ,

where Hn = n−1/2 ∑n
j=1(1 − λ0( j))λ0( j)θ jξ j,n . Note that EQHn = 0 for any Q ∈ Qn ,

therefore,

EQ ‖ ̂Sλ0
− S ‖2=

∞
∑

j=1

(1 − λ0( j))
2θ2j + 1

n
EQ

n
∑

j=1

λ20( j)ξ
2
j,n .

Proposition 7.1 and the last inequality in (2.11) imply that for any Q ∈ Qn

EQ

n
∑

j=1

λ20( j)ξ
2
j,n ≤ ς∗

n
∑

j=1

λ20( j) + C∗
1,n ,

where C∗
1,n = φ2

maxς
∗τ̌ |ϒ |1. Therefore,

R∗
n(
̂Sλ0

, S) ≤
∞
∑

j= j∗

(1 − λ0( j))
2θ2j + 1

υn

n
∑

j=1

λ20( j) + C∗
1,n

n
,
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where j∗ and υn are defined in (3.19). Setting

ϒ1,n(S) = υ2k/(2k+1)
n

∞
∑

j= j∗

(1 − λ0( j))
2θ2j and ϒ2,n = 1

υ
1/(2k+1)
n

n
∑

j=1

λ20( j) ,

we rewrite the last inequality as

υ2k/(2k+1)
n R∗

n(
̂Sλ0

, S) ≤ ϒ1,n(S) + ϒ2,n + Čn , (9.18)

where Čn = υ2k/(2k+1)
n C∗

1,n/n. Note, that the conditions (2.12) and (4.8) imply that C∗
1,n =

o(nδ̌ ) as n → ∞ for any δ̌ > 0; therefore, Čn → 0 as n → ∞. Putting

un = υ2k/(2k+1)
n sup

j≥ j∗
(1 − λ0( j))

2/a j ,

with a j = ∑k
i=0 (2π[ j/2])2i , we estimate the first term in (9.18) as

sup
S∈Wk

r

ϒ1,n(S) ≤ sup
S∈Wk

r

un
∑

j≥1

a jθ
2
j ≤ unr .

We remind that ωα0
is defined in (3.19) with α0 = (k, l0) and l0 = [r/ε]ε. So, taking into

account that a j/(π
2k j2k) → 1 as j → ∞ and l0 → r as ε → 0 we obtain that

lim sup
n→∞

un ≤ lim
n→∞

υ2k/(2k+1)
n sup

j≥ j∗

(1 − λ0( j))2

(π j)2k

= lim
n→∞

υ2k/(2k+1)
n

π2kω2k
α0

= 1

π2k (dkr)2k/(2k+1)
,

where

dk = (k + 1)(2k + 1)

π2kk
.

Therefore,

lim sup
n→∞

sup
S∈Wk

r

ϒ1,n(S) ≤ r1/(2k+1)

π2k(dk)2k/(2k+1)
=: ϒ∗

1 . (9.19)

As to the second term in (9.18), note that in vue of the definition (3.19) and taking into
account that j∗ = o(ωα0

) as n → ∞ we deduce that

lim
n→∞

1

ωα0

n
∑

j=1

λ20( j) = lim
ωα0

→∞
1

ωα0

∑

1≤ j≤ωα0

⎛

⎝1 −
(

j

ωα0

)k
⎞

⎠

2

=
∫ 1

0
(1 − tk)2dt = 2k2

(k + 1)(2k + 1)
.

So, taking into account that ωα0
/υ1/(2k+1)

n → (dkr)
1/(2k+1) as n → ∞, the limit of ϒ2,n can

be calculated as

lim
n→∞

ϒ2,n = 2(dkr)
1/(2k+1) k2

(k + 1)(2k + 1)
=: ϒ∗

2 .
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Moreover, since ϒ∗
1 + ϒ∗

2 =: r∗
k , we obtain

lim
n→∞

υ2k/(2k+1)
n sup

S∈Wk
r

R∗
n(
̂Sλ0

, S) ≤ r∗
k

and get the desired result. �

9.6 Proof of Theorem 4.7

Combining Proposition 4.6 and Theorem 4.4 yields Theorem 4.7. �
Acknowledgements The last author is partially supported by RFBR Grant 16-01-00121, by the Ministry of
Education and Science of the Russian Federation in the framework of the research Project No 2.3208.2017/4.6
and by the Russian Federal Professor program (Project No 1.472.2016/1.4, Ministry of Education and Science
of the Russian Federation).

10 Appendix

A.1 Inequalities for the purely discontinuousmartingales

Now let us recall the Novikov inequalities, Novikov (1975), also referred to as the Bichteler–
Jacod inequalities (see Bichteler and Jacod 1983; Marinelli and Röckner 2014)

Lemma A.1 Let μ be a jump measure and μ̃ its compensator on the R∗ = R \ {0}. Then for
for any T > 0, any predictable function h and any p ≥ 2

E sup
0≤t≤T

∣

∣

∣

∣

∣

∫

[0,T ]×R∗
h d(μ − μ̃)

∣

∣

∣

∣

∣

p

≤ C∗
pEQ J̌p,T (h) , (A.1)

where C∗
p is some positive constant and

J̌p,T (h) =
(

∫

[0,T ]×R∗
h2 dμ̃

)p/2

+
∫

[0,T ]×R∗
h p dμ̃ .

A.2 Property of the penalty term

Lemma A.2 For any n ≥ 1 and λ ∈ �,

P0
n (λ) ≤ EQErrn(λ) + C1,Q,n

n
,

where the coefficient P0
n (λ) was defined in (9.2).

Proof By the definition of Errn(λ) one has

EQErrn(λ) = EQ

n
∑

j=1

(

(λ( j) − 1)θ j + λ( j)√
n

ξ j,n

)2

=
n
∑

j=1

(λ( j) − 1)2θ2j + 1

n

n
∑

j=1

λ2( j)EQξ2j,n .
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So, denoting by λ2 = (λ2( j))1≤ j≤n we obtain that

EQErrn(λ) ≥ 1

n

n
∑

j=1

λ2( j)EQξ2j,n = P0
n (λ) + B1,Q,n(λ

2) .

where λ2 = (λ2( j))1≤ j≤n . Now Proposition 7.1 implies the desired result, i.e.

EQ Errn(λ) ≥ P0
n (λ) − C1,Q,n

n
.

Hence lemma A.2. �

A.3 Properties of the Fourier transform

Theorem A.3 Cauchy (1825) Let U be a simply connected open subset of C, let g : U → C

be a holomorphic function, and let γ be a rectifiable path in U whose start point is equal to
its end point. Then

∮

γ

g(z)dz = 0 .

Proposition A.4 Let g : C → C be a holomorphic function in U = {

z ∈ C : −β1 < Im
z < β2

}

for some 0 < β1 ≤ ∞ and 0 < β2 ≤ ∞. Assume that, for any −β1 < t ≤ 0,
∫

R

|g(θ + i t)| dθ < ∞ and lim
|θ |→∞

g(θ + i t) = 0 . (A.2)

Then, for any x ∈ R and for any 0 < β < β1,
∫

R

eiθx g(θ) dθ = e−βx
∫

R

eiθx g(θ − iβ) dθ. (A.3)

Proof First note that the conditions of this theorem imply that
∫

R

eiθx g(θ) dθ = lim
N→∞

∫ N

−N
eiθx g(θ) dθ .

We fix now 0 < β < β1 and we set for any N ≥ 1

γ = {z ∈ C : −N ≤ Rez ≤ N , Imz = 0} ∪ {z ∈ C : −N ≤ Imz ≤ N , Rez = N }
∪ {z ∈ C : −N ≤ Rez ≤ N , Imz = −β} ∪ {z ∈ C : −β ≤ Imz ≤ 0 , Rez = −N } .

Now, in view of the Cauchy theorem, we obtain that for any N ≥ 1
∮

γ

eizx g(z)dz =
∫ N

−N
eiθx g(θ) dθ +

∫ −β

0
ei(N+i t)x g(N + i t) dt

+
∫ −N

N
ei(−iβ+θ)x g(−iβ + θ)dθ

+
∫ 0

−β

ei(−N+i t)x g(−N + i t)dt = 0 . (A.4)
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The conditions (A.2) provide that

lim
N→∞

∫ −β

0
ei(N+i t)x g(N + i t) dt = lim

N→∞

∫ 0

−β

ei(−N+i t)x g(−N + i t) dt = 0 .

Therefore, letting N → ∞ in (A.4) we obtain (A.3). Hence we get the desired result. �
The following technical lemma is also needed in this paper.

Lemma A.5 Let g : [a, b] → R be a function from L1[a, b]. Then, for any fixed −∞ ≤ a <

b ≤ +∞,

lim
N→∞

∫ b

a
g(x) sin(Nx)dx = 0 and lim

N→∞

∫ b

a
g(x) cos(Nx)dx = 0 . (A.5)

Proof Let first −∞ < a < b < +∞. Assume that g is continuously differentiable, i.e.
g ∈ C1[a, b]. Then integrating by parts gives us
∫ b

a
g(x) sin(Nx) dx = 1

N

(

g(b) sin(Nb) − g(a) sin(Na) −
∫ b

a
g

′
(x) cos(Nx) dx

)

.

So, from this we obtain that
∣

∣

∣

∣

∫ b

a
g(x) sin(Nx) dx

∣

∣

∣

∣

≤ |g(b)| + |g(a)| + (b − a)maxa≤x≤b |g′
(x)|

N
.

This implies the first limit in (A.5) for this case. The second one is obtained similarly. Let
now g be any absolutely integrated function on [a, b], i.e. g ∈ L1[a, b]. In this case there
exists a sequence gn ∈ C1[a, b] such that

lim
n→∞

∫ b

a
|g(x) − gn(x)|dx = 0 .

Therefore, taking into account that for any n ≥ 1

lim
N→∞

∫ b

a
gn(x) sin(Nx)dx = 0 ,

we obtain that

lim sup
n→∞

|
∫ b

a
g(x) sin(Nx)dx | ≤

∫ b

a
|g(x) − gn(x)|dx .

So, letting in this inequality n → ∞ we obtain the first limit in (A.5) and, similarly, we
obtain the second one. Let now b = +∞ and a = −∞. In this case we obtain that for any
−∞ < a < b < +∞

∣

∣

∣

∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣

∣

∣

∣

+
∫ +∞

b
|g(x) |dx

+
∫ a

−∞
|g(x) |dx .

Using here the previous results we obtain that for any −∞ < a < b < +∞

lim sup
N→∞

∣

∣

∣

∣

∫ +∞

−∞
g(x) sin(Nx)dx

∣

∣

∣

∣

≤
∫ +∞

b
|g(x) |dx +

∫ a

−∞
|g(x) |dx .
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Passing here to limit as b → +∞ and a → −∞ we obtain the first limit in (A.5). Similarly,
we can obtain the second one. �

Let us now study the inverse Fourier transform. To this end, we need the following local
Dini condition.

(D) Assume that, for some fixed x ∈ R, there exist the finite limits

g(x−) = lim
z→x−

g(z) and g(x+) = lim
z→x+

g(z)

and there exists δ = δ(x) > 0 for which
∫ δ

0

|̃g(x, t) − g̃0(x)|
t

dt < ∞ ,

where g̃(x, t) = g((x + t) + g(x − t))/2 and g̃0(x) = (g(x+) + g(x−))/2.

Remark 10.1 Note that the condition (H1) is the “uniform” version of the condition D).

Proposition A.6 Let g : R → R be a function from L1(R). If, for some x ∈ R, this function
satisfies Condition D, then

g̃0(x) = g(x+) + g(x−)

2
= 1

2π

∫

R

e−iθx ĝ(θ) dθ , (A.6)

where ĝ(θ) = ∫

R
eiθ t g(t) dt .

Proof First, for any fixed N > 0 we set

JN (x) = 1

2π

∫ N

−N
e−iθx ĝ(θ) dθ = 1

π

∫

R

g(z)
∫ N

0
cos(θ(z − x)) dθdz .

Here, the inner integral may be represented as

JN (x) = 1

π

∫

R

g(z)
sin(N (z − x))

z − x
dz = 2

π

∫ ∞

0
g̃(x, t)

sin(Nt)

t
dt .

Taking into account that for any N > 0 the integral

2

π

∫ ∞

0

sin(Nt)

t
dt = 1 (A.7)

we obtain that

JN (x) − g̃0(x) = 2

π

∫ ∞

0

(g̃(x, t) − g̃0(x)) sin(Nt)

t
dt .

Now we represent the last integral as
∫ ∞

0

(g̃(x, t) − g̃0(x)) sin(Nt)

t
dt = I1,N + I2,N − g̃0(x)I3,N ,

where I1,N = ∫ δ

0
(g̃(x, t) − g̃0(x)) sin(Nt) t−1 dt ,

I2,N =
∫ ∞

δ

t−1 g̃(x, t) sin(Nt)dt and I3,N =
∫ ∞

δ

t−1 sin(Nt) dt .

Condition D) and Lemma A.5 imply that I1,N → 0 as N → ∞. Now note that, since
g ∈ L1(R), then the function t−1 g̃(x, t) is absolutely integrated. Therefore, in view of
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Lemma A.5, I2,N → 0 as N → ∞. As to the last integral we use the property (A.7), i.e., the
changing of the variables gives

I3,N =
∫ ∞

δN

sin t

t
dt → 0 as N → ∞ .

Hence we have the desired result. �

A.4 Properties of the analytic functions

We need the following identity theorem (see, for example, Sveshnikov and Tikhonov 1978,
Corollary 1, p. 78)

Theorem A.7 Let function f (z) �≡ 0 and be analytic in the domain D. In any closed bounded
subdomain D′ ⊂ D it has only a finite numbers of zeros.

Lemma A.8 Assume that the condition (H3)–(H4) hold. Then there exists some 0 < β∗ < β

such that the function Ǧ defined in (5.9) is holomorphic in

U = {θ ∈ C : Im(θ) ≥ −β∗}
and for any x ≥ −β∗

sup
θ∈R

|Ǧ(θ + i x)| < ∞ . (A.8)

Proof Firstly, we remind that thanks to the condition (H3) the function ĝ(θ) is holomorphic
in D = {θ ∈ C : Im(θ) > −β}. Therefore, the function Ǧ(θ) is holomorphic for any θ

from D ∩ {θ ∈ C : ĝ(θ) �= 1}. In this case its derivative can be calculated as

Ǧ ′(θ) = ĝ′(θ)

(1 − ĝ(θ))2
− 1

i τ̌ θ2
,

where ĝ′(θ) is the derivative of the function ĝ(θ). Moreover, using the Taylor expansion for
ez , the function ĝ(θ) and its derivative ĝ′(θ) can be represent as

ĝ(θ) = EQe
iτθ = 1 + i τ̌ θ − τ̌1θ

2

2
+ θ3A1(θ) ,

ĝ′(θ) = iEQτ eiτθ = i τ̌ − τ̌1θ + θ2A2(θ) , (A.9)

where τ̌1 = EQτ 21 and the terms A1(θ) and A2(θ) are such that for any L > 0

sup
|θ |≤L

|A1(θ)| < ∞ and sup
|θ |≤L

|A2(θ)| < ∞ .

Therefore, there exists 0 < δ < 1 for which

inf
|θ |≤δ

|1 − ĝ(θ)|
|θ | > 0 . (A.10)

So, the expansion (A.9) implies, that the function Ǧ(θ) is holomorphic at the point θ = 0
and for such δ > 0

sup
|θ |≤δ

|Ǧ(θ)| < ∞ and sup
|θ |≤δ

|Ǧ ′(θ)| < ∞ .
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Moreover, note that in view of lemma A.5 for any 0 < r < β

lim
|Re(θ)|→∞,|Im(θ)|≤r

ĝ(θ) = 0 . (A.11)

Taking into account here that, thanks to (5.6), the module |̂g(θ)| < 1 for any θ ∈ R \ {0}, we
obtain

gδ = sup
|θ |>δ

|̂g(θ)| < 1 for any δ > 0 . (A.12)

Therefore, the function Ǧ(θ) is holomorphic at the line {z ∈ C : Im(z) = 0} and
sup
θ∈R

|Ǧ(θ)| < ∞ . (A.13)

In the general case note that, due to Lemma 5.1, the function 1 − ĝ(θ) has no zeros on the
line

{

z ∈ C : Im(z) = −β1

}

for some 0 < β1 < β. Moreover, in view of Theorem A.7 for
any N > 1 there can be only finitely many zeros of the function 1 − ĝ(θ) in

{

z ∈ C : −β1 ≤ Im(z) ≤ 0 , |Re(z)| ≤ N
} ⊂ D .

The limiting equality (A.11) implies that there exists N > 0 such that the function 1− ĝ(θ) �=
0 on the set

{

z ∈ C : −β1 ≤ Im(z) ≤ 0 , |Re(z)| > N
}

.

So, there can be only finitely many zeros of the function 1 − ĝ(θ) in
{

z ∈ C : −β1 ≤ Im(z) ≤ 0
}

.

Moreover, taking into account the Taylor expansion (A.9) one can check that θ = 0 is an
isolated zero of the 1 − ĝ(θ). Therefore, there exists some β∗ > 0 for which the function
1− ĝ(θ) has no zeros in

{

z ∈ C : −β∗ ≤ Im(z) < 0
}

. Note also that the function 1− ĝ(θ)

has no zeros in {z ∈ C : Im(z) > 0}. Since we already shown that the function Ǧ(θ) is
holomorphic at the line {z ∈ C : Im(z) = 0} we obtain that it is holomorphic for any θ ∈ C

with Im(θ) ≥ −β∗ and in view of (A.13) we obtain the upper bound (A.8). Hence Lemma
A.8. �

A.5 Proof of (5.8)

Fist note, that for any |θ | > δ the inequality (A.12) implies

|Gε(θ)| ≤ 1

|1 − (1 − ε)ĝ(θ)| + |1 − i τ̌ θ |
|ε − i τ̌ θ | ≤ 1

1 − gδ

+ 1

τ̌ δ
,

i.e.

sup
0<ε<1

sup
|θ |>δ

|Gε(θ)| < ∞ .

Moreover, from (A.9) we can obtain that

Gε(θ) = −ε1 + ε1(1 − i τ̌ θ)ĝ(θ)

(1 − ε1ĝ(θ))(ε − i τ̌ θ)
= ε1τ̌

2θ2 + ε1θ
2(1 − i τ̌ θ)A0(θ)

(1 − ε1ĝ(θ))(ε − i τ̌ θ)
,
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where ε1 = 1 − ε and A0(θ) = −τ̌1/2 + θ A1(θ). Note that Gε(0) = 0 for any ε > 0. Let
now 0 < |θ | ≤ δ for some δ for which the inequality (A.10) holds. In this case for some
0 < C∗ < ∞

|Gε(θ)| = |ε1τ̌ 2θ2 + ε1θ
2(1 − i τ̌ θ)A0(θ)|

|1 − ε1ĝ(θ)|√ε2 + τ̌ 2θ2
≤ C∗|θ |

|1 − ε1ĝ(θ)| .

Moreover, taking into account here the lower bound (A.10) and that

|1 − ε1ĝ(θ)| =
√

(1 − ε1Re(ĝ(θ)))2 + ε21(Im(ĝ(θ)))2 ≥ ε1 |Im(ĝ(θ))| ,

we obtain that

sup
0<ε<1

sup
|θ |≤δ

|Gε(θ)| < ∞ .

Hence the inequality (5.8). �

A.6 Lower bound for the robust risks

In this section we give the lower bound obtained in Konev and Pergamenshchikov (2009b)
(Theorem 6.1) for the robust risks (1.3) for the “signal+white noise” model, i.e. the model
(1.1) in which the noise process (ξt )0≤t≤n is defined as ξt = ς∗wt for 0 ≤ t ≤ n. To study
the efficiency properties we need to obtain the lower bound for the mean square accuracy in
the set of all possible estimators ̂Sn denoted by �n .

Theorem A.9 Under Conditions (2.12)

lim inf
n→∞

(

n

ς∗

)2k/(2k+1)

inf
̂Sn∈�n

sup
S∈Wk

r

EQ0,S
‖̂Sn − S‖2 ≥ r∗

k , (A.14)

where Q0 is the distribution of the noise process (ς∗wt )0≤t≤n and r∗
k is given in (4.13).
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