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Abstract Weconsider the problem of nonparametric estimation of the drift of a continuously
observed one-dimensional diffusion with periodic drift. Motivated by computational consid-
erations, van der Meulen et al. (Comput Stat Data Anal 71:615–632, 2014) defined a prior
on the drift as a randomly truncated and randomly scaled Faber–Schauder series expansion
with Gaussian coefficients. We study the behaviour of the posterior obtained from this prior
from a frequentist asymptotic point of view. If the true data generating drift is smooth, it is
proved that the posterior is adaptive with posterior contraction rates for the L2-norm that are
optimal up to a log factor. Contraction rates in L p-norms with p ∈ (2,∞] are derived as
well.

1 Introduction

Assume continuous time observations XT = {Xt , : t ∈ [0, T ]} from a diffusion process X
defined as (weak) solution to the stochastic differential equation (sde)

dXt = b0(Xt ) dt + dWt , X0 = x0. (1)

Here W is a Brownian Motion and the drift b0 is assumed to be a real-valued measurable
function on the real line that is 1-periodic and square integrable on [0, 1]. The assumed
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periodicity implies that we can alternatively view the process X as a diffusion on the circle.
This model has been used for dynamic modelling of angles, see for instance Pokern (2007)
and Hindriks (2011).

We are interested in nonparametric adaptive estimation of the drift. This problem has
recently been studiedbymultiple authors. Spokoiny (2000) proposed a locally linear smoother
with a data-driven bandwidth choice that is rate adaptive with respect to |b′′(x)| for all x and
optimal up to a log factors. Interestingly, the result is non-asymptotic and does not require
ergodicity. Dalalyan and Kutoyants (2002) and Dalalyan (2005) consider ergodic diffusions
and construct estimators that are asymptoticallyminimaxand adaptive underSobolev smooth-
ness of the drift. Their results were extended to the multidimensional case by Strauch (2015).

In this paper we focus on Bayesian nonparametric estimation, a paradigm that has become
increasingly popular over the past two decades. An overview of some advances of Bayesian
nonparametric estimation for diffusion processes is given in van Zanten (2013).

The Bayesian approach requires the specification of a prior. Ideally, the prior on the drift
is chosen such that drawing from the posterior is computationally efficient while at the same
time ensuring that the resulting inference has good theoretical properties. which is quantified
by a contraction rate. This is a rate for which we can shrink balls around the true parameter
value, while maintaining most of the posterior mass. More formally, if d is a semimetric on
the space of drift functions, a contraction rate εT is a sequence of positive numbers εT ↓ 0
for which the posterior mass of the balls {b : d(b, b0) ≤ εT } converges in probability to 1
as T → ∞, under the law of X with drift b0. For a general discussion on contraction rates,
see for instance Ghosal et al. (2000) and Ghosal and van der Vaart (2007).

For diffusions, the problem of deriving optimal posterior convergence rates has been stud-
ied recently under the additional assumption that the drift integrates to zero,

∫ 1
0 b0(x)dx = 0.

In Papaspiliopoulos et al. (2012) a mean zero Gaussian process prior is proposed together
with an algorithm to sample from the posterior. The precision operator (inverse covariance
operator) of the proposed Gaussian process is given by η

(
(−�)α+1/2 + κ I

)
, where � is the

one-dimensional Laplacian, I is the identity operator, η, κ > 0 and α + 1/2 ∈ {2, 3, . . .}. A
first consistency result was shown in Pokern et al. (2013).

In van Waaij and van Zanten (2016) it was shown that this rate result can be improved
upon for a slightly more general class of priors on the drift. More specifically, in this paper
the authors consider a prior which is defined as

b = L
∞∑

k=1

k−1/2−αϕk Zk, (2)

where ϕ2k(x) = √
2 cos(2πkx), ϕ2k−1(x) = √

2 sin(2πkx) are the standard Fourier series
basis functions, {Zk} is a sequence of independent standard normally distributed random
variables and α is positive. It is shown that when L and α are fixed and b0 is assumed
to be α-Sobolev smooth, then the optimal posterior rate of contraction, T−α/(1+2α), is
obtained. Note that this result is nonadaptive, as the regularity of the prior must match
the regularity of b0. For obtaining optimal posterior contraction rates for the full range of
possible regularities of the drift, two options are investigated: endowing either L or α with
a hyperprior. Only the second option results in the desired adaptivity over all possible regu-
larities.

While the prior in (2) (with additional prior on α) has good asymptotic properties, from
a computational point of view the infinite series expansion is inconvenient. Clearly, in any
implementation this expansion needs to be truncated.Random truncation of a series expansion
is a well knownmethod for defining priors in Bayesian nonparametrics, see for instance Shen
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Fig. 1 Elements ψ1 and ψ j,k , 0 ≤ j ≤ 2 of the Faber–Schauder basis

and Ghosal (2015). Exactly this idea was exploited in van der Meulen et al. (2014), where
the prior is defined as the law of the random function

bR,S = SZ1ψ1 + S
R∑

j=0

2 j
∑

k=1

Z jkψ jk, (3)

where the functions ψ jk constitute the Faber–Schauder basis (see Fig. 1).
These functions feature prominently in the Lévy-Ciesielski construction of Brownian

motion (see for instance (Bhattacharya and Waymire 2007, paragraph 10.1)).
The prior coefficients Z jk are equipped with a Gaussian distribution, and the truncation

level R and the scaling factor S are equipped with independent priors. Truncation in absence
of scaling increases the apparent smoothness of the prior (as illustrated for deterministic
truncation by example 4.5 in van der Vaart and van Zanten (2008)), whereas scaling by a
number ≥ 1 decreases the apparent smoothness. (Scaling with a number ≤ 1 only increases
the apparent smoothness to a limited extent, see for example Knapik et al. (2011).)

The simplest type of prior is obtained by taking the coefficients Z jk independent. We
do however also consider the prior that is obtained by first expanding a periodic Ornstein–
Uhlenbeckprocess into theFaber–Schauder basis, followedby randomscaling and truncation.
We will explain that specific stationarity properties of this prior make it a natural choice.

Draws from the posterior can be computed using a reversible jump Markov Chain Monte
Carlo (MCMC) algorithm (cf. van der Meulen et al. (2014)). For both types of priors, fast
computation is facilitated by leveraging inherent sparsity properties stemming from the com-
pact support of the functions ψ jk . In the discussion of van der Meulen et al. (2014) it was
argued that inclusion of both the scaling and random truncation in the prior is beneficial.
However, this claim was only supported by simulations results.

In this paper we support this claim theoretically by proving adaptive contraction rates
of the posterior distribution in case the prior (3) is used. We start from a general result in
van der Meulen et al. (2006) on Brownian semimartingale models, which we adapt to our
setting. Here we take into account that as the drift is assumed to be one-periodic, information
accumulates in a different way compared to (general) ergodic diffusions. Subsequently we
verify that the resulting prior mass, remaining mass and entropy conditions appearing in this
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adapted result are satisfied for the prior defined in Eq. (3). An application of our results shows
that if the true drift function is Bβ∞,∞-Besov smooth, β ∈ (0, 2), then by appropriate choice
of the variances of Z jk , as well as the priors on R and S, the posterior for the drift b contracts
at the rate (T/ log T )−β/(1+2β) around the true drift in the L2-norm. Up to the log factor
this rate is minimax-optimal (See for instance Kutoyants 2004, Theorem 4.48)). Moreover,
it is adaptive: the prior does not depend on β. In case the true drift has Besov-smoothness
greater than or equal to 2, our method guarantees contraction rates equal to essentially T−2/5

(corresponding to β = 2). A further application of our results shows that for L p-norms we
obtain contraction rate T−(β−1/2+1/p)/(1+2β), up to log-factors.

The paper is organised as follows. In the next section we give a precise definition of the
prior. In Sect. 3 a general contraction result for the class of diffusion processes considered here
is derived. Our main result on posterior contraction for L p-norms with p ≥ 2 is presented in
Sect. 4.Many results of this paper concern general properties of the prior and their application
is not confined to drift estimation of diffusion processes. To illustrate this, we show in
Sect. 5 how these results can easily be adapted to nonparametric regression and nonparametric
density estimation. Proofs are gathered in Sect. 6. The appendix contains a couple of technical
results.

2 Prior construction

2.1 Model and posterior

Let

L2(T) =
{

b : R → R

∣
∣
∣
∣

∫ 1

0
b(x)2 dx < ∞ and b is 1 − periodic

}

be the space of square integrable 1-periodic functions.

Lemma 1 If b0 ∈ L2(T), then the SDE Eq. (1) has a unique weak solution.

The proof is in Sect. 6.1.
For b ∈ L2(T), let Pb = Pb,T denote the law of the process XT generated by Eq. (1)

when b0 is replaced by b. If P0 denotes the law of XT when the drift is zero, then Pb is
absolutely continuous with respect to P0 with Radon-Nikodym density

pb
(
XT
)

= exp

(∫ T

0
b(Xt ) dXt − 1

2

∫ T

0
b2(Xt ) dt

)

. (4)

Given a prior � on L2(T) and path XT from (1), the posterior is given by

�(b ∈ A | XT ) =
∫
A pb(XT )�( db)
∫
pb(XT )�( db)

, (5)

where A is Borel set of L2(T). These assertions are verified as part of the proof of Theorem 3.

2.2 Motivating the choice of prior

We are interested in randomly truncated, scaled series priors that simultaneously enable a
fast algorithm for obtaining draws from the posterior and enjoy good contraction rates.
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To explain what we mean by the first item, consider first a prior that is a finite series prior.
Let {ψ1, . . . , ψr }denote basis functions and Z = (Z1, . . . , Zr ) amean zeroGaussian random
vector with precision matrix �. Assume that the prior for b is given by b =∑r

i=1 Ziψi . By
conjugacy, it follows that Z | XT ∼ N(W−1μ,W−1), where W = G + �,

μi =
∫ T

0
ψi (Xt ) dXt and Gi,i ′ =

∫ T

0
ψi (Xt )ψi ′(Xt ) dt (6)

for i, i ′ ∈ {1, . . . , r}, cf. (van der Meulen et al. 2014, Lemma 1). The matrix G is referred to
as the Grammian. From these expressions it follows that it is computationally advantageous
to exploit compactly supported basis functions. Whenever ψi and ψi ′ have nonoverlapping
supports, we have Gi,i ′ = 0. Depending on the choice of such basis functions, the Grammian
G will have a specific sparsity structure (a set of index pairs (i, i ′) such that Gi,i ′ = 0,
independently of XT .) This sparsity structure is inherited by W as long as the sparsity
structure of the prior precision matrix matches that of G.

In the next section wemake a specific choice for the basis functions and the prior precision
matrix �.

2.3 Definition of the prior

Define the “hat” function  by (x) = (2x)1[0, 12 )(x) + 2(1 − x)1[ 12 ,1](x). The Faber–
Schauder basis functions are given by

ψ j,k(x) = 
(
2 j x − k + 1

)
, j ≥ 0, k = 1, . . . , 2 j

Let

ψ1 = (ψ0,1
(
x − 1

2

)+ ψ0,1
(
x + 1

2

))
I[0,1](x).

In Fig. 1 we have plotted ψ1 together with ψ j,k where j ∈ {0, 1, 2}.
We define our prior as in (3) with Gaussian coefficients Z1 and Z jk , where the truncation

level R and the scaling factor S are equipped with (hyper)priors. We extend b periodically
if we want to consider b as function on the real line. If we identify the double index ( j, k) in

(3) with the single index i = 2 j + k, then we can write bR,S = S
∑2R+1

i=1 ψi Zi . Let

�(i) =
{
0 if i ∈ {1, 2}
j if i ∈ {2 j + 1, . . . , 2 j+1

}
and j ≥ 1

.

We say that ψi belongs to level j ≥ 0 if �(i) = j . Thus both ψ1 and ψ0,1 belong to level
0, which is convenient for notational purposes. For levels j ≥ 1 the basis functions are per
level orthogonal with essentially disjoint support. Define for r ∈ {0, 1, . . .}

Ir = {i : �(i) ≤ r} = {1, 2, . . . , 2r+1} .

Let A = (Cov(Zi , Zi ′))i,i ′∈N and define its finite-dimensional restriction by Ar =
(Aii ′)i,i ′∈Ir . If we denote Zr = {Zi , i ∈ Ir }, and assume that Zr is multivariate nor-
mally distributed with mean zero and covariance matrix Ar , then the prior has the following
hierarchy

b | R, S, Z R = S
∑

i∈I R

Ziψi (7)

Z R | R ∼ N(0,AR) (8)
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Fig. 2 Heat maps of (s, t) �→ Cov (b(s), b(t)), in case S = 1 and R = ∞. Left Brownian bridge plus the
random function Z1ψ1. Right periodic Ornstein–Uhlenbeck process with parameter γ = 1.48 and σ 2 chosen
such that Var (b(s)) = 1

(R, S) ∼ �(·). (9)

Here, we use � to denote the joint distribution of (R, S).
Wewill consider two choices of priors for the sequence Z1, Z2, . . .Ourfirst choice consists

of taking independent Gaussian random variables. If the coefficients Zi are independent with
standard deviation 2−�(i)/2, the random draws from this prior are scaled piecewise linear
interpolations on a dyadic grid of a Brownian bridge on [0, 1] plus the random function Z1ψ1.

The choice of ψ1 is motivated by the fact that in this case Var
(
b(t)

∣
∣S = s, R = ∞) = s2 is

independent of t .
We construct this second type of prior as follows. For γ, σ 2 > 0, define V ≡ (Vt , t ∈

[0, 1]) to be the cyclically stationary and centred Ornstein–Uhlenbeck process. This is a
periodic Gaussian process with covariance kernel

Cov (V (s), V (t)) = σ 2

2γ

e−γ h + e−γ (1−h)

1 − e−γ
, h = t − s ≥ 0. (10)

This process is cyclically stationary, that is, the covariance only depends on |t − s| and
1−|t−s|. It is the unique Gaussian andMarkovian prior with continuous periodic paths with
this property. This makes the cyclically stationary Ornstein–Uhlenbeck prior an appealing
choice which respects the symmetries of the problem.

Each realisation of V is continuous and can be extended to a periodic function on R. Then
V can be represented as an infinite series expansion in the Faber–Schauder basis:

Vt =
∑

i≥1

Ziψi (t) = Z1ψ1(t) +
∞∑

j=0

2 j
∑

k=1

Z j,kψ j,k(t) (11)

Finally by scaling by S and truncating at R we obtain from V the second choice of prior
on the drift function b. Visualisations of the covariance kernels Cov (b(s), b(t)) for first prior
(Brownian bridge type) and for the second prior (periodic Ornstein–Uhlenbeck process prior
with parameter γ = 1.48) are shown in Fig. 2 (for S = 1 and R = ∞).
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2.4 Sparsity structure induced by choice of Zi

Conditional on R and S, the posterior of Z R is Gaussian with precision matrix GR + �R

(here GR is the Grammian corresponding to using all basis functions up to and including
level R).

If the coefficients are independent it is trivial to see that the precision matrix � does not
destroy the sparsity structure of G, as defined in (6). This is convenient for numerical com-
putations. The next lemma details the situation for periodic Ornstein–Uhlenbeck processes.

Lemma 2 Let V be defined as in Eq. (10)

1. The sparsity structure of the precisionmatrix of the infinite stochastic vector Z (appearing
in the series representation (11)) equals the sparsity structure of G, as defined in (6).

2. The entries of the covariance matrix of the random Gaussian coefficients Zi and Zi ′ ,
Ai,i ′ = EZi Zi ′ , satisfy the following bounds: A11 = A22 = σ 2

2γ coth(γ /2) and for
γ ≤ 1.5 and i ≥ 3,

0.95 · 2−�(i)σ 2/4 ≤ Aii ≤ 2−�(i)σ 2/4

and A12 = A21 = σ 2

2γ sinh−1(γ /2) and for i = i ′

|Aii ′ | ≤
{
0.20σ 22−1.5(�(i)∨�(i ′)) i ∧ i ′ ≤ 2 < i ∨ i ′,
0.37σ 22−1.5(�(i)+�(i ′)) otherwise.

The proof is given in Sect. 6.2. By the first part of the lemma, also this prior does not
destroy the sparsity structure of the G. The second part asserts that while the off-diagonal
entries of Ar are not zero, they are of smaller order than the diagonal entries, quantifying
that the covariance matrix of the coefficients in the Schauder expansion is close to a diagonal
matrix.

3 Posterior contraction for diffusion processes

The main result in van der Meulen et al. (2006) gives sufficient conditions for deriving
posterior contraction rates in Brownian semimartingale models. The following theorem is an
adaptation and refinement of Theorem 2.1 and Lemma 2.2 of van der Meulen et al. (2006)
for diffusions defined on the circle. We assume observations XT , where T → ∞. Let �T

be a prior on L2(T) (which henceforth may depend on T ) and choose measurable subsets
(sieves) BT ⊂ L2(T). Define the balls

BT (b0, ε) = {b ∈ BT : ‖b0 − b‖2 < ε} .

The ε-covering number of a set A for a semimetric ρ, denoted by N (ε, A, ρ), is defined as
the minimal number of ρ-balls of radius ε needed to cover the set A. The logarithm of the
covering number is referred to as the entropy.

The following theorem characterises the rate of posterior contraction for diffusions on the
circle in terms of properties of the prior.

Theorem 3 Suppose {εT } is a sequence of positive numbers such that T ε2T is bounded away
from zero. Assume that there is a constant ξ > 0 such that for every K > 0 there is a
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measurable set BT ⊆ L2(T) and for every a > 0 there is a constant C > 0 such that for T
big enough

log N
(
aεT , BT (b0, εT ), ‖ · ‖2

) ≤ CT ε2T , (12)

�T (BT (b0, εT )
) ≥ e−ξT ε2T , (13)

and

�T (L2(T)\BT
) ≤ e−KT ε2T . (14)

Then for every MT → ∞
Pb0�

T (b ∈ L2(T) : ‖b − b0‖2 ≥ MT εT | XT )→ 0

and for K big enough,

�T (L2(T)\BT | XT )→ 0. (15)

Equations (12), (13) and (14) are referred to as the entropy condition, small ball condition
and remaining mass condition of Theorem 3 respectively. The proof of this theorem is in
Sect. 6.3.

4 Theorems on posterior contraction rates

The main result of this section, Theorem 9 characterises the frequentist rate of contraction
of the posterior probability around a fixed parameter b0 of unknown smoothness using the
truncated series prior from Sect. 2.

We make the following assumption on the true drift function.

Assumption 4 The true drift b0 can be expanded in the Faber–Schauder basis, b0 = z1ψ1 +
∑∞

j=0
∑2 j

k=1 z jkψ jk =∑i≥1 ziψi and there exists a β ∈ (0,∞) such that

�b0�β := sup
i≥1

2β�(i)|zi | < ∞. (16)

Note that we use a slightly different symbol for the norm, as we denote the L2-norm by ‖ ·‖2.
Remark 5 If β ∈ (0, 2), then Assumption 4 on b0 is equivalent to assuming b0 to be Bβ∞,∞-
Besov smooth. It follows from the definition of the basis functions that

z jk = b0
(
(2k − 1)2−( j+2)

)
− 1

2
b0
(
2−( j+2)(2k − 2)

)
− 1

2
b0
(
2−( j−2)2k

)
.

Therefore it follows from equations (4.72) (with r = 2) and (4.73) (with p = ∞) in
combination with equation (4.79) (with q = ∞) in Giné and Nickl (2016), Section 4.3,
that ‖b0‖∞ + �b0�β is equivalent to the Bβ∞,∞-norm of b0 for β ∈ (0, 2).

If β ∈ (0, 1), then β–Hölder smoothness and Bβ∞,∞–smoothness coincide (cf. Proposition
4.3.23 in Giné and Nickl (2016)).

For the prior defined in Eqs. (7)–(9) we make the following assumptions.

Assumption 6 The covariance matrix A satisfies one of the following conditions:

(A) For fixed α > 0, Aii = 2−2α�(i) and Aii ′ = 0 for i = i ′.
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(B) There exists 0 < c1 < c2 and 0 < c3 with 3c3 < c1 independent from r , such that for
all i, i ′ ∈ Ir

c12
−�(i) ≤ Aii ≤ c22

−�(i),

|Aii ′ | ≤ c32
−1.5(�(i)+�(i ′)) if i = i ′.

In particular the second assumption if fulfilled by the prior defined by Eq. (10) if 0 < γ ≤ 3/2
and any σ 2 > 0.

Assumption 7 The prior on the truncation level satisfies for some positive constants c1, c2,

P(R > r) ≤ exp(−c12
r r),

P(R = r) ≥ exp(−c22
r r). (17)

For the prior on the scaling we assume existence of constants 0 < p1 < p2, q > 0 and
C > 1 with p1 > q|α − β| such that

P(S ∈ [x p1 , x p2 ]) ≥ exp
(− xq

)
for all x ≥ C. (18)

The prior on R can be defined as R = �2log Y �, where Y is Poisson distributed. Equation
(18) is satisfied for a whole range of distributions, including the popular family of inverse
gamma distributions. Since the inverse gamma prior on S2 decays polynomially (Lemma 17),
condition (A2) of Shen andGhosal (2015) is not satisfied and hence their posterior contraction
results cannot be applied to our prior. We obtain the following result for our prior.

Theorem 8 Assume b0 satisfies Assumption 4. Suppose the prior satisfies assumptions 6 and
7. Let {εn}∞n=1 be a sequence of positive numbers that converges to zero. There is a constant
C1 > 0 such that for any C2 > 0 there is a measurable set Bn ⊆ L2(T) such that for every
a > 0 there is a positive constant C3 such that for n sufficiently large

log P
(
‖bR,S − b0‖∞ < εn

)
≥ −C1ε

−1/β
n | log εn | (19)

log P
(
bR,S /∈ Bn

)
≤ −C2ε

−1/β
n | log εn | (20)

log N (aε, {b ∈ Bn : ‖b − b0‖2 ≤ εn}, ‖ · ‖∞) ≤ C3ε
−1/β
n | log εn |. (21)

The following theorem is obtained by applying these bounds to Theorem 3 after taking
εn = (T/ log T )−β/(1+2β).

Theorem 9 Assume b0 satisfies Assumption 4. Suppose the prior satisfies assumptions 6 and
7. Then for all MT → ∞

Pb0�
n

(

b : ‖b − b0‖2 ≥ MT

(
T

log T

)− β
1+2β

∣
∣
∣
∣
∣
XT

)

→ 0

as T → ∞.

This means that when the true parameter is from Bβ∞,∞[0, 1], β < 2 a rate is obtained
that is optimal possibly up to a log factor. When β ≥ 2 then b0 is in particular in the space
B2−δ∞,∞[0, 1], for every small positive δ, and therefore converges with rate essentially T−2/5.

When a different function  is used, defined on a compact interval of R, and the basis
elements are defined by ψ jk =∑m∈Z (2 j (x −m)+ k − 1); forcing them to be 1-periodic.
Then Theorem 9 and derived results for applications still holds provided ‖ψ jk‖∞ = 1 and
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ψ j,k ·ψ j,l ≡ 0 when |k− l| ≥ d for a fixed d ∈ N and the smoothness assumptions on b0 are
changed accordingly. A finite number of basis elements can be added or redefined as long as
they are 1-periodic.

It is easy to see that our results imply posterior convergences rates in weaker L p-norms,
1 ≤ p < 2,with the same rate. When p ∈ (2,∞] the L p-norm is stronger than the L2-norm.
We apply ideas of Knapik and Salomond (2014) to obtain rates for stronger L p-norms.

Theorem 10 Assume the true drift b0 satisfies assumption 4. Suppose the prior satisfies
assumptions 6 and 7. Let p ∈ (2,∞]. Then for all MT → ∞

Pb0�
n
(

b : ‖b − b0‖p ≥ MT T
− β−1/2+1/p

1+2β (log T )
2β−2β/p
1+2β

∣
∣
∣ XT

)

→ 0

as T → ∞.

These rates are similar to the rates obtained for the density estimation in Giné and Nickl
(2011). However our proof is less involved. Note that we have only consistency for β >

1/2 − 1/p.

5 Applications to nonparametric regression and density estimation

Our general results also apply to other models. The following results are obtained for b0
satisfying Assumption 4 and the prior satisfying assumptions 6 and 7.

5.1 Nonparametric regression model

As a direct application of the properties of the prior shown in the previous section, we obtain
the following result for a nonparametric regression problem. Assume

Xn
i = b0(i/n) + ηi , 0 ≤ i ≤ n, (22)

with independent Gaussian observation errors ηi ∼ N(0, σ 2). When we apply Ghosal and
van der Vaart (2007), example 7.7 to Theorem 8 we obtain, for every Mn → ∞,

�

(

b : ‖b − b0‖2 ≥ Mn

(
n

log n

)− β
1+2β

∣
∣
∣
∣
∣
Xn

)
Pb0−→ 0

as n → ∞ and (in a similar way as in Theorem 10) for every p ∈ (2,∞],

�

(

b : ‖b − b0‖2 ≥ Mnn
− β−1/2+1/p

1+2β (log n)
2β−2β/p
1+2β

∣
∣
∣
∣ Xn

)
Pb0−→ 0

as n → ∞.

5.2 Density estimation

Let us consider n independent observations Xn := (X1, . . . , Xn) with Xi ∼ p0 where p0 is
an unknown density on [0, 1] relative to the Lebesgue measure. Let P denote the space of
densities on [0, 1] relative to the Lebesgue measure. The natural distance for densities is the
Hellinger distance h defined by

h(p, q)2 =
∫ 1

0

(√
p(x) −√q(x)

)2
dx .
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Define the prior on P by p = eb

‖eb‖1 , where b is endowed with the prior of Theorem 9
or its non-periodic version. Assume that log p0 is β-smooth in the sense of Assumption 4.
Applying Ghosal et al. (2000), theorem 2.1 and van der Vaart and van Zanten (2008), lemma
3.1 to Theorem 8, we obtain for a big enough constant M > 0

�

(

p ∈ P : h(p, p0) ≥ M

(
n

log n

)− β
1+2β

∣
∣
∣
∣
∣
Xn

)
P0−→ 0,

as n → ∞.

6 Proofs

6.1 Proof of lemma 1

Since conditions (ND) and (LI) of (Karatzas and Shreve 1991, theorem 5.15) hold, the SDE
Eq. (1) has a unique weak solution up to an explosion time.

Assume without loss of generality that X0 = 0. Define τ0 = 0 and for i ≥ 1 the random
times

τi = inf{t ≥ τi−1 : |Xt − Xτi−1 | = 1}.
By periodicity of drift and the Markov property the random variables Ui = τi − τi−1 are
independent and identically distributed.
Note that

inf{t : Xt = ±n} ≥
n∑

i=1

Ui

and hence non-explosion follows from limn→∞
∑n

i=1Ui = ∞ almost surely. The latter
holds true since U1 > 0 with positive probability, which is clear from the continuity of
diffusion paths.

6.2 Proof of lemma 2

Proof of the first part. For the proof we introduce some notation: for any ( j, k), ( j ′, k′) we
write ( j, k) ≺ ( j ′, k′) if suppψ j ′,k′ ⊂ suppψ j,k . The set of indices become a lattice with
partial order ≺, and by ( j, k) ∨ ( j ′, k′) we denote the supremum. Identify i with ( j, k) and
similarly i ′ with ( j ′, k′).

For i > 1, denote by ti the time points in [0, 1] corresponding to the maxima of ψi .
Without loss of generality assume ti < ti ′ . We have Gi,i ′ = 0 if and only if the interiors of
the supports of ψi and ψi ′ are disjoint. In that case

max suppψ j,k ≤ t( j,k)∨( j ′,k′) ≤ min suppψ j ′,k′ . (23)

��
The values of Zi can be found by the midpoint displacement technique. The coefficients

are given by Z1 = V0, Z2 = V 1
2
and for j ≥ 1

Z j,k = V2− j (k−1/2) − 1

2

(
V2− j (k−1) + V2− j k

)
.
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As V is a Gaussian process, the vector Z is mean-zero Gaussian, say with (infinite) precision
matrix �. Now �i,i ′ = 0 if there exists a set L ⊂ N such that L ∩ {i, i ′} = ∅ for which
conditional on {Zi� , i� ∈ L }, Zi are Zi ′ are independent.
Define ( j�, k�) = ( j, k) ∨ ( j ′, k′) and

L = {i� ∈ N : i� = 2 j + k, with j ≤ j�}.
The set {Zi� , i� ∈ L } determine the process V at all times k2− j�−1, k = 0 . . . , 2 j�+1. Now
Zi and Zi ′ are conditionally independent given {Vt , t = k2− j�−1, k = 0 . . . , 2 j�+1} by (23)
and the Markov property of the nonperiodic Ornstein–Uhlenbeck process. The result follows
since σ({Zi� , i� ∈ L }) = σ({Vt , t = k2− j�−1, k = 0 . . . , 2 j�+1}).
Lemma 11 Let K (s, t) = EVsVt = σ 2

2γ
1

1−e−γ

(
e−γ |t−s| + e−γ (1−|t−s|)). If x /∈ (s, t)

1

2
K (s, x) − K

( s+t
2 , x

)+ 1

2
K (t, x) = 2 sinh2

(
γ t−s

4

)
K
( t+s

2 , x
)

Proof Without loss of generality assume that t ≤ x ≤ 1. With m = (t + s)/2 and δ =
(t − s)/2
(
e−γ |s−x | + e−γ (1−|s−x |))− 2

(
e−γ |m−x | + e−γ (1−|m−x |))+

(
e−γ |t−x | + e−γ (1−|t−x |))

= e−γ |t−x |e−2γ δ − 2e−γ |t−x |e−γ δ + e−γ |t−x | + e−γ (1−|s−x |) − 2e−γ (1−|s−x |)e−γ δ

+ e−γ (1−|s−x |)e−2γ δ = (1 − e−γ δ)2(e−γ |t−x | + e−γ (1−|s−x |))
= (1 − e−γ δ

)2
eγ δ
(
e−γ |m−x | + e−γ (1−|m−x |))

The result follows from (1 − e−γ δ)2eγ δ = 4 sinh2(γ δ/2) and scaling both sides with
1
2

σ 2

2γ
1

1−e−γ . ��
Proof of the second part Denote by [a, b], [c, d] the support of ψi and ψi ′ respectively and
let m = (b + a)/2 and n = (d + c)/2 but for i = 1, let m = 0. Z1 = V (0), Z2 = V1/2 and

Var (Z1) = Var (Z2) = σ 2

2γ coth(γ /2), and Cov (Z1, Z2) = σ 2

2γ sinh−1(γ /2). Note that the

2 × 2 covariance matrix of Z1 and Z2 has eigenvalues σ 2

2γ tanh(γ /4) and σ 2

2γ coth(γ /4) and
is strictly positive definite. ��

By midpoint displacement, 2Zi = 2Vm − Va − Vb, i > 2 and K (s, t) = EVsVt =
σ 2

2γ
1

1−e−γ (e−γ |t−s| + e−γ (1−|t−s|)).
Assume without loss of generality b − a ≥ d − c. Define δ to be the halfwidth of the

smaller interval, so that δ := (d − c)/2 = 2− j ′−1. Then

(b − a)/2 = 2− j−1 = hδ, with h = 2 j ′− j .

Consider three cases:

1. The entries on diagonal, i = i ′;
2. The interiors of the supports of ψi and ψi ′ are non-overlapping;
3. The support of ψi ′ is contained in the support of ψi .

Case 1. By elementary computations for i > 2,

4
2γ

σ 2 (1 − e−γ )Aii = 6(1 + e−γ ) + 2(e−γ 2δ + e−γ (1−2δ)) − 8(e−γ δ + e−γ (1−δ))

= 2(1 − e−γ δ)(3 − e−γ δ) + 2e−γ (1 − eγ δ)(3 − eγ δ).
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As δ ≤ 1
4 and under the assumption γ ≤ 3/2 the last display can be bounded by

0.9715 · 4γ δ(1 − e−γ ) ≤ 4
2γ

σ 2 (1 − e−γ )Aii ≤ 4γ δ(1 − e−γ ).

Hence 0.9715 · 2− jσ 2/4 ≤ Aii ≤ 2− jσ 2/4.

Case 2. Necessarily i, i ′ > 2. By twofold application of lemma 11

Ai j = (K (c, b) − 2K (n, b) + K (d, b))/4

− 2(K (c,m) − 2K (n,m) + K (d,m))/4

+ (K (c, a) − 2K (n, a) + K (d, a))/4

= 2 sinh2(γ d−c
4 )(K (n, b) − 2K (n,m) + K (n, a))/2

= 4 sinh2(γ b−a
4 ) sinh2(γ d−c

4 )K (n,m). (24)

Using the convexity of sinh we obtain the bound

2 sinh2(x/2) ≤ 0.55x2 (25)

for 0 ≤ x ≤ 1. Note that f (x) = e−γ x + e−γ (1−x) is convex on [0, 1], from which we
derive f (x) ≤ 1 + e−γ . Using this bound, and the fact that for γ ≤ 3/2,

γ 2K (n,m) ≤ σ 2

2 γ coth(γ /2) ≤ σ 2(1 + γ /2), (26)

which can be easily seen from a plot, that

|Aii ′ | ≤ 0.552γ 4 · 2−2 j−2 · 2−2 j ′−2|K (n,m)|
≤ 0.0095σ 2γ 2(1 + γ /2)2−1.5( j+ j ′).

Case 3.
For i ′ > 2, i = 1 with m = 0 or i = 2 with m = 1

2 , using Eq. (26), we obtain

|Aii ′ | = |K (m, n) − 1

2
K (m, c) − 1

2
K (m, d)|

≤ 2 sinh2(γ d−c
4 )K (m, n)

≤ 0.55γ 22−2 j ′−2K (m, n)

≤ 0.098σ 2(1 + γ /2)2−1.5 j . (27)

When i, i ′ > 2 then, using the calculation Eq. (24) and Lemma 11 noting that a, b and m
are not in (c, d), we obtain

Aii ′ = 2 sinh2
(
γ d−c

4

)
(K (n, b) − 2K (n,m) + K (n, a))/2.

Write x = γ |a − m| = γ |b − m| = γ hδ and α = |m−n|
|b−m| ∈ (0, 1). A simple computation

then shows

e−γ |b−n| − 2e−γ |m−n| + e−γ |a−n| = e−(1+α)x − 2e−αx + e−(1−α)x .

The derivative of f (α) := e−(1+α)x − 2e−αx + e−(1−α)x is nonnegative, for α, x > 0 hence
f (α) is increasing and so f (0) ≤ f (α) ≤ f (1). Note that f (0) = 2e−x −2 ≥ −2x, for x >

0 and f (1) = e−2x − 2e−x + 1 =: g(x). Maximising g′(x) over x > 0 gives g′(x) ≤ 1/2
and g(0) = 0 and therefore f (1) = g(x) ≤ x/2.
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It follows that

−2γ hδ ≤ e−γ |b−n| − 2e−γ |m−n| + e−γ |a−n| ≤ γ hδ/2.

For the other terms we derive the following bounds. Write

e−γ (1−|b−n|) − 2e−γ (1−|m−n|) + e−γ (1−|a−n|)

= e−γ+(1+α)x − 2e−γ+αx + e−γ+(1−α)x =: h(α).

Now h(α) is decreasing for x ≤ log 2 and convex and positive for x ≥ log 2. In both case
we can bound h(α) by its value at the endpoints α = 0 and α = 1. Using that 2x ≤ γ we
obtain 0 ≤ h(0) = e−γ (2ex − 2) ≤ 2x and 0 ≤ h(1) = e−γ

(
e2x − 2ex + 1

) ≤ 2x . So
0 ≤ h(α) ≤ 2γ hδ.

Using the bound Eq. (25) and x/(1 − exp(−x)) ≤ (1 + x) we obtain

|Aii ′ | ≤ 0.061σ 2γ (1 + γ )2−1.5( j+ j ′).

6.3 Proof of theorem 3

A general result for deriving contraction rates for Brownian semi-martingale models was
proved in van der Meulen et al. (2006). Theorem 3 follows upon verifying the assumptions
of this result for the diffusion on the circle. These assumptions are easily seen to boil down
to:

1. For every T > 0 and b1, b2 ∈ L2(T) the measures Pb1,T and Pb2,T are equivalent.
2. The posterior as defined in equation Eq. (5) is well defined.
3. Define the (random) Hellinger semimetric hT on L2(T) by

h2T (b1, b2) :=
∫ T

0

(
b1 − b2

)2
(Xt ) dt, b1, b2 ∈ L2(T). (28)

There are constants 0 < c < C for which

lim
T→∞ Pθ0,T

(
c
√
T ‖b1 − b2‖2 ≤ hT (b1, b2) ≤ C

√
T ‖b1 − b2‖2,∀ , b1, b2 ∈ L2(T)

)
= 1.

We start by verifying the third condition. Recall that the local time of the process XT is
defined as the random process LT (x) which satisfies

∫ T

0
f (Xt ) dt =

∫

R

f (x)LT (x) dx .

For every measurable function f for which the above integrals are defined. Since we are
working with 1-periodic functions, we define the periodic local time by

L̊T (x) =
∑

k∈Z
LT (x + k).

Note that t �→ Xt is continuous with probability one. Hence the support of t �→ Xt is
compact with probability one. Since x �→ LT (x) is only positive on the support of t �→ Xt ,
it follows that the sum in the definition of L̊T (x) has only finitely many nonzero terms and
is therefore well defined. For a one-periodic function f we have

∫ T

0
f (Xt ) dt =

∫ 1

0
f (x)L̊T (x) dx,
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provided the involved integrals exists. It follows from(Schauer andvanZanten2017,Theorem
5.3) that L̊T (x)/T converges to a positive deterministic function only depending only on b0
andwhich is bounded away from zero and infinity. Since the Hellinger distance can bewritten
as

hT (b1, b2) = √
T

√
∫ 1

0
(b1(x) − b2(x))2

L̊T (x)

T
dt

it follows that the third assumption is satisfied with dT (b1, b2) = √
T ‖b1 − b2‖2.

Conditions 1 and 2 now follow by arguing precisely as in lemmas A.2 and 3.1 of van
Waaij and van Zanten (2016) respectively (the key observation being that the convergence
result of L̊T (x)/T also holds when

∫ 1
0 b(x) dx is nonzero, which is assumed in that paper).

The stated result follows from Theorem 2.1 in van der Meulen et al. (2006) (taking
μT = √

T εT in their paper).

6.4 Proof of theorem 8 with Assumption 6 (A)

The proof proceeds by verifying the conditions of theorem 3. By Assumption 4 the true drift

can be represented as b0 = z1ψ1 + ∑∞
j=0
∑2 j

k=1 z jkψ jk . For r ≥ 0, define its truncated
version by

br0 = z1ψ1 +
r∑

j=0

2 j
∑

k=1

z jkψ jk .

6.4.1 Small ball probability

For ε > 0 choose an integer rε with

Cβε−1/β ≤ 2rε ≤ 2Cβε−1/β where Cβ = �b0�
1/β
β

(2β − 1)1/β
. (29)

For notational convenience we will write r instead of rε in the remainder of the proof. By
lemma 16 we have ‖br0 − b0‖∞ ≤ ε. Therefore

‖br,s − b0‖2 ≤ ‖br,s − br0‖2 + ‖br0 − b0‖2 ≤ ‖br,s − br0‖∞ + ε

which implies

P
(‖br,s − b0‖2 < 2ε

) ≥ P
(‖br,s − br0‖∞ < ε

)
.

Let fS denotes the probability density of S. For any x > 0, we have

P
(
‖bR,S − b0‖2 < 2ε

)
=
∑

r≥1

P(R = r)
∫ ∞

0
P
(‖br,s − b0‖2 < 2ε

)
fS(s) ds

≥ P(R = r) inf
s∈[Lε,Uε]

P
(‖br,s − br0‖∞ < ε

)
∫ Uε

Lε

fS(s) ds, (30)

where

Lε = ε
− p1

qβ and Uε = ε
− p2

qβ
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and p1, p2 and q are taken from Assumption 7. For ε sufficiently small, we have by the
second part of Assumption 7

∫ Uε

Lε

fS(s) ds ≥ exp
(− ε

− 1
β
)

By choice of r and the first part of Assumption 7, there exists a positive constant C such that

P(R = r) ≥ exp
(

− c22
r r
)

≥ exp
(

− Cε
− 1

β | log ε|
)
,

for ε sufficiently small.
For lower bounding the middle term in Eq. (30), we write

br,s − br0 = (sZ1 − z1)ψ1 +
r∑

j=0

2 j
∑

k=1

(sZ jk − z jk)ψ jk

which implies

‖br,s − br0‖∞ ≤ |sZ1 − z1| +
r∑

j=0

max
1≤k≤2 j

|sZ jk − z jk | ≤ (r + 2)max
i∈Ir

|sZi − zi |.

This gives the bound

P
(‖br,s − br0‖∞ < ε

) ≥
∏

i∈Ir

P
(
|sZi − zi | <

ε

r + 2

)
.

By choice of the Zi , we have for all i ∈ {1, 2, . . .}, 2α�(i)Zi is standard normally distributed
and hence

log P

(

|sZi − zi | <
ε

r + 2

)

= log P

(∣
∣
∣2α�(i)Zi − 2α�(i)zi/s

∣
∣
∣ <

2α�(i)ε

(r + 2)s

)

≥ log

(
2α�(i)ε

(r + 2)s

)

− 22α�(i)ε2

(r + 2)2s2
− 22α�(i)z2i

s2
+ 1

2 log
( 2

π

)
,

where the inequality follows from lemma 18. The third term can be further bounded as we
have

22α�(i)z2i = 22(α−β)�(i)22β�(i)z2i ≤ 22(α−β)�(i)�b0�
2
β .

Hence

log P

(

|sZi − zi | <
ε

r + 2

)

≥ log

(
2α�(i)ε

(r + 2)s

)

− 22α�(i)ε2

(r + 2)2s2

−22(α−β)�(i)�b0�2β
s2

+ 1
2 log

( 2
π

)
.

(31)

For s ∈ [Lε,Uε] and i ∈ Ir we will now derive bounds on the first three terms on the right
of Eq. (31). For ε sufficiently small we have r ≤ r +2 ≤ 2r and then inequality (29) implies

logCβ ≤ r + 2 ≤ 2 log(4Cβ) + 2

β
| log ε|.
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Bounding the first term on the RHS of (31). For ε sufficiently small, we have

log

(
(r + 2)s

2α�(i)ε

)

≤ log

(
(r + 2)Uε

ε

)

= log

(

(r + 2)ε
−
(
1+ p2

qβ

))

≤ log

{

2 log(4Cβ) + 2

β
| log ε|

}

+
(

1 + p2
qβ

)

| log ε|
≤ C̃ p2,q,β | log ε|,

where C̃ p2,q,β is a positive constant.
Bounding the second term on the RHS of (31). For ε sufficiently small, we have

22α�(i)ε2

(r + 2)2s2
≤ 22αrε2

(logCβ)2L2
ε

≤ (2Cβ)2α

(logCβ)2
ε

2
β (−α+β+p1/q) ≤ 1.

The final inequality is immediate in case α = β, else if suffices to verify that the exponent is
non-negative under the assumption p1 > q|α − β|.

Bounding the third term on the RHS of (31). For ε sufficiently small, in case β ≥ α we
have

22(α−β)�(i)�b0�2β
s2

≤ �b0�
2
βL

−2
ε ≤ 1.

In case β < α we have

22(α−β)�(i)�b0�2β
s2

≤ 22(α−β)r �b0�2β
L2

ε

≤ (2Cβ)2(α−β)ε
2
β (p1/q−α+β) ≤ 1

as the exponent of ε is positive under the assumption p1 > q|α − β|.
Hence for ε small enough, we have

log P

(

|sZi − zi | <
ε

r + 2

)

≥ −C̃ p2,q,β | log ε| − 3.

As −2r+1 ≥ −4Cβε−1/β we get

log inf
s∈[x p1 ,x p2 ]

P
(‖br,s − br0‖∞ < ε

) ≥ −4Cβε−1/β
(
C̃ p2,q,β | log ε| + 3

)

� −ε−1/β | log ε|.
We conclude that the right hand side of Eq. (30) is bounded below by exp

(−C1ε
−1/β | log ε|),

for some positive constant C1 and sufficiently small ε.

6.4.2 Entropy and remaining mass conditions

For r ∈ {0, 1, . . .} denote by Cr the linear space spanned by ψ1 and ψ jk , 0 ≤ j ≤ r,
k ∈ 1, . . . , 2 j , and define

Cr,t := {b ∈ Cr , �b�α ≤ t
}
.

Proposition 12 For any ε > 0

log N (ε,Cr,t , ‖ · ‖∞) ≤ 2r+1 log(3Aαtε
−1),

where Aα =∑∞
k=0 2

−kα .
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Proof We follow (van der Meulen et al. 2006, §3.2.2). Choose ε0, . . . , εr > 0 such that∑r
j=0 ε j ≤ ε. Define

Uj =
{[−2−α j t, 2−α j t

]2 j

if j ∈ {1, . . . , r}
[−t, t]2 if j = 0

.

For each j ∈ {1, . . . , r}, let E j be a minimal ε j -net with respect to the max-distance on R
2 j

and let E0 be a minimal ε0-net with respect to the max-distance on R
2. Hence, if x ∈ Uj ,

then there exists a e j ∈ E j such that maxk |xk − ek | ≤ ε j .

Take b ∈ Cr,t arbitrary: b = z1ψ1 + ∑r
j=0
∑2 j

k=1 z jkψ jk . Let b̃ = e1ψ1 +
∑r

j=0
∑2 j

k=1 e jkψ jk , where (e1, e0,1) ∈ E0 and (e j1, . . . , e j2 j ) ∈ E j (for j = 1, . . . , 2 j ).
We have

‖b − b̃‖∞ ≤ |z1 − e1|‖ψ1‖∞ +
r∑

j=0

max
1≤k≤2 j

|z jk − e jk |‖ψ jk‖∞

≤ |z1 − e1| +
r∑

j=0

max
1≤k≤2 j

2 jα|2− jαz jk − 2− jαe jk |.

This can be bounded by
∑r

j=0 ε j by an appropriate choice of the coefficients in b̃. In that

case we obtain that ‖b − b̃‖∞ ≤ ε. This implies

log N (ε,Cr,t , ‖ · ‖∞) ≤
r∑

j=0

log |E j | ≤
r∑

j=0

2 j log

(
3 · 2−α j t

ε j

)

.

The asserted bound now follows upon choosing ε j = ε2− jα/Aα . ��
Proposition 13 There exists a constant a positive constant K such that

log N (aε, {b ∈ Cr : ‖b − b0‖2 ≤ ε} , ‖ · ‖2) ≤ 2r+1 log
(
6AαK2αr ) .

Proof There exists a positive K such that

{b ∈ Cr : ‖b − b0‖2 ≤ aε} ⊂ {b ∈ Cr : ‖b‖2 ≤ K } .

By lemma 21, this set is included in the set
{
b ∈ Cr : ‖b‖∞ ≤ √

32(r+1)/2K
}

. (32)

By lemma 20, for any b = z1ψ1 +∑r
j=0
∑2 j

k=1 z jkψ jk in this set we have

max
{
|z1|, |z jk |, j = 0, . . . , r, k = 1 . . . , 2 j

}
≤ 2‖b‖∞

√
32(r+1)/2K .

Hence, the set Eq. (32) is included in the set
{
b ∈ Cr : �b�α ≤ a(r, ε)

} = Cr,a(r,ε), where
a(r, ε) = 21+αr

√
32(r+1)/2K .

Hence,
N (aε, {b ∈ Cr : ‖b − b0‖2 ≤ ε} , ‖ · ‖2) ≤ N

(
ε,Cr,a(r,ε), ‖ · ‖2

)
.

Using Lemma 21 again the latter can be bounded by

N
(
ε
√
32(r+1)/2,Cr,a(r,ε), ‖ · ‖∞

)

The result follows upon applying Proposition 12. ��
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We can now finish the proof for the entropy and remaining mass conditions. Choose rn to

be the smallest integer so that 2rn ≥ Lε
− 1

β
n , where L is a constant, and set Bn = Crn . The

entropy bound then follows directly from Proposition 13.
For the remaining mass condition, using Assumption 7, we obtain

P
(
bR,S /∈ Bn

)
= P(R > rn) ≤ exp

(− c12
rn rn

) ≤ exp
(− C3ε

− 1
β

n | log εn |
)
,

and note that the constant C3 can be made arbitrarily big by choosing L big enough.

6.5 Proof of theorem 8 under assumption 6 (B)

We start with a lemma.

Lemma 14 Assume there exists 0 < c1 < c2 and 0 < c3 with c3 < c1 independent from r,
such that for all i, i ′, 2 ≤ �(i), �(i ′) ≤ r ,

c12
−�(i) ≤ Aii ≤ c22

−�(i), (33)

|Aii ′ | ≤ c32
−1.5(�(i)+�(i ′)) if i = i ′. (34)

Let Ã = (Aii ′)2≤�(i),�(i ′)≤r (so the right-lower submatrix of Ar ). Then for all x ∈ R
|Ir |−2

(c1 − c3)x
′̃x ≤ x ′ Ãx ≤ 2c2x

′̃x .

where ̃ = (̃i i ′)2≤�(i),�(i ′)≤r is the diagonal matrix with ̃i i = 2−�(i), .

Proof In the following the summation are over i, i ′, 2 ≤ �(i), �(i ′) ≤ r . Trivially, x ′Ar x =∑
i x

2
i Aii +∑i = j xi Ai j x j . By the first inequality

c1x
′(r)x = c1

∑

i

x2i 2
−�(i) <

∑

i

x2i Aii < c2
∑

i

x2i 2
−�(i) = c2x

′(r)x .

On the other hand
∣
∣
∣
∣
∣
∣

∑

i =i ′
xi Aii ′xi ′

∣
∣
∣
∣
∣
∣
≤ c3

∑

i =i ′
|xi |2−1.5�(i)|xi ′ |2−1.5�(i ′) ≤ c3

(
∑

i

|xi |2−1.5�(i)

)2

.

At the first inequality we used the second part of of (33). The second inequality follows upon
including the diagonal. By Cauchy-Schwarz, this can be further bounded by

c3

(
∑

i

x2i 2
−�(i)

)(
∑

i

2−2�(i)

)

≤ c3x
′x,

where the final inequality follows from
∑

i 2
−2�(i) ≤ ∑∞

i=3 2
−2�(i) = ∑∞

j=1 2
j2−2 j = 1.

The result follows by combining the derived inequalities. ��
We continue with the proof of Theorem 8. Write A as block matrix

A =
[
A1 B ′
B A2

]

,

with A1 a 2 × 2-matrix, and B, A2 defined accordingly. By lemma 2

A1 = σ 2

2
γ

[
coth(γ /2) sinh−1(γ /2)
sinh−1(γ /2) coth(γ /2)

]

.
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Define the 2 × 2-matrix

1 = c σ 2

2 γ tanh(γ /4)I, c ∈ (0, 1).

where I is the 2 × 2-identity matrix. It is easy to see that A1 − 1 is positive definite.
When A2 −2 − B(A1 −1)

−1B ′ is positive definite, then it follows from the Cholesky
decomposition that A −  is positive definite, where  = diag(1,2) positive definite.
Note

(BA−1
1 B ′)i,i ′ =

∑

k,k′
Bik(A1)

−1
kk′ Bi ′k′ ≤

⎛

⎝
∑

k,k′
(A1)

−1
kk′

⎞

⎠ (Bi,1 ∨ Bi,2)(Bi ′,1 ∨ Bi ′,2)

where
⎛

⎝
∑

k,k′
(A1)

−1
kk′

⎞

⎠ = 2

σ 2γ

2

sinh−1(γ /2) + coth(γ /2)
≤ 2

σ 2(1 + γ )
.

Therefore

|(BA−1
1 B ′)i i ′ | ≤ 0.020σ 2(1 + γ /4)2−1.5(�(i)+�(i ′))

Now consider Ã = A2−2−B(A1−1)
−1B ′. By lemma 2 and the bound on |(BA−1

1 B ′)i i ′ |
and choosing c > 0 in the definition of1 small enough, under the assumption that γ ≤ 1.5,

0.945 · 2−�(i)σ 2/4 < Ãii < 1.03 · 2−�(i)σ 2/4.

and for i = i ′ | Ãii ′ | ≤ 0.9415 σ 2

4 2−1.5(�(i)+�(i ′)). Therefore by lemma 14 Ã − 2 is
positive definite with diagonal matrix 2 with diagonal entries 2−�(i).

It follows that x ′x � x ′Ax . This implies that the small ball probabilities and the mass
outside a sieve behave similar under Assumption 6(B) as when the Zi are independent
normally distributed with zero mean and variance ξ2i = i i . As this case corresponds to
Assumption6(A)withα = 1

2 forwhichposterior contractionhas alreadybeen established, the
stated contraction rate under Assumption 6(B) follows from Anderson’s lemma (lemma 19).

6.6 Proof of theorem 10: convergence in stronger norms

The linear embedding operator T : L p(T) → L2(T), x �→ x is a well-defined injective
continuous operator for all p ∈ (2,∞]. Its inverse is easily seen to be a densely defined,
closed unbounded linear operator. Following Knapik and Salomond (2014) we define the
modulus of continuity m as

m(Bn, ε) := sup
{‖ f − f0‖p : f ∈ Bn, ‖ f − f0‖2 ≤ ε

}
.

Theorem 2.1 of Knapik and Salomond (2014) adapted to our case is

Theorem 15 (Knapik and Salomond (2014)) Let εn ↓ 0, Tn ↑ ∞ and� be a prior on L p(T)

such that

E0 �
(
Bc

n | XTn
)

→ 0,

for measurable sets Bn ⊂ L p(T). Assume that for any positive sequence Mn

E0 �
(
b ∈ Bn : ‖b − b0‖2 ≥ Mnεn | XTn

)
→ 0,
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then

E0 �
(
b ∈ L p(T) : ‖b − b0‖p ≥ m(Bn, Mnεn) | XTn

)
→ 0.

Note that the sieves Cr,t which we define in Sect. 6.4.2 have by Eq. (15) the property
�(C c

r,t | XT ) → 0. By lemmas 21 and 23, the modulus of continuity satisfies m(Cr,u, εn) �
2r(1/2−1/p)εn , for all p ∈ (2,∞], (assume 1/∞ = 0), and the result follows.
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A Lemmas used in the proofs

Lemma 16 Suppose z has Faber–Schauder expansion

z = z1ψ1 +
∞∑

j=0

2 j
∑

k=1

z jkψ jk .

If �z�β < ∞ (with the norm defined in (16)), then for r ≥ 1

∥
∥
∥z −

∑

i∈Ir

ziψi

∥
∥
∥∞ ≤ �z�β

2−rβ

2β − 1
. (35)

Proof This follows from

∥
∥
∥z −

∑

i∈Ir

ziψi

∥
∥
∥∞ ≤

∞∑

j=r+1

∥
∥
∥

2 j
∑

k=1

z jkψ jk

∥
∥
∥∞

=
∞∑

j=r+1

2− jβ max
1≤k≤2 j

2 jβ |z jk | ≤ �z�β

∞∑

j=r+1

2− jβ .

Lemma 17 If X ∼ IG(A, B) then for any M > 0,

P(X ≥ M) ≤ BA

�(A)
M−A.

Proof This follows from

P(X ≥ M) ≤ BA

�(A)

∫ ∞

M
x−α−1 dx

= − BA

�(A)

[
x−α

]∞
x=M = BA

�(A)
M−A.

��
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Lemma 18 Let X ∼ N(0, 1), θ ∈ R and ε > 0.Then

P(|X − θ | ≤ ε) ≥ e−θ2

√
2
P
(
|X | ≤ √

2ε
)

≥ elog ε−ε2−θ2+log
√

2
π .

Proof Note that
∫ θ+ε

θ−ε

e− 1
2 x

2
dx =

∫ ε

−ε

e− 1
2 (x+θ)2 dx

and

e− 1
2 (x+θ)2

e−θ2e− 1
2 (

√
2x)2

= eθ2− 1
2 (x+θ)2+x2 = e

1
2 (x−θ)2 ≥ 1,

thus e− 1
2 (x+θ)2 ≥ e−θ2e− 1

2 (
√
2x)2 , hence

∫ θ+ε

θ−ε

e− 1
2 x

2
dx ≥ e−θ2

∫ ε

−ε

e− 1
2 (

√
2x)2 dx = e−θ2

√
2

∫ √
2ε

−√
2ε
e− 1

2 u
2
du.

Now the elementary bound
∫ y
−y e

− 1
2 x

2 ≥ 2ye− 1
2 y

2
gives

P(|X − θ | ≤ ε) = 1√
2π

∫ θ+ε

θ−ε

e− 1
2 x

2
dx ≥ 1√

2π

e−θ2

√
2

∫ √
2ε

−√
2ε
e− 1

2 u
2
du

= e−θ2

√
2
P(|X | ≤ √

2ε) ≥ 1√
2π

e−θ2

√
2
2
√
2εe−ε2 =

√
2

π
elog ε−θ2−ε2

��
Lemma 19 (Anderson’s lemma) Define a partial order on the space of n × n-matrices
(n ∈ N ∪ {∞}) by setting A ≤ B, when B − A is positive definite. If X ∼ N(0, �X) and
Y ∼ N(0, �Y) independently with �X ≤ �Y , then for all symmetric convex sets C

P(Y ∈ C) ≤ P(X ∈ C).

Proof See Anderson (1955). ��
Lemma 20 Let

f = z1ψ1 +
r∑

j=1

2 j
∑

k=1

z j,kψ j,k .

Then

sup
i :�(i)≤r

|zi | ≤ 2‖ f ‖∞.

Proof Note that |z1| = | f (0)| ≤ 2‖ f ‖∞, and |z0,1| = | f (1/2)| ≤ 2‖ f ‖∞ and inductively,
for j ≥ 1, z jk = f

(
(2k − 1)2−( j+2)

) − 1
2 f
(
2−( j+1)(k − 1)

) − 1
2 f
(
2−( j−1)k

)
, hence

|z jk | ≤ 2‖ f ‖∞. ��
Lemma 21 Let Cr as in Sect. 6.4.2. Then

sup
0 = f ∈C r

‖ f ‖∞
‖ f ‖2 ≤ √

3 · 2(r+1)/2.
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Proof Let f ∈ Cr be nonzero. Note that for any constant c > 0,

‖c f ‖∞
‖c f ‖2 = ‖ f ‖∞

‖ f ‖2 .

Hence, we may and do assume that ‖ f ‖∞ = 1. Furthermore, since the L2 and L∞ norm of
f and | f | are the same, we also assume that f is nonnegative.
Let x0 be a global maximum of f . Clearly f (x0) = 1. Since f is a linear interpolation

between the points {k2− j−1 : k = 0, 1, . . . , 2r+1}, we may also assume that x0 is of the form
x0 = k2− j−1. We consider two cases

(i) 0 ≤ k < 2r+1,
(ii) k = 2r+1.

In case (i) we have that f (x) ≥ (
1 − 2r+1(x − k2−r−1)

)
I[k2−r−1,(k+1)2−r−1](x), for all

x ∈ [k2−r−1, (k + 1)2−r−1]. In case (ii) f (x) ≥ 2r+1(x − 1+ 2−r−1)I[1−2−r−1,1](x), for all
x ∈ [1 − 2−r−1, 1]. Hence, in both cases,

‖ f ‖22 ≥ 22r+2
∫ 2−r−1

0
x2 dx = 1

3
22r+22−3r−3 = 1

3
2−r−1.

Thus

‖ f ‖∞
‖ f ‖2 ≤ 1

1√
3
2−(r+1)/2

= √
3 · 2(r+1)/2,

uniformly over all nonzero f ∈ Cr,s . ��
Lemma 22 Let a1, a2, x1, x2 be positive numbers. Then

a1 + a2
x1 + x2

≤ a1
x1

∨a2
x2

.

Proof Suppose that the lemma is not true, so there are positive a1, a2, x1, x2 such that,

a1
x1

∨a2
x2

− a1 + a2
x1 + x2

=
[
a1
x1

− a1 + a2
x1 + x2

]
∨
[
a2
x2

− a1 + a2
x1 + x2

]

=
[ a1

x1
(x1 + x2) − (a1 + a2)

x1 + x2

]
∨
[ a2

x2
(x1 + x2) − (a1 + a2)

x1 + x2

]

< 0.

Hence, both terms on the right-hand-side are negative. In particular, this means for the first
term that x2/x1 < a2/a1. For the second term this gives x1/x2 < a1/a2. These two inequal-
ities cannot hold simultaneously and we have reached a contradiction. ��
Lemma 23 Let Cr and Cr,s as in Sect. 6.4.2. Then for p ∈ [2,∞),

sup
0 = f ∈C r

‖ f ‖p

‖ f ‖2 ≤ 31/2

(p + 1)1/p
2(r+1)(1/2−1/p).

Proof Let f ∈ Cr . Just as in proof of lemma 21 we may assume that f is nonnegative and
‖ f ‖2 = 1. Hence

sup
0 = f ∈C r

‖ f ‖p

‖ f ‖2 =
(

sup
0 = f ∈C r ,‖ f ‖2=1

‖ f ‖p
p

)1/p

=
(

sup
0 = f ∈C r ,‖ f ‖2=1

‖ f ‖p
p

‖ f ‖22

)1/p

.
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Note that

‖ f ‖p
p =

2r+1−1∑

k=0

∫ (k+1)2−r−1

k2−r−1
f (x)p dx .

Hence, by repeatedly applying lemma 22

∑2r+1

k=0

∫ (k+1)2−r−1

k2−r−1 f (x)p dx
∑2r+1−1

k=0

∫ (k+1)2−r−1

k2−r−1 f (x)2 dx
≤

∨

k ∈ {0, . . . , 2r+1 − 1}
∃x ∈ (k2−r−1, (k + 1)2−r−1) : f (x) = 0

∫ (k+1)2−r−1

k2−r−1 f (x)p dx
∫ (k+1)2−r−1

k2−r−1 f (x)2 dx
.

Note that f is a linear interpolation between the points k2−r−1, k ∈ {0, 1, . . . , 2r+1}.
Now study affine functions g : [0, 2−r−1] → R which are positive. A maximum of g is

attained in either 0 or 2−r−1. Without lose of generality it is attained in 0. Using scaling in a
later stadium of the proof, we assume for the moment that g(0) = 1. Hence a := g(2−r−1) ∈
[0, 1]. Note that

g(x) = 1 − (1 − a)2r+1x .

When a = 1, ‖g‖p = ‖g‖2 = 1. Now consider a < 1,

∫ 2−r−1

0
g(x)p dx =

∫ 2−r−1

0

[
1 − (1 − a)2r+1x

]p dx .

Let y = −x + 2−r−1

1−a then x = −y + 2−r−1

1−a and dx = − dy. Hence

∫ 2−r−1

0
g(x)p dx =

∫ 2−r−1
1−a

−2−r−1+ 2−r−1
1−a

(1 − a)p2rp+p y p dy

= 2−r−1 1

p + 1

[
1 − a p+1

1 − a

]

.

Note that for a constant c > 0 and a function h,

‖ch‖p
p

‖ch‖22
= cp‖h‖p

p

c2‖h‖22
= cp−2 ‖h‖p

p

‖h‖22
.

Let

c2 = 3 · 2r+1 1 − a

1 − a3
.

Hence cg has L2-norm one and

‖cg‖p
p = cp‖g‖p

p

=
(

3 · 2r+1 1 − a

1 − a3

) p
2

2−r−1 1

p + 1

[
1 − a p+1

1 − a

]

= 3p/2

p + 1
2(r+1)(p/2−1)(1 − a)p/2−1(1 − a3)−p/2(1 − a p+1).

The maximum is attained for a = 0, then

‖cg‖p
p = 3p/2

p + 1
2(r+1)(p/2−1)
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Hence

‖cg‖p = 31/2

(p + 1)1/p
2(r+1)(1/2−1/p)

and the result follows, using that ‖ f I(k2−r−1,(k+1)2−r−1)‖22 ≤ ‖ f ‖22 and that for 0 < c′ < c,

‖c′g‖p
p

‖c′g‖22
= (c′/c)p

(c′/c)2
‖cg‖p

p

‖cg‖22
≤ ‖cg‖p

p

‖cg‖22
.
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