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Abstract This paper proposes a stochastic volatility model (PAR-SV) in which the log-
volatility follows a first-order periodic autoregression. This model aims at representing time
series with volatility displaying a stochastic periodic dynamic structure, and may then be
seen as an alternative to the familiar periodic GARCH process. The probabilistic structure of
the proposed PAR-SV model such as periodic stationarity and autocovariance structure are
first studied. Then, parameter estimation is examined through the quasi-maximum likelihood
(QML) method where the likelihood is evaluated using the prediction error decomposition
approach and Kalman filtering. In addition, a Bayesian MCMC method is also considered,
where the posteriors are given from conjugate priors using the Gibbs sampler in which the
augmented volatilities are sampled from theGriddyGibbs technique in a single-moveway.As
a-by-product, period selection for the PAR-SV is carried out using the (conditional) deviance
information criterion (DIC). A simulation study is undertaken to assess the performances
of the QML and Bayesian Griddy Gibbs estimates in finite samples while applications of
Bayesian PAR-SVmodeling to daily, quarterly and monthly S&P 500 returns are considered.
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1 Introduction

Over the past three decades, stochastic volatility (SV) models introduced by Taylor (1982)
have played an important role in modelling financial time series which are characterized by a
time-varying volatility feature. This class of models is often viewed as a better formal alterna-
tive to ARCH-type models because the volatility is itself driven by an exogenous innovation,
a fact that is consistent with finance theory, although it makes the model relatively more
difficult to estimate. Several extensions of the original SV formulation have been proposed
in the literature to account for further volatility features such as long memory, simultaneous
dependence, excess kurtosis, leverage effect and change in regime (e.g. Harvey et al. 1994;
Ghysels et al. 1996; Breidt 1997; Breidt et al. 1998; So et al. 1998; Chib et al. 2002; Carvalho
and Lopes 2007; Omori et al. 2007; Nakajima and Omori 2009). However, it seems that most
of the proposed formulations have been devoted to time-invariant volatility parameters and
hence they could notmeaningfully explain time series whose volatility structure changes over
time, in particular volatility displaying a stochastic periodic pattern that cannot be accounted
for by time-invariant SV-type models.

In order to describe periodicity in the volatility, Tsiakas (2006) proposed various inter-
esting and parsimonious time-varying stochastic volatility models in which the volatility
parameters are expressed as deterministic periodic functions of time with appropriate exoge-
nous variables. The proposed models called “periodic stochastic volatility” (PSV) have been
successfully applied to model the evolution of daily S&P 500 returns. This is an evidence
that the periodically changing structure may characterize time series volatility. However,
the PSV formulations are by definition especially well adapted to a kind of deterministic
periodicity in the second moment and hence they might neglect a possible stochastic period-
icity in these moments (see e.g. Hylleberg et al. (1990) and Ghysels and Osborn (2001) for
the difference between deterministic and stochastic periodicity). A complementary approach
which seems to be appropriate in capturing stochastic periodicity in the volatility is to con-
sider a linear time-invariant representation for the volatility equation involving seasonal lags,
leading to a seasonal SV specification (see e.g. Ghysels et al. 1996). However, because of
the time-invariance of the volatility parameters, the seasonal SV model may be too restric-
tive in representing periodicity and a model with periodic time-varying parameters seems
to be more relevant. Indeed, as pointed out by Bollerslev and Ghysels (1996, p. 140) many
financial time series encountered in practice are such that neglecting periodic time-variation
in the corresponding volatility equation give rise to a loss in forecast efficiency, which is
more severe in the GARCH model than in linear ARMA. This has motivated Bollerslev and
Ghysels (1996) to propose the periodic GARCH (PGARCH) formulation in which the para-
meters vary periodically over time in order to capture the stochastic periodicity pattern in
the conditional second moment. At present the PGARCH model is among the most impor-
tant models for describing periodic time series volatility (see e.g. Bollerslev and Ghysels
1996; Taylor 2006; Koopman et al. 2007; Osborn et al. 2008; Regnard and Zakoïan 2011;
Sigauke and Chikobvu 2011; Aknouche and Al-Eid 2012). However, despite the recognized
relevance of the PGARCH model, an alternative periodic SV for stochastic periodicity is in
fact needed for many reasons. First, it is well known that an SV-like model is more flexible
than a GARCH type model because the volatility in the latter is only driven by the past of
the observed process which constitutes a serious limitation. Second, compared to SV-type
models, the probability structure of PGARCH models is relatively more complex to obtain
(Aknouche and Bibi 2009). Finally, compared to the PGARCH, the PAR-SVs easily allows
to simple multivariate generalizations.
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In this paper we propose to model stochastic periodicity in the volatility through a model
that generalizes the standard SV equation so that the parameters vary periodically over time.
Thus, in the proposed model termed periodic autoregressive stochastic volatility (PAR-SVs)
the log-volatility process follows a first-order periodic autoregression andmay be generalized
so as to have any linear periodic representation. This model may be seen as an extension of
the models of Tsiakas (2006) to include periodic feature in the autoregressive dynamic of the
log-volatility equation. The structure and probability properties of the proposed model such
as periodic stationarity, autocovariance structure and relationship withmultivariate stochastic
volatility models are first studied. In particular, periodic ARMA (PARMA) representations
for the logarithm of the squared PAR-SVs process are proposed. Then, parameter estima-
tion is conducted via the quasi-maximum likelihood (QML) method, properties of which
are discussed. In addition, Bayesian estimation approach using Markov Chains Monte Carlo
(MCMC) techniques is also considered. Specifically, a Gibbs sampler is used to estimate
the joint posterior distribution of the parameters and the augmented volatility while call-
ing for the Griddy Gibbs procedure when estimating the conditional posterior distribution
of the augmented parameters. On the other hand, selection of the period of the PAR-SVs
model is carried out using the (conditional) deviance information criterion (DIC). Simu-
lation experiments are undertaken to assess finite-sample performances of the QMLE and
the Bayesian Griddy Gibbs methods. Moreover, empirical applications to modeling series
of daily, quarterly and monthly S&P 500 returns are conducted in order to appreciate the
usefulness of the proposed PAR-SVs model. In the particular daily return case, a variant
of the PAR-SVs model with missing values, dealing with the “day-of-the-week” effect is
applied.

The rest of this paper proceeds as follows. Section 2 proposes the PAR-SVs model and
studies its main probabilistic properties. In Sect. 3, the quasi-maximum likelihood method
via prediction error decomposition and Kalman filtering is adopted. Moreover, a single-move
Bayesian approach by means of the Griddy Gibbs (BGG) sampler is proposed. In particular,
some MCMC diagnostic tools are presented and period selection in PAR-SVs models is
carried out using the DIC. Through a simulation study, Sect. 4 examines the behavior of
the QML and BGG methods in finite samples. Section 5 applies the PAR-SVs specification
to model daily, quarterly and monthly S&P 500 returns using the Bayesian Griddy Gibbs
method. Finally, Sect. 6 concludes.

2 The PAR-SVs and its main probabilistic properties

In this paper, we say that a stochastic process {εt , t ∈ Z} has a periodic autoregressive sto-
chastic volatility representation with period S (PAR-SVs in short) if it is given by{

εt = √
htηt

log (ht ) = αt + βt log (ht−1) + σt et
t ∈ Z, (2.1a)

where the parameters αt , βt , and σt are S -periodic over t (i.e. αt = αt+Sn ∀n ∈ Z and so
on) and the period S ≥ 1 is the smallest positive integer verifying the latter relationship. The
sequence of random vectors {(ηt , et ), t ∈ Z} is assumed to be independent and identically
distributed (i id in short) with mean (0, 0)′ and covariancematrix I2 (I2 stands for the identity
matrix of dimension 2). We have called model (2.1a) periodic autoregressive stochastic
volatility rather than shortly periodic stochastic volatility because the log-volatility is rather
driven by a first-order periodic autoregression and also in order to make distinction between
model (2.1a) and the periodic stochastic volatility (PSV) model proposed by Tsiakas (2006).
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In fact, the PAR-SVs model (2.1a) may be generalized so that ht satisfies any stable periodic
ARMA (henceforth PARMA) representation.

Note that when βt = 0, model (2.1a) reduces to Tsiakas’s (2006) model if we take αt to be
an appropriate deterministic periodic function of time. In that case, the effect of any current
shock in the innovation et only influences the present volatility and does not affect its future
evolution. This is the case of what is called deterministic periodicity (Hylleberg et al. 1990).
If, in contrast, βt �= 0 for some t , the log-volatility equation involves lagged values of the
log-volatility process. Therefore, the log-volatility consists at any time of an accumulation
of past shocks, so that present shocks affect more or less the future log-volatility evolution
depending on the stability of the log-volatility equation (see the periodic stationarity condition
(2.5) below). This case is commonly named stochastic periodicity in the volatility.

It should be noted that although ht is conventionally called volatility, it is not the con-
ditional variance of the observed process given its past information in the familiar sense as
in ARCH-type models. This is because ht is instead Ft -measurable and so E

(
ε2t /Ft−1

) =
E (ht/Ft−1) �= ht , where Ft is the σ -Algebra generated by {εu, u ≤ t}. Nevertheless,
E (ht ) = E

(
ε2t
)
and E

(
ε2t /ht

) = ht as in the ARCH-type case.
To emphasize the periodicity of the model, let t = nS+ v for n ∈ Z and 1 ≤ v ≤ S. Then

model (2.1a) may be written as follows
{

εnS+v = √
hnS+vηnS+v

log (hnS+v) = αv + βv log (hnS+v−1) + σvenS+v
n ∈ Z, 1 ≤ v ≤ S, (2.1b)

where by season v (1 ≤ v ≤ S) we mean the channel {. . . , v − S, v, v + S, v + 2S, . . .}
with corresponding parameters αv, βv and σv .

From (2.1b) the log-volatility appears to be a Markov chain, which is not homogeneous
as in time-invariant stochastic volatility models, but is rather periodically homogeneous
due to the periodic time-variation of parameters. This may relatively complicate studying
the probabilistic structure of the PAR-SVs model. As is common in periodic time varying
modeling, a routine approach is to write (2.1b) as a time-invariant multivariate SV model
by embedding seasons v, 1 ≤ v ≤ S (see e.g. Gladyshev 1961 and Tiao and Grupe 1980
for periodic linear models) and then studying the property of this latter. More precisely,
define the S-variate sequences {Hn, n ∈ Z}, {εn, n ∈ Z} by Hn = (hnS+1, . . . , hnS+S)

′ and
εn = (εnS+1, . . . , εnS+S)

′. Then model (2.1b) may be cast in the following multivariate SV
form ⎧⎨

⎩
εn = diag

(
H

1
2
n

)
�n

log Hn = B log Hn−1 + ξn

n ∈ Z, (2.2)

where �n = (ηnS+1, . . . , ηnS+S)
′, diag (a) stands for the diagonal matrix formed by the

entries of the vector a in the given order. The notations H
1
2
n and log Hn denote the S-vectors

defined respectively by H
1
2
n (v) = √

hnS+v and log Hn (v) = log (hnS+v) (1 ≤ v ≤ S). The
matrices B and ξn in (2.2) are given by

B =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0 β1

0 . . . 0 β2β1
...

...
...

...

0 . . . 0
S∏

v=1
βS−v

⎞
⎟⎟⎟⎟⎟⎠

S×S

, ξn =

⎛
⎜⎜⎜⎜⎜⎝

λnS+1

β2λnS+1 + λnS+2
...

S∑
k=1

S−k−1∏
v=0

βS−vλnS+k

⎞
⎟⎟⎟⎟⎟⎠

S×1

,
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with λnS+v = αv + σvenS+v (1 ≤ v ≤ S).
However, this approach has the main drawback that available methods for analyzing

multivariate SV models do not consider the particular structure of the coefficients in (2.2)
and it may be difficult to conclude on model (2.1). Thus, studying probabilistic and statistical
properties of model (2.1) directly may be simpler and better than studying them through
model (2.2). This suggests that periodic stochastic volatility modelling cannot be trivially
deduced from existingmultivariate SV analysis. In the sequel, we study the structure ofmodel
(2.1) using mainly the direct approach.

Throughout this paper, we frequently use solutions of the following ordinary difference
equation

ut = at + btut−1, t ∈ Z, (2.3a)

with S-periodic coefficients at and bt . Recall that the unique solution of (2.3a) is given, under

the requirement that

∣∣∣∣
S∏

v=1
bv

∣∣∣∣ < 1, by

unS+v =
(
1 −

S∏
v=1

bv

)−1 S−1∑
j=0

j−1∏
i=0

bv−i av− j , 1 ≤ v ≤ S, n ∈ Z. (2.3b)

Before studying the probabilistic properties of model (2.1), it is useful to recall some
probability properties related to periodically time-varying stochastic difference equations
like strict periodic stationarity and periodic ergodicity. A real-valued stochastic process
{Yt , t ∈ Z} defined on a probability space (
,F, P) is said to be strictly periodically station-
ary (henceforth s.p.s.) with period S ≥ 1 if its infinite-dimensional distribution is invariant
under a shift multiple of S for all channel v (1 ≤ v ≤ S), i.e. the probability distribution of
(. . . , Yv, Yv+1, Yv+2, . . .) is the same as that of (. . . , Yv+hS, Yv+1+hS, Yv+2+hS, . . .) for all
1 ≤ v ≤ S and all h ∈ Z, where S is the smallest positive integer verifying the latter prop-
erty. For instance, the simplest s.p.s. process is a sequence {ut , t ∈ Z} of independent and
periodically distributed random variables (henceforth i pd), i.e. {ut , t ∈ Z} is independent
and ut has the same distribution as ut+nS for all t, n ∈ Z. Thus a s.p.s. process with S = 1
is a strictly stationary one and an idp sequence with S = 1 reduces to an i id sequence. Like
the ergodic theorem for strictly stationary processes, the periodic ergodic theorem for strictly
periodically stationary sequences can be stated as follows. If {Yt , t ∈ Z} is s.p.s. and if f is
a measurable function from R

Z to R such that E ( f (. . . , Yt−S, Yt , Yt+S, . . .)) < ∞ for all
t ∈ Z, then

1

n

n−1∑
k=0

f
(
. . . Yv+(k−1)S, Yv+kS, Yv+(k+1)S, . . .

) a.s.→
n→∞ Y ∗

v , ∀ 1 ≤ v ≤ S,

for some random variable Y ∗
v . When {YnS+v, n ∈ Z} satisfies for all channel 1 ≤ v ≤

S a certain irreducibility property called periodic ergodicity, which roughly means that
{YnS+v, n ∈ Z}may reach any non P-negligible subclass of the state space for all 1 ≤ v ≤ S,
then the limiting random variable Y ∗

v is almost surely constant and then

Y ∗
v = E( f (. . . , Yv−S, Yv, Yv+S, . . .)), (1 ≤ v ≤ S), a.s.

Todefineperiodic ergodicity, let T : R
Z → R

Z denote the shift transformation defined for any
xv = (. . . , xv, xv+1, xv+2, . . .) ∈ R

Z by T xv = (. . . , xv+1, xv+2, xv+3, . . .) (1 ≤ v ≤ S)

and write T S for the S-th power of T : T S = T ◦ T ◦ . . . ◦ T , S times. Thus, {Yt , t ∈ Z}
is s.p.s. if and only if T S preserves the probability measure PYv for all 1 ≤ v ≤ S (PYv
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being the image measure of P by the process {YnS+v, n ∈ Z}). A Borel set Cv ⊂ R
Z of the

form Cv = {
xv ∈ R

Z : xv = (. . . , xv, xv+1, xv+2, . . .)
}
is said to be S-invariant along the

channel v (1 ≤ v ≤ S) if T−S (Cv) = Cv , where T−S (Cv) = {
xv ∈ R

Z : T Sxv ∈ Cv

}
.

A s.p.s. process {Yt , t ∈ Z} is said to be periodically ergodic if for all 1 ≤ v ≤ S,
P ((. . . , Yv, Yv+1, Yv+2, . . .) ∈ Cv) = 0 or 1, for all S-invariant Borel set Cv over chan-
nel v. Similarly to strict periodic stationarity, the simplest periodically ergodic process
is a sequence of i pd random variables. Like strict stationarity and ergodicity (see e.g.
Billingsley 1995, Theorem 36.4), strict periodic stationarity and periodic ergodicity are
preserved under certain transformations. Indeed, if {Yt , t ∈ Z} is s.p.s. and periodically
ergodic and if {Zt , t ∈ Z} is given by Zt = ft (. . . , Yt , Yt+1, Yt+2, . . .), where ft is a func-
tion from R

Z into R which is measurable, periodic over t with period S ( ft = ft+nS

for all n and t), and possibly depending on S-periodically time-varying parameters, then
{Zt , t ∈ Z} is also s.p.s. and periodically ergodic. Thus a sequence of i pd random vari-
ables may be seen as a “building-block” for the class of s.p.s. and periodically ergodic
processes.

Now, we have the following result which provides a necessary and sufficient condition
for strict periodic stationarity and periodic ergodicity of model (2.1).

Theorem 2.1 (Strict periodic stationarity)
The PAR-SVs equation given by (2.1) admits a unique (nonanticipative) strictly periodi-

cally stationary and periodically ergodic solution given for n ∈ Z and 1 ≤ v ≤ S by

εnS+v = ηnS+v exp

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1

2

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

+
∞∑
j=0

j−1∏
i=0

βv−iσv− j enS+v− j

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.4)

where the series in (2.4) converges almost surely, if and only if,∣∣∣∣∣
S∏

v=1

βv

∣∣∣∣∣ < 1. (2.5)

Proof The result obviously follows from standard linear periodic autoregression (PAR) the-
ory while using (2.3) (see e.g. Aknouche and Bibi 2009). So, details are omitted. ��

From (2.5) we see that the monodromy coefficient
∏S

v=1 βv is the analog of the persistent
parameter in the case of time-invariant SV and standard GARCH models.

Other properties such as periodic geometric ergodicity and strong mixing are obvious. Let
first say that a strictly periodically stationary stochastic process {εt , t ∈ Z} is geometrically
periodically ergodic if and only if the corresponding multivariate strictly stationary process
{εt , t ∈ Z} given by εn = (εnS+1, . . . , εnS+S)

′ is geometrically ergodic in the classical sense
(see e.g. Meyn and Tweedie (2009) for the definition of geometric ergodicity). Similarly,
{εt , t ∈ Z} is said to be periodically β -mixing if and only if {εt , t ∈ Z} is β-mixing.

Theorem 2.2 (Geometric periodic ergodicity)

Under the condition
∣∣∣∏S

v=1 βv

∣∣∣ < 1, the process {εt , t ∈ Z} defined by (2.1) is geometrically
periodically ergodic and hence is periodically β-mixing.

Proof The result follows from geometric ergodicity of the vector autoregression {log Hn, n
∈ Z} given by (2.2), which may be easily established using Meyn and Tweedie’s (2009)
results (see also Davis and Mikosch 2009). ��
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Given the form of the strictly periodically stationary solution (2.4), it is easy to give its
second-order properties. Assume first the following conditions hold

E

⎛
⎝ ∞∏

j=0

�v, j

⎞
⎠ =

∞∏
j=0

E
(
�v, j

)
for all 1 ≤ v ≤ S, (2.6a)

∞∏
j=0

δv, j < ∞ for all 1 ≤ v ≤ S, (2.6b)

where

�v, j = exp

⎛
⎝ j−1∏

i=0

βv−iσv− j ev− j

⎞
⎠ and δv, j = E

(
�v, j

)
.

As pointed out by an Associate Editor, equality (2.6a) is not always satisfied for any
independent sequence

{
� j , j ∈ N

}
and one can exhibit examples of independent sequences

for which (2.6a) is not fulfilled. Nevertheless, from the dominated convergence theorem, a
sufficient condition for (2.6a) to be satisfied is that

n∏
j=1

�v, j ≤ Wv a.s. for all n ∈ N, (2.6c)

for some integrable random variable Wv (1 ≤ v ≤ S).
Thus under (2.5) and (2.6) the following result provides sufficient conditions for model

(2.1) to have a unique strictly periodically stationary solution with finite second moment.

Theorem 2.3 (Second-order periodic stationarity)
Under conditions (2.5) and (2.6), the series in (2.4) also converges in the mean square
sense and the process given by (2.4) is strictly periodically stationary with E

(
ε2v
)

< ∞
(1 ≤ v ≤ S).

Proof Routine computation shows that under (2.5) and (2.6) the series in (2.4),

∞∑
j=0

j−1∏
i=0

βv−iσv− j enS+v− j , 1 ≤ v ≤ S,

converges in mean square. Moreover, under these conditions, it is clear that {εt , t ∈ Z} given
by (2.4) is a white noise with periodic variance (henceforth periodic white noise) since
E (εt ) = 0, E (εtεt−h) = 0 (h > 0) and, while using (2.3),

Var (εnS+v) = E

⎛
⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

+
∞∑
j=0

j−1∏
i=0

βv−iσv− j enS+v− j

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= exp

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎠

∞∏
j=0

δv, j , 1 ≤ v ≤ S. (2.7)

��
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In the case of Gaussian log-volatility innovations {et , t ∈ Z}, (i.e. et ∼ N (0, 1)) it is also
possible to obtain more explicit results reducing then assumptions of Theorem 2.3. Using

the fact that if X ∼ N (0, 1) then E(exp(φX)) = exp( φ2

2 ) for all non-null real constant φ,
we obtain

δv, j = exp
1

2

⎛
⎝σ 2

v− j

j−1∏
i=0

β2
v−i

⎞
⎠ , (2.8)

and condition (2.6b) of finiteness of
∏∞

j=0 δv, j reduces to the periodic stationarity condition

(2.5):
∣∣∣∏S

v=1 βv

∣∣∣ < 1. Moreover, using (2.8) and (2.3) the variance of the process given by

(2.7) may be expressed more explicitly as follows

Var (εnS+v) = exp

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎠

∞∏
j=0

exp

⎛
⎝1

2
σ 2

v− j

j−1∏
i=0

β2
v−i

⎞
⎠

= exp

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎠ exp

⎛
⎝1

2

∞∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

⎞
⎠

= exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

+ 1

2

S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

1 −
S∏

v=1
β2

v

⎞
⎟⎟⎟⎟⎠ . (2.9)

For example, the variance Var (εnS+v) of the process is given respectively, for S = 2 and
S = 3, by

Var (ε2n+1) = exp

(
α1 + β1α2

1 − β1β2
+ 1

2

σ 2
1 + β2

1σ
2
2

1 − β2
1β

2
2

)
,

Var (ε2n+2) = exp

(
α2 + β2α1

1 − β1β2
+ 1

2

σ 2
2 + β2

2σ
2
1

1 − β2
1β

2
2

)
,

Var (ε3n+1) = exp

(
α1 + β1α3 + β1β3α2

1 − β1β2β3
+ 1

2

σ 2
1 + β2

1σ
2
3 + β1β3σ

2
2

1 − β1β2β3

)
,

Var (ε3n+2) = exp

(
α2 + β2α1 + β2β1α3

1 − β1β2β3
+ 1

2

σ 2
2 + β2σ

2
1 + β2β1σ

2
3

1 − β1β2β3

)
,

Var (ε3n+3) = exp

(
α3 + β3α2 + β3β2α1

1 − β1β2β3
+ 1

2

σ 2
3 + β3σ

2
2 + β3β2σ

2
1

1 − β1β2β3

)
.

Next, the autocovariance function of the squared process
{
ε2t , t ∈ Z

}
is provided. This

one is useful in identifying the model and deriving certain estimation methods such
as simple and generalized methods of moments. Let γ ε2

v (h) = E
(
ε2nS+vε

2
nS+v−h

) −
E
(
ε2nS+v

)
E
(
ε2nS+v−h

)
.
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Theorem 2.4 (Autocovariance structure of
{
ε2t , t ∈ Z

}
)

i) Under (2.5), (2.6) and the conditions
∏∞

j=0 δv, jδv−h, j < ∞ and E
(
η41

)
< ∞ we have

γ ε2

v (0) = exp

⎛
⎜⎜⎜⎜⎝2

S−1∑
j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎟⎠

×
⎛
⎝E

(
η41
)
E

⎛
⎝exp

⎛
⎝2

∞∑
j=h

j−1∏
i=0

βv−iσv− j ev− j

⎞
⎠
⎞
⎠−

∞∏
j=0

δ2v, j

⎞
⎠ , (2.10a)

γ ε2

v (h) =
⎛
⎝E

⎛
⎝exp

⎛
⎝h−1∑

j=0

j−1∏
i=0

βv−iσv− j ev− j +
(
1 +

h−1∏
i=0

β−1
v−i

) ∞∑
j=h

j−1∏
i=0

βv−iσv− j ev− j

⎞
⎠
⎞
⎠

−
∞∏
j=0

δv, j δv−h, j

⎞
⎠ exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎟⎠ , h > 0.

(2.10b)

Proof Using (2.4) direct calculation gives

E
(
ε2nS+vε

2
nS+v−h

) =

E

⎛
⎝exp

⎛
⎝ ∞∑

j=0

j−1∏
i=0

βv−iσv− j enS + v − j +
∞∑
j=0

j−1∏
i=0

βv−h−iσv−h− j enS + v−h− j

⎞
⎠
⎞
⎠

× exp

⎛
⎜⎜⎜⎝
∑S−1

j=0

j−1∏
i=0

βv−iαv− j

1 −
S∏

v=1
βv

+
∑S−1

j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎠

E
(
η2nS+vη

2
nS+v−h

)
, (2.11)

under finiteness of the latter expectations. When in particular h = 0, combining (2.7) and
(2.11) we get (2.10a) under finiteness of E

(
η41

)
.

For h > 0, because of the independence structure of {ηt , t ∈ Z} one obtains

E
(
ε2nS+vε

2
nS+v−h

) = exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎟⎠

× E

⎛
⎝exp

⎛
⎝h−1∑

j=0

j−1∏
i=0

βv−iσv− j ev− j +
∞∑
j=h

j−1∏
i=0

βv−iσv− j ev− j

+
∞∑
j=0

j−1∏
i=0

βv−h−iσv−h− j ev−h− j

⎞
⎠
⎞
⎠
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= exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎟⎠

×E

⎛
⎝exp

⎛
⎝h−1∑

j=0

j−1∏
i=0

βv−iσv− j ev− j +
(
1 +

h−1∏
i=0

β−1
v−i

)

×
∞∑
j=h

j−1∏
i=0

βv−iσv− j ev− j

⎞
⎠
⎞
⎠ ,

giving (2.10b). ��

The S kurtoses Kurt (v) (1 ≤ v ≤ S) of the PAR-SVs model may be given from (2.9) and
(2.10) as follows

Kurt (v) = E
(
η41
)
∏∞

j=0 E

⎛
⎝exp

(
j−1∏
i=0

βv−iσv− j ev− j

)2
⎞
⎠

∏∞
j=0

(
E

(
exp

j−1∏
i=0

βv−iσv− j ev− j

))2 , 1 ≤ v ≤ S, (2.12)

≥ E
(
η41
)
.

By the Cauchy–Schwartz inequality, this clearly shows that the PAR-SVs model may be
characterized by excessKurtosis for all channels {1, . . . , S}. In particular, under the normality
assumption on the innovations, the second-order periodic stationarity reduces to (2.6a) and

the following conditions E(η41) < ∞ and

∣∣∣∣
S∏

v=1
βv

∣∣∣∣ < 1. So from (2.8), expression (2.12)

reduces to

Kurt (v) = E
(
η41
)
, 1 ≤ v ≤ S.

The autocovariance function has also a more explicit form in the case of Gaussian {et , t ∈ Z}.

Corollary 2.1 (Autocovariance structure of
{
ε2t , t ∈ Z

}
under normality of {et , t ∈ Z})

Under the same assumptions of Theorem 2.4 and if {et , t ∈ Z} is Gaussian then,

γ ε2

v (0)= exp

⎛
⎝2

(
1−

S∏
v=1

βv

)−1 S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
(
1−

S∏
v=1

β2
v

)−1 S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

⎞
⎠

× (E (η41)− 1
)
, (2.13a)

γ ε2

v (h) = exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

+

S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

1 −
S∏

v=1
β2

v

⎞
⎟⎟⎟⎟⎠
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×

⎛
⎜⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

1 −
S∏

v=1
β2

v

h−1∏
i=0

βv−i

⎞
⎟⎟⎟⎟⎠− 1

⎞
⎟⎟⎟⎟⎠ , h > 0. (2.13b)

Proof For Gaussian innovations, we use again the fact that if X ∼ N (0, 1) then

E(exp(φX)) = exp( φ2

2 ). Therefore, (2.13a) follows from (2.10a) and (2.9). For h > 0
we have

E
(
ε2nS+vε

2
nS+v−h

)

= exp

⎛
⎝
(
1 −

S∏
v=1

βv

)−1⎛
⎝S−1∑

j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

⎞
⎠
⎞
⎠

×
h−1∏
j=0

exp

⎛
⎝1

2

j−1∏
i=0

β2
v−iσ

2
v− j

⎞
⎠ ∞∏

j=0

exp

⎛
⎝1

2

(
1 +

h−1∏
i=0

β−1
v−i

)2 j−1∏
i=0

β2
v−iσ

2
v− j

⎞
⎠ .

After tedious but straightforward calculation, the autocovariance function at lag h (h > 0)
simplifies for Gaussian innovations to

γ ε2

v (h) = exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

⎞
⎟⎟⎟⎟⎠

⎡
⎣exp

⎛
⎝h−1∑

j=0

j−1∏
i=0

β2
v−i

σ 2
v− j

2

⎞
⎠

× exp

⎛
⎝ ∞∑

j=h

j−1∏
i=0

β2
v−iσ

2
v− j

(
1 +

h−1∏
i=0

β−1
v−i

)2⎞
⎠− exp

⎛
⎝ ∞∑

j=0

j−1∏
i=0

β2
v−iσ

2
v− j

⎞
⎠
⎤
⎦ .

= exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

βv−iαv− j +
S−1∑
j=0

j−1∏
i=0

βv−h−iαv−h− j

1 −
S∏

v=1
βv

+

S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

1 −
S∏

v=1
β2

v

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝exp

⎛
⎜⎜⎜⎜⎝

S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

1 −
S∏

v=1
β2

v

h−1∏
i=0

βv−i

⎞
⎟⎟⎟⎟⎠− 1

⎞
⎟⎟⎟⎟⎠ ,

which is (2.13b). ��

It is worth noting that expanding the exponential function in (2.13b) under the peri-
odic stationarity condition (2.5), the autocovariance function γ ε2

v (h) of the squared process{
ε2t , t ∈ Z

}
has the following equivalent form as h → ∞
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γ ε2

v (h) ∼ K
h−1∏
i=0

βv−i ∼ K

(
S∏

v=1

βv

)h/S

,

and so γ ε2

v (h) converges geometrically to zero as h → ∞, where K is an appropriate real

constant. However, the decreasing of γ ε2

v (h) is not compatible with the recurrence equation
that satisfy periodic ARMA (PARMA) autocovariances and we can conclude that the squared
process

{
ε2t , t ∈ Z

}
does not admit a PARMA autocovariance representation.

Nevertheless, the logarithmed squared process
{
log
(
ε2t
)
, t ∈ Z

}
has in fact a PARMA

autocovariance structure. Considering the following notations Yt = log
(
ε2t
)
, Xt = log ht ,

ut = log
(
η2t
)
, E
(
log
(
η2t
)) = μu and Var

(
log
(
η2t
)) = �2

u , we have from (2.1)

Yt = Xt + ut . (2.14)

Theorem 2.5 (PARMA (1, 1) representation of
{
log
(
ε2t
)
, t ∈ Z

}
)

Under assumption (2.5) and finiteness of �2
u the process {Yt , t ∈ Z} has a PARMAs (1, 1)

representation given by

YnS+v − μY
v = βv

(
YnS+v−1 − μY

v−1

)
+ ζnS+v − ψvζnS+v−1,

1 ≤ v ≤ S, t ∈ Z, (2.15a)

where μY
v = E (YnS+v),

ψv =

⎧⎪⎨
⎪⎩

(
1+β2

v

)
�2

u+σ 2
v −

√((
1+β2

v

)
�2

u+σ 2
v

) ((
1−β2

v

)
�2

u+σ 2
v

)
2βv�2

u
i f �2

u �=0

0 if �2
u =0

, 1 ≤ v ≤ S,

(2.15b)

and {ζt , t ∈ Z} is a periodic white noise with periodic variance

σ 2
ζ,v = Var (ζnS+v) =

⎧⎪⎪⎨
⎪⎪⎩

βv�
2
u

ψv

if
S∏

v=1
βv �= 0

0 if
S∏

v=1
βv = 0

, 1 ≤ v ≤ S. (2.15c)

Proof The second-order structure of {Xt , t ∈ Z} is given form (2.1) while using (2.3),

μX
v = E (XnS+v) = αv + E (XnS+v−1) =

(
1 −

S∏
v=1

βv

)−1 S−1∑
j=0

j−1∏
i=0

βv−iαv− j ,

γ X
v (0) = Var

(
X2
nS+v

) = β2
v E
(
X2
nS+v−1

)+ σ 2
v =

(
1 −

S∏
v=1

β2
v

)−1 S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j

γ X
v (h) = Cov (XnS+v, XnS+v−h)

= βvγ
X
v−1 (h − 1) ,

, h > 0.

Therefore, using (2.14) we have

μY
v = E (YnS+v) = E (XnS+v) + E (unS+v) =

(
1 −

S∏
v=1

βv

)−1 S−1∑
j=0

j−1∏
i=0

βv−iαv− j + μu,

γ Y
v (0)=Var (YnS+v) = Var (XnS+v)+�2

u =
(
1−

S∏
v=1

β2
v

)−1 S−1∑
j=0

j−1∏
i=0

β2
v−iσ

2
v− j +�2

u

123



Stat Inference Stoch Process (2017) 20:139–177 151

γ Y
v (h) = γ X

v (h) = βvγ
X
v−1(h − 1) = βvβv−1 . . . βv−h+1γ

X
v−h(0)

= βvβv−1 . . . βv−h+1

(
1 −

S∏
v=1

β2
v

)−1 S−1∑
j=0

j−1∏
i=0

β2
v−h−iσ

2
v−h− j

, h > 0.

Clearly the process {Yt , t ∈ Z} has a PARMA representation since

γ Y
v (h) = βvγ

Y
v−1(h − 1) for any h > 1.

To identify the parameters of such a representation we use expressions of γ Y
v (h) for h = 0, 1.

If {Yt , t ∈ Z} has indeed a PARMA representation (2.15a) then for all 1 ≤ v ≤ S,

γ Y
v (0) = βvγ

Y
v (1) + σ 2

ζ,v (1 + ψv (ψv − βv)) (2.15d)

γ Y
v (1) = βvγ

Y
v−1(0) − ψvσ

2
ζ,v.

Hence, if �2
u �= 0 we have for all 1 ≤ v ≤ S,

1 + ψv (ψv − βv)

ψv

= γ Y
v (0) − βvγ

Y
v (1)

βvγ
Y
v−1(0) − γ Y

v (1)
(2.15e)

= γ Y
v (0) − β2

v γ X
v−1(0)

βv

(
γ X
v−1(0) + �2

u)
)− βvγ

X
v−1(0)

= γ Y
v (0) − (

γ X
v (0) − σ 2

v

)
βv�2

u

= γ Y
v (0) − (

γ Y
v (0) − σ 2

v − �2
u

)
βv�2

u

= σ 2
v + �2

u

βv�2
u

.

The latter equation admits, for all 1 ≤ v ≤ S, two solutions one of which is with
modulus less than 1 (|ψv| < 1) and is given by (2.15b). Such a choice clearly ensures
that

∏S
v=1 |ψv| < 1, but is not unique. Moreover, when

∏S
v=1 βv �= 0 using (2.15d), the

variance of {ζt , t ∈ Z} is

σ 2
ζ,v = βvγ

Y
v−1(0) − γ Y

v (1)

ψv

= βv

(
γ X
v−1(0) + �2

u

)− βvγ
Y
v−1(0)

ψv

,

showing (2.15c).
If, however, �2

u = 0 the relationship γ Y
v (h) = βvγ

Y
v−1(h− 1) also holds for h = 1 and so

the process {Yt , t ∈ Z} is a pure first-order periodic autoregression (PAR(1)) with ψv = 0
for all v. When

∏S
v=1 βv = 0, the process {Yt , t ∈ Z} is a strong periodic white noise (an

i pd sequence) and so ψv = 0 for all v (see also Francq and Zakoïan (2006) for the particular
non-periodic case S = 1). ��

It is worth noting that representation (2.15a) is not unique. Indeed, in contrast with time-
invariant ARMA models for which an ARMA process may be uniquely identified from
its autocovariance function (see Brockwell and Davis 1991), it is not always possible to
build a unique PARMA model from an autocovariance function having PARMA structure.
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However, we may enumerate all possible representations from solving (2.15d) and choosing
the best one fitting the observed series. The resulting representation will be abusively called
the PARMA representation. Such a representation is useful for obtaining predictions for the
process

{
log
(
ε2t
)
, t ∈ Z

}
. It may also be used to obtain approximate predictions for the

squared process
{
ε2t , t ∈ Z

}
since the latter does not admit a PARMA representation (see

Sect. 4.2). If we denote by ε̂2t+h/t = E
(
ε2t+h/ε

2
t , ε

2
t−1, . . .

)
the mean-square prediction of

ε2t+h based on ε2t , ε
2
t−1, . . . , then ε̂2t+h/t may be approximated by

C exp

(
̂

log
(
ε2t+h/t

))
,

where
̂

log
(
ε2t+h/t

)
= E

(
log
(
ε2t+h

)
/ log

(
ε2t
)
, log

(
ε2t−1

)
, . . .

)
,

and C is a normalization factor. The constant C is introduced to minimize the bias due to
using incorrectly the following relationship

exp

(
̂

log
(
ε2t+h/t

))
= ̂

exp log
(
ε2t+h/t

)
,

as we know from Jensen’s inequality that the latter equality is in fact not true. Typically, one
can take C as the sample variance of

(
log
(
ε2t
)
, t = 1, . . . , T

)
.

3 Parameter estimation of the PAR-SVs model

In this Section we consider two estimation methods for the PAR-SVs model. The first one is
a QML method based on prediction-error decomposition of a corresponding linear periodic
state-space model. This method which uses Kalman filtering to obtain linear predictors and
error prediction variances is used as a Benchmark to the second proposed method, which
is based on the Bayesian approach. In the latter method, from given conjugate priors, the
conditional posteriors are obtained from theGibbs sampler inwhich the conditional posteriors
of the augmented volatilities are derived via the Griddy–Gibbs technique. In the rest of this
section we consider a series ε = (ε1, . . . , εT )′ generated from model (2.1) with sample-size
T = NS supposed without loss of generality multiple of the period S. The vector of model
parameters is denoted by θ = (

ω′, σ 2′)′ where ω = (
ω′
1, ω

′
2, . . . , ω

′
S

)′ with ωv = (αv, βv)
′

(1 ≤ v ≤ S ) and σ 2 = (
σ 2
1 , σ 2

2 , . . . , σ 2
S

)′
.

3.1 QMLE via prediction error decomposition and Kalman filtering

Taking in (2.1) the logarithm of the square of εt we obtain the following linear periodic state
space-model{

YnS+v = μ + XnS+v + ũnS+v

XnS+v = αv + βvXnS+v−1 + σvenS+v
, n ∈ Z, 1 ≤ v ≤ S, (3.1)

where as in the above YnS+v = log
(
ε2nS+v

)
, XnS+v = log (hnS+v), unS+v = log

(
η2nS+v

)
,

μ = E (unS+v), ũnS+v = unS+v − μ and �2
u = Var (unS+v). When {ηt , t ∈ Z} is standard

Gaussian, the mean and variance of log
(
η2nS+v

)
can be accurately approximated by ψ

( 1
2

)−
ln
( 1
2

) ≈ −1.27 and π2/2 respectively, where ψ (.) is the gamma function (e.g. Ruiz 1994).
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Note, however, that the linear state-spacemodel (3.1) is notGaussian, unless (i) e1 isGaussian,
(ii) e1 and η1 are independent and (iii) η1 has the same distribution as exp (X/2) for some X
normally distributedwithmean zero and variance 1. In what followswe assume for simplicity
of exposition that η1 is standard Gaussian, but the QML method we present below is still
valid when η1 is not Gaussian and even when μ and �2

u are unknown.
Let Y = (Y1, . . . , YT )′ be the series of log-squares corresponding to ε = (ε1, . . . , εT )′

(i.e. Yt = log
(
ε2t
)
, 1 ≤ t ≤ T ), which is generated from (3.1) with true parameter θ0. The

quasi-likelihood function lQ(θ; Y ) evaluated at a generic parameter θ may be written via the
prediction error decomposition as follows

log(lQ(θ; Y )) = −T

2
log(2π) − 1

2

T∑
t=1

(
log(Ft ) +

(
Yt − Ŷt/t−1

)2
Ft

)
, (3.2)

where Ŷt/t−1 = X̂t |t−1 + μ, X̂t |t−1 is the best predictor of the state Xt based on the

observations Y1, . . . , Yt−1 with mean square errors Pt/t−1 = E
(
Xt − X̂t/t−1

)2
and Ft =

E
(
Yt − Ŷt/t−1

)2
. A QML estimate θ̂QML of the true θ0 is the maximizer of log(lQ(θ; Y ))

over some compact parametric space �, where lQ(θ; Y ) is evaluated as if the linear state
space model (3.1) was Gaussian. Thus the best state predictor X̂t |t−1 and the state prediction
error variance Pt/t−1 may be recursively computed using the Kalman filter, which in the
context of model (3.1) is described by the following recursions

X̂t/t−1 = βt

(
X̂t−1/t−2 + Pt−1/t−2F

−1
t−1

(
Yt−1 − X̂t−1/t−2 − μ

))+ αt

Pt/t−1 = β2
t

(
Pt−1/t−2 − P2

t−1/t−2F
−1
t−1

)
+ σ 2

t

Ft = Pt/t−1 + �2
u

, 2 ≤ t ≤ T,

(3.3a)

while remembering that αt , βt and σ 2
t are S-periodic over t . The start-up values of (3.3a) are

calculated on the basis of X̂1/0 = E (X1) and P1/0 = Var (X1). Using results of Sect. 2, we
then get

X̂1/0 =
∑S−1

j=0

j−1∏
i=0

β1−iα1− j

1 −
S∏

v=1
βv

and P1/0 =
∑S−1

j=0

j−1∏
i=0

β2
1−iσ

2
1− j

1 −
S∏

v=1
β2

v

. (3.3b)

Recursions (3.3) may also be used in a reverse form for smoothing purposes, i.e. to obtain
the best linear predictor X̃t of Xt based on Y1, . . . , YT , from which we get estimates of the
unobserved volatilities ht (1 ≤ t ≤ T ).

Consistency and asymptotic normality of the QML estimate may be established using
standard theory of linear (non-Gaussian) signal plus noise models with time-invariant para-
meters (Dunsmuir 1979). For this, we invoke the corresponding multivariate time-invariant
model (2.2) which we transform to a linear form as follows{

Yn = log Hn + �n

log Hn = B log Hn−1 + ξn
n ∈ Z, (3.4)

whereYn and�n are S-vectors such thatYn (v) = YnS+v , and �n (v) = unS+v (1 ≤ v ≤ S)

and where log Hn, B and ξn are given by (2.2). In view of (3.4), we can use the theory in
Dunsmuir (1979) to yield the asymptotic variance of the QMLE of θ0 under the finiteness of
E
(
Y 4

v

)
(1 ≤ v ≤ S) (see also Ruiz 1994 and Harvey et al. 1994).
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Note finally that if we assume that: (i) et is Gaussian, (ii) e1 and and η1 are indepen-
dent, and (iii) log

(
η21

) ∼ N (0, 1) (i.e. η1 has the same distribution as exp (X/2) for some
X ∼ N (0, 1)), then the linear state space (3.1) would be Gaussian and the QMLE of θ0
would reduce to the exact maximum likelihood estimate (MLE) which is then asymptotically
efficient. However, the assumption that log

(
η21

) ∼ N (0, 1) seems to have a little interest in
practice.

3.2 Bayesian inference via Gibbs sampling

Adopting the Bayesian approach, the parameter vector θ of the model and the unobserved
volatilities h = (h1, h2, . . . , hT )′ which are also considered as augmented parameters, are
viewed as random with a certain prior distribution f (θ, h). Given a series ε = (ε1, . . . , εT )′
generated from the PAR-SVs model (2.1) with Gaussian innovations, the goal is to make
inference about the joint posterior distribution, f (θ, h/ε), of (θ, h) given ε. Because of
the periodic structure of the PAR-SVs model it is natural to assume that the parameters
h, ω, σ 2

1 , σ 2
2 , . . . , σ 2

S are independent of each other. Thus, the joint posterior distribution
f (θ, h/ε) = f

(
ω, σ 2, h/ε

)
can be estimated using Gibbs sampling provided we can

draw samples from any of the S + 2 conditional posterior distributions f
(
ω/ε, σ 2, h

)
,

f
(
σ 2

v /ε, ω, σ 2−{v}, h
)

(1 ≤ v ≤ S) and f
(
h/ε, ω, σ 2

)
, where x−{t} denotes the vector

obtained from x after removing its t-th component xt . Since the posterior distribution of
the volatility f

(
h/ε, ω, σ 2

)
has a rather complicated expression, we sample it element-

by-element as done by Jacquier et al. (1994). Thus, the “single-move” Gibbs sampler for
the joint posterior distribution f

(
ω, σ 2, h/ε

)
reduces to drawing samples from any of the

T + S + 1 conditional posterior distributions f
(
ω/ε, σ 2, h

)
, f
(
σ 2

v /ε, ω, σ 2−{v}, h
)
, (1 ≤ v

≤ S) and f
(
ht/ε, ω, σ 2, h−{t}

)
, (1 ≤ t ≤ T ). Under normality of the volatility proxies

and using standard linear regression theory with an appropriate adaptation to the periodic
AR form of the log-volatility equation (2.1), the conditional posteriors f

(
ω/ε, σ 2, h

)
and

f
(
σ 2

v /ε, ω, σ 2−{v}, h
)
, (1 ≤ v ≤ S) may be determined directly from given conjugate pri-

ors f (ω) and f
(
σ 2

v

)
, (1 ≤ v ≤ S). However, like the non-periodic SV case (Jacquier et al.

1994), direct draws from the distribution f
(
ht/ε, ω, σ 2, h−{t}

)
are not possible because it has

unusual form. Nevertheless, unlike Jacquier et al. (1994) which used a Metropolis-Hasting
chain after determining the form of f

(
ht/ε, ω, σ 2, h−{t}

)
except for a scaling factor, we use

the Griddy–Gibbs procedure as in Tsay (2010) because in our periodic context its implemen-
tation seems much simpler.

3.2.1 Prior and posterior sampling analysis

(a) Sampling the log-volatility periodic autoregressive parameter ω

Before giving the conditional posterior distribution f
(
ω/ε, σ 2, h

)
through some

conjugate prior distributions and linear regression theory, we first write the PAR log-
volatility equation in a standard linear regression form. Setting HnS+v =⎛
⎝0, . . . , 0︸ ︷︷ ︸

v−1times

, 1, log (hnS+v−1) , 0, . . . , 0︸ ︷︷ ︸
S−v times

⎞
⎠

′
, model (2.1b) for t = 1, . . . , NS may be rewritten

in the following periodically homoskedastic linear regression
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log (hnS+v) = H′
nS+vω + σvenS+v, 1 ≤ v ≤ S, 0 ≤ n ≤ N − 1, (3.5a)

or also in a standard regression

log (hnS+v)

σv

= 1

σv

H′
nS+vω + enS+v, 1 ≤ v ≤ S, 0 ≤ n ≤ N − 1, (3.5b)

with i id Gaussian errors. Assuming known the variances σ 2
v (1 ≤ v ≤ S) and the initial

observation h0, the least squares estimate ω̂WLS of ω, based on (3.5b), (which is just the
weighted least squares estimate of ω based on (3.5a)) has the following form

ω̂WLS =
(
N−1∑
n=0

S∑
v=1

1

σ 2
v

HnS+vH′
nS+v

)−1 N−1∑
n=0

S∑
v=1

1

σ 2
v

HnS+v log (hnS+v) ,

and is normally distributed with mean ω and covariance matrix

� =
(
N−1∑
n=0

S∑
v=1

1

σ 2
v

HnS+vH′
nS+v

)−1

. (3.6)

Under assumption (3.5b), information of the data aboutω is contained in theweighted least
squares estimate ω̂WLS of ω. To get a closed-form expression for the conditional posterior
f
(
ω/ε, σ 2, h

)
we use a conjugate prior for ω. This prior distribution is Gaussian, i.e. ω ∼

N
(
ω0, �0

)
, where the hyperparameters ω0, �0 are known and are fixed so that to have a

quite reasonably diffuse prior yet informative.
Thus from standard regression theory (e.g. Box and Tiao 1973; Tsay 2010) the conditional

posterior distribution of ω given ε, σ 2, h is:

ω/ε, σ 2, h ∼ N
(
ω∗, �∗) , (3.7a)

where

�∗ =
(
N−1∑
n=0

S∑
v=1

1

σ 2
v

HnS+vH′
nS+v + (

�0)−1

)−1

(3.7b)

ω∗ = �∗
(
N−1∑
n=0

S∑
v=1

1

σ 2
v

HnS+v log (hnS+v) + (
�0)−1

ω0

)
. (3.7c)

Some remarks are in order:

(i) The matrix � given by (3.6) is block diagonal. So if we assume that �0 is also block
diagonal, then we obtain the same result as if we assume that the seasonal parameters
ω1, ω2, . . . , ωS are independent of each other, and each one has a conjugate prior with
hyperparameters, say ω0

v and �0
v (1 ≤ v ≤ S), that are appropriate components of ω0

and �0.
(ii) Faster and more stable computation of ω∗ and �∗ in (3.7) which does not involve any

matrix inversion (in contrast with (3.7b)) may be obtained while setting ω∗ = ω∗
NS ,

�∗ = �∗
NS and recursively then computing the latter quantities using the well-known

recursive least squares (RLS) algorithm (see Ljung and Söderström 1983, Lemma 2.2)

123



156 Stat Inference Stoch Process (2017) 20:139–177

which is given by

ω∗
nS+v =ω∗

nS+v−1 + �∗−1
nS+v−1HnS+v

(
log (hnS+v) − H′

nS+vω
∗
nS+v−1

)
σ 2

v + H′
nS+v�

∗−1
nS+v−1HnS+v

�∗−1
nS+v =�∗−1

nS+v−1 − �∗−1
nS+v−1HnS+vH′

nS+v�
∗−1
nS+v−1

σ 2
v + H′

nS+v�
∗−1
nS+v−1HnS+v

,
1≤v≤ S

0≤n≤N−1,

(3.8a)

with starting values

ω∗
0 = ω0 and �∗−1

0 = �0. (3.8b)

This may improve the numerical stability and computation time tied to the whole esti-
mation method, especially for large period S.

(b) Sampling the periodic variance parameters σ 2
v , 1 ≤ v ≤ S

We also use conjugate priors for σ 2
v , 1 ≤ v ≤ S to get a closed form expression for

the conditional posterior of σ 2
v given data and the other parameters σ 2−{v}. Such priors are

provided by the inverted Khi-squared distribution:

avλv

σ 2
v

∼ χ2
av

, 1 ≤ v ≤ S, (3.9a)

where avλv = 1 (1 ≤ v ≤ S). Given the parameters ω and h, if we define

enS+v = log (hnS+v) − αv − βv log (hnS+v−1) , 1 ≤ v ≤ S, 0 ≤ n ≤ N − 1,

(3.9b)

then ev, ev+S, . . . , e(N−1)S+v ∼ i i N
(
0, σ 2

v

)
, 1 ≤ v ≤ S. From standard Bayesian linear

regression theory (see e.g. Tsay 2010) the conditional posterior distribution ofσ 2
v (1 ≤ v ≤ S)

given the data and the remainder parameters is an inverted Khi-squared distribution with
degree of freedom av + N − 1, that is

avλv +∑N−1
n=0 e2nS+v

σ 2
v

/ε, ω, σ 2−{v}, h ∼ χ2
av+N−1, 1 ≤ v ≤ S. (3.9c)

(c) Sampling the augmented volatility parameters h = (h1, h2, . . . , hT )′
Now, it remains to sample from the conditional posterior distribution f

(
ht/ε, θ, h−{t}

)
for

t = 1, 2, . . . , T . Let us first give the expression of this distribution (except for amultiplicative
constant) and we will show how to (indirectly) draw samples from it using the Griddy
Gibbs technique. Because of theMarkovian (but non-homogeneous) structure of the volatility
process {ht , t ∈ Z} and the conditional independence of εt and ht−h (h �= 0) given ht , it
follows that for any 1 < t < T .

f
(
ht/ε, θ, h−{t}

) = f (ht/ht−1, θ) f (ht+1/ht , θ) f (εt/θ, ht )

f (ht+1/ht−1, θ) f (εt/θ, ht−1, ht+1)

∝ f (ht/ht−1, θ) f (ht+1/ht , θ) f (εt/θ, ht ) . (3.10)

Using the fact that εt/θ, ht ≡ εt/ht ∼ N (0, ht ), log (ht ) / log (ht−1) , θ ∼
N
(
αt + βt log (ht−1) , σ 2

t

)
, and d log(ht ) = 1

ht
dht , formula (3.10) becomes
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f
(
ht/ε, θ, h−{t}

)
∝

1√
h3t

exp

(
− ε2t

2ht
− 1

2
t
(log (ht ) − μt )

2
)

, 1 < t < T,

(3.11a)

where

μt = σ 2
t+1 (αt + βt log (ht−1)) + σ 2

t βt+1 (log (ht+1) − αt+1)

σ 2
t+1 + σ 2

t β2
t+1

(3.11b)


t = σ 2
t+1σ

2
t

σ 2
t+1 + σ 2

t β2
t+1

. (3.11c)

Note that in (3.11a) we have used the well-known formula (see Box and Tiao 1973,

p. 418) A (x − a)2 + B (x − b)2 = (x − c)2 (A + B)+ (a − b)2
AB

A + B
, where c = (Aa +

Bb)/(A + B) provided that A + B �= 0.
For the two end-points h1 and hT we may simply use a naive approach which con-

sists of assuming h1 fixed so that the sampling starts with t = 2 and use the fact that
log (hT ) /θ, log (hT−1) ∼ N (αT + βT−1 log (hT−1) , σ 2

T ). Alternatively, we may also use
a forecast of hT+1 and a backward prediction of h0 and employ again formula (3.11) for
0 < t < T + 1. In that case, we forecast hT+1 on the basis of the log-volatility equation
of model (2.1) by using a 2-step ahead forecast ̂log (hT−1) (2) at the origin T − 1, which is
given from (2.1) by ̂log (hT−1) (2) = αT+1 +βT+1αT +βT+1βT log (hT−1). The backward
forecast of h0 is obtained using a 2-step ahead backward forecast on the basis of the backward
periodic autoregression (Sakai and Ohno 1997) associated to the PAR log-volatility.

Once the conditional posterior f
(
ht/ε, θ, h−{t}

)
is determined except for a scale factor,

wemay use some indirect sampling algorithms to draw the volatility ht . Jacquier et al. (1994)
used the rejection Metropolis–Hasting algorithm. Alternatively, following Tsay (2010) we
use the Griddy–Gibbs technique (Ritter and Tanner 1992) which consists in:

(i) Choosing a grid of m points from a given interval [ht1, htm] of ht : ht1 ≤ ht2 ≤ . . . ≤
htm ; then evaluating the conditional posterior f

(
ht/ε, θ, h−{t}

)
via (3.11) (ignoring the

normalization constant) at each one of these points, giving fti = f
(
hti/ε, θ, h−{t}

)
,

i = 1, . . . ,m.
(ii) Building from the values ft1, ft2, . . . , ftm the discrete distribution p (.) defined at hti

(1 ≤ i ≤ m) by p (hti ) = fti∑m
j=1 ft j

. This may be seen as an approximation to the

inverse cumulative distribution of f
(
ht/ε, θ, h−{t}

)
.

(iii) Generating a number from the uniform distribution on (0, 1) and transforming it using
the discrete distribution p (.) obtained in (ii) to get a random draw for ht .

It is worth noting that the choice of the grid [ht1, htm] is crucial for efficiency of the
Griddy algorithm. We follow here a similar device by Tsay (2010), which consists of taking
the range of ht , at the lth Gibbs iteration, to be [h∗m

t , h∗M
t ], where

h∗m
t = 0.6max

(
h(0)
t , h(l−1)

t

)
, h∗M

t = 1.4min
(
h(0)
t , h(l−1)

t

)
, (3.12)

h(l−1)
t and h(0)

t being, respectively, the estimate of ht for the (l − 1)-th iteration and initial
value.
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3.2.2 Bayes Griddy Gibbs sampler for PAR-SVs

The following algorithm summarizes the Gibbs sampler for drawing from the conditional
posterior distribution f (θ, h/ε) given ε. For l = 0, 1, . . . , M , consider the notation h(l) =(
h(l)
1 , . . . , h(l)

T

)′
, ω(l) =

(
α

(l)
1 , β

(l)
1 , . . . , α

(l)
S , β

(l)
S

)′
and σ 2(l) =

(
σ
2(l)
1 , σ

2(l)
2 , . . . , σ

2(l)
S

)′
.

Algorithm 3.1

Step 0 Specify starting values h(0), ω(0) and σ 2(0).
Step 1 Repeat for l = 0, 1, ..., M − 1,

Draw ω(l+1) from f
(
ω/ε, σ 2(l), h(l)

)
using (3.7a) and (3.8).

Draw σ 2(l+1) from f
(
σ 2/ε, ω(l+1), h(l)

)
using (3.9b) and (3.9c).

Repeat for t = 1, 2, ..., T = NS
Griddy Gibbs:

Select a grid of m points
(
h(l+1)
ti

)
: h(l+1)

t1 ≤ h(l+1)
t2 ≤ ... ≤ h(l+1)

tm .

For 1 ≤ i ≤ m calculate f (l+1)
ti = f

(
h(l+1)
ti /ε, θ(l), h(l)

−{t}
)
from (3.11).

Define the inverse distribution p
(
h(l+1)
ti

)
= f (l+1)

ti∑m
j=1 f (l+1)

t j

, 1 ≤ i ≤ m.

Generate a number u from the uniform (0, 1) distribution.
Transform u using the inverse distribution p (.) to get h(l+1)

t , which is

considered as a draw from f
(
ht/ε, θ(l+1), h(l)

−{t}
)
.

Step 2 Return the values h(l), ω(l) and σ 2(l), l = 1, ..., M. ��

3.2.3 Inference and prediction using the Gibbs sampler for PAR-SVs

Once sampling from the posterior distribution f (θ, h/ε), statistical inference for the PAR-
SVs model may be easily made.

The Bayes Griddy–Gibbs parameter estimate θ̂BGG of θ is taken to be the posterior mean
θ = E (θ/ε) which is, under the Markov chain ergodic theorem, approximated with any
desired degree of accuracy by

θ̂BGG = 1
M

M+l0∑
l=l0

θ(l),

where θ(l) is the l-th draw of θ from f (θ, h/ε) given by Algorithm 3.1, l0 is the burn-in size,
i.e. the number of initial draws discarded, and M is the number of draws.

Smoothing and forecasting volatility are obtained as a by-product of the Bayes Griddy–
Gibbs method. The smoothed value, ht = E (ht/ε), of ht (1 ≤ t ≤ T ) is obtained while
sampling from the distribution f (ht/ε)which in turn is the marginal of the posterior distrib-
ution f (θ, h/ε). So E (ht/ε) may be accurately approximated by 1

M

∑M+l0
l=l0

h(l)
t where h(l)

t
is the l-th draw of ht from f (θ, ht/ε). Forecasting future values hT+1, hT+2, .., hT+k are
obtained either as in the above using the log-volatility equationwith the Bayes parameter esti-
mates, or directlywhile sampling from the predictive distribution f (hT+1, hT+2, .., hT+k/ε)

(see also Jacquier et al. 1994).
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3.2.4 MCMC diagnostics

It is important to discuss the numerical properties of the proposed BGG method in which the
volatilities are sampled element by element. Despite the ease of implementation, it is well
documented that the main drawback of the single-move approach (e.g. Kim et al. 1998) is
that the posterior draws are often highly correlated thereby resulting in a slow mixing and
so a slow convergence properties. Among several MCMC diagnostic measures, we consider
here the relative numerical inefficiency (RNI) (e.g. Geweke 1989; Geyer 1992), which is
given by

RNI = 1 + 2
B∑

k=1

K
( k
B

)
ρ̂k,

where B = 500 is the bandwidth, K (.) is the Parzen kernel (e.g. Kim et al. 1998) and ρ̂k the
sample autocorrelation at lag k of the BGG parameter draws. The RNI indicates in fact on the
inefficiency due to the serial correlation of the BGG draws (see also Geweke 1989; Tsiakas
2006). Another MCMC diagnostic measure (Geweke 1989) we use here is the numerical
standard error (NSE), which is the square root of the estimated asymptotic variance of the
MCMC estimator. In fact, the NSE is given by

NSE =
√√√√ 1

M

(
γ̂0 + 2

B∑
k=1

K
( k
B

)
γ̂k

)
,

where γ̂k is the sample autocovariance at lag k of the BGG parameter draws, K (.) is the
Parzen kernel and M is the number of draws.

3.2.5 Period selection via the Deviance Information Criterion

An important issue in PAR-SVs modeling is the selection of the period S. This problem
is especially more pronounced for modeling daily returns because their periodicity is not
as obvious as in quarterly or monthly data. Although many authors (e.g. Franses and Paap
2000; Tsiakas 2006) have emphasized the day-of-the-week effect in daily stock returns,which
often entails a period of S = 5, the period-selection problem in periodic volatility models
remains a challenging problem. Standard order-selection measures such as the AIC and BIC,
which require the specification of the number of free parameters in each model, are not
applicable for comparing complex Bayesian hierarchical models like the PAR-SVs model.
This is because in the PAR-SVs model, the number of free parameters, which is augmented
by the latent volatilities that are in fact not independent but Markovian, is not well defined
(cf. Berg et al. 2004). For a long time, the Bayes factor has been viewed as the best way
to carry out Bayesian model comparison. However, its calculation based on evaluating the
marginal likelihood requires extremely high-dimensional integration, and this would bemore
computationally demanding especially for PAR-SVs model which involves a larger number
of parameters augmented by the volatilities, exceeding the sample size.

In this paper, we will carry out period selection using rather the deviance information
criterion (DIC), which may be viewed as a trade-off between model adequacy and model
complexity (Spiegelhalter et al. 2002). Such a criterion, which represents a Bayesian gener-
alization of the AIC, is easily obtained from MCMC draws, needing no extra-calculations.
The (conditional) DIC as introduced by Spiegelhalter et al. (2002) is defined in the context
of PAR-SVs to be
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DIC (S) = −4Eθ,h/ε (log ( f (ε/θ, h))) + 2 log
(
f
(
ε/θ, h

))
,

where f (ε/θ, h) is the (conditional) likelihood of the PAR-SVs model for a given period S
and

(
θ, h

) = E ((θ, h)/ε) is the posterior mean of (θ, h). From the Griddy–Gibbs draws,
the expectation Eθ,h/ε (log ( f (ε/θ, h))) can be estimated by averaging the conditional log-
likelihood, log f (ε/θ, h), over the posterior draws of (θ, h). Further, the joint posterior mean
estimate of (θ, h) can be approximated by themean of the posterior draws of (θ(l), h(l)). Using

the fact that f (ε/θ, h) := f (ε/h) = − 1
2

∑T
t=1

(
log (2πht ) + ε2t

ht

)
, the DIC(S) is estimated

by

2
M

l0+M∑
l=l0

T∑
t=1

(
log
(
2πh(l)

t

)
+ ε2t

h(l)
t

)
−

T∑
t=1

(
log
(
2πht

)+ ε2t

ht

)
,

where h(l)
t denotes the l-th BGG draw of ht from f (ht/εt , θ), M is the number of draws, l0

is the burn-in size and ht := E (ht/ε) is estimated by 1
M

∑l0+M
l=l0

h(l)
t (1 ≤ t ≤ n). Of course,

a model is preferred if it has the smallest DIC value.
Since the DIC is random and for the same fitted series it may change value from a MCM-

Cdraw to another, it is useful to get its corresponding numerical standard error. However,
as pointed out by Berg et al. (2004), no efficient method has been developed for calculating
reasonably accurate Monte Carlo standard errors of DIC. Nevertheless, following the rec-
ommendation of Zhu and Carlin (2000) we simply replicate the calculation of DIC some G
times and estimate Var (DIC) by its sample variance, giving a broad indication of the implied
variability of DIC.

Note finally that for the class of latent variable models to which belongs the PAR-SVs
model, there are in fact several alternative definitions of the DIC depending on the different
concepts of the likelihood used (complete, observed, conditional) and the one we worked
with here is the conditional DIC as categorized by Celeux et al. (2006). We have avoided
using the observed DIC because, like the Bayes factor, it is based on evaluating the marginal
likelihood whose computation is typically very time-consuming.

4 Simulation study: finite-sample performance of the QML and BGG
estimates

In this section, a simulation study is undertaken to assess the performance of the QML, BGG
Bayes estimates in finite samples.

Concerning finite-properties of the QML and BGG estimates, three instances of the
Gaussian PAR-SVs model with period S = 2 are considered and are reported respectively in
Tables 1, 2 and 3. The parameter θ = (

α1, β1, α2, β2, σ
2
1 , σ 2

2

)′
are chosen for each instance

in order to be in accordance with empirical evidence. In particular, for the three instances
the persistence parameter β1β2 equals 0.90, 0.95 and 0.99 respectively. We have also set
small values for σ 2

1 and σ 2
2 because it is a critical case for the performance of the QMLE as

pointed out by Ruiz (1994) and Harvey et al. (1994) in the standard SV case. The choice of
S = 2 is motivated by computational and time-consuming considerations. For each instance,
we have considered 1000 replications of PAR-SVs series with sample size 1500, for which
we calculated the QML and Bayes Monte Carlo replications. Mean of estimates (θ̂QML and
θ̂BGG ) and their standard deviations (Std) over the 1000 replications are reported in Tables 1,
2 and 3.
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Table 1 Instance 1—simulation results for QML and BGG on a Gaussian PAR-SV2 with T = 1500

True value α1 β1 α2 β2 σ1 σ2

−0.5 1 1.2 0.9 0.2 0.3

QMLE −0.5255 1.0728 1.2536 0.9348 0.2629 0.3755

Std (0.0374) (0.0691) (0.0743) (0.0385) (0.0926) (0.0836)

BGG −0.5004 0.9979 1.1982 0.9061 0.2003 0.2964

Std (0.0373) (0.0182) (0.0421) (0.0107) (0.0127) (0.0165)

Table 2 Instance 2—simulation results for QML and BGG on a Gaussian PAR-SV2 with T = 1500

True value α1 β1 α2 β2 σ1 σ2

−0.5 1 1.2 0.95 0.1 0.2

QMLE −0.5258 1.0799 1.2527 0.9849 0.1394 0.2570

Std 0.0396 0.0587 0.0643 0.0531 0.5697 0.4582

BGG −0.4.939 0.9992 1.2030 0.9505 0.1004 0.2069

Std 0.0133 0.0166 0.0113 0.0105 0.0123 0.0093

Table 3 Instance 3—simulation results for QML and BGG on a Gaussian PAR-SV2 with T = 1500

True value α1 β1 α2 β2 σ1 σ2

−0.5 1 1.2 0.99 0.15 0.1

QMLE −0.5230 1.3842 1.1773 0.9503 0.0512 0.2608

Std (0.0733) (0.0601) (0.0661) (0.0642) (0.4287) (0.4913)

BGG −0.5036 1.0025 1.1992 0.9767 0.1606 0.1180

Std (0.0312) (0.0150) (0.0201) (0.0132) (0.0101) (0.0135)

For the QML method a non linear optimization routine is required. We have applied a
Gauss–Newton type algorithm starting from different values of the θ parameter estimate.
For the Bayes Griddy Gibbs estimate, we have taken the same prior distributions for ω =
(α1, β1, α2, β2)

′ across instances:

ω ∼ N (ω0, diag (0.05, 0.5, 0.05, 0.5)) , ω0 = (0, 0, 0, 0)′ ,
1
σ 2
1

∼ χ2
5 , 1

σ 2
2

∼ χ2
5 ,

which are quite diffuse, but proper. Concerning initial parameter values, the initial volatility
h(0) in the Gibbs sampler is taken to be the volatility generated by the fitted GARCH(1, 1),
that is h(0) = hG where {

εt =
√
hGt ηt

hGt = ϕ0 + ϕ1ε
2
t−1 + ψhGt−1

, t ∈ Z,

while the initial log-volatility parameter estimate θ(0) is taken to be the ordinary least-squares
estimate of θ based on the series log

(
h(0)

)
. Furthermore, in the Griddy Gibbs iteration, ht

is generated using 500 grid points and the range of ht at the l-th Gibbs iteration is taken as

123



162 Stat Inference Stoch Process (2017) 20:139–177

in (3.12). Finally, the Gibbs sampler is run for 5500 iterations from which we discarded the
first 500 iterations.

It can be observed that the parameters are quite well estimated by the two methods with
an obvious superiority of the Bayes estimate over the QMLE. Indeed, in all instances the
BGG estimate (BGGE) greatly dominates the QMLE in the sense that it has smaller bias
and standard deviations. We also observe that the QMLE provides poor estimates as small
as the variance parameters σ 2

1 and σ 2
2 .

From a theoretical point of view, it would be interesting to compare the QMLE and BGGE
when log

(
η21

) ∼ N (0, 1), i.e. when η1 ∼ exp (X/2) with X ∼ N (0, 1). In that case, as
emphasized in Sect. 3, the QMLE reduces to the MLE and it would be more (asymptotically)
efficient than the BGGE. So through simulations, the QMLE would (in principle) perform
better than the BGGE for PAR-SVs series with quite large sample size. However, the BGG
method should be adapted to the case of distribution η1 ∼ exp (X/2), which may entail a lot
of effort for a distribution (exp (N (0, 1) /2)) that seems to have a little interest in practice.

5 Application to the S&P 500 returns

For the sake of illustration, we propose to fit Gaussian PAR-SVs models (2.1) with various
periods to the returns on the S&P 500 (closing value) index. In order to highlight many
possible values of the PAR-SVs period, three types of datasets are considered namely daily,
quarterly and monthly S&P 500 returns. For the three series considered, we use the Bayes
Griddy Gibbs estimate thanks to its good finite-sample properties, with number of iterations
M = 5000 and burn-in 500. As in Sect. 4, we take the initial volatility h(0) to be the volatility
generated by the fitted GARCH(1, 1) while the initial log-volatility parameter estimate θ(0)

is taken to be the ordinary least-squares estimate of θ based on the series log
(
h(0)

)
. We

have in fact avoided to use the volatility fitted by the periodic GARCH (PGARCH(1, 1))
model as initial value h(0) because of some numerical difficulties in the corresponding QML
estimation when S becomes large (once S ≥ 3). In the Gibbs step, the volatility h(l) is drawn
across PAR-SVs models using the Griddy–Gibbs technique using the same devises given in
Sect. 4, i.e. using 500 grid points and the range of ht at the l-th Gibbs iteration is taken as
in (3.12). All procedures have been applied on a personal computer using Matlab 2013. The
BGG programs are available from the author upon request.

5.1 Daily S&P 500 returns: day-of-the-week effect

5.1.1 The data

The first dataset consists of the daily S&P 500 returns (in decimals) over the sample period
starting from January, 01, 2007 toDecember, 31, 2012,with a total of T = 1509 observations.
The time series plots of the index (panel (a)) and its return (panel (b)) are presented in Fig. 1.
The same data has also been considered by Chan and Grant (2014).

Table 4 shows some descriptive statistics for the returns, the absolute returns, the squared
return and the log-absolute returns where it may be seen that the data exhibits negative
skewness, high kurtosis and low autocorrelation. Moreover, unreported sample correlations
with high lags show that the absolute and squared returns are characterized by high persistence
with an obvious higher correlation for the absolute returns than the squares. Finally, the log-
absolute return looks like a Gaussian much more than do the daily (εt ) , (|εt |) and

(
ε2t
)
.
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Fig. 1 Daily S&P 500 from January 2007 to December 2012. a Level, b return

Table 4 Some descriptive statistics for the daily S&P 500 returns

Returns Absolute returns Log-abs. returns Squared returns

(εt ) (|εt |) (log |εt |)
(
ε2t

)

Mean 4.4711e−06 0.0102 −5.2239 0.0002

SD 0.0157 0.0119 1.3095 0.0007

Skewness −0.2643 2.9540 −0.8449 8.5518

Kurtosis 10.4975 16.5674 4.1138 100.0209

Minimum −0.0947 0.001 −11.1125 2.2273e−10

Maximum 0.1096 0.1096 −2.2112 0.0120

Corr
(
εt , εt−1

) −0.1184 0.2358 0.1250 0.1898

Corr
(
εt , εt−2

) −0.0610 0.3723 0.1915 0.3919

Corr
(
εt , εt−3

)
0.0444 0.2896 0.2023 0.1672

Corr
(
εt , εt−5

) −0.0544 0.3865 0.2032 0.3334

The same finding has been observed by Tsiakas (2006) for the S&P 500 returns, but for a
different sample period.

It is by now well documented (Bollerslev and Ghysels 1996; Franses and Paap 2000;
Tsiakas 2006) that daily S&P 500 returns are characterized by the day-of-the-week effect
which often suggests the presence of periodicity in volatility with period S = 5. While the
sample-period chosen here is different from those taken by e.g. Franses and Paap (2000)
and Tsiakas (2006) for the same daily S&P 500 variable, it may be observed from Table 5
that the average return and the volatility (approximated by the absolute value) are somewhat
different from a day to another. Of course, the difference significancy could be studied more
effectively using e.g. the bootstrap approximation of the distribution of the return, along each
day as done by Tsiakas (2006). However, this is behind the scoop of this application, which
is made only for illustration purposes.
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Table 5 Day of the week effect in the daily S&P 500 returns

Sample size Mean of (εt ) Mean of (|εt |) Mean of (log |εt |) Mean of
(
ε2t

)

Full series 1509 4.4711e−06 0.0102 −5.2239 0.0002

1 Monday 284 0.0013 0.0108 −5.1867 0.0003

2 Tuesday 308 −0.0003 0.0099 −5.2355 0.0002

3 Wednesday 311 0.0001 0.0109 −5.0883 0.0003

4 Thursday 305 −0.0002 0.0088 −5.2770 0.0001

5 Friday 301 −0.0007 0.0108 −5.3336 0.0003

5.1.2 The models and prior distributions

In order to identify the period of the best fitting PAR-SVs model according to the DIC,
we estimate six PAR-SVs models (2.1) corresponding to each S ∈ {1, . . . , 6}. For S = 5,
because of the presence of holidays, model (2.1) in which ωv = ωd(v) and σv = σd(v) with
d(v) = nS + v (1 ≤ v ≤ S, n ∈ Z) seems not suitable. This is because with model (2.1)
each day of a week may have different specification than the same day of the week before. So
when S = 5 we also estimate the following variant of model (2.1) (henceforth PAR-SV∗

5):

{
εt = √

htηt
log (ht ) = αd(t) + βd(t) log (ht−1) + σd(t)et

, 1 ≤ t ≤ T, (5.1)

in which d(t) is instead defined to be

d (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if the day corresponding to t is a Monday
2 if the day corresponding to t is a Tuesday

...

5 if the day corresponding to t is a Friday.

Such a specification with missing values (see e.g. Franses and Paap 2000, Regnard and
Zakoïan 2011 in the periodic GARCH case) seems well adapted to explain the day-of-the-
week effect.

In calculating the BGG estimate across models, the chosen prior distributions for all
the candidate PAR-SVs models are reported in Table 6. These priors are informative, but
reasonably flat (cf. Figs. 2, 3). When S = 1, the prior distributions in Table 6 are similar to
those proposed by Tsay (2010, Example 12.3) for his SV model. For the variant PAR-SV∗

5
model (5.1), we use the same priors as in the PAR-SV5 model (2.1). Note that in Table 6, the
diagonal matrix Dk (k = 2, 4, 10) is defined to be

Dk (i, j) =
⎧⎨
⎩
0 if i �= j
0.05 if i = j is odd
0.5 if i = j is even

, 1 ≤ i, j ≤ k. (5.2)

Using the QML method, the fitted standard GARCH(1, 1) specification to the daily S&P
500 returns is given by
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Table 6 Prior distributions of ω and σ 2 for the candidates PAR-SVs, 1 ≤ S ≤ 6, (Dk , 0k×1 and 1k denote
respectively the diagonal matrix given by (5.2), the null vector with k components and the k-vector with all
components equal 1)

PAR-SVs Prior for ω : ω ∼ N (ω0, �0) Prior for σ 2 : avλv

σ2
v

∼ χ2
av

ω0 �0 a = (a1, ..., aS) λ = (λ1, ..., λS)

S = 1 02×1 D2 5 0.2

S = 2 04×1 D4 5 × 12 0.2 × 12
S = 3 06×1 D6 5 × 13 0.2 × 13
S = 4 08×1 D8 5 × 14 0.2 × 14
S = 5 010×1 D10 5 × 15 0.2 × 15
S = 6 012×1 D12 5 × 16 0.2 × 16
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Fig. 2 Prior (dashed line) andBGGposterior (solid line) distributions of parameters in thePAR-SV1 (aperiodic
SV) model

hGt = 0.00000314
(0.00000081)

+ 0.1022
(0.0121)

ε2t−1 + 0.8822
(0.0138)

hGt−1,

with standard deviations of estimates in parentheses. The found volatility hG is used to
initialize the volatility parameter h(0) in the Gibbs sampler across all estimated PAR-SVs
(and PAR-SV∗

5) models.

5.1.3 Results

The estimated DIC’s across PAR-SVs models, their computation times (in minutes), their
numerical standard errors (approximated by their standard deviations over G replications)
and the monodromy parameters of all estimated models are reported in Table 7. In computing
the standard errors of DIC, we have replicated the BGG procedure (Algorithm 3.1)G = 500
times.

From Table 7, some broad conclusions are in order. Firstly, the DIC’s corresponding to
the PAR-SVs (1 ≤ S ≤ 6) models given by (2.1) are very close to each other. So, with regard
to the standard errors of the DIC’s, which are reasonably small, it is difficult to distinguish
between the corresponding PAR-SVs (1 ≤ S ≤ 6) models despite the inherent ranking
reported in Table 7. On the other hand, the DIC favors the PAR-SV∗

5 given by (5.1), whose
value (−8881.8162) is quite small than the others. Secondly, while the BGG method is
relatively time-consuming for all PAR-SVs models, a fact that is well known in the single
move approach, the computation time is almost similar across PAR-SVs models in spite of
the increasing number of parameters when S tends to be large. So fitting a periodic PAR-SVs
model is carried out without increasing computational cost compared to the non-periodic SV.
Thirdly, the monodromy parameters

∏S
v=1 βv across models are quite large, which suggests

a strong persistence in volatility.
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Fig. 3 Prior (dashed line) and BGG posterior (solid line) distributions of parameters in the PAR-SV∗
5 model

According to the DIC, the best model is the PAR-SV∗
5 given by (5.1), whose parameters,

their MCMC standard deviations (Std), their NSE and their RNI are reported in Table 9. As a
benchmark, Table 8 reports the same information concerning the second best model ranked
by the DIC, which is the standard SV corresponding to PAR-SV1. Due to lack of space the
remaining estimatedmodels are not presented here, but are available from the author. Further,
prior and posterior distributions of the estimates for the PAR-SV1 and PAR-SV∗

5 are plotted
in Figs. 2 and 3 respectively.

It may be seen from Tables 8 and 9 that the parameters appear quite well estimated as
shown by their low MCMC standard deviations, low RNI and small NSE. The latter clearly
shows that even with the single move approach, when a suitable choice of the range of h
in the Griddy–Gibbs procedure is made, the MCMC estimates mix well. This is confirmed
by the low autocorrelations of the estimates (cf. Fig. 4). Moreover, from Table 9 it can be
observed that the parameters are quite different from a day to another, especially for the
αv and βv (1 ≤ v ≤ 5 ). On the other hand, the estimates are comparable with similar
models in the literature when S = 1. Prior and posterior distributions of the estimates for
the PAR-SV1 and PAR-SV∗

5 are plotted in Figs. 2 and 3 respectively. The prior distributions
used are, as pointed out above, relatively noninformative while the posterior distributions
are quite concentrated. In addition, from Fig. 5 the volatilities induced by the GARCH(1, 1)
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Table 7 Estimated DIC, standard deviation, ranking, computation time (in minutes) and the monodromy
(Monod.) estimate for the candidate PAR-SVs (1 ≤ S ≤ 6) and PAR-SV∗

5 models. Results concerning the
selected model are displayed in bold

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV∗
5 PAR-SV6

-DIC 8872.1155 8869.2121 8863.8238 8866.6620 8864.5966 8881.8162 8868.5853

(Std) (1.0737) (1.1277) (1.2547) (0.9992) (1.1825) (0.8261) (1.2823)

Rank 2 3 7 5 6 1 4

Time 80.3535 81.9259 81.5512 82.7189 82.9024 82.7828 83.5396

Monod. 0.8509 0.8332 0.7277 0.6423 0.5918 0.5853 0.5160

Table 8 BGG parameter
estimates for the PAR-SV1
(standard SV)

PAR-SV1 Posterior MCMC NSE RNI
Parameter mean Std

α −1.2822 0.1132 0.0041 0.1431

β 0.8509 0.0133 0.0004 0.1389

σ 2 0.2535 0.0128 0.0006 0.2525

Table 9 BGG parameter estimates for the PAR-SV∗
5

Day PAR-SV∗
5 Posterior MCMC NSE RNI

parameter mean Std

Monday α1 −0.5655 0.1014 0.0026 0.7179

β1 0.9351 0.0121 0.0003 0.4708

σ 2
1 0.2482 0.0270 0.0004 0.2020

Tuesday α2 −1.0438 0.0942 0.0022 0.6025

β2 0.8795 0.0116 0.0003 0.5675

σ 2
2 0.2471 0.0268 0.0003 0.1126

Wednesday α3 −0.8723 0.0986 0.0021 0.5202

β3 0.9010 0.0119 0.0003 0.7461

σ 2
3 0.2348 0.0241 0.0003 0.1457

Thursday α4 −1.0149 0.0969 0.0016 0.2827

β4 0.8835 0.0116 0.0002 0.3509

σ 2
4 0.2416 0.0253 0.0009 1.3812

Friday α5 −0.9366 0.0992 0.0017 0.3159

β5 0.8938 0.0119 0.0002 0.2315

σ 2
5 0.2336 0.0252 0.0005 0.4316

(dashed-line) and PAR-VS∗
5 (solid line) models have similar pattern. Note finally that these

result were quite stable to using different initial values, priors, and numbers of iterations
for the Gibbs sampler. However, the efficiency of the Gibbs sampler greatly depends on the
choice of the range of h in the Griddy–Gibbs step.
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Fig. 4 Sample autocorrelations of the PAR-SV∗
5 parameter estimates

5.2 Quarterly S&P 500 returns

The second dataset consists of the quarterly S&P 500 returns over the sample period from the
first quarter (Q1) 1871 to the fourth quarter (Q4) 2012, with a total of T = 567 observations.
The index is calculated by taking average price per share in month ending quarter. The time
series plots of the index series and its return are displayed in Fig. 6. The data are given from
Shiller (2015).
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Fig. 5 Volatilities induced by the GARCH(1, 1), the SV and PAR-SV∗
5
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Fig. 6 Quarterly S&P 500 index: a level and b return

We estimated five PAR-SVs models (2.1) corresponding to each S ∈ {1, . . . , 5} using
the same prior distributions as in Table 6 (for 1 ≤ v ≤ 5). The estimated volatility via the
GARCH(1, 1) model, which is used to initialize the volatility in the Gibbs sampler, has the
following specification

hGt = 0.0010
(0.0035)

+ 0.1792
(0.0577)

ε2t−1 + 0.6796
(0.0674)

hGt−1,
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Table 10 Estimated DIC, standard deviations, ranking, computation time (in minutes) and the monodromy
(Monod.) estimates for the candidate PAR-SVs (1 ≤ S ≤ 5) models. Results concerning the selected model
are displayed in bold

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5

DIC −1206.4619 −1210.4912 −1209.6398 −1211.9735 −1207.6028

(Std) (2.0577) (2.2225) (1.9911) (1.0370) (2.2684)

Rank 5 2 3 1 4

Time 29.7357 30.2224 31.3725 30.3580 32.4587

Monod. 0.6298 0.5102 0.4476 0.4304 0.3841

Table 11 BGG parameter estimates for the selected PAR-SV4 model

Quarter PAR-SV4 Posterior MCMC NSE RNI
parameters mean Std

Q1 α1 −1.0552 0.0693 0.0007 0.5029

β1 0.7861 0.0183 0.0002 0.7718

σ 2
1 0.2283 0.0359 0.0005 1.1526

Q2 α2 −0.7527 0.0692 0.0006 0.4521

β2 0.8379 0.0187 0.0003 1.2665

σ 2
2 0.2752 0.0436 0.0009 2.3623

Q3 α3 −0.8548 0.0709 0.0012 1.5954

β3 0.8181 0.0189 0.0003 1.4664

σ 2
3 0.2547 0.0397 0.0007 1.5453

Q4 α4 −0.9423 0.0697 0.0011 1.3967

β4 0.7987 0.0188 0.0003 1.8023

σ 2
4 0.2766 0.0438 0.0009 2.1791

with standard errors of estimates in parentheses. The estimated DIC’s across PAR-SVs
models, their computation times (in minutes), their numerical standard errors and the corre-
sponding monodromy parameters are reported in Table 10. The standard errors of DIC are
calculated as above.

From Table 10, the DIC selects the four-periodic PAR-SV4 with smallest value
−1211.9735. Such a value is not so far from those of the remaining PAR-SVsmodels (S �= 4)
regarding their numerical standard errors. On the other hand, the corresponding computa-
tion times are quite comparable while the monodromy parameters are less important than in
the daily return case. The parameters of the found PAR-SV4 model, their MCMC standard
deviations, their NSE and their RNI are listed in Table 11.

The same conclusions as those for the daily return case may be drawn: the parameters are
quite well estimated in view of their low standard deviations, low RNI and small NSE (cf.
Table 11). Moreover, the posterior distributions are fairly concentrated (cf. Fig. 7). On the
other hand, the parameters are quite different from a quarter to another especially for the αv

and βv . However, in overall, the estimates seem slightly less accurate than in the daily return
case, which is perhaps due to the smaller sample size. Finally, Fig. 8 plots the volatilities
generated by the GARCH(1, 1) (panel (a)) and the PAR-SV4 (panel (b)) where it may be
seen that they display a very similar pattern.
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Fig. 7 Prior (dashed line) and posterior (solid line) distributions of parameters in the PAR-SV4 model
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Fig. 8 Volatilities induced by the GARCH(1, 1) and PAR-SV4

123



172 Stat Inference Stoch Process (2017) 20:139–177

5.3 Monthly S&P 500 returns

The third dataset consists of the return of the monthly S&P 500 index from January 1950 to
January 2015, involving 780 observations. The returns are computed using the first adjusted
closing index of each month. Plots of the S&P 500 index and its return are given in Fig. 9.
A similar monthly series, but on different sample period has been studied by Tsay (2010,
example 12.3) via a SV model.

We estimated twelve PAR-SVs models (2.1) corresponding to each S ∈ {1, . . . , 12} using
the prior distributions presented in Table 12.
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Fig. 9 Monthly S&P 500 index: a level and b return

Table 12 Prior distributions of ω and σ 2 for the candidates PAR-SVs, 1 ≤ S ≤ 12, (Dk , 0k×1 and 1k denote
respectively the diagonal matrix given by (5.2), the null vector with k components and the k-vector with all
components equal 1)

PAR-SVs Prior for ω : ω ∼ N (ω0, �0) Prior for σ 2 : avλv

σ2
v

∼ χ2
av

ω0 �0 a = (a1, . . . , aS) λ = (λ1, . . . , λS)

S = 1 02 × 1 D2 5 0.2

S = 2 04 × 1 D4 5 × 12 0.2 × 12
S = 3 06 × 1 D6 5 × 13 0.2 × 13
S = 4 08 × 1 D8 5 × 14 0.2 × 14
S = 5 010 × 1 D10 5 × 15 0.2 × 15
S = 6 012 × 1 D12 5 × 16 0.2 × 16
S = 7 014 × 1 D14 5 × 17 0.2 × 17
S = 8 016 × 1 D16 5 × 18 0.2 × 18
S = 9 018 × 1 D18 5 × 19 0.2 × 19
S = 10 020 × 1 D20 5 × 110 0.2 × 110
S = 11 022 × 1 D22 5 × 111 0.2 × 111
S = 12 024 × 1 D24 5 × 112 0.2 × 112
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Table 13 Estimated DIC, standard deviations, ranking, computation time (in minutes) and the monodromy
(Monod.) estimates for the candidate PAR-SVs (1 ≤ S ≤ 12) models. Results concerning the selected model
are displayed in bold

PAR-SV1 PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV6

DIC −2685.1845 −2685.5848 −2682.9659 −2679.9444 −2684.1986 −2684.4897

(Std) (1.2577) (1.8528) (2.2164) (2.0055) (1.8917) (0.9922)

Rank 6 4 11 12 9 7

Time 41.9776 42.6814 42.5118 43.0081 42.7517 44.1573

Monod. 0.6259 0.7249 0.7593 0.6124 0.6255 0.5969

PAR-SV7 PAR-SV8 PAR-SV9 PAR-SV10 PAR-SV11 PAR-SV12

DIC −2685.6729 −2684.4211 −2685.5062 −2684.03953 −2685.9018 −2686.6698

(Std) (2.0248) (1.9524) (2.0473) (2.1246) (1.6524) (1.2684)

Rank 3 8 5 10 2 1

Time 43.3544 43.9715 43.2856 43.5522 44.3780 44.9834

Monod. 0.5726 0.5399 0.5335 0.5099 0.4973 0.4771

Table 14 BGG parameter estimates for the selected PAR-SV12 model

θ Post. MC NSE RNI θ Post. MC NSE RNI
mean Std mean Std

Jan. α1 −0.6197 0.1264 0.0058 0.0727 Jul. α7 −0.3703 0.0738 0.0103 0.2141

β1 0.8845 0.0367 0.0007 0.0399 β7 0.9364 0.0418 0.0020 0.2514

σ 2
1 0.2287 0.0442 0.0033 0.6241 σ 2

7 0.2485 0.0644 0.0049 0.6491

Feb. α2 −1.2150 0.1071 0.0123 0.3904 Aug. α8 −0.3928 0.0980 0.0191 0.8508

β2 0.7989 0.0330 0.0019 0.3815 β8 0.9237 0.0386 0.0030 0.6539

σ 2
2 0.2364 0.0531 0.0016 0.1063 σ 2

8 0.2829 0.0631 0.0032 0.2822

Mar. α3 0.4881 0.1057 0.0079 0.1253 Sep. α9 −0.4057 0.0860 0.0196 0.8343

β3 1.0821 0.0413 0.0011 0.0799 β9 0.9250 0.0379 0.0039 1.1715

σ 2
3 0.3095 0.0796 0.0065 0.7369 σ 2

9 0.2443 0.0508 0.0021 0.1871

Apr. α4 0.3656 0.0719 0.0093 0.2148 Oct. α10 −0.3348 0.1953 0.0135 0.5348

β4 1.0500 0.0373 0.0022 0.3884 β10 0.9400 0.0347 0.0034 1.0388

σ 2
4 0.2841 0.0778 0.0064 0.7499 σ 2

10 0.3017 0.0736 0.0063 0.8232

May α5 −0.2547 0.0863 0.0173 0.6454 Nov. α11 −0.4065 0.0937 0.0081 0.1240

β5 0.9572 0.0381 0.0034 0.8705 β11 0.9259 0.0422 0.0024 0.3609

σ 2
5 0.2552 0.0596 0.0077 1.8386 σ 2

11 0.2768 0.0676 0.0054 0.7129

Jun. α6 −0.3875 0.0977 0.0305 1.8303 Dec. α12 −0.4025 0.0835 0.0182 0.7401

β6 0.9352 0.0408 0.0054 1.9583 β12 0.9351 0.0403 0.0013 0.1194

σ 2
6 0.2665 0.0504 0.0019 0.1541 σ 2

12 0.2581 0.0520 0.0046 0.8719

The volatility generated by the GARCH(1, 1)model, which is used to initialize the volatil-
ity in the Gibbs sampler across estimated PAR-SVS models, is given by

hGt = 0.0001
(0.00002)

+ 0.1058
(0.0245)

ε2t−1 + 0.8502
(0.0271)

hGt−1,
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Fig. 10 Prior (dashed line) and posterior (solid line) distributions of parameters in the PAR-SV12 model

with standard errors of estimates in parentheses. The estimated DIC’s for PAR-SVs models,
their computation times (in minutes), their numerical standard errors and the corresponding
monodromy parameters are reported in Table 10. The standard errors of DIC are calculated
using 500 replications of the BGG procedure.

According to the DIC, the best model is the 12-periodic PAR-SV12 with value
−2686.6698. However, the DIC’s in Table 13 are very close to each other, so in view of
their standard errors, it is difficult to discriminate between the corresponding models. On
the other hand, as in the quarterly return case, the monodromy estimates are around half a
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Fig. 10 continued

unity while the computation times are close to each other. The specification of the selected
PAR-SV12 model is given in Table 14.

From Table 14 and Fig. 10, it may be concluded that the estimates are relatively good in
spite of the small sample size compared to the large number of parameters to estimate. The
MCMC Std, the RNI and the NSE are fairly low while the posterior distributions are quite
concentrated. Moreover, the parameters seem different from a month to another, especially
for the αv and βv . Finally, from Fig. 11, the volatilities induced by the GARCH(1, 1) (upper
panel) and the 12-periodic PAR-SV12 (lower panel) have a similar behavior in both shape
and magnitude.

6 Conclusion

In this paper we have proposed a stochastic volatility model whose log-volatility follows a
periodic autoregression. This model may be seen as a flexible complementary to the peri-
odic GARCH process because it overcomes the limitation that the volatility is only driven
by the past of the process. Moreover, the periodic time-variation of the parameters allows
a more flexible periodic volatility modelling compared to the time-invariant seasonal SV or
deterministic periodic SV. As we have seen, statistical inference for this model may be easily
done using the Bayesian MCMC approach without additional computational cost compared
to the standard SV case. While the PAR-SVs model allows modelling some financial features
such as periodicity in volatility, volatility clustering and excess kurtosis, it seems incapable
of representing other observed facts. In particular, excess kurtosis implied by the PAR-SVs
model (2.1) is only of a given order of magnitude and is generally smaller than the kurtosis
generated by PAR-SVswith heavy tail innovation η1, like the Student distribution. So, various
interesting generalizations of the proposed PAR-SVs model to account for additional fea-
tures like large excess kurtosis, leverage effect, change in volatility regime and simultaneous
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Fig. 11 Volatilities induced by the GARCH(1, 1) and PAR-SV12

volatility dependence are needed and may constitute future research. In particular, PAR-SVs
with heavy tailed innovations like a student or mixture Gaussian distribution,Markov switch-
ing PAR-SVs, PAR-SVs models with correlated error terms, and multivariate versions of the
PAR-SVs are appealing. Finally, a multi-move MCMC approach for estimating PAR-SVs
models would be of great interest.
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