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Abstract We study asymptotic properties of conditional least squares estimators for the
drift parameters of two-factor affine diffusions based on continuous time observations. We
distinguish three cases: subcritical, critical and supercritical. For all the drift parameters, in
the subcritical and supercritical cases, asymptotic normality and asymptotic mixed normality
is proved, while in the critical case, non-standard asymptotic behavior is described.
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1 Introduction

Affine processes are applied in mathematical finance in several models including interest
rate models (e.g. the Cox—Ingersoll-Ross, Vasicek or general affine term structure short rate
models), option pricing (e.g. the Heston model) and credit risk models, see e.g. Duffie et al.
(2003), Filipovi¢ (2009), Baldeaux and Platen (2013), and Alfonsi (2015). In this paper
we consider two-factor affine processes, i.e. affine processes with state-space [0, oo) x R.
Dawson and Li (2006) derived a jump-type stochastic differential equation (SDE) for such
processes. Specializing this result to the diffusion case, i.e. two-factor affine processes without
jumps, we obtain that for every a € [0,00), b,a, B,y € R, o1,02,03 € [0,00) and
o € [—1, 1], the SDE
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dY, = (a — bY,) dr + o1/Y; dW;,

t € [0, 00),
dX; = (@ — BY; — y X;) dt + 02/Y; (0 dW;+/1—02dB;)+o3dL;,

(1.1)

with an arbirary initial value (Yo, Xo) with P(¥Yp € [0,00)) = 1 and independent of a
3-dimensional standard Wiener process (W;, B;, L;):c[0,00), has a pathwise unique strong
solution being a two-factor affine diffusion process, and conversely, every two-factor affine
diffusion process is a pathwise strong solution of a SDE (1.1) with appropriate parameters
a €[0,00), b,a,B,y €R, 01,02,03 € [0,00) and o € [—1, 1], see Proposition 2.1.

The aim of this paper 1s to study the asymptotic properties of the conditional least squares
estimators (CLSE) (ar, bT, or, ﬂr, yr) of the drift parameters (a, b, «, B, ) based on
continuous time observations (Y;, X;);cjo,77 with 7 > 0. This estimator is the high
frequency limit in probability as n — oo of the CLSE based on discrete time observations
(Yi/n» Xk/nkefo,...,nT))>» 1 € N. We do not estimate the parameters o1, 02, 03 and o,
since for all T € (0, 00), they are measurable functions (i.e., statistics) of (¥;, X/)s¢[0,7],
see Appendix C in the extended arXiv version Bolyog and Pap (2017) of this paper. For the
calculation of (@, br, ar, ﬁr, yr) one does not need to know the values of the diffusion
coefficients o1, 02, 03 and g, see (3.4).

The first coordinate process Y in (1.1) is called a Cox—Ingersoll-Ross (CIR) process (see
Cox et al. 1985). In the submodel consisting only of the process Y, (Overbeck and Rydén
1997 Theorems 3.4, 3.5 and 3.6) derived the CLSE of (a,b) based on continuous time
observations (Y;);e[0,77 With T > 0, i.e., the limit in probability as n — oo of the CLSE
based on discrete tlme observations (Yx/u)kefo,...,|n7]}> 7 € N, which turns to be the same
as the CLSE (ar, bT) of (a,b) based on continuous time observations (Y:, X;):e[0,7],
and they proved strong consistency and asymptotic normality in case of a subcritical CIR
process Y, i.e., when b > 0 and the initial distribution is the unique stationary distribution
of the model.

Barczy et al. (2014) considered a submodel of (1.1) with a € (0,00), § =0, o1 =1,
02 =1, 0 =0 and o3 = 0. The estimator of the parameters (¢, y) based on continuous
time observations (X;)sc[0,77 With T > O (which they call a least square estimator) is
in fact the CLSE, i.e., the limit in probability as n — oo of the CLSE based on discrete
time observations (X/n)ke(o,...,(nT]}> # € N, which can be shown by the method of the
proof of Lemma 3.3. They proved strong consistency and asymptotic normality in case of a
subcritical process (Y, X), i.e., when b > 0 and y > 0.

Barczy et al. (2016) considered the so-called Heston model, which is a submodel of (1.1)
with a,o01,02 € (0,00), v =0, o € (—1,1) and o3 = 0. The estimator of the
parameters (a, b, o, B) based on continuous time observations (Y;, X;)se[0,7] With T > 0
(which they call least square estimator) is in fact the CLSE, i.e., the limit in probability
as n — oo of the CLSE based on discrete time observations (Yx/u, Xk/n)kelo, ..., (nT]}
n € N which can be shown by the method of the proof of Lemma 3.3. They proved strong
consistency and asymptotic normality in case of a subcritical process (Y, X), i.e., when
b > 0. Note that Barczy and Pap (2016) studied the maximum likelihood estimator (MLE)
(ar, bT ar, ,BT) of the parameters (a, b, o, ) in this Heston model under the additional

assumption a > %1 In the subcritical case, i.e., when b > 0, for (a7, bT,aT, /37)

of
they proved strong con51sten(2:y and asymptotic normality in case of a > -, and weak
consistency in case of a = %1 In the critical case, namely, if » = 0, under the additional

2 ~ ~
assumption a > 07‘, they showed weak consistency of (ar, by, dr, Br), asymptotic
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normality of (dr, @), and determined the asymptotic behav10r of (ar, br, ar, ﬂr) In the
supercritical case, namely, when b < 0, they showed that by is strongly consistent, Br is
weakly consistent, (bT, ﬁT) is asymptotically mixed normal, and determined the asymptotic
behavior of (ar, br, &r, Br). Barczy et al. (2018a,b) studied the asymptotic behavior of
maximum likelihood estimators for a jump-type Heston model and for the growth rate of a
jump-type CIR process, respectively, based on continuous time observations.

We consider general two-factor affine diffusions (1.1). In the subcritical case, i.e.,
when b > 0 and y > 0, we prove strong consistency and asymptotic normal-
ity of (ar, br.ar, B} yr) under the additional assumptions a > 0, o7 > 0 and
1- 2)02 +a§ > 0. Inaspecial critical case, namely if » = 0 and y = 0, we show weak
consistency of (bT ,BT yr) and determine the asymptotic behavior of (ar, bT, or, ,BT Yr)
under the additional assumptions f = 0 and (1 — 2)02 +o3 > (. Ina special supercritical
case, namely, when y < b < 0, we show strong consistency of br, weak consistency of
(,/B\T yr) and prove asymptotic mixed normality of (ar, br,ar, ET, yr) under the addi-

2
tional assumptions of < 0, o1 > 0, and either o3 > 0, or (a — —1)(1 —Q2)0'22 > 0. Note
that we decided to deal with the CLSE of (a, b, «, B, ), since the MLE of (a, b, «, B, y)
. T X . . .
contains, for example, W dr, and the question of the asymptotic behavior of
this integral as 7 — oo is still open in the critical and supercritical cases. For the sake of
brevity of the paper some simple proofs and calculation steps are omitted. However, all these

details are included in the extended arXiv version Bolyog and Pap (2017) of this paper.

2 The affine two-factor model

LetN, Zy, R, Ry, Ry4, R_, R__ and C denote the sets of positive integers, non-negative
integers, real numbers, non-negative real numbers, positive real numbers, non-positive real
numbers, negative real numbers and complex numbers, respectively. For x, y € R, we will
use the notations x A y := min(x,y) and x V y := max(x, y). By CCZ(R+ x R, R),
we denote the set of twice continuously differentiable real-valued functions on Ry x R
with compact support. Let (£2, F,[P) be a probability space equipped with the augmented
filtration (F;);er, corresponding to (W;, By, L;);cr, and a given initial value (19, &o)
being independent of (W;, By, L;);er, such that P(no € Ry) = 1, constructed as in
Karatzas and Shreve (1991, Sect. 5.2). Note that (F;),er, satisfies the usual conditions,
i.e., the filtration (F;);er, is right-continuous and Fy contains all the P-null sets in F.
We will denote the convergence in distribution, convergence in probability, almost surely

convergence and equality in distribution by 3), l, 2% and 2, respectively. By ||x||
and ||A|l, we denote the Euclidean norm of a vector x € R? and the spectral norm of
amatrix A € R¥*¢, respectively. By I; € R?*?, we denote the d x d unit matrix.
For square matrices Aj, ..., Ay, diag(Ai, ..., Ax) will denote the square block matrix
containing the matrices Ay, ..., Ag in its diagonal.

The next proposition is about the existence and uniqueness of a strong solution of the SDE
(1.1), see Bolyog and Pap (2016, Proposition 2.2).

Proposition 2.1 Let (1o, §o) be a random vectorindependent of the process (W, By, Lt)reRr
satisfying P(no € Ry) = 1. Then forall a € Ry, b,a,B,y € R, 01,002,035 € Ry,
o € [=1,1], there is a (pathwise) unique strong solution (Y;, X;);er, of the SDE (1.1)
such that P((Yo, Xo) = (no,&)) =1 and P(Y; € Ry for allt € Ry) = 1. Further, for
all s,t €e Ry with s <'t, we have
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t t
Yy =e VY +a / e P du + oy / e Py, dw, 2.1)

N A

and

t
X, =e 709, +/ e 7" (a — BY,) du
, s ) (2.2)
+02/ e 7 /Y, (0dW, + /1 — 02dB,) +cr3/ e V=W dr,.
N s

Moreover, (Y;, X;)1er, is a two-factor affine process with infinitesimal generator
A x) ), x) = (@ —=by) f{(y, x) + (@ = By — yx) fr(y, )

1
+ Ey[alzfl/fl (v, x) + 200102 f{ 5 (. x) + Uzzfz/fz()h 1] (2.3)

1
+ Eaffﬁfz(y,xx

where (y,x) € Ry xR, f €C?(Ry xR, R), and f!, i € (1,2}, and fl{/j, i, je{l,?2},
denote the first and second order partial derivatives of f with respect to its i-th and i-th
and j-th variables.

Conversely, every two-factor affine diffusion process is a (pathwise) unique strong solution
of a SDE (1.1) with suitable parameters a € Ry, b,a,B,y € R, 01,02,03 € Ry and
o€l[—1,1]

The next proposition gives the asymptotic behavior of the first moment of the process
(Y7, Xt)rer, as t — oo, see Bolyog and Pap (2016, Prop. 2.3).

Proposition 2.2 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
b,a,B,y €R, o1,02,03 € Ry, 0 € [—1, 1]. Suppose that E(Yy|Xo|) < oo.

@) If b,y € Ryy then limi oo B(Y)) = 4 and lim; oo BE(X,) = & — %
(i) If b € Ryy and y =0 then limy_oo E(Y,) = & and limy— oot 'E(X,) = & — 2.

(i) If b=0 and y € Ry then lim;_, t~E(Y}) = a and lim;_, o t_IIE(X,) = —”7.

(iv) If b=y =0 then lim;_,oot"'E(Y;) = a and lim,_, ot *E(X;) = —3ap.

(V) Otherwise, there exists ¢ € Ry, such that lim; ,.oe “E(Y;) € R or
lim,_wo eiCtE(Yt) e R

Based on the asymptotic behavior of the first moment of the process (Y7, X;);cr, as
t — 0o, we can classify two-factor affine diffusions in the following way.

Definition 2.3 Let (Y;, X;);cgr, be the unique strong solution of the SDE (1.1) satisfying
P(Yp € Ry) = 1. Wecall (Y, X;);cr, subcritical, critical or supercritical if bAy € Ry 4,
bAy =0 or bAy eR__, respectively.

3 CLSE based on continuous time observations
Overbeck and Rydén (1997) investigated the CIR process Y, and foreach T € R, they
defined a CLSE (ar, br) of (a, b) based on continuous time observations (¥;);e[0.7] as the

limit in probability of the CLSE (ar ,, ET, ) of (a,b) based on discrete time observations
(Y%)ie{o,l,“.,n} as n — oo.

@ Springer



Stat Inference Stoch Process (2019) 22:41-75 45

We consider a two-factor affine diffusion process (Y;, X;);er, givenin (1.1) with known
o1 € Ryy, op,03 € Ry and o € [—1, 1], and with a random initial value (7o, ¢o)
independent of (W;, B;, L;),er, satisfying P(50 € Ry) = 1, and we will consider
0 =(a,b,a,p, y)T e Ry x R* asa parameter. The aim of the following discussion is to
construct a CLSE of @ based on continuous time observations (Y;, X;)se[0,7] With some
T e R++. N

Let us recall the CLSE 607, of 6 Dbased on discrete time observations (Y,

Xi)iefo,1,..,|nT)y With some n € N, which can be obtained by solving the extremurfn
problem

GTn = arg min Z |:<Yl —IE(YI

#cRS i=1

o)) (s -5(s )]

By (2.1) and (2.2), together with Proposition 3.2.10 in Karatzas and Shreve (1991), for all
i € N, we obtain

1

E(YL |.7:g> :engd —I—a/n e P qu
n n n O

and
1
E(XL |f,71) —e i Xia +a/ e " dw — BY; / r=bw=3 qu
n n n 0 0
% w
—ap e”w’%</ g Pw—v) dv)d
0 0
Consequently,
~ LT} 2
0r,=  argmin Z[(Yi —Yi — (C—de))
(a,b,a,B,7)TeRS ;4 " " "
2
—l—(XL X — (5—8Y, L= X 1)) ] G.1)
where
(Cv dv (Sa 8» {) = (Cl‘l(a5 b)a dn(b)v Sn(aa ba a; ﬁv y)5 Sn(b9 ﬂ? J/)5 {n()’)) = gl‘t(aa bs as ﬁ’ y)
(3.2)
with

1

" —bw -
c:=cyla,b) ::a/ e dw, d:=d,(b):=1—¢e"n,
0

L L w
8 :=8,(a,b,a B,y) = a/ eV dw — aﬁ/ eV W (/ e~bw—v) dv)dw
0 0 0

1
e = en(b. B.y) = ﬁ/ T dw, ¢ = ga(y) =1 e
0

Since the function g, : RS — Rx (=00, 1) x R? x (—o00, 1) is bijective, first we determine
the CLSE (Cr.4, d7 0, BT s €T ;T n) of the transformed parameters (c,d,§,¢&,¢) by
minimizing the sum on the right-hand side of (3.1) with respect to (c,d, §, €, {). We have
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~ -~ 2
(CT,n’dT,n) = argmin Z(YL — Yd — (C-dYﬂ)) s
(c.d)TeRrR? ;257 " " "
~ LT} 2
(ZS\T’,,,?T,,,,Q,”): arg min Xi—Xi-1 — (S—SYL 1 —¢Xia 1)) ,
(8,6,0)TeR3 ;1 "

|nT]

hence, similarly as on page 675 in Barczy et al. (2013), we get

~ 5T.n
<r. 0 () = @ @
[ET Z:I = (FT,n) Prns T | = (FT,n) Pron 3.3)
' gT,n
with
i [nT)
[nT] - Z Yioi Yr — Yo
ro o ._ 0 M )
Th = [nT] I_nTj Prn =1 (Y- vy
- Zl Yi;] Z Y i=1 ﬁ ln IT
1=
B LnTJ |nT) =
nT| SR W o
n i—1 n
@ L] ) )
FT,n = | — Z:l Yi;l Z Y Z:l YIZIX% s
[T ) Y
-2 X ) YiuXia 3y X2,
L i=1 n i=1 n n i=1 o i
B XLnTj - XO
[nT]
Prn = =1 " n n
[nT]
-y (XL _ X,,l)xd
- l:l n n n

on the event where the random matrices I' (T])n and I (TZ)n are invertible.

Lemma 3.1 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
b,a,B,y € R, o1 € Ryy, 02,03 € Ry and o € [-1,1] with a random initial
value (no, o) independent of (Wi, By, Ly)ier, satisfying P(no € Ry) = 1. Suppose
that (1 — Q2)02 + 03 > 0. Then for each T € Ryy and n € N, the random matri-

ces T and F()

Tn T,n

(CT n dT n 3T s €T s é‘T n) of (c,d,$,¢,¢) taking the form given in (3.3).

are invertible almost surely, and hence there exists a unique CLSE

A proof can be found in the Arxiv version of this paper Bolyog and Pap (2017).

Remark 3.2 The first order Taylor approximation of g,(a, b, o, B,y) at (0,0,0,0,0) is
%(a, b, a, B, y), hence we obtain the first order Taylor approximations

1
L—]E(Y, | Fit )zyi—yﬂ —f(a—ng),
n n n n n
1
L_E( ,|J-'d)mX —*(a—ﬂyg—VXg)-
n n n n n
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Using these approximations, one can define an approximate CLSE ﬁ*}‘fﬁ’f"" of @ based on

discrete time observations (Y;, X;)ic(o,1,...,|nT]}» 1 € N, by solving the extremum problem

— [nT] 1 5
0szrox = argmin Z I:(Yi —Yia — f(a — bYﬂ))
(a.b,a,B.y)TeRS ;4 " " n "

1 2
+(XL — Xioi —*(Ol—ﬂYi—] —)/Xi—])) ],
n n n n n

hence 63?5“’" = n(Crn, dr.n, 871, 8 m, /{\T’n)—r. This definition of approximate CLSE can
be considered as the definition of LSE given in Hu and Long (2009a, formula (1.2)) for
generalized Ornstein—Uhlenbeck processes driven by «-stable motions, see also Hu and
Long (2009b, formula (3.1)). For a heuristic motivation of the estimator @jppmx based
on discrete observations, see, e.g., Hu and Long (2007, p. 178) (formulated for Langevin

equations). O
We have
r T
e as r —Jo Ysds|
T =bYr
not L~ foT Yy ds foT Y7 ds
i T — fOT Yods — fOT X, ds

I @ as T T T 2

;I‘T*” —Jo Ysds [y YiPds [y XoYeds | = G(T)
T T T

| —Jo Xeds [y X,Yeds [y X2ds

as n — 00, since (¥;, X;);er, is almost surely continuous. By Proposition 1.4.44 in Jacod

and Shiryaev (2003) with the Riemann sequence of deterministic subdivisions (lﬁ A T)
n € N., we obtain

ieN’

Xr —Xo
(1 P Yr—Yy Ee)) @ P T . r @
P 7 | _ Ty ar. | = fr Prn — —Jo YsdXy | = f7,
fO S s T
—Jo XsdX;
as n — oo. By Slutsky’s lemma, using also Lemma 3.1, we conclude
Cron ar
drn (My—1 ¢ br
~ =~ P s —~
B?Erox =n|ér,| — [Eg{z);_lf{z)] =:|or | =107 asn— oo, (3.4)
Ern T T Br
{T.n vr

whenever the random matrices G(Tl) and G(Tz) are invertible.

Lemma 3.3 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
b,a,B,y € R, o1 € Ryy, 02,03 € Ry and o € [—1,1] with a random initial
value (no, {o) independent of (W;, By, L;);er. satisfying P(no € Ry) = 1. Suppose that
a- Q2)022 + 032 > 0. Then for each T € Ry, the random matrices G(Tl) and G(Tz)
are invertible almost surely, and hence ’0\T given in (3.4) exists almost surely. Moreover,

~ P ~
07, — 01 as n — oo.
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Proof A proof of the first statement can be found in the Arxiv version of this paper Bolyog
. ~ P~ .

and Pap (2017). Next we are going to show 07, — 07 as n — oo. The function g,

introduced in (3.2) admits an inverse g, ' : R x (=00, 1) x R? x (=00, 1) — R? satisfying

g (e, d, 8,6,0) =(a,b,a, B, y)

with
b = —nlog(l —d), a= %, y = —nlog(l — ¢),
Jorebw dw
P € §+ap fo eW**(f —Pw=v) dy)dw
= - o =
I er=Dw=1 qy fo” e~ YW dw

Convergence (3.4) yields €11, ZJ\T ,,,S\T n» €T, n,?T n) o0 as n— oo, hence ZZ\T n
(=00, 1) and {T n € ( 00, 1) with probability tending to one as n — oo. Consequently,
&n l(cT ns dT ns BT > ET.ns ;“T n) = 07 n Wwith probability tending to one as n — co. We
have

br, = —nlog(1 — dr ) = ndr ,hi(dr )

with probability tending to one as n — oo, where the continuous function #; : (—o0, 1) —
R is given by

1 .
Iy () = — log(1 —x) ?f x #0,
if x =0.
~ P~ ~ P . ~ P
By (3.4), we have ndr , — br and dr, —> 0, thus we obtain h;(dr ,) — h1(0) =1,
and hence ZT,n L BT as n — oo.
Moreover,

—~ _ CT.n . ner _ nCr n _ nerT n
arp = —1—— =—F— = — = =i
0” e—braw qu n fon e—braw du fO exp{—n bT,nv} dv 2(n T.n)

with probability tending to one as n — oco, where the continuous function %7 : R — R is
given by

1 l—e*
ha(x) = / e Vdv = x %f x* 70,
0 1 if x =0.

We have already showed ZT,n l ZT, yielding n_l’l;T,n ;P> 0, and hence
ha(n~'br.n) —> hy(0) = 1 as n — oco. By (3.4), we have nCr, —> Gr, thus we

PN P <
obtain ar, — dar as n — 0o.
In a similar way,

Pra = —nlog(l = Tr.,) = nCrnh1Cr.n)

with probability tending toone as n — oo. By (3.4), we have nZT,n L yr and ZT,n L 0,

thus we obtain hl(ET,,,) LN h1(0) = 1, and hence 7, LN Yr as n — o0o.
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Further,

~ —~ YT.n
ET n ner € n

ﬂT,n =

[ e@rabraw=Te gy b2 Ora = Pr.)

with probability tending to one as n — oo. We have already showed br n N br and
VI ﬂ) yr, yielding n_l’l;T,,, i) 0 and n_lj’/‘T,n i) 0, and hence ey%n i) 1 and
ha(n= Brop — Trn)) — ha(0) = 1 as n — co. By (3.4), we have 187, —> Pr, thus

o~ P ~
we obtain Br, — Br as n — oo.
Finally,
e o~ Lo Ty e —~ o~ _Pra
6[ ST,,, =+ aT,nﬁT,n fOﬂ eVT’"w n ([0 € b(w—v) dv)dw nST,n + aT,nﬁT,,,e n IT,n
T.n = 1 = 1~
f(); =TT duw ha(n 1VT,n)

with probability tending to one as n — oo, where

1 Wral lbral

1

- w

n ~

It = n/ eyT'”w(/ e bw=v) dv)dw <—e n e n
0 0 n

~ P ~ =~ P -~ -~ P o~ ~ P o
We have already showed ar, — ar, br,, — br, Br, — PBr and yr, — ¥r,

yielding n_lz)\T,,, 2,0 and nPr, LN 0, and hence hy(n~'yr,) LN hy(0) =1,

T P Pral P oral P . . P
en — 1,en —> land e n —> 1, implying I7, — 0 as n — co. By (3.4),
-~ P < o~ P <
we have nér, — or, thus we obtain oy, — a7 as n — oo. ]

Using the SDE (1.1) and Corollary 3.2.20 in Karatzas and Shreve (1991), one can check
that

ﬁT —da
— 1)\— 1
R ET b (G;)) lh;) »
O0r — 0 = or —o | = 12D =G hr 3.5)
Br — B (G7)™ hy
yr —v

on the event where the random matrices G(Tl) and G(Tz) are invertible, where

G(l) 0 h(l)
Gro=| ' o = <TZ> :
0 G; hy
with
(1) AR e ~
hT =01 Y _y dws, hT = =Y (0—2\/Y>sdws+0'3dLs)a
0 s 0 _Xs
where

W i= oWs +./1—02B;, seRy, (3.6)

is a standard Wiener process, independent of L. For details see the Arxiv version of this
paper Bolyog and Pap (2017).
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4 Consistency of CLSE

First we consider the case of subcritical Heston models, i.e., when b € R ;.

Theorem 4.1 Let us consider the two-factor affine diffusion model (1.1) with a,b € R4,
a,BeR, yeRy, o1 € Riy, 02,03 € Ry and o € [—1, 1] with a random initial
value (1o, o) independent of (W;, By, Lt)ier, satisfying P(no € Ry) = 1. Suppose that
a1 - Q2)022 + 032 > 0. Then the CLSE of 0 = (a,b,a, B, y)" is strongly consistent, i.e.,

57' = (ﬁT,ET,&‘T,ET, ?T)T 2) 6= (a,b,a,ﬁ, )/)—r as T — oo.

Proof By (3.5), we have R
0r —0 =(T"'Gr) " (T""hy) (4.1)

on the event, where the random matrix Gr 1is invertible, which has propapility 1, see
Lemma 3.3.
By Theorem A.2, we obtain

T7'Gr 25 E(Gs) as T — oo, 4.2)
where
G G 0
= 4.3
00 0 GO 4.3)
with
Ly 1 Yo —Xu
G&) = |:—Y YZOO:I s Gg? = | Y Yozo YooXoo | s
o0 00

~Xoo YooXoo X2

where the random vector (Yoo, Xoo) is given by Theorem A.1, since, by Theorem B.2, the
entries of [E(G ) exist and finite.
The matrix E(Géé)) is strictly positive definite, since for all x € R?\ {0}, we have

xTE(GV)x > 0. Indeed, forall x = (x1,x2) T € R2\ {0},

T
X1 Dy | *1 2
|:x2] E(G)) |:x2] =E[(x1 —x2Yx0)?] > 0,
since, by Theorem A.2, the distribution of Y, is absolutely continuous, hence x; —xYo #
0 with probability 1. In a similar way, the matrix IE(G(()%)) is strictly positive definite, since
forall x € R3\{0}, wehave x TE(GZ)x > 0. Indeed, forall x = (x1, x2, x3) | € R3\{0},

X1 T X1
x| EGD) | x| =E[(x1 — x2¥0 — ¥3Z00)*] > 0,
X3 X3

since, by Theorem A.2, the distribution of (Y, Xoo) is absolutely continuous, hence
X1 — x2Y00 — x3Xoo # 0 with probability 1. Thus the matrices E(G(OL)) and E(G(o?) are
invertible, whence we conclude

[E(GE)]! 0

-1 _1 as.
(r—6n _’[ 0 [EGY)!

:| =[EGu)]™! as T — o00. (4.4
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The aim of the next discussion is to show convergence

T hy 250 as T — . 4.5)

We have

1 (7 17 T Y, dW.
—/ \/YSdWs:—/ sts-wgo as T — oo.
T Jo T Jo Jo Ysds

Indeed, we have already proved
1 T a.s. a
— Yjds — E(Y) = - € Ry  as T — oo,
T Jo b

and the strong law of large numbers for continuous local martingales (see, e.g., Theorem
C.1) implies

Jy Y5 dWy o,

T — 0 as T — oo,
Jo Ysds
since we have
T 1 T a.s.
/sts:T-—/ Yods — o0  as T — oo.
0 T Jo

Further,

fOT(UZ\/stWv +o3dLy) ﬁ)o

1 /T ~ 1T, 5
— (02 Y dWs +03dLs) = — / (05 Y5 +03)ds -
T Jo o YT Jo ©@3Ys +03)ds

as T — oo. Indeed, we have already proved
LT, 2 a.s, 2 2 24 2
T (ozYs+a3)ds—>E(02Yoo+o3)=azz+a3 eRy  as T — oo,
0

and the strong law of large numbers for continuous local martingales (see, e.g., Theorem
C.1) implies
foT (02vYs dWs +o03dLs) as,
T 5 —>0 as T — oo,
Jo (05Ys +05)ds

since we have
r 2 2 1 T 2 2 a.s.
/ (05Ys +03)ds = T?/ (05Ys+03)ds — o0 as T — oo.
0 0
One can check
1 r a.s. 1 T ~ a.s.
T Yo/ Y, dWy — 0, T Ys(02/ Yy AWy + 03dLs) — 0,
0 0
1 r i a.s.
T X (023 Yy dWs +03dLg) — 0
0
as T — oo in the same way, since
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1 T

?/0 Yids 25 E(YD) e Ryy,

1 ! 2,2 2 a.s, 2.2 2

7, Y{(03Y +03)ds — E[Y](05Ys + 03)] € Ryy,
1

T
T / X2(02Ys + 03 ds =5 E[X2(03Y, +07)] € Ry
0

as T — oo. Consequently, we conclude (4.5). Finally, by (4.4) and (4.5), we obtain the
statement. O

In order to handle supercritical two-factor affine diffusion models when b € R__, we
need the following integral version of the Toeplitz Lemma, due to Dietz and Kutoyants
(1997).

Lemmad4.2 Let {¢r : T € Ry} be a family of probability measures on R, such that
or([0,T]) =1 forall T € Ry, and limr_ o ¢7([0, K]) =0 forall K € Ry;. Then
for every bounded and measurable function f : Ry — R for which the limit f(co) =
lim;, o f(t) exists, we have

o0
lim / J (@) er(dr) = f(o0).
T—o0 Jo
As a special case, we have the following integral version of the Kronecker Lemma, see

Kiichler and Sgrensen (1997, Lemma B.3.2).

Lemmad4.3 Let a : Ry — Ry be a measurable function. Put b(T) := fOTa(t) dt,
T € Ry. Suppose that limr_, o, b(T) = oo. Then for every bounded and measurable
function f :Ry — R for which the limit f(00) := lim;_, f(t) exists, we have

1 T
lim —— 1) f(t)dt = f(00).
Jim oo [ a0 81 = f(o0)
Next we present an auxiliary lemma in the supercritical case on the asymptotic behavior

of Y; as t — oo.

Lemma 4.4 Let us consider the two-factor affine diffusion model (1.1) with a € Ry, b €
R__, a,B,y €R, o01,02,03 € R} and o € [—1, 1] with a random initial value (no, ¢o)
independent of (Wy, By, Ly)ier, satisfying P(no € Ry) = 1. Then there exists a random
variable Vy such that
Y, 5 vy as t - oo (4.6)
with P(Vy # 0) = 1, and, for each k € N,
wi [k as. Vi
e’/ Y du — ———  as t — oo. 4.7)
0 kb
Proof By (2.1),

t
E(Y, | F) =EY, | Y,) =e P09y, + a/ o—bt—1) 4,
S

forall s, € Ry with 0 <s <. Thus

t
EEy, | FV) = ePy, +a/ eP duy > Py,
s
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forall s, € Ry with 0 < s <, consequently, the process € Y)er . 1s anon-negative
submartingale with respect to the filtration (}' )ier, . Moreover, b € R__ implies
t o0
bt bu bu a
E(e Yt)=yo+a/e dugyg—l—a/ e du=yo—g<oo, teRy,
0 0

hence, by the submartingale convergence theorem, there exists a non-negative random vari-
able Vy such that (4.6) holds.

The distribution of Vy coincides with the distribution of 37,1 /b» Where (f,) teR, 1sa
CIR process given by the SDE

dY, = adt + 01/ Y dW,, 1 €Ry,

with initial value yo = yo, where OW;);er, is a standard Wiener process, see Ben Alaya
and Kebaier (2012, Proposition 3). Consequently, P(Vy € R4 ;) = 1, since y,, teRyy,
are absolutely continuous random variables.

If w € 2 suchthat Ry > ¢ — Y;(w) is continuous and e’Y,(w) > Vy(w) as t — oo,
then, by the integral Kronecker Lemma 4.3 with f (1) = ek’ Y,(w)f and a(t) = e %,
t € Ry, we have

1 t
—_— / e kbt (ekbty, ()*) du — Vy(@)f  as 1 — oo.
Jiekbu dy Jo
—kb .
Here fot e kbu qy = —%, t € Ry, thus we conclude the second convergence in (4.7).
O

The next theorem states strong consistency of the CLSE of b in the supercritical case.

Theorem 4.5 Let us consider the two-factor affine diffusion model (1.1) with a € R,
beR__, o,B,y €R, o1 e Ry, 02,03 € Ry and ¢ € [—1, 1] with a random initial
value (no, o) independent of (W;, By, Li)ier, satisfying P(no € Ry) = 1. Then the

CLSE of b is strongly consistent, i.e., ZT 2 bas T — .

Proof By Lemma 3.3, there exists a unique CLSE ET of b forall T € Ry which has
the form given in (3.4). By Ito’s formula,

T 1 1 T
/ YodYs = ~ (Y7 — Y3 — 7(712/ Yods, T eRy,
0 2 2 " Jo
hence, by (4.6) and (4.7), we have
Yr — Yo) fo Yy ds — Tfo Y dY;

br =
T [y Y2ds—(fy Y, ds)*
(Y =Yo) fy Yeds = T2 =¥+ Tob [ Yids
T f7 v2ds — () vyds)
_ %(ebT Yr — ehT YO)( bT fO Y dS) ( 2bT Y2 ZhT Y2) + %0126177' (ebT .fOT YS dS)
e2bT fo Y2ds — %(ebT fo Y ds)
as 0(vy — O)( ) l(V2 —-0)+ %0120( ) —b
2
o)
as T — oo. O
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Remark 4.6 For critical two-factor affine diffusion models, it will turn out that the CLSE
of a and « are not even weakly consistent, but the CLSE of b, 8 and y are weakly
consistent, see Theorem 6.2. O

Remark 4.7 For supercritical two-factor affine diffusion models, it will turn out that the
CLSE of a and « are not even weakly consistent, but the CLSE of § and y are weakly
consistent, see Theorem 7.3. O

S Asymptotic behavior of CLSE: subcritical case

Theorem 5.1 Let us consider the two-factor affine diffusion model (1.1) with a,b € R4,
a,B€eR, yeRy, o1 € Riy, 02,03 € Ry and o € [—1, 1] with a random initial
value (1o, o) independent of (W, By, Lt)ier,. satisfying P(no € Ry) = 1. Suppose that
a1 - 92)022 + 032 > 0. Then the CLSE of 0 = (a,b,a, B,y)" is asymptotically normal,
namely,

T2@r —0) 2> N5, [E(Goo)] "E(Go)[E(G)™")  as T — 00,  (5.1)
where G is given in (4.3) and 500 has the form
i aleoo —orlego 00102Y —Q010’2Ygo —00102Y50 X0
—oi Y3, oty —00102Y2, 0010273, 00102Y2, Xoo
00102Y00 —00] UZYOZO 022YOO + 032 —(crzzYOo + (732)Yoc —(crzzYOO + (732)Xoo R
—QolazYozc QO'102Y030 —(<722YOo -1—032)YOo (<722YOo +032)Y020 (022YC><> —|—¢732)Y00XOc
| —00102Y00 X o0 00102Y2 Xoo —(07 Yoo + 09) Xoo (07Yoo + 09 Yo Xoo  (03Yso +01)X% |

where the random vector (Yoo, Xo) is given by Theorem A.1.

Proof By (3.5), we have
T2@r —0) = (T~'Gr) (T~ 2hy) (5.2)

on the event where Gr is invertible, which holds almost surely, see Lemma 3.3. We have
a.s.

T7'Gr)™!' 25 [E(G)] L as T — oo by (4.4). The process (ht),eﬁ]g+ is a 5-dimensional
continuous local martingale with quadratic variation process (h); = G;, t € R, where

(rleS —012 YS2 00102Y —00102 YS2 —00102Y X
—012 YS2 oles3 —001 azYs2 00102 YS3 00102 YSZXS
6, = /f 00102Y; —QO‘]O’zYSZ (722){Y + 632 —(022YS +0'32)YS —(O'ZZYS +a32)Xs ds.
' —00102Y]  00102Y]  —(05Ys +03)Ys (03Ys +0DY] (07Ys + 0DV X
| —00102Ys X 00102Y2 X —(03Ys + 0D X (03Ys + 0DV Xy (07Ys +0)X? |

By Theorem A.2, we obtain
T_I(N;T 2% E(éoo) as T — oo, (5.3)

since, by Theorem B.2, the entries of E(ém) exist and finite. Using (5.3), Theorem C.2
yields T’%hr 2) N5(0, E(aoo)) as T — oo. Hence, by (5.2) and by Slutsky’s lemma,

T2@r —0) 2> [E(Goo)] ™' N5(0, E(Goo)) = N5 (0, [E(Goo)] ™ E(Goo) ([E(Goo)] ™) )
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as T — oo. [}

6 Asymptotic behavior of CLSE: critical case

First we present an auxiliary lemma. A proof can be found in the Arxiv version of this paper
Bolyog and Pap (2017).

Lemma 6.1 If (Y, X);er, and (5/}, )E),enh are continuous semimartingales such that
’D ~ ~
Vs, X)ier, = (Vrs X)ier,, then

1 1
(y],)c],/ Xsdys,/ VExtds ikt e Zy k+¢ <n>
0 0
D (e ~ [~ 1
= (yl,xl,/ Xsdys,/ VX ds kb e Zy k+ €< n)
0 0
foreach n € N.
Theorem 6.2 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
b=0, aeR =0 y =0 o1,00,03 € Ry and o € [—1, 1] with a random initial

value (no, So) independent of (Wr, By, Lt):er, satisfying P(no € Ry) = 1. Suppose that
(11— Q2)0'22 + 032 > 0. Then

T -1 _
a4 fol[l][l]ds 1~y2 . U‘; 1
Thr 5 Vs || =Vs -V + (a + 7‘) fO Vs ds
or —a| — 1 177 - X —«
g I [—y} {—y} as | [ =91+ @t gor0n) fy Vs + [ x4,
! —ed L SR o fy Xds +F fy Vids
6.1)
as T — oo, where (Vi, Xi)ier, is the unique strong solution of the SDE
dyt =adt +Ulvyt dW[,
t € [0, 00), (6.2)
!dXt =adr +02/Vs (0dW; + /1 — 0?dBy),

with initial value (), Xp) = (0, 0).

Proof By (3.5), we have

ar —a 1 Ol[ar—a
| = | =diag(1, TH(GY) 'Y
TbT 0 T T

(diag(T~2, T=2)GY diag(T~2, 772)) " diag(T ™", T"2)A{"

T -1 I
1 —h [y Yeds a vy dw,

- 1 T 1 T 2 3
—77 Jo Ysds Ffo YZds _% OT Y2 dw,
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In a similar way,

T T
- 1 —25 fo Yeds =25 f§ Xds
o
by r , ,
TBr | =|—g:Jo Ysds g5 [y Y7ds g5 [y YsXods
Tyr

T T T
—% Jo Xsds %fo Yo X, ds %fo X2ds
rol
F o Y& dWs+ F Ly

x Tyd A, -

- VY, dLy

T2

TyZX, di, — 2 [T X, dL,

T2 T2

The aim of the following discussion is to prove

( Yr, X7, 7 77 J X, dys, TMH [ YExtds k€ e Zy k+t< )

2> (yl,xl,fo‘ XAV, fy VEXEds ik L€ Zy k4L < 2) (63)
as T — oo. By part (ii) of Remark 2.7 in Barczy et al. (2013), we have
Y~ Ly D
( t(T), Xt(T))t€R+ ( yTt, ) 1R, = (:)/,, XI)IER+ forall T € R++,
since, by Proposition 2.1, (), X1);er, is an affine process with infinitesimal generator
(A.x) (. x) = af{(y.x) +afy(y,x)
1
+ Ey[fflszfl (. X) + 200102 f{'5 (v, X) + 03 3, (v, x)].
Hence, by Lemma 6.1, we obtain
1 1
(yl,xl,/ Xxdys,/ Vexlds ikt eZy k+< 2)
0 0

1 1
<y(r) 0, / O dySm’/ GOV (D) ds kot € Tk +0 < 2)
0 0

1 1 I 1 g
=(;yr,;xr,ﬁ/0 Xsdys,mfo yf?ﬁfds:k,zez+,k+z<2)

forall T € R4y. Then, by Slutsky’s lemma, in order to prove (6.3), it suffices to show the
convergences

1 P 1 P
?(YT -JYr) — 0, ?(XT - 1) — 0, (6.4)
1 T r P 1 r kol kol P
ﬁ ) Xdes_ ) ngyy —)0, m 0 (YXXS_ySXS)dS—)O
(6.5)
as T — oo forall k,¢ € Z with k+ ¢ < 2. By (3.21) in Barczy et al. (2013), we have
E(Yy — Vs) <E(Yo), seRy, (6.6)
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hence

1
E()?(YT -JYr)

£
as T — oo, implying IT(YT —-Yr) L0 and %fOT(Ys — Y, ds Looas T > 00,
i.e., the first convergence in (6.4) and the second convergence in (6.5) for (k, £) = (1, 0).

Asin (3.23)inBarczy etal. (2013), we have E(|X;—X;|) < E(|Xo))+,/(07E(Yo) + 07)s
for all s € R4, hence

1
< =E(Y, 0,
> T (Yo) —

1 (7 !
) < s [ B0 - vias < 2By 0,

1 T
ﬁ /0 Yy — Ys)ds

sup E(|Xs — &) =O(T?) as T — oo, 6.7)
s€[0,T]
thus
E(|1Lxr—2m) =L ord) = 0
— — = — —>
T T T T 5

1 T 1
—/ O(T2)ds
0

T2

1 (T 1 [T
El|— X, — X, <— | E(X, - X, =
(‘TQ/O (X, A)ds> TZ/O ( [)ds

1 3
:ﬁ O(Tz) — 0,

as T — oo, implying %(XT — X7) 2,0 and %fOT(XS — X,)ds Pooas 7> 00,
i.e., the second convergence in (6.4) and the second convergence in (6.5) for (k, £) = (0, 1).

As in (3.25) in Barczy et al. (2013), we have E[(Ys — ,)?] < 2E(Y7) + 250 7E(Yp) for
all s € Ry, hence

sup E[(Ys — V)’ 1=0O(T) as T — oc. (6.8)
s€[0,T]

By Proposition B.1, E(Y2) = E(Y2) + (2a + 02)(E(Yo)s +a%) forall s € R, hence

sup E(Y2) =0(T?) as T — oo, (6.9)
s€[0,T]

and supse[O,T]E(ysz) =O(T?) as T — oco. We have

E(|Y2 = Y2]) = E(|(Ys — Vo) (Ys + V) < VEI(Ys — V)2 IE[(Ys + V)2
< 2B, - YOIEXD) +EQ2),

yielding

sup E(1Y2 = )2)) = V20(T)(O(T2) + O(T2) = O(T3) as T — oo,
s€[0,T]

thus

L 2 2 L 3
<3 BUX -YDds =5 | OT2)ds

E I/T(YQ—Jﬂ)d
T3 0 K K S

1 5
= 750(T%) >0,
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as T — oo, implying % fOT(Yf—yf) ds N 0 as T — oo, i.e., the second convergence
in (6.5) for (k, £) = (2,0).
In a similar way, E[(X; — X;)?] < 2E(X3) + 25(07E(Yo) + o) forall s € Ry, hence
sup E[(Xs; — X)*1=0(T) as T — oo. (6.10)
s€[0,T]

2 2

By Proposition B.1, E(X?) = E(X?) +a(sE(Xo) + %) + 05 (sE(Yo) +a% ) +o3s, thus
SUP; (0,71 E(X?) = O(T?) and SUP;c(0.7] E(X2?) = O(T?) as T — oco. We have

E(X2 — X21) <\ 2BI(X, — X)21EX) + E(X2)),

yielding

sup E(1X? — X)) = v20(T)(O(T?) + O(T?) = O(T3) as T — oo,
s€[0,T]

“(

as T — oo, implying % fOT (X2—Xx2)ds N 0 as T — oo, i.e., the second convergence
in (6.5) for (k, £) = (0, 2).
Further,

E(lysxs - errD < ]E(|Yv - yY”XY') + ]E(yr|X€ - XS")
< VEIY: = VPIEX) + JEQDEIX, — X)?]

thus
Lot 2 2 Lot 3
<75 [ BOX;-A7Dds =55 | OT2)ds

1 5
= FO(TQ) d 0,

1 T
F/o (X2 - x2)ds

yields

sup E(Y, X, — VX)) = VO(T) O(T2) +/O(TH) O(T)) = O(T3)  as T — oo,
s€[0,T]
thus
T

1 T 1 T 1 3
E(‘F/O (Y5 X _ysXs)CLY) < F/o E(|YsXs — Vs X)) ds = F/O O(T2)ds

1 5
= 73 0(T%) >0,

as T — oo, implying %fOT(YSXs — Vs Xy)ds ﬂ) 0 as T — oo, i.e., the second

convergence in (6.5) for (k, £) = (1, 1).
Using the Cauchy—Schwarz inequality, we obtain
T
)+E<’/ X, (Y, ) )
0
2)

T T T
E(/ XdeS—/ Xsdys)gE(/ (X — X,) dY;
0 0 0

SVET) ++/ExT)
with

2 T
) , Ey(T) = E (’/ Xy d(Ys — V)
0

T
/ (Xs - Xv)dys
0

E(T) ::]E(
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2)

2 T
), E12(T) :=E(’/ (X5 — X)y/ Yy dW;
0

Using dYy = ads + o014/ Y, dW,, we have

T T
a/ (XS—XS)derGl/ (X, — XYY, dW,
0 0

< 2d°Ey ((T) + 207 E1 2(T)

El(T):]E<

with

T
E (1) :=E (’/ (Xy — X)ds
0

2)
Applying (6.10), we obtain

T T
E11(T) =]E</ / (X5 — X)) (Xy _Xu)de”)
0 0

T T
= / / E[(Xs — X)(Xy — &)1 ds du
0 0

T T
< / f VEI(Xs — ) TE[(Xy — Xa)]ds du
0 0

T T
:/ / VO(T)O(T) ds du = O(T?).
0 0

Again by the Cauchy—Schwarz inequality, we obtain

T T
Eio(T)=E ( / Xy — X)%Y, ds) = / E[(X; — X;)*Y,]1ds
0 0

T
< / JEL — 2 E(2) ds.
0

Using X; = Xg + 02 fot VY. dW, + o3L; and X, = oy fot Vs dW,, we get X; — X =
Xo+o02 f(; WYs =) dﬁ/s +o03L;, and, applying Minkowski inequality and a martingale
moment inequality in Karatzas and Shreve (1991, 3.3.25), we obtain

: T\ 1
EX; — X)*DF < [EXDH]T + 0, (E [( /O Y5 — /i)dws) D + a3[E(LH]

| i 7 X
< [EXDI* + o ((2 3)HE ( / WY — VYo ds>> + 03V/3V/1
0

t

1
< [E(Xé)]i + o2 (36t/ E[(Ys — V)] dS>4 + o3V/31.
0

Applying (6.8), we get

sup E[(X; — )N =0(T%) as T — oo, (6.11)
tel0,7T]

which, by (6.9), implies E;(T) = fOT VO(T3) O(T?) ds = O(T%) as T — oo. Using
E1((T) = O(T?) as T — oo, we conclude E(T) = O(T3) + O(T'?) = O(T?) as
T — oo.
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Using dYs = ads+o1+/Y; dW; and dY; = a ds+01+/Ys dW, weobtain d(Y; —);) =
Ul(\/?t — /Y1) dW;, thus

T T
Ey(T) = o]E (/ A \/%st) < o%/ E[X2(Ys — Vsl ds
0 0

T
<of [ VEapEir -0

Using X; = at + oy f(; Vs dW,, we obtain

1
t 4 1 P 1
[EXH]% < lalt + oo (E[(/ Vs dv%) D < lajt + oo ((2-3>2rE (/ y?ds))4
0 0
1
t 2 4
= |a|t + o2 (36t/0 a (a + 021> 52 ds) = <|a| + 094/6a(2a + 012)) t,

hence we conclude

sup E(xH =0(T* as T — oo. (6.12)
s€[0,T]

Using (6.8), we obtain E,(T) = fOT VO(THO(T)ds = O(T%) as T — oo. Hence

1 T T
E(ﬁ(/() Xdes_/O deyv>

as T — oo, implying % (fOT X, dY; — fOT X, dys) i 0 as T — oo, I1.e., the first
convergence in (6.5). Thus we conclude convergence (6.3).
Applying the first equation of (1.1) and using b = 0, we obtain

! I
) < 75 (VE(D) +VExD)) = FO(T%) -0

T 1
A yiaw, = =7 = Yo) —a.

By It&’s formula and using b = 0,

1
d(Y?) = 2Y,dY, + o{Y, dr = 2Y,(adt + o1Y dW,) + oY, dt

3
= Qa+o})Y,dt + 20177 dW,,

hence
T T 3
Y2 =Y3+ Q2a +012)/ Yy ds +201f Ye dw.
0 0
Consequently,
T 3 2 T
o1 3 _ 1 2 2 2a + o
_ﬁ A YX dWS——ﬁ(YT_Yo)‘i‘ 2T2 ) YSdS.

In a similar way, applying the second equation of (1.1) and using § =0 and y =0, we
obtain
T
oo I~ 03 1
T ), W +Lr T( r—Xo) —«a
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By 1t6’s formula and using 8 =0 and y =0,
Lo
d(YtX[) =Y[ dXt + X[ dY[ + QU]UzY] dt = Yt(a dr +02Yl2 dW] +U3 st)
+Xl dY[ +QU[JZY[ dt
3~
= (Ol + QU]Gz)Y[ dr + JzYtz dW[ + X[ dYt + U3Y[ st,

hence
T

T T 3 T
Yr X1 =YoXo + (« +Q0102)/ Y, ds +02/ Y2 dW; +/ X, dY; —}—03/ Y,dL;.
0 0 0 0

Consequently,
T 3 T
_2/ Ysz dWY - %/ Ys dLs
0 T=Jo

T2
1 oc—i—galaz/’T I/T
=——YrXr — YpX _ Y, d — X, dYs.
TZ(T T 0Xo) + T2 ) s S+T2 0 s AL

Again by It6’s formula and using 8 =0 and y =0,
o
d(X?) = 2X,dX, + (03Y, + o) dt = 2X,(adt + 02Y; AW, + 03dL,) + (05 Y, + 03) dt,

hence
T T 1 - T
X%:x§+/ (20(XS—|—022YS+032)ds+202/ YSZX_YdWX—i—203/ X,dL;.
0 0 0
Consequently,
_o [T yhy g —(IS/TX dL
T2 0 s N s T2 0 S S
1 o T o2 T o2
=——— (X3 — X} —/ Xods + —2= | Yyds+ —.
s X1 = X0t | Xeds gy | Yeds o

Applying (6.3) and the continuous mapping theorem, we obtain

r T
1 —% Jo Ysds| 5 1 —fol Vs ds

-
1 1
_‘% foT Y5 ds % foT Y7 ds —Jo Ysds [y Vids
1
T(YT_YO)_a D [ yl—a :|
2 — 12 2a+0? 1 i
2ato; fOT Y, ds — Vi + =5t fy Vsds

[—a (= Y5) + 57

T T
1 —%fo Y, ds —%fo X, ds

T T T
—%fo Y, ds %fo Y2ds %fo Y X, ds
T
%fo Xf.ds

L~ Jo Xsds o [ YoXds
1 — o Veds  — [ Xods
D
— | = [y Xds  f)V2ds [} Vxds |

— Jy Xyds [y ViAsds [ A2ds
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(X7 — X0) —
T
— (Y1 X7 — YoXo) + £ [Ty ds + 7 f) X, dY,
1_(y2 2y 4 o (T o T o}
—52 (X7 = X0) + 77 [y Xsds+ 5% [y Ysds + 57
Xl — o
D | -V + @+ 00102) [y Yy ds + [ Xy dY
2
1
—%Xlz—i—afol X, ds + %Zfo Vs ds

jointly as T — oo. Applying again the continuous mapping theorem, we conclude (6.1),
since the limiting random matrices in the first and third convergences above are almost surely
invertible by Lemma 3.1. O

7 Asymptotic behavior of CLSE: supercritical case

First we present an auxiliary lemma about the asymptotic behavior of E(X?) as t — 0.

Lemma 7.1 Let us consider the two-factor affine diffusion model (1.1) with a € Ry, b €
R__, a,BeR, ye(—00,b), o1 € Ry;, 02,03 € Ry and o € [—1, 1] with a random
initial value (no, {o) independent of (W, B;, Ly);er, satisfying P(no € Ry) = 1. Then
sup,cg, €' E(X?) < occ.

Proof By Proposition B.1,

t o0

sup e”E(Y;) = sup (]E(Yo) + a/ ebu du) =E(Yy) +a/ eP du < oo,
teRy teRy 0 0

since b < 0. Moreover,

sup e’ |E(X,)| = sup

teRy teRy

t t
E(Xop) + oz/ e’ du — /3/ e’"E(Y,) du
0 0

o0
<IBX)| + ol [ ¢ du
0
o0
+ |/3|< sup eb”]E(Yu)> / eV =D gy < o,
ueRy 0
using ¥ <0 and y —b < 0. Again by Proposition B.1,

t
sup e??'E(Y?) = sup (E(Yg) + Qa+0o}) [ ezb“E(Yu)du>
0

teRy teRy

o0
< IE(YOZ) + 2a + 012)( sup eb”E(Yu)) / eP du < oo,
0

ueRy

using b < 0. Hence

sup ePHNE(Y, X,)| = sup

teRy teRy

t
E(YoXo) +a / eCTUE(X,) du
0
t t
+ (o + QU]O’Q)/ ePtVUE Y,y du — ﬁ/ e(b”)”]E(Yuz) du
0 0
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o0
<|E(Y0X0)|+a(sup eV"|E(Xu)|>/ e du
0

ueRy

o0
+ (la| + |Q|0102)< sup eb“E(Yu)) / e’* du
0

ueRy

[e¢]
+ |,3|< sup eZb“E(Y3)> / eV D" dy < oo,
0

ueRy
using b <0, y <0 and y —b < 0. Consequently,

t t
sup e?'E(X?) = sup (E(X%) +a / e X, du — 28 / XY, X, du
0 0

teRy teRy

t t
+ 022 / e2Vty, du + 032 / e2vu du)
0 0

o0
<E(X3) + |a|(sup eV”|E(XM)|)/ e’ du
0

ueRy

o0
+21BI( sup e E(Y, X)) er=bu gy
p
0

ueRy

oo oo
+ 022( sup eb“]E(Yu)> / e@r=bu gy 4 032/ e’ du < 0o
0 0

ueRy

using ¥y <0, y —b <0 and 2y —b <O. O
Next we present an auxiliary lemma about the asymptotic behavior of X; as r — oo.

Lemma 7.2 Let us consider the two-factor affine diffusion model (1.1) with a € Ry, b €
R__, o,B€eR, ye(—00,b), 01 € Ry, 02,03 € Ry and o € [—1, 1] with a random
initial value (no, o) independent of (W, By, Lt)icr, satisfying P(no € Ry) = 1. Suppose
that aff € R_. Then there exists a random variable Vx such that

"X, 5 Vy  ast— o0 (7.1
and, for each k,t € Z, with k+ ¢ > 0,

kyst
WV
kb + Ly

t
e(kb+ly)t/ Y,fo, du 25 as t — oo, (7.2)
0

2
where Vy is given in (4.6). If, in addition, 03 € Ry or (a - %1)(1 — QZ)GZZ e Ryy,
then the distribution of the random variable Vyx is absolutely continuous. Particularly,
P(Vx #0) = 1.

Proof By (2.2),
t
E(X, | Fy) = E(X; | Yy, Xg) =e 709K, + / e 7 (a — BY,) du
s
forall s,r e Ry with 0 <s <t. If « e Ry and B € R_, then

t
E(e”' X, | /%) = "X, +/ (e — BY,) du > VX,
N
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forall s, € Ry with 0 < s < 7, consequently, the process (thXt),€R+ is a submartingale
with respect to the filtration (]_-ty,x)teR .- IfaeR_ and B € Ry, then

t
E(e”' X, | F/X) = "X, + / (@ — BY,) du < "X,
N

forall 5,7 € Ry with 0<s<, consequently, the process (e’ X;);cr, isasupermartingale
withrespect to the filtration (f,y’ X) 1eR, » hence the process (—e""X;)ier, isasubmartingale

with respect to the filtration (ﬂY’X),E&. In both cases, SUp;eR, IE(|eV’Xt|2) < 00, see
Lemma 7.1. Hence, by the submartingale convergence theorem, there exists arandom variable
Vx such that (7.1) holds.

If w € 2 suchthat Ry > 7 — (¥, (), X,(w)) iscontinuous and (e?’ Y, (»), e’ X, (w)) —
(Vy(w), Vx(w)) as t — oo, then, by the integral Kronecker Lemma 4.3 with f(¢) =
e®PTY, () X (w)¢ and a(r) = e~ *PH1 r e R, we have

1 t
—(kb+Ly)u ;(kb+Ly)u k 4
—fot T du/o e (e Yy(w) Xu(w)")du

— V(@) Vx(w)® as t — oco.

o—(kb+ey)r _q

Here fot e~ kbt gy = — iy

, t € Ry, thus we conclude (7.2).

2
Now suppose that o3 € Ryy or (a — 4)(1 — 0?0} € Ryi. We are going to show
that the random variable Vyx is absolutely continuous. Put Z; := X, —rY;, t € Ry with
ro= %. Then the process (Y:, Z;):cr, 1is an affine process satisfying

IGR+,

dYt = (Ll — bYt)dt +O’1\/?tdwt,

where A:=a —ra, B:=B—r(b—y) and X := 024/1 — 02, see (Bolyog and Pap
2016, Proposition 2.5). We have

eyIX[ = reyth + thZ,

t t
=re’'Y, + Zo +/ e’"(A — BY,) du + 22/ e’"\/Y, dB,
0 0

'
+ o3 / e’*dL,,
0

where we used (2.2) with s = 0 multiplied both sides by e”’. Thus the conditional
distribution of e’'X; given (Y,)uef0:; and Xo is a normal distribution with mean
re’'Y, + Zo + f(f e”“(A — BY,) du and with variance X3 fot e2ruy, du + 032 fot e2ri dy.
Hence

E(eikewxr ] (Yu)uero.11, XO)

t
= exp{ik <reV’Y, + Zo+ / e’"(A — BY,) du)
0

)\‘2 t t
——( 22/ ey, du +032/ e2vu du)}
2 0 0
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Consequently,

|E(e*" X)) | = [E(E(™ X | (V)uero., Xo0))|

t
’]E(e {m(reyfy, + Zy +/ e’ (A — BYu)du)
0
)\2 t
—( 2V“Y,,du—i—o%/ e2vt du)})‘
2 0

t
< E( exp{ik(re’”Y[ + Zy +/ e’"(A — BYu)du>
0

)LQ t t
- — (22 / ey, du + 032/ e2vu du)”)
2 0 0
kz t t
=E<exp{—?<222/ ezV“Yudu+U32/ e2V“du>}>.
0 0

. . D ..
Convergence (7.1) implies e"’X, —> Vx as t — oo, hence, by the continuity theorem
and by the monotone convergence theorem,

Be)] = tim [B(e7 )|

1—>00

)»2 t t
[Jim E(exp{—7 (22 / ey, du + o3 / e du) })
)\2 [ee) 00
E(exp{—7<222/ ey, du+o32/ g2ru du) })
0 0

forall » € R. If 03 € Ry, then we have

iLVy _ 032 2
’E(e )‘ < exp A

4(—y)

N

forall » € R, hence [ |E(e”X)|dA < oo, implying absolute continuity of the distri-
bution of Vy.

2
If (a — )1 —0*oj € Riy, then we have

. 32 00 22 4y 2
’E(e‘}‘vxﬂ < E(exp{—%ﬂ/ ey, du}) < E(exp{ 5 k2/ Y, du})
0 1

for all A € R. Applying the comparison theorem (see, e.g., Karatzas and Shreve 1991,
5.2.18), we obtain P(Y; < Y; forall + € Ry) = 1, where (J;);er, is the unique strong
solution of the SDE

dY, = (a — bY,) di + o1/ Vi dW,, 1 € [0, 00),

with initial value )y = 0. Consequently, taking into account X, = 034/1 — 02 > 0, we

obtain
[ . o) 2.4y 2
[ \E(e‘WX)|d)\</ ]E(exp{—Lze ,\2/ yudu})dk
—00 —00 2 1
o0 22 4y 2
=E</ exp{ 220 A2/ yudu}dk>
oo 2
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V21 V2 1
=E = ) ezl’E > < 00,
e/ 2V, du 2 VS Vudu
whenever
1
El —— | <. (7.3)

V2 Vi du

By the Cauchy—Schwarz inequality, we have

([ ) < [
() <= () < (L 5o = =

For each u € R, we have ), 2 c(u)é, where the distribution of & has a chi-square

2 bu
.. . . 4 _ 0 —b o (e 1)
distribution with degrees of freedom (T? and c(u) = 7‘ fo Vdy = ‘4(7b), see
Proposition B.1. Hence
1 1 1
(3)- )
Yu c(u) \§
where E(é) < 00, since the density of & has the form
1 Bl .
R>x hixal e 21g,, (x)
0 2a
271 F(U1 )

2
and the assumption a — “—‘ > 0 yields 2 F — 1 > 0. Consequently,
1

2 2 2 _
/ E(L)du = E<l> / L du = E<l> / 24(71)) du < oo,
1 §) 1 cu) &)1 ofe bt —1)

thus we obtain (7.3),and hence [ |E(e'*"¥)|dA < oo, and we conclude absolute continuity
of the distribution of Vyx. O

Theorem 7.3 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
beR__, a,feR, y e (—00,b), 01 € Ryy, 02,03 € Ry and o € [-1,1] witha
random initial value (no, §o) independent of (W, By, L;);er.. satisfying P(ng € Ry) = 1.

2
Suppose that aff € R_. Suppose that o3 € Ri4+ or (a - %‘)(1 — 92)022 € Ryy. Then
bT
Te? (ar —a)
=% (br — b)

D _
e Gr —a) | — V 'né (7.4)
e T2 (Br — B)
(b— 2;/)T —
e yr—v)
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as T — oo with

1 X 0o o 0 ]
V2
_Y
i R
. 1 Yy Yx
V=10 0 b ) y )
14 Vy V.
Wy
0 0 0 2b b+2y
_wvx Wk
0o 0 0 =35 7
where Vy and Vyx are given in (4.6) and (7.1), respectively, n is a5 x 5 random matrix
such that
— 0'2V 2V2 V2
_alr 9iVy _oo100Vy Qo102 Vy o010 Vy Vx
b 2b b b b+y
va}z _ JIZV}:,‘ 00102 V)g o102 Vy 00102 V}% Vx
2b 3b 2b 3b 2b+y
nﬂT — _galg2Vy Qo'lo'zvy _0'22Vy 0'22‘/3 0'22Vy Vyx
b b b 2 bty ’
00102V 0013V} o3V AL o3 ViVx
2b 3b 2b 3b 2b+y
0010 VyVx _ 00102VEVx oF Vy Vx o3 Vivx oWV
L b+y 2b+y b+y 2b+y b+2y

and & is a 5-dimensional standard normally distributed random vector independent of
(Vy, Vx).

Proof We have

bT
Te? (ar —a)
bT ~
eiT(bT _b) bT bT bT
bT bT bT  _bT
Te? (ar —a) 2, Te2,e 2

’ e(h—éwr)@} _9).

. bT.
= dlag(Te 2,e

e=T (Br — B)
O=2)T __
e 2 (yr—vy)

where, by (3.5),

0
@)
G T

()
hT

(1)
or @)
hT

5T—0=G;lhT= 0

We are going to apply Theorem C.2 for the continuous local martingale (hr)7er, Wwith
quadratic variation process (h)r = Gr, T € R (introduced in the proof of Theorem 5.1).
With scaling matrices

3bT  bT

) b 3T BT b2
Q(T) :=diagle2,e 2 ,e2,e 2 ,e 2 s teRyy,
by (7.2), we have
oW ofVi  _goorVy 0oV goionVyVy ]
b 2 b 25 b+y
0]2 V}% - a|2 V; o102 Vy Qo102 V; Qo102 VI% Vyx
2b 3b 2b 3b 2b+y
T 4as, Vs o109 V2 o2Vy o2v2 o2VyVy _ T
Q)W Q(T)' — | ~enely By % i == i L
00102V go10aVy o2V o3V agVivx
2b 3b 2b 3b 2b+y
0010aVyVx _00102VEVx  o3VyVx  oFVZVy oFVy V32
L bty 2b+y b+y 2b+y b+2y
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as T — oo. Hence by Theorem C.2, for each random matrix A defined on (£2, F,P), we

obtain
(Q(T)hy, A) 2> (1€, A)  as T — oo, (7.5)

where & is a 5-dimensional standard normally distributed random vector independent of
(n, A). The aim of the following discussion is to include appropriate scaling matrices for
G 7. The matrices G(T]) and G(Tz) can be written in the form

1 —= J) Yods

1 —
et T 27 (T 2 bT)
v Jo Ysds e [ Y7ds

G(Tl) = diag(T%,e_bT) diag(T2, e

and
G(Tz) = diag(T%, e T, e’VT)
1 —2 fy Yeds =S f X, ds
jz fo Yods  e2T fT Y2ds b7 fOT Y, X, ds
ez fo X, ds e@*tT f YiX;ds eT fOT X2ds

1
x diag(T?,e_ T e_VT),
hence the matrices (G(Tl ))_1 and (G(T2 ))_1 can be written in the form

1

1 Ty ds
ﬁfo ’ diag(T_f,ebT)

(hy—1 . -1 T
(G3’)” =diag(T 2,e b
T g( ) et fo Y, ds e2bT fOT Y2ds

-7
and
(GP)! = diag(T72, ¢, e77)
T T To.T
1 —Sfo Yeds =S [ Xods
S fy Yeds T [Ty2ds 0T [T yox, ds
3” L Jy Xods T [Ty x s T [T X2 ds
x diag(T_%,ebT,eyT).
We have
diag(TehTT, -7 Te2, _bTT,e(b 2N)dmg( % et T % bT,eVT)
bT BT 1 bT BT BT
—dlag(T2e2 e2,T2e2,e2 ,62)
and

1 1
diag(TT,e”T, T3 b7 e”) Q1)

. _1 _1 . T 3T _bT 3T 42T
=d1ag(T 2,ePT T 2,ebT,eVT)d1ag(e 2 e" 2 ,e 2,e 2 ,e 2 )
. _l _br _bT 1 _bT  _bT  _bT
—d1ag<T Ze” 2,e 2, T 2¢"2,e 2,¢e 2)
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Moreover,
ding(T3e% o) e 2 R L (1t %)
ia e . ia e” 2 ,e
g \}Zfo Y, ds e2bT fOT Y2ds £
_ . 1 —ebT fO Yo ds . J(l)
= T T =
-5 Jo Ysds e2bT Jo Y2ds T
and
bT T yT T
1 _eﬁfo stS _eﬁfo XSdS
dlag(T%e§,e§,e§) —% fOT Yods  e2bT fT y2ds etHnT fOT Y, X, ds

— i Xods 0T [Tyx as T [T X2 ds
. _1 _bT  _br  _bT
xdlag(T 2e 2,e 2,e 2)
1 —ebT fOT Y, ds —evT fOT X, ds
= |~ (Tyvpds 2T [Ty2ds T [Ty X, ds | = JF
eyT fo X, ds e(b+V)Tf YiX;ds el fOT X2ds
Consequently,
T
Te? (ar —a)
bT -~
e 2 (br —b)
Tt @r —a) | =diag(7", 19) " Q(Thr,
bT -~
e 2 (fr —B)
=207
e 2 (yr—v
where, by Lemma 7.2,
diag(J ", JP) 5V as T > . (7.6)
By (7.5) with A = V, by (7.6) and by Theorem 2.7 (iv) of van der Vaart (1998), we obtain

D
(Q(T)hT, dlag(J(l) J(Tz))) — (p&,V) as T — oo.
The random matrix V is invertible almost surely, since

(b —y)*Vyvy

V=50 ey

almost surely by Lemma 7.2. Consequently, dlag(J(l) Jgg))_l Q(T)hr Lov-lpg as
T — oo. O

8 Summary

The following table summarize the results of the present paper on the asymptotic properties
of the CLSE (ar, by, ar, Br, yr) for the drift parameters (a, b, o, 8, ) of general two-
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factor affine diffusions (1.1). We recall that a € [0, 00), b, «, B, ¥ € R, 01, 02, 03 € [0, 00)
and o € [-1, 1].

a>0, o1 >0, (ET,ET, &T,BT,’?T) is strongly consistent
b>0, 7>0 (1-0%03+02>0 and asymptotically normal
(BT, Br, ~r) is weakly consistent
b=0, y=0| 3=0, (1-0*0%+03>0 ar and ar are not weakly consistent
asymptotic behavior of (ar,br, &z, Br,97)
af <0, o1 >0, by is strongly consistent, ([?T, ~r) is weakly consistent
vY<B<0 (a— %i) (1-0%0%+03>0 (ET,ET, ar, Br, Ar) is asymptotically mixed normal

For comparison, the following table sumNmarize tlle results of Barczy and Pap (2016) on
the asymptotic properties of the MLE (a7, by, ar, Br) for the drift parameters (a, b, «, B)
2

of a Heston model, which is a submodel of (1.1) with a > %1 01,07 € (0,00), ¥y =0,
o€ (—1,1) and o3 =0.

(6T,5T, ar, /}T) is weakly consistent

b>0

mlﬁ m|§

(ET,ET, ar, BT) is strongly consistent and asymptotically normal

(6T,ZT, ar, §T) is weakly consistent

S
Il
[}
IS)
\%

w8,

(ar,ar) is asymptotically normal

asymptotic behavior of (ET,ZT, ar, BT)

by is strongly consistent, 5T is weakly consistent

ar and ap are not weakly consistent

b<0 R - -
’ (b, fr) is asymptotically mixed normal

asymptotic behavior of (ET,ZT, ar, BT)

Appendix
A Stationarity and exponential ergodicity

The following result states the existence of a unique stationary distribution of the affine
diffusion process given by the SDE (1.1), see Bolyog and Pap (2016, Theorem 3.1). Let
C_:={zeC:Re(z) <0}

Theorem A.1 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
beRyy, o,8B€R, yeRyy, o1,02,03 € Ry, 0 € [—1, 1], and with a random initial
value (no, ¢o) independent of (W, By, Ly)er, satisfying P(no € Ry) = 1. Then

1) Yy, Xy) g (Yo, Xoo) as t — 0o, and we have
2

o
; o
E(e"1Yoet2Xo0) — exp a/ ks (11, 22) ds +i g — fxg (A1)
0 1 1

Sfor (u1,x2) € C_ x R, where k;(u1, rp), t € Ry, is the unique solution of the
(deterministic) differential equation
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B (ur, ha) = —biy(ur, A2) —iBe™"" Ay + S0k (ur, )
+igo100e ™ Aok (ur, A2) — So7e V1A, (A2)
ko(ui, A2) = uy;

(ii) supposing that the random initial value (no, §o) has the same distribution as (Yoo, Xoo)
given in part (1), (Y;, X1)1er, 1is strictly stationary.

In the subcritical case, the following result states the exponential ergodicity and a strong
law of large numbers for the process (Y7, X;);cr,, see Bolyog and Pap (2016, Theorem
4.1).

Theorem A.2 Let us consider the two-factor affine diffusion model (1.1) with a,b € Ry,
a,BeR, yeRy, o1 € Riy, 02,03 € Ry and o € [—1, 1] with a random initial
value (1o, o) independent of (W;, By, Lt)ier,. satisfying P(no € Ry) = 1. Suppose that
(1 - Q2)0’22 + 032 > 0. Then the process (Y;, Xi)ier, is exponentially ergodic, namely,
there exist 6 € R4y, B € Ryy and k € Ry, such that

sup  |E(g(Y;. X)) | (Yo. X0) = (30, %0)) — E(g (Yoo Xoo))| < B(V (30, x0) + De™

18ISV +1
(A.3)
forall t € Ry and (yo, x0) € Ry xR, where the supremum is running for Borel measurable
SJunctions g : Ry xR —> R,

V(. x) =y +kx?  (y,x) eRy xR, (A4)

and the distribution of (Yoo, Xoo) is given by (A.1) and (A.2). Moreover, for all Borel
measurable functions f : R? > R with E(f (Yo, Xc0)|) < 00, we have

T
]P’( lim l/ F(Ys, Xs)ds =IE(f(Yoo,Xoo))> =1. (A.5)
0

T—oo T

B Moments

The next proposition gives a recursive formula for the moments of the process (Y7, X;);cr, -

Proposition B.1 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
b,a,B,y €R, 01,02,03 € Ry, ¢ € [-1,1]. Suppose that E(Y}|X¢|?) < 0o for some
n, p € Zy. Then for each t € Ry, we have E(Y,k|Xt|[) < oo forall k€{0,...,n} and
L e€{0,..., p}, and the recursion

E(Yf X)) = e W Ry X() + (ka + %k(k — 1)012) /0 t e (=R (v =T X ) du
+ (& + koo102) fot e~ kU= ykx =Ty qy
B /Ol e~ kb - Rk -1y g,
+ %Z(z — Doy /Ot e kAR (ykH =2y 4y

1 t
+ e - o} /0 e~ kbHNE— R ykx =2y 4y
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forall t € Ry, where IE(Y}X{) =0 ifi,jeZ with i <0 or j<0. Especially,

t
E(Y,) =e PE(Yy) +a / e b= gy,
0
t t
E(X,) =e "'E(Xo) +a/ e VI qy — ,3/ e VITWE(Y,) du,
0 0
t
E(Y?) =e ?'EXY) + 2a + o) / e 2PU=E(Y,) du,
0
t
E(Y,X;) =e~ "'E(YoXo) + a / e TR (X, ) du
0

t t
+ (& + 00102) / e PRy, du — B / e~ GINE-E(Y2) du,
0 0

E(X?) =e ""E(X3) + « /

t t
e VMR (X,) du — 28 f e 2Ry, X,) du
0 0

t t
+03 / e UTOR(Y,) du + o / e T dy.
0 0

If o1 >0 and Yy = yo, then the Laplace transform of Y, t € R4y, takes the form

2 —2 ae—bt
E@e ) = <1 + %A/ e bu du) ! exp{— ze ol } A€ Ry,
0 1+ %‘A f(; e budu

(B.1)

i.e., Y, has a non-centered chi-square distribution up to a multiplicative constant
4e P yo

of [yebtudu’
If o1 >0 and (1 — 92)022 + 032 > 0, then for each t € Ry, the distribution of

(Y:, X;) is absolutely continuous.

2
071 fot e~b du, with degrees of freedom i—? and with non-centrality parameter

The next theorem gives a recursive formula for the moments of the stationary distribution
of the process (Y;, X;)rer, in the subcritical case, see Bolyog and Pap (2016, Theorem
5.1).

Theorem B.2 Let us consider the two-factor affine diffusion model (1.1) with a € Ry,
beRiy, a, R yeRyy, o01,00,03 € Ry, 0 € [—1,1], and the random vector
(Yoo, Xoo) given by Theorem A.1. Then all the (mixed) moments of (Yoo, Xoo) of any order
are finite, i.e., we have E(Y |X|P) < oo forall n, p € Z, and the recursion

1 _
E(Y2 XL) = [(m + 5 nn = 1)012>IE (Y2 'X2) — pBE (Y;’O“Xg’o 1)

nb+ py
+ pla +noo1o) E(YL X5

1 o1 _
+ 5 PP = DB XD + 5 p(p = DB LXK )],

holds for all n, p € Zy with n+ p > 1, where E(YX X5)) := 0 for k, ¢ € Z with k <0
or £ < 0. Especially,

a(2a +o})

ala+o})(2a +o})
22 ’

E() = 203

E(Yoo) = % E(Y2) =
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ba — E(Xoo) — BE(Y2 E(Y,
E(Xo0) = otb aﬂﬁ B Xo) = & (Xoo) — BE(Y5,) + (o + 00102) E( oo),
14 b+vy
) —2BE(Yoo Xoo) + 20E(Xo0) + 05 E(Yoo) + 05
E(X2) = ,
2y
) a + 07)E(Yoo Xoo) — BE(YD) + (o + 200102)E(Y2)
(Y2 Xs0) = .
2b+vy
) aB(X2) — 2BE(Y2 Xo0) + 2(a + 00102) E(Yoo Xoo) + 02E(Y2) + 07 E(Yoo)
E(Yoo X5,) = : .
b+2y
If o1 > 0, then the Laplace transform of Y~ takes the form
2 —2(1/(712
—1Y, 9]
]E(e oo) = (1 + Zb)\.) . AE R+, (BZ)

i.e., Yoo has gamma distribution with parameters 261/012 and 2b/012, hence

F(%?-HC) 2a
wrry )

9] i

E(YS) =

If o1 >0 and (1 — 92)022 + 032 > 0, then the distribution of (Yoo, Xoo) is absolutely
continuous.

C Limit theorems for continuous local martingales

In what follows we recall some limit theorems for continuous local martingales. We use these
limit theorems for studying the asymptotic behaviour of the MLE of 6 = (a,b,a, B,y) .
First we recall a strong law of large numbers for continuous local martingales.

Theorem C.1 (Liptser and Shiryaev 2001, Lemma 17.4) Let (2, F, (F)ier, . P) be a fil-
tered probability space satisfying the usual conditions. Let (M;);cr, be a square-integrable
continuous local martingale with respect to the filtration (F;);er, suchthat P(Mo = 0) = 1.
Let (&)er, be a progressively measurable process such that

t t o

]P’(/ sjd<M>u<oo>=1, teRy, and /53d<M>uﬁ>oo as t — 0o,
0 0

where ((M);)icr, denotes the quadratic variation process of M. Then

o EudM, s,
Jo g2d(M),

If (Mi)ier, is a standard Wiener process, the progressive measurability of (§)ier, can
be relaxed to measurability and adaptedness to the filtration (F;);eR. -

as t — oQ. (C.1)

The next theorem is about the asymptotic behaviour of continuous multivariate local
martingales.

Theorem C.2 (van Zanten 2000, Theorem 4.1) Let (82, F, (Fi)ier, . P) be a filtered
probability space satisfying the usual conditions. Let (M;);ecr, be a d-dimensional square-
integrable continuous local martingale with respect to the filtration (F;);er, such that
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P(Mo = 0) = 1. Suppose that there exists a function Q : [ty,00) — RI*d  ypith
some ty € Ry such that Q(t) is an invertible (non-random) matrix for all t € [ty, 00),
lim;—00 | Q)| =0 and

Q) M), Q)T > gy’ as t — o0,

where 3 isa d x d random matrix. Then, for each R***-valued random matrix A defined
on (2, F,P), we have

(Q(t)M,, A) £> mZ,A) ast— oo,

where Z is a d-dimensional standard normally distributed random vector independent of
(n, A).
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