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Abstract Theproblem to establish the asymptotic distribution of statistical estimators aswell
as the moment convergence of such estimators has been recognized as an important issue
in advanced theories of statistics. This problem has been deeply studied for M-estimators
for a wide range of models by many authors. The purpose of this paper is to present an
alternative and apparently simple theory to derive the moment convergence of Z -estimators.
In the proposed approach the cases of parameters with different rate of convergence can be
treated easily and smoothly and any large deviation type inequalities necessary for the same
result for M-estimators do not appear in this approach. Applications to the model of i.i.d.
observation, Cox’s regression model as well as some diffusion process are discussed.

Keywords Asymptotic distribution · Method of moment estimators · Cox regression

1 Introduction

This paper is devoted to the convergence of moments for “Z -estimators”, in other words,
estimators that are the solutions to estimating equations.

For an illustration, let us consider the simplest case of i.i.d. data. Let (X ,A, μ) be a
measure space, and let us be given a parametric family of probability densities f (·; θ) with
respect to μ, where θ ∈ � ⊂ R

d . Let X1, X2, . . . be an independent sequence of X -valued
random variables from this parametric model. There are at least two ways to define the
“maximum likelihood estimator (MLE)” in statistics. One way is to define it as the maximum
point of the random function
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θ �→ Mn(θ) = 1

n

n∑

k=1

log f (Xk; θ),

while the other is to do it as the solution to the estimating equation

Zn(θ) = 0, or, in another notation, Ṁn(θ) = 0,

where Zn(θ) = Ṁn(θ) is the gradient vector of Mn(θ). The former is a special case of “M-
estimators”, and the latter is that of “Z -estimators”; see van der Vaart andWellner (1996) for
these terminologies.

It is well known that the MLE θ̂n is asymptotically normal: it holds for any bounded
continuous function f : Rd → R that

lim
n→∞ E[ f (√n(θ̂n − θ0))] = E[ f (I (θ0)−1/2Z)],

where I (θ0) is the Fisher information matrix and Z is a standard Gaussian random vector.
Furthermore, it is important for some advanced theories in statistics, including asymptotic
expansions and model selections, to extend this kind of results for bounded continuous
functions f to that for any continuous function f with polynomial growth, that is, any
continuous function f for which there exist some constants C = C f > 0 and q = q f > 0
such that

| f (x)| ≤ C(1 + ||x ||)q , ∀x ∈ R
d . (1)

See the discussion in Yoshida (2011) for the importance of this problem.
Notice here that, when we have an asymptotic distribution result of an estimator, namely

Rn(θ̂n − θ0) →d L(θ0) where Rn is a (possibly, random) diagonal matrix and the limit
random vector L(θ0) is not necessarily Gaussian, it is sufficient for the generalisation to
the case where f is a continuous function satisfying (1) to check that ||Rn(θ̂n − θ0)|| is
asymptotically L p-bounded for some p > q , that is,

lim sup
n→∞

E[||Rn(θ̂n − θ0)||p] < ∞.

The study to provide some methods to obtain the moment convergence with polynomial
order goes back to Ibragimov and Has’minskii (1981) who considered the MLEs and the
Bayes estimators (as some special cases of M-estimators) in the general framework of the
locally asymptotically normal models. It should be emphasised that one of the important
merits of Ibragimov and Has’minskii’s program is that the theory, based on the likelihood,
automatically yields also the asymptotic efficiency of the estimators. In their main theorems,
it was assumed that an exponential type large deviation inequality holds for the rescaled
log-likelihood ratio random field. However, checking the assumption in terms of the large
deviation inequality it has been not always easy. Although there are some successful works
for some stochastic processes [see Kutoyants (1984) for general stochastic processes, Kutoy-
ants (1994) for Poisson processes, and Kutoyants (2004) for ergodic diffusion processes],
developing a general theory to establish the large deviation inequality was an open problem
for many years. Finally in Yoshida (2011) it was pointed out that a polynomial type large
deviation inequality is sufficient for the core part, i.e. the large deviation inequality, of the
program presented in Ibragimov andHas’minskii (1981), and themain contribution is to have
proved the (polynomial type) large deviation inequality with a good generality. Uchida and
Yoshida (2012) applied the result in Yoshida (2011) to establish the moment convergence
of some M-estimators in ergodic diffusion process models with an adjustment presented in
Kessler’s (1997). We also mention that in Nishiyama (2010) it is pointed out that the moment
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convergence problem for M-estimators can be solved by using a maximal inequality instead
of the large deviation inequalities, and that in Kato (2011) this type of approach is taken to
deal with some bootstrap M-estimators.

In this paper, we consider the problem to prove the moment convergence of Z -estimators.
In some context Z -estimators may be more natural than M-estimator, and in some cases
Z -estimator cannot be derived from M-estimators, for example moment estimators are of
such kind. By the way, as we have to assume that the random field (something like the log-
likelihood) is differentiable, our framework is more restrictive than that for M-estimators.
See Sect. 3.1. By contrast, the proofs becomes simpler because any large deviation type
inequalities do not appear in our proof that is based on a combination of arguments involving
the Hölder’s and Minkowskii’s inequalities.

Moreover it is possible to apply the result on Z -estimators to treat easily also the cases
where the rates of convergence are different over the different components of θ . This is due to
the fact that for Z -estimators we can multiply the gradient vector γ̇n(θ) of a contrast function
γn(θ), where γn(θ) is typically the log-likelihood function, by a matrix R−2

n to get a kind of
law of large numbers, namely,

Ṁn(θ) = R−2
n γ̇n(θ).

Typically, Rn = √
nId where Id is the identity matrix, although a merit of our approach

is that the diagonal components of Rn may be different in our framework. In contrast, in
the framework of M-estimation theory the (scalar valued) contrast function γn(θ) with no
assumption of differentiability has to be multiplied by a scalar. For ergodic diffusion process
typically the rate of the parameters in drift coefficient is different from the rate of convergence
of the parameters in the diffusion coefficient. As mentioned before, in Uchida and Yoshida
(2012) the result in Yoshida (2011) is applied to establish the moment convergence of some
M-estimators in ergodic diffusion process and they introduce some nuisance parameters in
order to handle the components of different rates step by step. In Sect. 3.3 we present how the
result can be obtained for the Z -estimators for the same model of ergodic diffusion process.

The rest of the paper is organised as follows. In the next Sect. 2 we define Z -estimator and
we present our main result on convergence of moments for such estimators. In Sect. 3 we give
some examples where the results presented in the previous section can be applied to have
convergence of moments of appropriate Z -estimators. In particular in Sect. 3.1 the method of
moments of i.i.d observation is presented. In Sect. 3.2 application to Cox’s regression model
is studied. In Sect. 3.3 examples to ergodic diffusion processes is given and finally in Sect.
3.4 an example on the estimation of volatility for diffusion processes is presented.

Before to close this section let us introduce some useful notations in what follows. The
parameter space � is a bounded, open, convex subset of Rd , where d is a fixed, positive
integer. The word “vector” always means “d-dimensional real column vector”, and the word

“matrix” does “d×d real matrix”. The Euclidean norm is denoted by ||v|| :=
√∑d

i=1 |v(i)|2
for a vector v where v(i) denotes the i-th component of v, and by ||A|| :=

√∑d
i, j=1 |A(i, j)|2

for a matrix A where A(i, j) denotes the (i, j)-component of A. Note that ||Av|| ≤ ||A|| · ||v||
and ||AB|| ≤ ||A|| · ||B|| for vector v and matrices A, B. The notations v
 and A
 denote
the transpose. We use also the notation A ◦ B defined by (A ◦ B)(i, j) := A(i, j)B(i, j) for two
matrices A, B (the Hadamard product). We denote by Id the identity matrix. The notations
→p and →d mean the convergence in probability and the convergence in distribution, as
n → ∞, respectively.
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2 Moment convergence of Z-estimators

Let � be a bounded, open, convex subset of Rd . Let an R
d -valued random function Zn(θ)

of θ ∈ � which is continuously differentiable with the gradient vector Żn(θ), defined on a
probability space (�,F, P) that is common for all n ∈ N. (However, it will be clear from
our proofs that if the limit matrices V (θ0) and Ż(θ) appearing below are non-random then
the underlying probability spaces need not be common for all n ∈ N.)

An important special case is Zn(θ) given as the gradient vector Ṁn(θ) of a rescaled
contrast function Mn(θ) = R−2

n γn(θ) of θ ∈ � which is twice continuously differentiable
with the gradient vector Ṁn(θ) and the Hessian matrix M̈n(θ), where Rn be a (possibly,
random) diagonal matrix whose diagonal components are positive; that is, defining Qn by
Q(i, j)

n = (R(i,i)
n R( j, j)

n )−1, put

Zn(θ) = Ṁn(θ) = R−2
n γ̇n(θ) and Żn(θ) = M̈n(θ) = Qn ◦ γ̈n(θ). (2)

Remark In the typical cases, Rn = √
nId and Qn = n−11, where 1 denotes the matrix whose

all components are 1. In same specific models, such as branching process for example, the
rate matrix Rn for the estimators of the offspring distribution may depend on θ0.

Turning back to the general setup, we shall state a theorem to give an asymptotic repre-
sentation for Z -estimators.

Let us introduce the following conditions.
[Z1] Suppose there exists a sequence of matrices Vn(θ0) which are regular almost surely

such that for any sequence of �-valued random vectors θ̃n converging in probability to θ0,

Żn(θ̃n) − (−Vn(θ0)) →p 0.

[Z2] Suppose that

(RnZn(θ0), Vn(θ0)) →d (L(θ0), V (θ0)),

where Rnbe a (possibly, random) diagonal matrix whose diagonal components are positive,
L(θ0) is a random vector, and V (θ0) is a random matrix which is regular almost surely.

Remark In condition [Z2] we do not assume that V (θ0) and L(θ0) are independent.

Although the following result is not really novel, we will give a full (and short) proof for
references.

Theorem 2.1 Let an R
d -valued random function Zn(θ) of θ ∈ � which is continuously

differentiable with the gradient vector Żn(θ) be given. Suppose that condition [Z1] and [Z2]
hold true.

Then, for any sequence of �-valued random vectors θ̂n which converges in probability to
θ0 and satisfies that ||RnZn(θ̂n)|| = oP (1), it holds that

Rn(θ̂n − θ0) = Vn(θ0)
−1RnZn(θ0) + oP (1)

→d V (θ0)
−1L(θ0).

Remark Usually the matrices Vn(θ) = −Żn(θ).

In Theorem 2.1 the consistency of the sequence of Z -estimators θ̂n has been assumed.
A method to show this property will be given in Lemma 2.2 below, whose proof is omitted
because it can be proved exactly in the same way as Theorems 5.7 and 5.9 of van der Vaart
(1998).
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Lemma 2.2 Suppose that for some θ0 ∈ �, it holds that

sup
θ∈�

||Zn(θ) − Zθ0(θ)|| →p 0,

where the random field θ � Zθ0(θ) of the limit satisfies that

inf
θ :||θ−θ0||>ε

||Zθ0(θ)|| > 0 = ||Zθ0(θ0)||, almost surely, ∀ε > 0.

Then, for any sequence of�-valued random vectors θ̂n such that ||Zn(θ̂n)|| = oP (1), it holds
that θ̂n →p θ0.

In the following we define Rr
n for any r ∈ R as Rr

n = diag[(R(1,1)
n )r , . . . , (R(d,d)

n )r ]. Let
some constants p ≥ 1 and a, b > 1 such that 1

a + 1
b = 1 be given. Let us introduce the

following conditions.
[Z3] Suppose that for some θ0 ∈ �,

||RnZn(θ0)|| is asymptotically L pa-bounded. (3)

[Z4] Suppose that there exist a constant γ ∈ (0, 1] and some random matrices Żθ0(θ)

indexed by θ ∈ � such that

lim
n→∞ E

[
sup
θ∈�

||Rγ
n (Żn(θ) − Żθ0(θ))||pa/γ

]
= 0. (4)

[M1] There exists a random matrix J (θ0) which is positive definite almost surely such
that Żθ0(θ) ≤ −J (θ0) for all θ ∈ �, almost surely, and that E[||J (θ0)

−1||pb/γ ] < ∞.
[M2] E[supθ∈� ||Żθ0(θ)−1||pb/γ ]<∞,where the randommatrices Żθ0(θ)’s are assumed

to be regular almost surely.
Now, we give a theorem to establish the moment convergence of Z -estimators, which is

the main result in this paper.

Theorem 2.3 Let an R
d -valued random function Zn(θ) of θ ∈ � which is continuously

differentiable with the gradient vector Żn(θ) be given. Suppose that conditions [Z3] and
[Z4] hold true. Suppose further that either of the conditions [M1] or [M2] is satisfied.

Then, for any sequence of�-valued random vectors θ̂n such that ||RnZn(θ̂n)|| is asymptot-
ically L pa-bounded, it holds that ||Rn(θ̂n −θ0)|| is asymptotically L p-bounded. Therefore, in
this situation, whenever we also have that Rn(θ̂n − θ0) →d G(θ0) where G(θ0) is a random
vector, it holds for any continuous function f satisfying (1) for q ∈ (0, p) that

lim
n→∞ E[ f (Rn(θ̂n − θ0))] = E[ f (G(θ0))],

where the limit is also finite.

In the last theorem we can observe that when the second condition in [M1] is sat-
isfied with ||J (θ0)||−1 which is bounded or the first condition in [M2] is satisfied with
supθ∈� ||Żθ0(θ)−1|| which is bounded, the constant a appearing in the above claim may be
replaced by 1.

Remark The crucial point in the course of applying this theorem is to check the condition
(4) together with [M1] or [M2]. This is clearly satisfied for moment estimators described in
Example 3.1.
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Remark If the matrix Żn(θ) is symmetric than condition [M1] can be satisfied if the smallest
eigenvalues is L p-bounded. If the matrix Żn(θ) is symmetric and random than condition
[M1] can be satisfied if all the eigenvalues are L p-bounded.

Remark The condition [M1] above is corresponding to the case ρ = 2 of the conditions [A3]
and [A5] in Yoshida (2011), which are, rewritten with our notation

Mθ0(θ) − Mθ0(θ0) ≤ −χ(θ0)||θ − θ0||ρ, ∀θ ∈ �,

whereMθ0(θ) denotes the “limit” ofMn(θ), and high ordermoment conditions on the positive
random variable χ(θ0)

−1.

Remark Condition (3) for many models can be checked by applying the Burkholder inequal-
ity [see Theorem 26.12 in Kallenberg (2002)]. See Example 3.1.

Proof of Theorem 2.1. Recalling (2), it follows from the Taylor expansion that

(RnZn(θ̂n))
(i) = (RnZn(θ0))

(i) + (Żn(θ̃n)Rn(θ̂n − θ0))
(i), i = 1, . . . , d. (5)

So we have
Rn(θ̂n − θ0) = An + Bn Rn(θ̂n − θ0), (6)

where

An = Vn(θ0)
−1Rn(Zn(θ0) − Zn(θ̂n)),

Bn = Vn(θ0)
−1(Żn(θ̃n) + Vn(θ0)),

and θ̃n is a random vector on the segment connecting θ0 and θ̂n . It follows from the extended
continuous mapping theorem that Vn(θ0)−1 →p V (θ0)

−1 [e.g., Theorem 1.11.1 of van der
Vaart and Wellner (1996)], thus we have ||An || = OP (1) and ||Bn || = oP (1). It therefore
holds that

||Rn(θ̂n − θ0)|| ≤ OP (1) + oP (1) · ||Rn(θ̂n − θ0)||,
which implies that ||Rn(θ̂n − θ0)|| = OP (1). Hence, going back to (6) we obtain

Rn(θ̂n − θ0) = An + oP (1) = Vn(θ0)
−1RnZn(θ0) + oP (1).

The last claim is also a consequence of the extended continuous mapping theorem. The proof
is finished. 
�
Proof of Theorem 2.3. We will give a proof for the case where [M1] is assumed. The proof
for the case where [M2] is assumed is similar (and simpler), so it is omitted.

Due to (5) again, we have

Rn(θ̂n − θ0) = Cn +
(
D(1)
n + D(2)

n

)
Rn(θ̂n − θ0),

where

Cn = J (θ0)
−1Rn(Zn(θ0) − Zn(θ̂n)),

D(1)
n = J (θ0)

−1(Żn(θ̃n) − Żθ0(θ̃n)),

D(2)
n = J (θ0)

−1(Żθ0(θ̃n) + J (θ0)),

where θ̃n is a random vector on the segment connecting θ0 and θ̂n .
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From now on, we consider the case γ ∈ (0, 1); the proof for the case γ = 1 is easier, and it
is omitted. Since −D(2)

n is non-negative definite almost surely, it follows fromMinkowskii’s
and Hölder’s inequalities that

(E[||Rn(θ̂n − θ0)||p])1/p
≤ (E[||(Id − D(2)

n )Rn(θ̂n − θ0)||p])1/p

≤ (E[||Cn ||p])1/p +
(
E
[
||Rγ

n D
(1)
n ||p/γ

])γ /p (
E
[
||R1−γ

n (θ̂n − θ0)||p/(1−γ )
])(1−γ )/p

≤ O(1) + o(1) ·
(
E
[
||R1−γ

n (θ̂n − θ0)||p/(1−γ )
])(1−γ )/p

,

where we have used Hölder’s inequality again to get

E[||Cn ||p] ≤
(
E
[
||J (θ0)

−1||pb
])1/b

(E[||Rn(Zn(θ0) − Zn(θ̂n))||]pa)1/a

and

E[||Rγ
n D

(1)
n ||p/γ ] ≤

(
E
[
||J (θ0)

−1||pb/γ
])1/b

(E[||Rγ (Żn(θ̃n) − Żθ0(θ̃n))||]pa/γ )1/a;

if ||J (θ0)||−1 is bounded, we can get this kind of bound with a = 1.
Notice that

||R1−γ
n (θ̂n − θ0)||1/(1−γ ) ≤

√√√√d(1/(1−γ ))−1
d∑

i=1

|R(i,i)
n |2|θ̂ (i)

n − θ
(i)
0 |2/(1−γ )

≤ ||Rn(θ̂n − θ0)|| · d1/(2−2γ ) · |D(�)|γ /(1−γ ),

where D(�) denotes the diameter of �. So we obtain

(E[||Rn(θ̂n − θ0)||p])1/p ≤ O(1) + o(1) · (E[||Rn(θ̂n − θ0)||p])(1−γ )/p

≤ O(1) + o(1) · (E[||Rn(θ̂n − θ0)||p] ∨ 1)1/p,

which yields that

E[||Rn(θ̂n − θ0)||p] ≤ O(1) + o(1) · E[||Rn(θ̂n − θ0)||p].
Therefore, ||Rn(θ̂n − θ0)|| is asymptotically L p-bounded. 
�

3 Examples

In this section we give some examples where the results presented in the previous section
can be applied to have convergence of moments of appropriate Z -estimators.

3.1 Moment estimators

Let X, X1, X2, . . . be an i.i.d. sample from a distribution Pθ on (X ,A), where θ ∈ � ⊂ R
d .

Let ψ(1), . . . , ψ(d) be measurable functions on X . Define

Zn(θ) = 1

n

n∑

k=1

(ψ(1)(Xk) − e(1)(θ), . . . , ψ(d)(Xk) − e(d)(θ))
 = 1

n

n∑

k=1

(ψ(Xk) − e(θ)),
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where e(θ) = (Eθ [ψ(1)(X)], . . . Eθ [ψ(d)(X)])
. The solution θ̂n of the system of equations
Zn(θ̂n) = 0 is called method of moments estimator. If e is one-to-one then the moment
estimator is uniquely determined as θ̂n = e−1( 1n

∑n
k=1(ψ(Xk))).

The results of the previous Sect. 2 can be applied to these estimating functions whose
derivative matrix is Żn(θ) = {Ż(i, j)

n (θ)}(i, j)∈{1,...,d}2 , where Ż
(i, j)
n (θ) = ∂

∂θ j
Z

(i)
n (θ) =

− ∂
∂θ j

e(i)(θ). Let us define the matrix V (θ) = −Ż(θ) = ∂
∂θ j

e(i)(θ). Let us suppose that

V (θ) is invertible and that Eθ0 [||ψ(X)||2p] < ∞. Then condition (3) is satisfied with a = 2,
Rn = √

nId by applying theBurkholder inequality [seeTheorem26.12 in Kallenberg (2002)]
to the martingale Mn = 1√

n

∑n
k=1(ψ(Xk)− e(θ)). Conditions (4) and [M1] are trivially sat-

isfied with γ = 1 and b = 2 because Żn(θ) = −Ż(θ) = V (θ) is non random.
Moreover denotewith L(θ0) aGaussian d-vector with 0mean and covariancematrix given

by�θ0 with�
(i, j)
θ0

= {Eθ0 [(ψ(i)(Xk) − e(i)(θ0))(ψ
( j)(Xk) − e( j)(θ0))]

}
. ThenTheorem2.3

holds with G(θ0) = V−1(θ0)L(θ0).

3.2 Cox’s regression model

Let a sequence of counting processes t � Nk
t , k = 1, 2, . . ., which do not have simultaneous

jumps, be observed the time interval [0, T ]. Suppose that t � Nk
t has the intensity

λkt (θ) = α(t)eθ
Zk
t Y k

t ,

where the baseline hazard function α which is common for all k’s is non-negative and satisfies
that

∫ T
0 α(t)dt < ∞, the random process t � Zk

t is a vector valued bounded covariate for
the individual k, and the random process t � Y k

t is given by

Y k
t =

{
1, if the individual k is observed at time t,
0, otherwise.

Let θ ∈ � ⊂ R
d , where � is a compact set. This model was introduced in Cox (1972),

and its asymptotic theory was developed in Andersen and Gill (1982). Assuming bounded
covariate is often done in applications. We introduce

Zn(θ) = Ṁn(θ) = 1

n
γ̇n(θ),

where

γn(θ) =
n∑

k=1

∫ T

0

(
θ
Zk

t − log Sn,0
t (θ)

)
dNk

t

with

Sn,0
t (θ) =

n∑

k=1

eθ
Zk
t Y k

t .

The rate matrix is Rn = √
nId .
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Let us define

Sn,1
t (θ) =

n∑

k=1

Zk
t e

θ
Zk
t Y k

t ,

Sn,2
t (θ) =

n∑

k=1

(
Zk
t

)

Zk
t e

θ
Zk
t Y k

t ,

Let us introduce the following conditions:
There exists a constant γ > 0 such that

sup
θ∈�

∫ T

0

√
nγ

n

∣∣∣∣∣
Sn,l
t (θ)Sn,m

t (θ)


Sn,0
t (θ)

− Sl
t (θ)Sm

t (θ)


S0
t (θ)

∣∣∣∣∣ dt, (l,m) = (2, 0), (1, 1) (7)

is L p-bounded for any p ≥ 1. The limits t � Sl
t are some stochastic processes [see Andersen

and Gill (1982) who assumed that Sl ’s are not random].
Moreover let us suppose that the inverse of all the eigenvalues of the matrix V (θ0) where

V (θ) =
∫ T

0

S0
t (θ)S2

t (θ) − S1
t (θ)S1

t (θ)


S0
t (θ)2

S0
t (θ0)α(t)dt

are L p-bounded.
Let us now define

Zθ0(θ) =
∫ T

0

(S1
t (θ0)

S0
t (θ0)

− S1
t (θ)

S0
t (θ)

)
S0
t (θ0)α(t)dt,

Vn(θ0) = 1

n

∫ T

0

Sn,0
t (θ0)S

n,2
t (θ0) − Sn,1

t (θ0)S
n,1
t (θ0)




Sn,0
t (θ0)

α(t)dt,

Now observing that γ̇n(θ) can be rewritten in θ0 as

γ̇n(θ0) =
n∑

k=1

∫ T

0

(
Zk
t − Sn,1

t (θ0)

Sn,0
t (θ0)

)
(dNk

t − α(t)eθ
Zk
t Y k

t dt),

(we indeed add a quantity that is 0), then condition (3) with a = 2 can be proved applying
the Burkholder inequality [see Theorem 26.12 in Kallenberg (2002)] to the martingale Mn =
RnZn(θ0) = 1√

n

∑n
k=1

∫ T
0

(
Zk
t − Sn,1

t (θ0)

Sn,0
t (θ0)

)
(dNk

t − α(t)eθ
Zk
t Y k

t dt).

To prove condition (4) let us consider first Żn(θ) + Vn(θ). We have

Żn(θ) = −1

n

n∑

k=1

∫ T

0

(
Sn,0
t (θ0)S

n,2
t (θ0) − Sn,1

t (θ0)S
n,1
t (θ0)




Sn,0
t (θ0)2

)
dNk

t

and Żn(θ)+Vn(θ) is a martingale for any θ . Now let us consider V (θ)−Vn(θ). supθ |V (θ)−
Vn(θ)| can be bounded by the triangular inequality and condition (7).

Finally condition [M1] follow from the condition of boundedness of eigenvalues of the
matrix V (θ0).
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3.3 Ergodic diffusion process

Let I = (l, r), where −∞ ≤ l < r ≤ ∞, be given. Let us consider an I -valued diffusion
process t � Xt which is the unique strong solution to the stochastic differential equation
(SDE)

Xt = X0 +
∫ t

0
S(Xs;α)ds +

∫ t

0
σ(Xs;β)dWs,

where s � Ws is a standard Wiener process. The first dA-components α ∈ �A ⊂ R
dA of the

parameter θ = (α
, β
)
 is involved in the drift coefficient, and the latter dB -components
β ∈ �B ⊂ R

dB is in the diffusion coefficient. We are supposed to be able to observe the
process X at discrete time grids 0 = tn0 < tn1 < · · · < tnn , andwe shall consider the asymptotic
scheme n�2

n → 0 and tnn → ∞ as n → ∞, where

�n = max
1≤k≤n

|tnk − tnk−1|,

and
n∑

k=1

∣∣∣∣
|tnk − tnk−1|

tnn
− 1

n

∣∣∣∣→ 0, as n → ∞. (8)

The problem to establish the moment convergence for M-estimators for ergodic diffu-
sion processes where X is a multi-dimensional diffusion process, was considered in Yoshida
(2011). In Uchida andYoshida (2012) the assumption n�2

n → 0 was relaxed up to n�a
n → 0,

where a ≥ 2 is a constant depending on the smoothness of the model, by using a method
presented in Kessler’s (1997). Their arguments consist of plural steps in order to handle
the parameters α and β, whose rates of convergence are different, separately. The advan-
tages of taking Z -estimator makes possible to treat both parameters simultaneously and the
convergence of moments can be obtained easily with the following setting. Define

Zn(θ) = Ṁn(θ) = R−2
n γ̇n(θ),

where

γn(θ) = −
∑

k:tnk−1≤tnn

⎧
⎪⎨

⎪⎩
log σ(Xtnk−1

;β) +
|Xtnk

− Xtnk−1
− S

(
Xtnk−1

;α
)
|tnk − tnk−1||2

2σ
(
Xtnk−1

;β
)2|tnk − tnk−1|

⎫
⎪⎬

⎪⎭

and Rn is the diagonal matrix such that R(i,i)
n is

√
tnn for i = 1, . . . , dA and

√
n for i =

dA + 1, . . . , d with d = dA + dB . With the above setting convergence of moments for the
Z -estimators of α and β can be obtained easily and in a compact form. Here we omit the
details because the results are the same as in Uchida and Yoshida (2012).

3.4 Volatility of diffusion process

Let I = (l, r), where −∞ ≤ l < r ≤ ∞, be given. Let us consider an I -valued diffusion
process t � Xt which is the unique strong solution to the SDE

Xt = X0 +
∫ t

0
S(Xs)ds +

∫ t

0
σ(Xs; θ)dWs,

where s � Ws is a standard Wiener process. Here, the drift coefficient S(·) is treated as an
unknown nuisance function. We are supposed to be able to observe the process X at discrete
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time grids 0 = tn0 < tn1 < · · · < tnn = T < ∞, and we shall consider the asymptotic scheme
(8).

The same model was considered in Uchida and Yoshida (2013) where they prove the
convergence of moments for the quasi likelihood estimator. The convergence of moment for
the Z -estimator of the parameter θ can be proved also with the following setting.

We introduce

Zn(θ) = Ṁn(θ) = 1

n
γ̇n(θ),

where

γn(θ) = −
∑

k:tnk−1≤tnn

⎧
⎪⎨

⎪⎩
log σ

(
Xtnk−1

; θ
)

+ |Xtnk
− Xtnk−1

|2

2σ
(
Xtnk−1

; θ
)2 |tnk − tnk−1|

⎫
⎪⎬

⎪⎭
.

The rate matrix is given by Rn = √
nId . With the above setting convergence of moments for

the Z -estimators of θ can be obtained easily and in a compact form. Here we omit the details
because the results are the same as in Uchida and Yoshida (2013).
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