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Abstract The aim of this paper is to introduce a new type of test statistic for simple null
hypothesis on one-dimensional ergodic diffusion processes sampled at discrete times. We
deal with a quasi-likelihood approach for stochastic differential equations (i.e. local gaussian
approximation of the transition functions) and define a test statistic by means of the empirical
L2-distance between quasi-likelihoods. We prove that the introduced test statistic is asymp-
totically distribution free; namely it weakly converges to a χ2 random variable. Furthermore,
we study the power under local alternatives of the parametric test. We show by the Monte
Carlo analysis that, in the small sample case, the introduced test seems to perform better than
other tests proposed in literature.

Keywords Asymptotic distribution free test · Local alternatives · Maximum-likelihood
type estimator · Discrete observations · Quasi-likelihood function · Stochastic differential
equation

1 Introduction

Let (�,F,F = (Ft )t≥0, P) be a filtered complete probability space. Let us consider a
1-dimensional processes X := (Xt )t≥0 solution to the following stochastic differential equa-
tion

dXt = b(α, Xt )dt + σ(β, Xt )dWt , X0 = x0, (1.1)
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where x0 is a deterministic initial value. We assume that b : �α ×R → R, σ : �β ×R → R

are Borel known functions (up to α and β) and (Wt )t≥0 is a one-dimensional standard Ft -
Brownianmotion. Furthermore,α ∈ �α ⊂ R

m1 , β ∈ �β ⊂ R
m2 ,m1,m2 ∈ N, are unknown

parameters and θ = (α, β) ∈ � := �α × �β, where �α and �β are compact convex sets.
We denote by θ0 := (α0, β0) the true value of θ and assume that θ0 ∈ Int(�).

The sample path of X is observed only at n + 1 equidistant discrete times tni , such that
tni − tni−1 = 	n < ∞ for i = 1, . . . , n, (with tn0 = 0). Therefore the data, denoted by
(Xtni

)0≤i≤n, are the discrete observations of the sample path of X. Let p be an integer with
p ≥ 2. The asymptotic scheme adopted in this paper is the following: n	n → ∞, 	n → 0
and n	

p
n → 0 as n → ∞. This scheme is called rapidly increasing design, i.e. the number

of observations grows over time but no so fast.
This setting is useful, for instance, in the analysis of financial time series. In mathematical

finance and econometric theory, diffusion processes described by the stochastic differential
equations (1.1) play a central role. Indeed, they have been used to model the behavior of stock
prices, exchange rates and interest rates. The underlying stochastic evolution of the financial
assets can be thought continuous in time, although the data are always recorded at discrete
instants (e.g. weekly, daily or each minute). For these reasons, the estimation problems
for discretely observed stochastic differential equations have been tackled by many authors
with different approaches (see, for instance, Florens-Zmirou 1989; Yoshida 1992; Genon-
Catalot and Jacod 1993; Bibby and Sørensen 1995; Kessler 1997; Kessler and Sørensen
1999; Aït-Sahalia 2002; Gobet 2002; Jacod 2006; Aït-Sahalia 2008; De Gregorio and Iacus
2008; Phillips and Yu 2009; Yoshida 2011; Uchida and Yoshida 2012; Li 2013; Uchida
and Yoshida 2014; Kamatani and Uchida 2015). For clustering time series arising from
discrete observations of diffusion processes De Gregorio and Iacus (2010) proposed a new
dissimilarity measure based on the L1 distance between the Markov operators. The change-
point problem in the diffusion term of a stochastic differential equation has been considered
in De Gregorio and Iacus (2008) and Iacus and Yoshida (2012). In Iacus et al. (2009), the
authors faced the estimation problem for hidden diffusion processes observed at discrete
times. An adaptive Lasso-type estimator is proposed in De Gregorio and Iacus (2012). For
the simulation and the practical implementation of the statistical inference for stochastic
differential equations see Iacus (2008, 2011) and Iacus and Yoshida (2017).

We also recall that the statistical inference for continuously observed ergodic diffusions
is a well-developed research topic; on this point the reader can consult Kutoyants (2004).

The main object of interest of the present paper is the problem of testing parametric
hypotheses for diffusion processes from discrete observations. This research topic is less
developed in literature. It is well-known that for testing two simple alternative hypotheses,
the Neyman-Pearson lemma provides a procedure based on the likelihood ratio which leads
to the uniformly most powerful test. In the other cases uniformly most powerful tests do not
exist and for this reason the research of new criteria is justified.

For discretely observed stochastic differential equations, Kitagawa and Uchida (2014)
introduced and studied the asymptotic behavior of three kinds of test statistics: likelihood
ratio type test statistic, Wald type test statistic and Rao’s score type test statistic.

Another possible approach is based on the divergences. Indeed, several statistical diver-
gence measures (which are not necessarily a metric) and distances have been introduced to
decide if two probability distributions are close or far. The main goal of this metric is to
make “easy to distinguish” between a pair of distributions which are far from each other than
between those which are closer. These tools have been used for testing hypotheses in para-
metric models. The reader can consult on this point, for example, Morales et al. (1997) and
Pardo (2006). For stochastic differential equations sampled at discrete times, De Gregorio
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and Iacus (2013) introduced a family of test statistics (for p = 2 and n	2
n → 0) based on

empirical φ-divergences.
We consider the following hypotheses testing problem concerning the vector parameter θ

H0 : θ = θ0, vs H1 : θ �= θ0,

and assume that X is observed at discrete times; that is the data (Xtni
)0≤i≤n are available. In

this work we study different test statistics with respect to those used in De Gregorio and Iacus
(2013) and Kitagawa and Uchida (2014). Indeed, the purpose of this paper is to propose a
methodology based on a suitable “distance” between the approximated transition functions.
This idea follows from the observation that for continuously observed sample paths of (1.1),
we could define the L2-distance between the continuous log-likelihood. Clearly this approach
is not useful in our framework and then, similarly to the aforementioned papers, we consider
the local gaussian approximation of the transition density of the process X from Xti−1 to Xti .

In other words, we resort the quasi-likelihood function introduced in Kessler (1997), which
is defined by means of an approximation with higher order correction terms to relax the
condition of convergence of 	n to zero. Therefore, let lp,i (θ), θ ∈ �, be the approximated
log-transition function from Xti−1 to Xti representing the parametric model (1.1). We deal
with

Dp,n(θ1, θ2) := 1

n

n∑

i=1

[lp,i (θ1) − lp,i (θ2)]2, θ1, θ2 ∈ �,

which can be interpreted as the empirical L2-distance between two loglikelihoods. If θ̂p,n is
the maximum quasi-likelihood estimator introduced in Kessler (1997), we are able to prove
that, under H0, the test statistic

Tp,n(θ̂p,n, θ0) := nDp,n(θ̂p,n, θ0)

is asymptotically distribution free; i.e. it converges in distribution to a chi squared random
variable. Furthermore, we study the power function of the test under local alternatives.

The paper is organized as follows. Section 2 contains the notations and the assumptions
of the paper. The contrast function arising from the quasi-likelihood approach is briefly
discussed in Sect. 3. In the same section we define the maximum quasi-likelihood estimator
and recall its main asymptotic properties. In Sect. 4 we introduce and study a test statistic
for the hypotheses problem H0 : θ = θ0 vs H1 : θ �= θ0. The proposed new test statistic
shares the same asymptotic properties of the other test statistics presented in the literature.
Therefore, to justify its use in practice among its competitors, a numerical study is included
in Sect. 5 which contains a comparison of several test statistics in the “small sample” case,
i.e., when the asymptotic conditions are not met. Our numerical analysis shows that, at least
for p = 2, the performance of T2,n is very good. The proofs are collected in Sect. 6.

It is worth to point out that for the sake of simplicity in this paper a 1-dimensional diffusion
is treated. Nevertheless, it is possible to extend our methodology to the multidimensional
stochastic differential equations setting.

2 Notations and assumptions

Throughout this paper, we will use the following notation.

• θ := (α, β) and α0, β0 and θ0 denote the true values of α, β and θ respectively.
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• c(β, x) = σ 2(β, x).
• C is a positive constant. If C depends on a fixed quantity, for instance an integer k, we

may write Ck .

• ∂αh := ∂
∂αh

, ∂βk := ∂
∂βk

, ∂2αhαk := ∂2

∂αh∂αk
, h, k = 1, . . . ,m1, ∂

2
βhβk

:= ∂2

∂βh∂βk
, h, k =

1, . . . ,m2, ∂
2
αhβk

:= ∂2

∂αh∂βk
, h = 1, . . . ,m1, k = 1, . . . ,m2, ∂θ := (∂α, ∂β)′, where

∂α := (∂α1 , . . . , ∂αm1
)′ and ∂β := (∂β1 , . . . , ∂βm2

)′, ∂2θ := [∂2α jβk
]h=1,...,m1,k=1,...,m2 .

• If f : �×R → R,wedenote by fi−1(θ) the value f (θ, Xtni−1
); for instance c(β, Xtni−1

) =
ci−1(β).

• For 0 ≤ i ≤ n, tni := i	n and Gn
i := σ(Ws, s ≤ tni ).

• The random sample is given by Xn := (Xtni
)0≤i≤n and Xi := Xtni

.

• The probability law of (1.1) is denoted by Pθ and Ei−1
θ [·] := Eθ [·|Gn

i−1]. We set P0 :=
Pθ0 and Ei−1

0 [·] := Ei−1
θ0

[·].
• Pθ−→

n→∞ and
d−→

n→∞ stand for the convergence in probability and in distribution, respectively.

• Let Fn : � × R
n → R and F : � → R; “Fn(θ,Xn)

Pθ−→
n→∞ F(θ) uniformly in θ ′′ stands

for

sup
θ∈�

|Fn(θ,Xn) − F(θ)| Pθ−→
n→∞ 0.

Furthermore, if Fn(θ,Xn)
Pθ−→

n→∞ 0 uniformly in θ we set

Fn(θ,Xn) = oPθ (1).

• Let un be a R-valued sequence. We indicate by R a function � × R
2 → R for which

there exists a constant C such that

R(θ, un, x) ≤ unC(1 + |x |)C , for all θ ∈ �, x ∈ R
2, n ∈ N.

• For a m × n matrix A, ||A||2 = tr(AA′) = ∑m
i=1
∑n

j=1 |Ai j |2 and Im stands for the
identity matrix of size m.

Let Ck,h
↑ (R × �;R) be the space of all functions f such that:

(i) f (θ, x) is a R-valued function on � × R;
(ii) f (θ, x) is continuously differentiable with respect to x up to order k ≥ 1 for all θ;

these x-derivatives up to order k are of polynomial growth in x, uniformly in θ ;
(iii) f (θ, x) and all x-derivatives up to order k ≥ 1, are h ≥ 1 times continuously differen-

tiable with respect to θ for all x ∈ R. Moreover, these derivatives up to the h-th order
with respect to θ are of polynomial growth in x, uniformly in θ .

We need some standard assumptions on the regularity of the process X.

A1 (Existence and uniqueness) There exists a constant C such that

sup
α∈�α

|b(α, x) − b(α, y)| + sup
β∈�β

|σ(β, x) − σ(β, y)| ≤ C |x − y|.

A2 (Ergodicity) The process X is ergodic for θ = θ0 with invariant probability measure
π0(dx). Thus

1

T

∫ T

0
f (Xt )dt

Pθ−→
T→∞

∫
f (x)π0(dx),

where f ∈ L1(π0). Furthermore, we assume that π0 admits all moments finite.
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A3 infx,β σ (β, x) > 0.
A4 (Moments) For all q ≥ 0, supt E |Xt |q < ∞.
A5 [k] (Smoothness) b ∈ Ck,3

↑ (�α × R,R) and σ ∈ Ck,3
↑ (�β × R,R).

A6 (Identifiability) If the coefficients b(α, x) = b(α0, x) and σ(β, x) = σ(β0, x) for all x
(π0-almost surely), then α = α0 and β = β0.

Let Lθ the infinitesimal generator of X with domain given by C2(R) (the space of the
twice continuously differentiable function on R); that is if f ∈ C2(R)

Lθ f (x) := b(α, x)
∂ f

∂x
(x) + c(β, x)

2

∂2 f

∂x2
(x), L0 := Lθ0 .

Under the assumption A5[2( j − 1)] we can define L j
θ := Lθ ◦ L j−1

θ with domain C2 j (R)

and L0
θ =Id.

We conclude this section with some well-known examples of ergodic diffusion processes
belonging to the class (1.1):

• the Ornstein–Uhlenbeck or Vasicek model is the unique solution to

dXt = α1(α2 − Xt )dt + β1dWt , X0 = x0, (2.1)

where b(α1, α2, x) = α1(α2 − x) and σ(β1, x) = β1 with α1, α2 ∈ R and β1 > 0.
This stochastic process is a Gaussian process and it is often used in finance where β1 is
the volatility, α2 is the long-run equilibrium of the model and α1 is the speed of mean
reversion. For α1 > 0 the Vasicek process is ergodic with invariant law π0 given by a

Gaussian law with mean α2 and variance
β2
1

2α1
. It is easy to check that all the conditions

A1 − A6 fulfill;
• the Cox–Ingersoll–Ross (CIR) process is the solution to

dXt = α1(α2 − Xt )dt + β1

√
XtdWt , X0 = x0 > 0, (2.2)

where b(α1, α2, x) = α1(α2 − x) and σ(β1, x) = β1
√
x with α1, α2, β1 > 0. If

2α1α2 > β2
1 the process is strictly positive, otherwise non negative. This model has

a conditional density given by the non central χ2 distribution. The CIR process is use-
ful in the description of short-term interest rates and admits invariant law π0 given by

a Gamma distribution with shape parameter 2α1α2
β2
1

and scale parameter
β2
1

2α1
. If (2.2) is

strictly positive, we can prove that the above assumptions hold true.

3 Preliminaries on the quasi-likelihood function

We briefly recall the quasi-likelihood function introduced by Kessler (1997) based on the
Itô-Taylor expansion. The main problem in the statistical analysis of the diffusion process
X is that its transition density is in general unknown and then the likelihood function is
unknown as well. To overcome this difficulty one can discretizes the sample path of X by
means of Euler-Maruyama’s scheme; namely

Xi−Xi−1 =
∫ tni

tni−1

b(α, Xs)ds+
∫ tni

tni−1

σ(β, Xs)dWs  bi−1(α)	n + σi−1(β)(Wtni
− Wtni−1

).

(3.1)
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Hence (3.1) leads to consider a local-Gaussian approximation to the transition density; that
is

L(Xi |Xi−1)  N (Xi−1 + bi−1(α)	n, ci−1(β)	n)

and the approximated log-likelihood function of the random sample Xn, called (negative)
quasi-log-likelihood function, becomes

ln(θ) := 1

2

n∑

i=1

{
(Xi − Xi−1 − bi−1(α)	n)

2

ci−1(β)	n
+ log ci−1(β)

}
. (3.2)

This approach suggests to consider the mean and the variance of the transition density of X;
that is

m(θ, Xi−1) := Eθ [Xi |Xi−1], m2(θ, Xi−1) := Eθ [(Xi − m(θ, Xi−1))
2|Xi−1], (3.3)

and assume

L(Xi |Xi−1)  N (m(θ, Xi−1),m2(θ, Xi−1)).

Thus we can consider as contrast function the following one

1

2

n∑

i=1

{
(Xi − m(θ, Xi−1))

2

m2(θ, Xi−1)
+ logm2(θ, Xi−1)

}
. (3.4)

Nevertheless, (3.4) does not have a closed form because m(θ, Xi−1) and m2(θ, Xi−1) are
unknown. Therefore we substitute in (3.4) closed approximations of m and m2 based on the
Itô-Taylor expansion.

Let f (y) := y, for l ≥ 0, under the assumption A5[2(l − 1)], we have the following
approximation (see Lemma 1, Kessler 1997)

m(θ, Xi−1) = rl(	n, Xi−1, θ) + R(θ,	l+1
n , Xi−1) (3.5)

where

rl(	n, Xi−1, θ) :=
l∑

i=0

	i
n

i ! Li
θ f (x).

Now let us consider the function (y − rl(	n, Xi−1, θ))2, which is for fixed x, y and θ a
polynomial in 	n of degree 2l. We indicate by g	n ,x,θ,l(y) the sum of its first terms up to

degree l; that is g	n ,x,θ,l(y) =∑l
j=0 	

j
ng

j
x,θ (y) where

g0x,θ (y) = (y − x)2 (3.6)

g1x,θ (y) = −2(y − x)Lθ f (x) (3.7)

g j
x,θ (y) = −2(y − x)

L j
θ f (x)

j ! +
∑

r,s≥1,r+s= j

Lr
θ f (x)

r !
Ls

θ f (x)

s! , 2 ≤ j ≤ l. (3.8)

Under the assumption A5[2(l − 1)], we have that Lr
θ g

j
x,θ (y) is well-defined for r + j = l

and we set

l(	n, x, θ) :=
l∑

j=0

	
j
n

l− j∑

r=0

	r
n

r ! Lr
θg

j
x,θ (x) :=

l∑

j=0

	
j
nγ j (θ, x), (3.9)
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where γ j (θ, x) are the coefficients of 	
j
n . Therefore by (3.6)–(3.9), we obtain, for instance,

γ0(θ, x) = L0
θ g

0
x,θ (x) = 0

γ1(θ, x) = Lθ g
0
x,θ (x) = c(β, x)

γ2(θ, x) = L2
θg

0
x,θ

2
(x) + Lθ g

1
x,θ (x) + L0

θg
2
x,θ (x)

= 1

2

[
b(α, x)

∂

∂y
c(β, x) + 2c(β, x)

∂

∂y
b(α, x)

]
+ c(β, x)

4

∂2

∂y2
c(β, x)

Let

l(	n, x, θ) := 	nc(β, x)[1 + l(	n, x, θ)]

where l(	n, x, θ) :=
∑l

j=2 	
j
nγ j (θ,x)

	nc(β,x) . For l ≥ 0, under the assumption A5[2l](i), we have
that (see Lemma 2, Kessler 1997)

m2(θ, Xi−1) = 	nci−1(β)[1 + l(	n, Xi−1, θ)] + R(θ,	l+1
n , Xi−1). (3.10)

It seems quite natural at this point to substitute (3.5) and (3.10) into the expression (3.4).
Nevertheless, in order to avoid technical difficulties related to the control of denominator and
logarithmic we consider a further expansion in 	n of (1 + l)

−1 and log(1 + l).
Let k0 = [p/2].Under the assumption A5[2k0], we define the quasi-loglikelihood function

of Xn as

l p,n(θ) := l p,n(θ,Xn) :=
n∑

i=1

lp,i (θ) (3.11)

where

lp,i (θ) := (Xi − rk0(	n, Xi−1, θ))2

2	nci−1(β)

⎧
⎨

⎩1 +
k0∑

j=1

	
j
nd j (θ, Xi−1)

⎫
⎬

⎭

+ 1

2

⎧
⎨

⎩log ci−1(β) +
k0∑

j=1

	
j
ne j (θ, Xi−1)

⎫
⎬

⎭ (3.12)

and d j , resp. e j , is the coefficient of	
j
n in the Taylor expansion of (1+k0+1(	n, x, θ))−1,

resp. log(1 + k0+1(	n, x, θ)). It is not hard to show that, for example,

d1(θ, x) = − e1(θ, x) = −γ2(θ, x)

c(β, x)
,

d2(θ, x) = − e2(θ, x) = 1

c(β, x)

[
γ 2
2 (θ, x)

c(β, x)
− γ3(θ, x)

]
.

Remark 3.1 It is worth to point out that by assumptions A3 and A5 emerge that d j and e j , for
all j ≤ k0, are three times differentiable with respect to θ. Furthermore, all their derivatives
with respect to θ are of polynomial growth in x uniformly in θ.

The contrast function (3.11) yields to the maximum quasi-likelihood estimator θ̂p,n :=
(α̂p,n, β̂p,n) defined as

l p,n(θ̂p,n) = inf
θ∈�

l p,n(θ). (3.13)
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Let I (θ0) be the Fisher information matrix at θ0 defined as follows

I (θ0) :=
([I h,k

b (θ0)]h,k=1,...,m1 0
0 [I h,k

σ (θ0)]h,k=1,...,m2

)
, (3.14)

where

I h,k
b (θ0) :=

∫ (
∂αh b ∂αk b

c

)
(θ0, x)π0(dx),

I h,k
σ (θ0) := 1

2

∫ (
∂βh c ∂βk c

c2

)
(β0, x)π0(dx).

We recall an important asymptotic result which will be useful in the proof of our main
theorem.

Theorem 1 (Kessler 1997) Let p be an integer and k0 = [p/2]. Under assumptions A1 to
A4, A5[2k0] and A6, if 	n → 0, n	n → ∞, as n → ∞, the estimator θ̂p,n is consistent;
i.e.

θ̂p,n
P0−→

n→∞ θ0. (3.15)

If in addition n	
p
n → 0 and θ0 ∈ I nt (�) then

ϕ(n)−1/2(θ̂p,n − θ0) =
(√

n	n(α̂p,n − α0)√
n(β̂p,n − β0)

)
d−→

n→∞ Nm1+m2(0, I
−1(θ0)), (3.16)

where

ϕ(n) :=
( 1

n	n
Im1 0
0 1

n Im2

)
.

Remark 3.2 We observe that l2,n does not coincide with (3.2), because (3.11) contains the
terms d1 and e1. Nevertheless, ln also yields an asymptotical efficient estimator for θ and
then we refer to it when p = 2.

Remark 3.3 Under the same framework adopted in this paper, alternatively to θ̂p,n , Kessler
(1995) and Uchida and Yoshida (2012) proposed different types of adaptive maximum
quasi-likelihood estimators. For instance, in Uchida and Yoshida (2012), the first type of
adaptive estimator is introduced starting from the initial estimator β̃0,n given by Un(β̃0,n) =
infβ∈�β Un(β), where

Un(β) := 1

2

n∑

i=1

{
(Xi − Xi−1)

2

	nci−1(β)
+ log ci−1(β)

}
.

For p ≥ 2, k0 = [p/2] and l0 = [(p − 1)/2], the first type adaptive estimator θ̃p,n =
(α̃k0,n, β̃l0,n) is defined for k = 1, 2, . . . , k0, as follows

l p,n(α̃k,n, β̃k−1,n) = inf
α∈�α

l p,n(α, β̃k−1,n),

l p,n(α̃k,n, β̃k,n) = inf
β∈�β

l p,n(α̃k,n, β).

Themaximum quasi-likelihood estimator θ̂p,n and its adaptive versions, like θ̃p,n, are asymp-
totically equivalent (under a minor change of the initial assumptions); i.e. they have the same
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properties (3.15) and (3.16) (seeUchida andYoshida 2012). Inwhat followwewill developed
a test based on θ̂p,n; nevertheless in light of the previous discussion, it would be possible to
replace θ̂p,n with θ̃p,n .

4 Test statistics

The goal of this section is to introduce a new type of test statistics for the following parametric
hypotheses problem

H0 : θ = θ0, vs H1 : θ �= θ0, (4.1)

concerning the stochastic differential equation (1.1). X is partially observed and therefore we
have discrete observations represented byXn . Themotivation of this research is due to the fact
that under non-simple alternative hypotheses do not exist uniformlymost powerful parametric
tests. Therefore,we need proper procedure formaking the right decision concerning statistical
hypothesis.

Thefirst step consists in the introduction of a suitablemeasure regarding the “discrepancy”,
or the “distance”, between diffusions belonging to the parametric class (1.1). Furthermore,
as recalled in the previous section, for a general stochastic differential equation X, the true
probability transitions from Xi−1 to Xi do not exist in closed form as well as the likelihood
function. Suppose known the parameter β and assume observable the sample path up to time
T = n	n . Let Qβ be the probability law of the process solution to dYt = σ(β, Yt )dWt . The
continuous log-likelihood of X is given by

log
dPθ

dQβ

=
∫ T

0

b(α, Xt )

c(β, Xt )
dXt − 1

2

∫ T

0

b2(α, Xt )

c(β, Xt )
dt.

Thus we can consider the (squared) L2(Qβ)-distance between the log-likelihoods log
dPθ1
dQβ

and log
dPθ2
dQβ

with θ1, θ2 ∈ �; that is

D(θ1, θ2) :=
∣∣∣∣

∣∣∣∣log
dPθ1

dQβ

− log
dPθ2

dQβ

∣∣∣∣

∣∣∣∣
2

L2(Qβ )

=
∫ [

log
dPθ1

dQβ

− log
dPθ2

dQβ

]2
dQβ. (4.2)

Clearly for testing the hypotheses (4.1) in the framework of discretely observed stochastic
differential equations, the distance (4.2) is not useful. Nevertheless, the above L2−metric for
the continuos observations suggests to consider

Dp,n(θ1, θ2) := 1

n

n∑

i=1

[lp,i (θ1) − lp,i (θ2)]2, θ1, θ2 ∈ �, (4.3)

which can be interpreted as the empirical version of (4.2), where the theoretical log-likelihood
is replaced with the quasi-log-likelihood defined by (3.11). The following theorem provides
the convergence in probability of Dp,n .

Theorem 2 Let p be an integer and k0 = [p/2]. Assume A1 − A4, A5[2k0] and A6. Under
H0, if 	n → 0, n	n → ∞, as n → ∞, we have that

Dp,n(θ, θ0)
P0−→

n→∞ U (β, β0)
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uniformly in θ, where

U (β, β0) := 1

4

∫ {
3

[
c(β0, x)

c(β, x)
− 1

]2
+
[
log

(
c(β, x)

c(β0, x)

)]2

+
[
c(β0, x)

c(β, x)
− 1

]
log

(
c(β, x)

c(β0, x)

)}
π0(dx).

The above result shows thatDp,n(θ, θ0) is not a true approximation of Dp,n(θ, θ0) because

it does not converge to
∫ [

log(πθ (dx)/π0(dx))
]2

π0(dx). Nevertheless, the function (4.3)

allows to construct the main object of interest of the paper. Let θ̂n be the maximum quasi-
likelihood estimator defined by (3.13), for testing the hypotheses (4.1) we introduce the
following class of test statistics

Tp,n(θ̂p,n, θ0) := nDp,n(θ̂p,n, θ0). (4.4)

The first result concerns the weak convergence of Tp,n(θ̂p,n, θ0).Weprove that Tp,n(θ̂p,n, θ0)

is asymptotically distribution free under H0; namely it weakly converges to a chi-squared
random variable with m1 + m2 degrees of freedom.

Theorem 3 Let p be an integer and k0 = [p/2]. Assume A1 − A4, A5[2k0] and A6. Under
H0, if 	n → 0, n	n → ∞, n	

p
n → 0, as n → ∞, we have that

Tp,n(θ̂p,n, θ0)
d−→

n→∞ χ2
m1+m2

. (4.5)

Given the level α ∈ (0, 1), our criterion suggests to

reject H0 if Tp,n(θ̂p,n, θ0) > χ2
m1+m2,α

,

where χ2
m1+m2,α

is the 1 − α quantile of the limiting random variable χ2
m1+m2

; that is under
H0

lim
n→∞ Pθ (Tp,n(θ̂p,n, θ0) > χ2

m1+m2,α
) = α.

Under H1, the power function of the proposed test are equal to the following map

θ �→ Pθ

(
Tp,n(θ̂p,n, θ0) > χ2

m1+m2,α

)

Often a way to judge the quality of sequences of tests is provided by the powers at
alternatives that become closer and closer to the null hypothesis. This justify the study of local
limiting power. Indeed, usually the power functions of test statistic (4.4) cannot be calculated

explicitly. Nevertheless, Pθ

(
Tp,n(θ̂p,n, θ0) > χ2

m1+m2,α

)
can be studied and approximated

under contiguous alternatives written as

H1,n : θ = θ0 + ϕ(n)1/2h, (4.6)

where h ∈ R
m1+m2 such that θ0 +ϕ(n)1/2h ∈ �. In order to get a reasonable approximation

of the power function, we analyze the asymptotic law of the test statistics under the local
alternatives H1,n .Weneed the following assumption on the contiguity of probabilitymeasures
(see Van der Vaart 1998):

B1 Pθ0+ϕ(n)1/2h is a sequence of contiguous probability measures with respect to P0; i.e.
limn→∞ P0(An) = 0 implies limn→∞ Pθ0+ϕ(n)1/2h(An) = 0 for every measurable sets
An .
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Remark 4.1 The assumption B1 holds if we assume A1 − A4, A5[2k0] and the conditions:

(i) there exists a constant C > 0 such that the following estimates hold

|b(α, x)| ≤ C(1 + |x |),
∣∣∣∣

∂

∂x
b(α, x)

∣∣∣∣+ |σ(β, x)| +
∣∣∣∣

∂

∂x
σ(β, x)

∣∣∣∣ ≤ C

for all (α, β) ∈ � and x ∈ R;
(ii) there exists C0 > 0 and K > 0 such that

b(α, x)x ≤ −C0|x |2 + K

for all (α, x) ∈ �α × R;
(iii) there exists a constant C1 > 1 such that

1

C1
≤ σ(β, x) ≤ C1, for all (β, x) ∈ �β × R.

Under the above assumptions, Gobet (2002) proved the Local Asymptotic Normality (LAN)
for the likelihood of the ergodic diffusions (1.1); i.e.

log

(
dPθ0+ϕ(n)1/2h

dP0
(Xn)

)
d−→

n→∞ h′Nm1+m2(0, I (θ0)) + 1

2
h′ I (θ0)h.

By means of Le Cam’s first lemma (see Van der Vaart 1998), LAN property implies the
contiguity of Pθ0+ϕ(n)1/2h with respect to P0.

Now, we are able to study the asymptotic probability distribution of Tp,n under H1,n .

Theorem 4 Let p be an integer and k0 = [p/2]. Assume A1 − A4, A5[2k0], A6 and B1

fulfill. Under the local alternative hypothesis H1,n, if 	n → 0, n	n → ∞, n	
p
n → 0 as

n → ∞, the following weak convergence holds

Tp,n(θ̂p,n, θ0)
d−→

n→∞ χ2
m1+m2

(h′ I (θ0)h), (4.7)

where the random variable χ2
l+m(h′ I (θ0)h) is a non-central chi square random variable with

l + m degrees of freedom and non-centrality parameter h′ I (θ0)h.

Remark 4.2 If we dealwith H0 : θ = θ0 and the local alternative hypothesis H1,n,Theorem4
leads to the following approximation of the power functions

Pθ

(
Tp,n(θ̂p,n, θ0) > χ2

m1+m2,α

) ∼= 1 − F
(
χ2
m1+m2,α

)
, n >> 1, (4.8)

where F(·) is the cumulative function of the random variable χ2
m1+m2

(h′ I (θ0)h).

Remark 4.3 The Generalized Quasi-Likelihood Ratio, Wald, Rao type test statistics have
been studied by Kitagawa and Uchida (2014). These test statistics are, respectively, defined
as follows

L p,n(θ̂p,n, θ0) := 2(l p,n(θ̂p,n) − l p,n(θ0)) (4.9)

Wp,n(θ̂p,n, θ0) := (ϕ(n)−1/2(θ̂p,n − θ0))
′ Ip,n(θ̂p,n)ϕ(n)−1/2(θ̂p,n − θ0) (4.10)

Rp,n(θ̂p,n, θ0) := (ϕ(n)1/2∂θ l p,n(θ0))
′ I−1

p,n(θ̂p,n)ϕ(n)1/2∂θ l p,n(θ0), (4.11)

where

Ip,n(θ) =
⎛

⎝
1

n	n
∂2αl p,n(θ) 1

n
√

	n
∂α∂β l p,n(θ)

1
n
√

	n
∂β∂αl p,n(θ) 1

n ∂2β l p,n(θ)

⎞

⎠
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and Rp,n is well-defined if Ip,n(θ) is nonsingular. The above test statistics are asymptotically
equivalent to Tp,n; i.e. under H0, L p,n,Wp,n and Rp,n weakly converge to a χ2 random
variable.

Remark 4.4 In DeGregorio and Iacus (2013), the authors dealt with (for p = 2) test statistics
based on an empirical version of the true φ-divergences; i.e.

2
n∑

i=1

φ

(
exp ln(θ)

exp ln(θ0)

)
(4.12)

whereφ represents a suitable convex function and ln is given by (3.2). In the present paper, the
starting point is represented by the L2-distance between two diffusion parametric models.
Somehow, the approach developed in this work is close to that developed by Aït-Sahalia
(1996), where a test based on the L2-distance measure between the density function and its
nonparametric estimator is introduced.

Remark 4.5 From a practical point of view, since sometimes α = α0 and β = β0 have
different meanings, it is possible to deal with a stepwise procedure. For instance as p = 2,
first, we test β = β0 by means of

T β
n (β̃0,n, β0) :=

n∑

i=1

[
(Xi − Xi−1)

2

	n

(
1

ci−1(β̃0,n)
− 1

ci−1(β0)

)
+ log

(
ci−1(β̃0,n)

ci−1(β0)

)]2

and then, in the second step, we test α = α0 by taking into account

T α
n (α̃1,n, α0, β̃0,n) :=

n∑

i=1

[l2,i (α̃1,n, β̃0,n) − l2,i (α0, β̃0,n)]2,

where α̃1,n and β̃0,n are the adaptive estimators defined in the Remark 3.3.

5 Numerical analysis

Although all test statistics presented in the above and in the literature satisfy the same asymp-
totic results, for small sample sizes the performance of each test statistic is determined by
the statistical model generating the data and the quality of the approximation of the quasi-
likelihood function. To put in evidence these effects we consider the two stochastic models
presented in Sect. 2, namely the Ornstein-Uhlenbeck (OU in the tables) of Eq. (2.1) and the
CIR model of Eq. (2.2). In this numerical study we consider the power of the test under local
alternatives for different test statistics:

• the φ divergence of Eq. (4.12) with φ(x) = 1− x + x log(x), which is equivalent to the
approximated Kullback–Leibler divergence (see, De Gregorio and Iacus 2013). We use
the label AK L in the tables for this approximate Kullback-Leibler measure;

• the φ divergence with φ(x) =
(
x−1
x+1

)2
: this was proposed in Balakrishnan and Sanghvi

(1968), we name it BS in the tables;
• the Generalized Quasi-Likelihood Ratio test with p = 2, see e.g., (4.9), denoted as

GQLRT in the tables;
• the Rao test statistics1 R(θ̂p,n, θ0) of Eq. (4.11), denoted as RAO in the tables;

1 We do not consider the Wald test of (4.10) because it was shown in Kitagawa and Uchida (2014) that it
performs similarly to the Rao test statistics.
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• and the statistic Tp,n(θ̂p,n, θ0) proposed in this paper and defined in Eq. (4.4), with p = 2,
denoted as T2,n in the tables.

The sample sizes have been chosen to be equal to n = 50, 100, 250, 500, 1000 observations

and time horizon is set to T = n
1
3 , in order to satisfy the asymptotic theory. For testing

θ0 against the local alternatives θ0 + h√
n	n

for the parameters in the drift coefficient and

θ0 + h√
n
for the parameters in the diffusion coefficient, h is taken in a grid from 0 to 1, and

h = 0 corresponds to the null hypothesis H0. For the data generating process, we consider
the following statistical models

OU the one-dimensional Ornstein–Uhlenbeck model solution to dXt = α1(α2 − Xt )dt +
β1dWt , X0 = 1, with θ0 = (α1, α2, β1) = (0.5, 0.5, 0.25);

CIR the one-dimensional CIR model solution to dXt = α1(α2 − Xt )dt + β1
√
XtdWt ,

X0 = 1, with θ0 = (α1, α2, β1) = (0.5, 0.5, 0.125).

In each experiments the process have been simulated at high frequency using the Euler-
Maruyama scheme and resampled to obtain n = 50, 100, 250, 500, 1000 observations.
Remark that, even if the Ornstein-Uhlenbeck process has a Gaussian transition density, this
density is different from the Euler-Maruyama Gaussian density for non negligible time mesh
	n (see, Iacus 2008). For the simulationwe used theR package yuima (see, Iacus andYoshida
2017). Each experiment is replicated 1000 times and from the empirical distribution of each
test statistic, say Sn , we define the rejection threshold of the test as χ̃2

3,0.05, i.e. χ̃
2
3,0.05 is the

95% quantile of the empirical distribution of Sn, that is

0.05 = Freq
(
Sn(θ̂n, θ0) > χ̃2

3,0.05

)
.

Similarly, we define the empirical power function of the test as

EPow(h) = Freq
(
Sn(θ̂n, θ0 + ϕ(n)1/2h) > χ̃2

3,0.05

)
,

where θ̂n is themaximumquasi-likelihood estimator defined in (3.13). The choice of using the
empirical threshold χ̃2

3,0.05 instead of the theoretical thresholdχ2
3,0.05 from theχ2

3 distribution,
is due to the fact that otherwise the tests are non comparable. Indeed, the empirical level of
the test is not 0.05 for small sample sizes when χ2

3,0.05 is used as rejection threshold and,
for example, when h = 0 different choices of the test statistic produce different empirical
levels of the test. Tables 1 and 2 contain the empirical power function of each test. In these
tables the bold face font is used to put in evidence the test statistics with the highest empirical
power function EPow(h) for a given local alternative h > 0.

From this numerical analysis we can see several facts:

• the test statistic based on the AKL does not perform as the GQLR test despite they are
related to the same divergence; the latter being sometimes better;

• the T2,n seems to be (almost) uniformly more powerful in this experiment;
• all but RAO test seem to have a good behaviour when the alternative is sufficiently large;
• for the CIR model, the RAO test does not perform well under the alternative hypothesis

and this is probably because it requires very large T which, in our case, is at most T = 10.
For the OU Gaussian case, the performance are better and in line from those presented
in Kitagawa and Uchida (2014) for similar sample sizes.

Therefore, we can conclude that, despite all the test statistics share the same asymptotic
properties, the proposed Tp,n seems to perform very well in the small sample case examined
in the above Monte Carlo experiments, at least for p = 2.
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Table 1 Empirical power function EPow(h), for different sample sizes n and local alternatives h

AKL GQLRT BS RAO T2,n

n = 50

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.044 0.048 0.046 0.053 0.052

h=0.05 0.035 0.032 0.041 0.057 0.057

h=0.10 0.025 0.029 0.033 0.064 0.077

h=0.20 0.011 0.031 0.042 0.078 0.133

h=0.30 0.007 0.054 0.069 0.096 0.239

h=0.40 0.007 0.108 0.147 0.121 0.371

h=0.50 0.009 0.216 0.269 0.138 0.559

h=0.60 0.021 0.359 0.448 0.146 0.720

h=0.70 0.053 0.527 0.591 0.149 0.842

h=0.80 0.120 0.670 0.736 0.150 0.917

h=0.90 0.221 0.794 0.852 0.148 0.966

h=1.00 0.383 0.882 0.910 0.145 0.992

n = 100

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.046 0.047 0.046 0.050 0.050

h=0.05 0.032 0.035 0.035 0.050 0.055

h=0.10 0.022 0.029 0.030 0.058 0.070

h=0.20 0.014 0.038 0.042 0.082 0.141

h=0.30 0.009 0.089 0.083 0.101 0.253

h=0.40 0.009 0.159 0.163 0.128 0.404

h=0.50 0.020 0.283 0.291 0.155 0.609

h=0.60 0.051 0.465 0.472 0.183 0.769

h=0.70 0.131 0.644 0.659 0.199 0.876

h=0.80 0.244 0.789 0.801 0.213 0.943

h=0.90 0.414 0.883 0.893 0.221 0.984

h=1.00 0.608 0.937 0.944 0.225 0.996

n = 250

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.044 0.049 0.050 0.051 0.048

h=0.05 0.036 0.049 0.046 0.052 0.057

h=0.10 0.028 0.048 0.050 0.058 0.075

h=0.20 0.015 0.076 0.078 0.114 0.143

h=0.30 0.022 0.153 0.157 0.168 0.255

h=0.40 0.049 0.304 0.304 0.222 0.452

h=0.50 0.118 0.486 0.496 0.280 0.654

h=0.60 0.253 0.703 0.704 0.339 0.822

h=0.70 0.436 0.847 0.851 0.389 0.921

h=0.80 0.666 0.928 0.931 0.419 0.969

h=0.90 0.821 0.973 0.976 0.462 0.991

h=1.00 0.911 0.992 0.993 0.485 1.000
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Table 1 continued

AKL GQLRT BS RAO T2,n

n = 500

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.048 0.049 0.049 0.052 0.051

h=0.05 0.038 0.044 0.043 0.067 0.059

h=0.10 0.032 0.050 0.050 0.082 0.075

h=0.20 0.030 0.084 0.080 0.134 0.133

h=0.30 0.050 0.175 0.175 0.202 0.250

h=0.40 0.138 0.329 0.323 0.279 0.449

h=0.50 0.274 0.555 0.552 0.363 0.673

h=0.60 0.493 0.751 0.747 0.454 0.828

h=0.70 0.704 0.869 0.869 0.522 0.934

h=0.80 0.847 0.957 0.957 0.584 0.983

h=0.90 0.936 0.987 0.987 0.630 0.996

h=1.00 0.982 0.997 0.997 0.678 0.998

n = 1000

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.046 0.049 0.050 0.051 0.051

h=0.05 0.038 0.046 0.049 0.056 0.058

h=0.10 0.035 0.056 0.062 0.062 0.074

h=0.20 0.061 0.104 0.109 0.121 0.134

h=0.30 0.122 0.182 0.187 0.193 0.241

h=0.40 0.219 0.359 0.372 0.291 0.442

h=0.50 0.426 0.600 0.605 0.398 0.662

h=0.60 0.655 0.786 0.794 0.507 0.840

h=0.70 0.821 0.912 0.914 0.596 0.942

h=0.80 0.930 0.969 0.972 0.665 0.985

h=0.90 0.978 0.993 0.993 0.711 0.994

h=1.00 0.994 0.997 0.997 0.760 0.998

The empirical power and theoretical power is 0.05. Data generating model: the 1-dimensional Ornstein–
Uhlenbeck process

6 Proofs

In order to prove the theorems appearing in the paper, we need some preliminary results. Let
us start with the following lemmas.

Lemma 1 For k ≥ 1 and tni−1 ≤ t ≤ tni

Ei−1
0 [|Xt − Xi−1|k] ≤ Ck |t − tni−1|k/2(1 + |Xi−1|)Ck . (6.1)

If f : � × R → R is of polynomial growth in x uniformly in θ then

Ei−1
0 [ f (θ, Xt )] ≤ Ct−tni−1

(1 + |Xi−1|)C , tni−1 ≤ t ≤ tni . (6.2)

Proof See the proof of Lemma 6 in Kessler (1997). ��

123



248 Stat Inference Stoch Process (2019) 22:233–261

Table 2 Empirical power function EPow(h), for different sample sizes n and local alternatives h

AKL GQLRT BS RAO T2,n

n = 50

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.041 0.044 0.045 0.052 0.053

h=0.05 0.025 0.032 0.031 0.059 0.071

h=0.10 0.009 0.040 0.042 0.068 0.145

h=0.20 0.013 0.148 0.167 0.075 0.371

h=0.30 0.044 0.416 0.458 0.069 0.721

h=0.40 0.186 0.700 0.741 0.067 0.923

h=0.50 0.475 0.883 0.907 0.067 0.989

h=0.60 0.760 0.967 0.981 0.061 0.997

h=0.70 0.913 0.994 0.998 0.059 1.000

h=0.80 0.981 1.000 1.000 0.051 1.000

h=0.90 0.997 1.000 1.000 0.041 1.000

h=1.00 1.000 1.000 1.000 0.041 1.000

n = 100

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.040 0.043 0.046 0.053 0.051

h=0.05 0.019 0.032 0.034 0.056 0.070

h=0.10 0.010 0.054 0.051 0.062 0.150

h=0.20 0.017 0.205 0.207 0.063 0.461

h=0.30 0.102 0.537 0.553 0.064 0.797

h=0.40 0.338 0.827 0.836 0.064 0.957

h=0.50 0.685 0.950 0.958 0.063 0.995

h=0.60 0.896 0.993 0.994 0.059 1.000

h=0.70 0.977 0.999 0.998 0.056 1.000

h=0.80 0.998 1.000 1.000 0.053 1.000

h=0.90 0.999 1.000 1.000 0.048 1.000

h=1.00 1.000 1.000 1.000 0.044 1.000

n = 250

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.042 0.049 0.046 0.052 0.050

h=0.05 0.026 0.045 0.046 0.054 0.071

h=0.10 0.021 0.086 0.084 0.057 0.144

h=0.20 0.093 0.347 0.342 0.062 0.505

h=0.30 0.372 0.752 0.756 0.064 0.864

h=0.40 0.790 0.943 0.944 0.065 0.977

h=0.50 0.952 0.994 0.994 0.064 1.000

h=0.60 0.996 1.000 1.000 0.060 1.000

h=0.70 1.000 1.000 1.000 0.060 1.000

h=0.80 1.000 1.000 1.000 0.057 1.000

123



Stat Inference Stoch Process (2019) 22:233–261 249

Table 2 continued

AKL GQLRT BS RAO T2,n

h=0.90 1.000 1.000 1.000 0.055 1.000

h=1.00 1.000 1.000 1.000 0.050 1.000

n = 500

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.043 0.043 0.042 0.051 0.048

h=0.05 0.030 0.046 0.044 0.051 0.074

h=0.10 0.032 0.095 0.091 0.052 0.147

h=0.20 0.180 0.384 0.380 0.055 0.530

h=0.30 0.598 0.802 0.800 0.058 0.869

h=0.40 0.898 0.972 0.972 0.058 0.990

h=0.50 0.992 0.998 0.998 0.059 0.998

h=0.60 0.998 0.999 0.999 0.057 0.999

h=0.70 0.999 1.000 1.000 0.056 1.000

h=0.80 1.000 1.000 1.000 0.055 1.000

h=0.90 1.000 1.000 1.000 0.055 1.000

h=1.00 1.000 1.000 1.000 0.051 1.000

n = 1000

h=0.00 0.050 0.050 0.050 0.050 0.050

h=0.01 0.044 0.048 0.047 0.051 0.050

h=0.05 0.035 0.059 0.057 0.051 0.079

h=0.10 0.067 0.120 0.118 0.054 0.144

h=0.20 0.274 0.429 0.428 0.058 0.527

h=0.30 0.725 0.844 0.840 0.061 0.886

h=0.40 0.953 0.983 0.983 0.062 0.989

h=0.50 0.996 0.998 0.998 0.062 0.999

h=0.60 1.000 1.000 1.000 0.062 1.000

h=0.70 1.000 1.000 1.000 0.060 1.000

h=0.80 1.000 1.000 1.000 0.059 1.000

h=0.90 1.000 1.000 1.000 0.059 1.000

h=1.00 1.000 1.000 1.000 0.058 1.000

The empirical power and theoretical power is 0.05. Data generating model: the 1-dimensional CIR process

Lemma 2 For l ≥ 1

rl(	n, Xi−1, θ) = Xi−1 + 	nbi−1(α) + R(θ,	2
n, Xi−1) (6.3)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))2] = 	nci−1(β0) + R(θ,	2

n, Xi−1) (6.4)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))3] = R(θ,	2

n, Xi−1) (6.5)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))4] = 3	2

nc
2
i−1(β0) + R(θ,	3

n, Xi−1) (6.6)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))5] = R(θ,	3

n, Xi−1) (6.7)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))6] = 5 · 3	3

nc
3
i−1(β0) + R(θ,	4

n, Xi−1) (6.8)
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Ei−1
0 [(Xi − rl(	n, Xi−1, θ))7] = R(θ,	4

n, Xi−1) (6.9)

Ei−1
0 [(Xi − rl(	n, Xi−1, θ))8] = 7 · 5 · 3	4

nc
4
i−1(β0) + R(θ,	5

n, Xi−1) (6.10)

Proof The equalities from (6.3) to (6.6) represent the statement of Lemma 7 in Kessler
(1997). By using the same approach adopted for the proof of the aforementioned lemma, we
observe that from (6.3) to (6.6), the result (6.7) and (6.8) hold, if we are able to show that

Ei−1
0 [(Xi − Xi−1)

5] = R(θ,	3
n, Xi−1) (6.11)

Ei−1
0 [(Xi − Xi−1)

6] = 5 · 3	3
nc

3
i−1(β0) + R(θ,	4

n, Xi−1) (6.12)

We only prove (6.12), because (6.11) follows bymeans of similar arguments. By applying the
Itô-Taylor formula [seeLemma1, in Florens-Zmirou (1989)] to the function fx (y) = (y−x)6

we obtain

Ei−1
0

[
(Xi − Xi−1)

6] = fXi−1(Xi−1) + 	n L0 fXi−1(Xi−1)

+ 	2
n

2
L2
0 fXi−1(Xi−1) + 	3

n

3! L
3
0 fXi−1(Xi−1)

+
∫ 	n

0

∫ u1

0

∫ u2

0

∫ u3

0
Ei−1
0

[
L4
0 fXi−1(Xtni−1+u4)

]
du1du2du3du4.

By applying (6.2), we obtain

∫ 	n

0

∫ u1

0

∫ u2

0

∫ u3

0
Ei−1
0

[
L4
0 fXi−1(Xtni−1+u4)

]
du1du2du3du4 = R(θ,	4

n, Xi−1).

Furthermore, by means of long and cumbersome calculations, we can show that fx (x) =
L0 fx (x) = L2

0 fx (x) = 0, while L3
0 fx (x) = 5 · 3 · 3!c3i−1(β0).

Analogously to what done, from (6.3) to (6.8), the equalities (6.9) and (6.10) hold, if we
are able to show that

Ei−1
0 [(Xi − Xi−1)

7] = R(θ,	4
n, Xi−1), (6.13)

Ei−1
0 [(Xi − Xi−1)

8] = 7 · 5 · 3	4
nc

4
i−1(β0) + R(θ,	5

n, Xi−1). (6.14)

We only prove (6.14), because (6.13) follows bymeans of similar arguments. The application
of the Itô-Taylor formula to the function fx (y) = (y − x)8 yields

Ei−1
0

[
(Xi − Xi−1)

8] = fXi−1 (Xi−1) + 	n L0 fXi−1 (Xi−1) + 	2
n

2
L2
0 fXi−1 (Xi−1)

+ 	3
n

3! L3
0 fXi−1 (Xi−1) + 	4

n

4! L4
0 fXi−1 (Xi−1)

+
∫ 	n

0

∫ u1

0

∫ u2

0

∫ u3

0

∫ u4

0
Ei−1
0

[
L5
0 fXi−1 (Xtni−1+u5 )

]
du1du2du3du4du5

By applying (6.2), we get

∫ 	n

0

∫ u1

0

∫ u2

0

∫ u3

0

∫ u4

0
Ei−1
0

[
L5
0 fXi−1(Xtni−1+u5)

]
du1du2du3du4du5 = R(θ,	5

n, Xi−1).

Furthermore, by means of long and cumbersome calculations, we can show that fx (x) =
L0 fx (x) = L2

0 fx (x) = L3
0 fx (x) = 0 while L4

0 fx (x) = 7 · 5 · 3 · 4!c4i−1(β0). ��
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Lemma 3 (Triangular arrays convegence) Let Un
i and U be random variables, with Un

i

being Gn
i -measurable. The two following conditions imply

∑n
i=1U

n
i

P−→
n→∞ U:

n∑

i=1

E[Un
i |Gn

i−1] P−→
n→∞ U,

n∑

i=1

E[(Un
i )2|Gn

i−1] P−→
n→∞ 0

Proof See the proof of Lemma 9 in Genon-Catalot and Jacod (1993). ��

Lemma 4 Let f : � × R → R be such that f (θ, x) ∈ C1,1
↑ (� × R,R). Let us assume

A1 − A6, if 	n → 0 and n	n → ∞ we have that

1

n

n∑

i=1

fi−1(θ)
P0−→

n→∞

∫
f (x, θ)π0(dx)

uniformly in θ .

Proof See the proof of Lemma 8 in Kessler (1997). ��

Lemma 5 Let f : � × R → R be such that f (θ, x) ∈ C1,1
↑ (� × R,R). Let us assume

A1 − A6, if 	n → 0 and n	n → ∞, as n → ∞, we have that

1

n	
j
n

n∑

i=1

fi−1(θ)(Xi − rl(	n, Xi−1, θ0))
k P0−→
n→∞

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, j = 1, k = 1,∫
f (θ, x)c(β0, x)π0(dx), j = 1, k = 2,∫
f (θ, x)R(θ, 1, x)π0(dx), j = 2, k = 3,

0, j = 1, k = 4,

3
∫

f (θ, x)c2(β0, x)π0(dx), j = 2, k = 4,

uniformly in θ .

Proof The cases j = 1, k = 1 and j = 1, k = 2 coincide with Lemma 9 and Lemma 10
in Kessler (1997) and then we use the same approach to show that remaining convergences
hold true.

By setting

ζ n
i (θ) := 1

n	2
n
fi−1(θ)(Xi − rl(	n, Xi−1, θ0))

3,

we prove that the convergence holds for all θ. By taking into account Lemma 2 and Lemma
4

Ei−1
0

[
ζ n
i (θ)

] = 1

n

n∑

i=1

fi−1(θ)R(θ, 1, Xi−1)
P0−→

n→∞

∫
f (θ, x)R(θ, 1, x)π0(dx),

Ei−1
0

[(
ζ n
i (θ)

)2] = 1

n2	n

n∑

i=1

[5 · 3c3i−1(β0) + R(θ, 1, Xi−1)] P0−→
n→∞ 0.

Therefore by Lemma 3 we can conclude that

ζ n
i (θ)

P0−→
n→∞

∫
f (θ, x)R(θ, 1, x)π0(dx),
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for all θ. For the uniformity it is sufficient to prove the tightness of the sequence of random
elements

Yn(θ) := 1

n

n∑

i=1

fi−1(θ)(Xi − rl(	n, Xi−1, θ0))
3

	2
n

taking values in theBanach spaceC(�) endowedwith the sup-norm ||·||∞.From the assump-
tions of lemma follows that supn E0[supθ∈� |∂θYn(θ)|] < ∞ which implies the tightness of
Yn(θ) for the criterion given by Theorem 16.5 in Kallenberg (2001).

By setting

ζ n
i (θ) := 1

n	2
n
fi−1(θ)(Xi − rl(	n, Xi−1, θ0))

4,

we prove that the convergence holds for all θ. By taking into account Lemmas 2 and 4

Ei−1
0

[
ζ n
i (θ)

] = 1

n

n∑

i=1

fi−1(θ)
[
3c2i−1(β0) + R(θ,	n, Xi−1)

] P0−→
n→∞

3
∫

f (θ, x)c2(β0, x)π0(dx),

Ei−1
0

[(
ζ n
i (θ)

)2] = 1

n2

n∑

i=1

[
7 · 5 · 3c4i−1(β0) + R(θ,	n, Xi−1)

] P0−→
n→∞ 0.

Therefore by Lemma 3 we get the pointwise convergence. For the uniformity of the conver-
gence we proceed as done above. ��

Before to proceed with the proofs of the main theorems of the paper, we introduce some
useful quantities coincidingwith (4.2)−(4.8) appearing inKessler (1997).We canwrite down

lp,i (θ) − lp,i (θ0) = ϕi,1(θ, θ0) + ϕi,2(θ, θ0) + ϕi,3(θ, θ0) + ϕi,4(θ, θ0), (6.15)

where

ϕi,1(θ, θ0) := (Xi − rk0(	n, Xi−1, θ0))
2

2	n

⎧
⎨

⎩
1 +∑k0

j=1 	
j
nd j (θ, Xi−1)

ci−1(β)

−1 +∑k0
j=1 	

j
nd j (θ0, Xi−1)

ci−1(β0)

⎫
⎬

⎭ ,

ϕi,2(θ, θ0) := (Xi − rk0(	n, Xi−1, θ0))(rk0(	n, Xi−1, θ0) − rk0(	n, Xi−1, θ))

	nci−1(β)

×
⎧
⎨

⎩1 +
k0∑

j=1

	
j
nd j (θ, Xi−1)

⎫
⎬

⎭ ,

ϕi,3(θ, θ0) := (rk0(	n, Xi−1, θ0) − rk0(	n, Xi−1, θ))2

2	nci−1(β)

⎧
⎨

⎩1 +
k0∑

j=1

	
j
nd j (θ, Xi−1)

⎫
⎬

⎭ ,

ϕi,4(θ, θ0) := 1

2
log

(
ci−1(β)

ci−1(β0)

)
+ 1

2

k0∑

j=1

	
j
n(e j (θ, Xi−1) − e j (θ0, Xi−1)).
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Furthermore

∂αhlp,i (θ) = ηhi,1(θ) + ηhi,2(θ), h = 1, 2, . . . ,m1, (6.16)

where

ηhi,1(θ) := −(∂αh rk0(	n, Xi−1, θ))(Xi − rk0(	n, Xi−1, θ))

{
1 +∑k0

j=1 	
j
nd j (θ, Xi−1)

}

	nci−1(β)
,

ηhi,2(θ) := (Xi − rk0(	n, Xi−1, θ))2

∑k0
j=1 	

j
n∂αhd j (θ, Xi−1)

2	nci−1(β)
+ 1

2

k0∑

j=1

	
j
n∂αh e j (θ, Xi−1),

and

∂βklp,i (θ) = ξ ki,1(θ) + ξ ki,2(θ) + ξ ki,3(θ), k = 1, 2, . . . ,m2, (6.17)

where

ξki,1(θ) := (Xi − rk0 (	n, Xi−1, θ))2

2	nci−1(β)

⎧
⎨

⎩

k0∑

j=1

	
j
n∂βk d j (θ, Xi−1)

⎫
⎬

⎭+ 1

2

k0∑

j=1

	
j
n∂βk e j (θ, Xi−1),

ξki,2(θ) := − (Xi − rk0 (	n, Xi−1, θ))2∂βk ci−1(β)

2	nc2i−1(β)

⎧
⎨

⎩1 +
k0∑

j=1

	
j
nd j (θ, Xi−1)

⎫
⎬

⎭+ ∂βk ci−1(β)

2ci−1(β)
,

ξki,3(θ) := −(∂βk rk0 (	n, Xi−1, θ))(Xi − rk0 (	n, Xi−1, θ))

{
1 +∑k0

j=1 	
j
nd j (θ, Xi−1)

}

	nci−1(β)
.

From (6.15) it is possible to derive

∂2αhαklp,i (θ) := δ
h,k
i,1 (θ) + δ

h,k
i,2 (θ) + δ

h,k
i,3 (θ) + δ

h,k
i,4 (θ), h, k = 1, 2, . . . ,m1, (6.18)

where

δ
h,k
i,1 (θ) := (Xi − rk0(	n, Xi−1, θ0))

2

2ci−1(β)

{(
∂2αhαkd1

)

i−1
(θ) + R(θ,	n, Xi−1)

}
,

δ
h,k
i,2 (θ) := (Xi − rk0(	n, Xi−1, θ0))

ci−1(β)

{
− ∂2αhαk bi−1(α) + R(θ,	n, Xi−1)

}
,

δ
h,k
i,3 (θ) := 1

2
	n∂

2
αhαk

e1(θ, Xi−1),

δ
h,k
i,4 (θ) := 	n

{
∂2αhαk bi−1(α)(bi−1(α) − bi−1(α0)) + ∂αh bi−1(α)∂αk bi−1(α)

ci−1(β)

+R(θ,	n, Xi−1)} ,

∂2βhβklp,i (θ) := ν
h,k
i,1 (θ) + ν

h,k
i,2 (θ) + ν

h,k
i,3 (θ), h, k = 1, 2, . . . ,m2, (6.19)

where

ν
h,k
i,1 (θ) := (Xi − rk0(	n, Xi−1, θ0))

2

2	n

{(
∂2βhβk c

−1
)

i−1
(β) + R(θ,	n, Xi−1)

}
,

ν
h,k
i,2 (θ) := 1

2
(Xi − rk0(	n, Xi−1, θ0))R(θ, 1, Xi−1)),

ν
h,k
i,3 (θ) := 1

2
(∂2βhβk log c)i−1(β) + R(θ,	n, Xi−1)),
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and

∂2αhβklp,i (θ) := μi,1(θ) + μi,2(θ), h = 1, 2, . . . ,m1, k = 1, 2, . . . ,m2, (6.20)

where

μi,1(θ) := (Xi − rk0(	n, Xi−1, θ0))
2

2	n
R(θ,	n, Xi−1),

μi,2(θ) := (Xi − rk0(	n, Xi−1, θ0))

	n
R(θ,	n, Xi−1) + R(θ,	n, Xi−1).

Proof of Theorem 2 We observe that

Dp,n(θ, θ0) = 1

n

n∑

i=1

⎧
⎨

⎩

4∑

k=1

(ϕi,k(θ, θ0))
2 + 2

∑

j<k

)ϕi, j (θ, θ0)ϕi,k(θ, θ0)

⎫
⎬

⎭ .

Under H0, from Lemmas 2 and 5, we derive

1

n

n∑

i=1

(ϕi,1(θ, θ0))
2 = 1

n

n∑

i=1

[
(Xi − rk0 (	n, Xi−1, θ0))

4

4	2
n

{
1

ci−1(β)
− 1

ci−1(β0)
+ R(θ, 	n, Xi−1)

}2]

= 1

n

n∑

i=1

[
(Xi − rk0 (	n, Xi−1, θ0))

4

4	2
n

{
1

ci−1(β)
− 1

ci−1(β0)

}2]

+ oP0 (1)
P0−→

n→∞
3

4

∫
c2(β0, x)

{
1

c(β, x)
− 1

c(β0, x)

}2
π0(dx)

1

n

n∑

i=1

(ϕi,2(θ, θ0))
2 = 1

n

n∑

i=1

[
(Xi − rk0 (	n, Xi−1, θ0))

2

c2i−1(β0)
[bi−1(α0) − bi−1(α)]2

]
+ oP0 (1)

P0−→
n→∞ 0

1

n

n∑

i=1

(ϕi,3(θ, θ0))
2 = 1

n

n∑

i=1

[
	2

n[bi−1(α0) − bi−1(α)]4
4c2i−1(β)

]
+ oP0 (1)

P0−→
n→∞ 0

1

n

n∑

i=1

(ϕi,4(θ, θ0))
2 = 1

n

n∑

i=1

1

4

[
log

(
ci−1(β)

ci−1(β0)

)]2
+ oP0 (1)

P0−→
n→∞

1

4

∫ [
log

(
c(β, x)

c(β0, x)

)]2
π0(dx)

1

n

n∑

i=1

ϕi,1(θ, θ0)ϕi,4(θ, θ0) = 1

n

n∑

i=1

(Xi − rk0 (	n, Xi−1, θ0))
2

4	n

{
1

ci−1(β)
− 1

ci−1(β0)

}

× log

(
ci−1(β)

ci−1(β0)

)
+ oP0 (1)
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P0−→
n→∞

1

4

∫
c(β0, x)

{
1

c(β, x)
− 1

c(β0, x)

}
log

(
c(β, x)

c(β0, x)

)
π0(dx)

1

n

n∑

i=1

ϕi,1(θ, θ0)ϕi, j (θ, θ0)
P0−→

n→∞ 0, j = 2, 3,

1

n

n∑

i=1

ϕi,2(θ, θ0)ϕi, j (θ, θ0)
P0−→

n→∞ 0, j = 3, 4,

1

n

n∑

i=1

ϕi,3(θ, θ0)ϕi,4(θ, θ0)
P0−→

n→∞ 0,

uniformly in θ. Thus the statement of the theorem immediately follows. ��

Let

Cp,n(θ, θ0) :=
⎛

⎝
1

n	n
[∂2αhαk Tp,n(θ, θ0)]h=1,...,m1

k=1,...,m1

1
n
√

	n
[∂2αhβk Tp,n(θ, θ0)]h=1,...,m1

k=1,...,m2
1

n
√

	n
[∂2αhβk Tp,n(θ, θ0)]h=1,...,m1

k=1,...,m2

1
n [∂2βhβk Tp,n(θ, θ0)]h=1,...,m2

k=1,...,m2

⎞

⎠

(6.21)

where

∂2αhαk Tp,n(θ, θ0) = 2
n∑

i=1

{
∂αhlp,i (θ)∂αklp,i (θ) + [lp,i (θ) − lp,i (θ0)]∂2αhαklp,i (θ)

}
,

(6.22)

∂2βhβk Tp,n(θ, θ0) = 2
n∑

i=1

{
∂βhlp,i (θ)∂βklp,i (θ) + [lp,i (θ) − lp,i (θ0)]∂2βhβklp,i (θ)

}
,

(6.23)

∂2αhβk Tp,n(θ, θ0) = 2
n∑

i=1

{
∂αhlp,i (θ)∂βklp,i (θ) + [lp,i (θ) − lp,i (θ0)]∂2αhβklp,i (θ)

}
.

(6.24)

The following proposition concerning the asymptotic behavior of Cp,n(θ, θ0) plays a
crucial role in the proof of Theorem 3.

Proposition 1 Under H0, assume A1 − A6 and 	n → 0, n	n → ∞, as n → ∞. The
following convergences hold

Cp,n(θ0, θ0)
P0−→

n→∞ 2I (θ0) (6.25)

and

sup
||θ ||≤εn

||Cp,n(θ0 + θ, θ0) − Cp,n(θ0, θ0)|| P0−→
n→∞ 0, εn → 0. (6.26)

Proof of Proposition 1 Westudy the uniformconvergence in probability ofCp,n(θ, θ0).Thus
we prove that uniformly in θ
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Cp,n(θ, θ0)
P0−→

n→∞ 2K (θ, θ0) := 2

(
K1(θ, θ0) + K2(θ, θ0) 0

0 K3(θ, θ0) + K4(θ, θ0)

)

(6.27)

where

K1(θ, θ0) :=
∫

∂αh b(α, x)∂αk b(α, x)

c2(β, x)
c(β0, x)π0(dx),

K2(θ, θ0) := 1

4

∫
∂2αhαk d1(x, θ)

[
c(β0, x)

c(β, x)
− 1

] [
3
c(β0, x)

c(β, x)
+ log

(
c(β, x)

c(β0, x)

)
− 1

]
π0(dx)

+ 1

2

∫ [
∂2αhαk b(α, x)(b(α, x) − b(α0, x)) + ∂αh b(α, x)∂αk b(α, x)

c(β, x)

]

×
[
c(β0, x)

c(β, x)
− 1 + log

(
c(β, x)

c(β0, x)

)]
π0(dx)

+
∫ −∂2αhαk b(α, x)

c(β, x)

×
[
1

2

(
1

c(β0, x)
− 1

c(β, x)

)
R(θ, 1, x) + c(β0, x)

c2(β, x)
(b(α, x) − b(α0, x))

]
π0(dx)

K3(θ, θ0) := 1

2

∫ {
c(β0, x)∂βh c(β, x)∂βk c(β, x)

c3(β, x)

[
3

2

c(β0, x)

c(β, x)
− 1

]

+1

2

∂βh c(β, x)∂βk c(β, x)

c2(β, x)

}
π0(dx),

K4(θ, θ0) := 1

4

∫
c(β0, x)∂

2
βhβk

log c(β, x)

[
1

c(β, x)
− 1

c(β0, x)

]
π0(dx)

+ 1

4

∫
log

(
c(β, x)

c(β0, x)

)
c(β0, x)∂

2
βhβk

c−1(β, x)π0(dx)

+ 1

4

∫
log

(
c(β, x)

c(β0, x)

)
∂2βhβk log c(β, x)π0(dx).

Let us start with the analysis of the quantity 1
n	n

∂2αhαk Tp,n(θ, θ0) given by (6.22) which
can be split in two terms. From (6.16) folllows that

1

n	n

n∑

i=1

∂αhlp,i (θ)∂αklp,i (θ) = 1

n	n

n∑

i=1

(ηhi,1(θ) + ηhi,2(θ))(ηki,1(θ) + ηki,2(θ))

for each θ ∈ �. Since ∂αh rk0(	n, Xi−1, θ) = 	n∂αh bi−1(α) + R(θ,	2
n, Xi−1), by taking

into account Lemma 5, we get

1

n	n

n∑

i=1

∂αhlp,i (θ)∂αklp,i (θ) = 1

n	n

n∑

i=1

ηhi,1(θ)ηki,1(θ) + oP0(1)

= 1

n	n

n∑

i=1

∂αh bi−1(α)∂αk bi−1(α)

c2i−1(β)
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(Xi − rk0(	n, Xi−1, θ))2 + oP0(1)
P0−→

n→∞ K1(θ, θ0) (6.28)

uniformly in θ. Now, by resorting (6.15) and (6.18), we rewrite the second term appearing
in (6.22) as follows

1

n	n

n∑

i=1

[lp,i (θ) − lp,i (θ0)]∂2αhαklp,i (θ) = 1

n	n

n∑

i=1

⎡

⎣
4∑

l=1

4∑

j=1

ϕi,l(θ, θ0)δ
h,k
i, j (θ)

⎤

⎦ .

By applying Lemmas 1 and 5, the following convergence results hold

1

n	n

n∑

i=1

ϕi,1(θ, θ0)δ
h,k
i,1 (θ)

P0−→
n→∞

3

4

∫
∂2αhαkd1(θ, x)

c2(β0, x)

c(β, x)
[

1

c(β, x)
− 1

c(β0, x)

]
π0(dx),

1

n	n

n∑

i=1

ϕi,1(θ, θ0)δ
h,k
i,2 (θ)

P0−→
n→∞

1

2

∫ −∂2αhαk b(α, x)

c(β, x)
[

1

c(β, x)
− 1

c(β0, x)

]
R(θ, 1, x)π0(dx),

1

n	n

n∑

i=1

ϕi,1(θ, θ0)δ
h,k
i,3 (θ)

P0−→
n→∞

1

4

∫
∂2αhαk e1(θ, x)

[
c(β0, x)

c(β, x)
− 1

]
π0(dx),

1

n	n

n∑

i=1

ϕi,1(θ, θ0)δ
h,k
i,4 (θ)

P0−→
n→∞

1

2

∫ [
c(β0, x)

c(β, x)
− 1

]

[
∂2αhαk b(α, x)(b(α, x) − b(α0, x)) + ∂αh b(α, x)∂αk b(α, x)

c(β, x)

]
π0(dx),

1

n	n

n∑

i=1

ϕi,2(θ, θ0)δ
h,k
i,2 (θ)

P0−→
n→∞

∫
c(β0, x)

c2(β, x)
(−∂2αhαk b(α, x))(b(α, x) − b(α0, x))π0(dx),

1

n	n

n∑

i=1

ϕi,4(θ, θ0)δ
h,k
i,1 (θ)

P0−→
n→∞

1

4

∫
log

(
c(β, x)

c(β0, x)

)
c(β0, x)

c(β, x)
∂2αhαkd1(θ, x)π0(dx),

1

n	n

n∑

i=1

ϕi,4(θ, θ0)δ
h,k
i,3 (θ)

P0−→
n→∞

1

4

∫
∂2αhαk e1(θ, x) log

(
c(β, x)

c(β0, x)

)
π0(dx),

1

n	n

n∑

i=1

ϕi,4(θ, θ0)δ
h,k
i,4 (θ)

P0−→
n→∞

1

2

∫
log

(
c(β, x)

c(β0, x)

){
∂2αhαk b(α, x)(b(α, x) − b(α0, x)) + ∂αk b(α, x)∂αh b(α, x)

c(β, x)

}
π0(dx),

1

n	n

n∑

i=1

ϕi,2(θ, θ0)δ
h,k
i, j (θ)

P0−→
n→∞ 0, j = 1, 3, 4,
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1

n	n

n∑

i=1

ϕi,3(θ, θ0)δ
h,k
i, j (θ)

P0−→
n→∞ 0, j = 1, 2, 3, 4,

1

n	n

n∑

i=1

ϕi,4(θ, θ0)δ
h,k
i,2 (θ)

P0−→
n→∞ 0,

uniformly in θ. Finally, since d1(θ, x) = −e1(θ, x), we get

1

n	n

n∑

i=1

[lp,i (θ) − lp,i (θ0)]∂2αhαklp,i (θ)
P0−→

n→∞ K2(θ, θ0). (6.29)

uniformly in θ. Hence, by (6.28) and (6.29), we immediately derive

1

n	n
∂2αhαk Tp,n(θ, θ0)

P0−→
n→∞ 2(K1(θ, θ0) + K2(θ, θ0)) (6.30)

uniformly in θ.

Now, we consider the elements of the matrix Cn,p(θ, θ0) given by (6.23). First, we study
the convergence probability of

1

n

n∑

i=1

∂βhlp,i (θ)∂βklp,i (θ) = 1

n

n∑

i=1

(ξ hi,1(θ)+ ξ hi,2(θ)+ ξ hi,3(θ))(ξ ki,1(θ)+ ξ ki,2(θ)+ ξ ki,3(θ)).

Since ∂βh rk0(	n, Xi−1, θ) = R(θ,	2
n, Xi−1), from Lemmas 5 and 1 we derive

1

n

n∑

i=1

∂βhlp,i (θ)∂βklp,i (θ) = 1

n

n∑

i=1

ξ hi,2(θ)ξ ki,2(θ) + oP0(1)

= 1

n

n∑

i=1

∂βh ci−1(β)∂βk ci−1(β)

4	2
nc

4
i−1(β)

(Xi − rk0(	n, Xi−1, θ))4

+ 1

n

n∑

i=1

∂βh ci−1(β)∂βk ci−1(β)

2	nc3i−1(β)
(Xi − rk0(	n, Xi−1, θ))2

+ 1

n

n∑

i=1

∂βh ci−1(β)∂βk ci−1(β)

4c2i−1(β)
+ oP0(1)

P0−→
n→∞ K3(θ, θ0) (6.31)

uniformly in θ. Now, by resorting (6.15) and (6.19), we rewrite the second term appearing
in (6.23) as follows

1

n

n∑

i=1

[lp,i (θ) − lp,i (θ0)]∂2βhβklp,i (θ) = 1

n

n∑

i=1

⎡

⎣
4∑

k=1

3∑

j=1

ϕi,k(θ, θ0)ν
h,k
i, j (θ)

⎤

⎦ .

By taking into account again Lemmas 1 and 5, the following results yield

1

n

n∑

i=1

ϕi,1(θ, θ0)νi,3(θ)
P0−→

n→∞
1

4

∫
c(β0, x)∂

2
βhβk

log c(β, x)

[
1

c(β, x)
− 1

c(β0, x)

]
π0(dx)

1

n

n∑

i=1

ϕi,4(θ, θ0)νi,1(θ)
P0−→

n→∞
1

4

∫
log

(
c(β, x)

c(β0, x)

)
c(β0, x)∂

2
βhβk

c−1(β, x)π0(dx)
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1

n

n∑

i=1

ϕi,4(θ, θ0)νi,3(θ)
P0−→

n→∞
1

4

∫
log

(
c(β, x)

c(β0, x)

)
∂2βhβk log c(β, x)π0(dx)

1

n

n∑

i=1

ϕi,1(θ, θ0)νi, j (θ)
P0−→

n→∞ 0, j = 1, 2,

1

n

n∑

i=1

ϕi,k(θ, θ0)νi, j (θ)
P0−→

n→∞ 0, k = 2, 3, j = 1, 2, 3,

1

n

n∑

i=1

ϕi,4(θ, θ0)νi,2(θ)
P0−→

n→∞ 0,

uniformly in θ. Finally

1

n

n∑

i=1

[lp,i (θ) − lp,i (θ0)]∂2βhβklp,i (θ)
P0−→

n→∞ K4(θ, θ0) (6.32)

uniformly in θ. Therefore, by (6.31) and (6.32), we get

1

n
∂2βhβk Tp,n(θ, θ0)

P0−→
n→∞ 2(K3(θ, θ0) + K4(θ, θ0)) (6.33)

uniformly in θ.

Recalling the expressions (6.16), (6.17), (6.20) and (6.15), by means of similar arguments
adopted above, it is not hard to prove that

1

n
√

	n

n∑

i=1

∂αhlp,i (θ)∂βklp,i (θ)
P0−→

n→∞ 0

and

1

n
√

	n

n∑

i=1

[lp,i (θ) − lp,i (θ0)]∂2αhβklp,i (θ)
P0−→

n→∞ 0

uniformly in θ. This implies that

1

n
√

	n
∂2αhβk Tp,n(θ, θ0)

P0−→
n→∞ 0 (6.34)

uniformly in θ.

In conclusion the results (6.30), (6.33) and (6.34) lead to the convergence (6.27).Moreover,
(6.27) implies (6.25) since K (θ0, θ0) = I (θ0). From the inequality

sup
||θ ||≤εn

||Cp,n(θ0 + θ, θ0) − Cp,n(θ0, θ0)||

≤ sup
||θ ||≤εn

||Cp,n(θ0 + θ, θ0) − 2K (θ0 + θ, θ0)|| + sup
||θ ||≤εn

||2K (θ0 + θ, θ0) − 2I (θ0)||

+ ||2I (θ0) − Cp,n(θ0, θ0)||

follows (6.26). Indeed, (6.25) leads to ||2I (θ0) − Cp,n(θ0, θ0)|| P0−→
n→∞ 0, εn → 0, while the

term sup||θ ||≤εn
||Cp,n(θ0+θ, θ0)−2K (θ0+θ, θ0)|| P0−→

n→∞ 0, εn → 0, by the uniformity of the

convergence (i.e. by the result (6.27)). Furthermore, sup||θ ||≤εn
||K (θ0+θ, θ0)− I (θ0)|| P0−→

n→∞
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0, εn → 0, because the assumptions A3 and A5, imply that K (θ, θ0) is a continuous function
with respect to θ. ��

Now, we are able to prove Theorem 3.

Proof of Theorem 3 We adopt classical arguments. By Taylor’s formula, we have that

Tp,n(θ̂p,n, θ0) = Tp,n(θ0, θ0) + n∂θTp,n(θ0, θ0)(θ̂p,n − θ0)

+ 1

2
(ϕ(n)−1/2(θ̂n − θ0))

′�p,n(θ̂p,n, θ0))ϕ(n)−1/2(θ̂p,n − θ0)

= 1

2
(ϕ(n)−1/2(θ̂n − θ0))

′�p,n(θ̂p,n, θ0)ϕ(n)−1/2(θ̂n − θ0) (6.35)

where in the last step we denoted by

�p,n(θ̂p,n, θ0) := ϕ(n)1/2
∫ 1

0
(1 − u)∂2θ Tp,n(θ0 + u(θ̂p,n − θ0), θ0)duϕ(n)1/2

=
∫ 1

0
(1 − u)[Cp,n(θ0 + u(θ̂p,n − θ0), θ0) − Cp,n(θ0, θ0)]du + Cp,n(θ0, θ0).

Proposition 1 implies

�p,n(θ̂p,n, θ0)
P0−→

n→∞ 2I (θ0). (6.36)

By taking into account (6.35), (3.16) and (6.36), Slutsky’s theorem allows to conclude the
proof. ��
Proof of Theorem 4 Under H1,n we have that [see Lemma 2 inKitagawa andUchida (2014)]

ϕ(n)−1/2(θ̂p,n − (θ0 + ϕ(n)1/2h))
d−→

n→∞ N (0, I (θ0)
−1).

Therefore, under the hypothesis H1,n

ϕ(n)−1/2(θ̂p,n − θ0) = ϕ(n)−1/2(θ̂p,n − θ) + h
d−→

n→∞ N (h, I (θ0)
−1)

and

Cp,n(θ̂p,n, θ0)
Pθ−→

n→∞ 2I (θ0) (under H1,n).

Hence, from (6.35) we obtain the result (4.7). ��
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