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Abstract As a model for an on-line classification setting we consider a stochastic
process (X−n, Y−n)n , the present time-point being denoted by 0, with observables
. . . , X−n, X−n+1, . . . , X−1, X0 fromwhich the pattern Y0 is to be inferred. So in this classifi-
cation setting, in addition to the present observation X0 a number l of preceding observations
may be used for classification, thus taking a possible dependence structure into account as
it occurs e.g. in an ongoing classification of handwritten characters. We treat the question
how the performance of classifiers is improved by using such additional information. For
our analysis, a hidden Markov model is used. Letting Rl denote the minimal risk of mis-
classification using l preceding observations we show that the difference supk |Rl − Rl+k |
decreases exponentially fast as l increases. This suggests that a small l might already lead
to a noticeable improvement. To follow this point we look at the use of past observations
for kernel classification rules. Our practical findings in simulated hidden Markov models
and in the classification of handwritten characters indicate that using l = 1, i.e. just the last
preceding observation in addition to X0, can lead to a substantial reduction of the risk of mis-
classification. So, in the presence of stochastic dependencies, we advocate to use X−1, X0

for finding the pattern Y0 instead of only X0 as one would in the independent situation.
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1 Introduction

In pattern recognition, the following basic situation is considered: A random variable (X, Y )

consists of an observed pattern X ∈ X , typically X = R
d , from which we want to infer

the unobservable class Y which belongs to a given finite set M of classes. Consider the case
that the distribution P(X,Y ) is known. Then the classification rule which chooses the class
having maximum a posteriori probability given the observed pattern x has minimal risk of
misclassification. This optimal rule is given by

x �→ argmax
y

P
(
Y = y|X = x

)

where argmax takes, in a measurable way, some value y∗ with P(Y = y∗|X = x) =
maxy P(Y = y|X = x). The minimal risk of misclassification, often termed the Bayes risk,
is given by

R =
∫

min
y

P
(
Y �= y|X = x

)
PX (dx).

Even though in many problems of pattern recognition the distribution of P(X,Y ) will not
be known, the Bayes risk is a quantity of major importance as it provides the benchmark
behaviour against which any other procedure is judged.

Let us briefly recall the i.i.d. model of supervised learning which has provided a main
direction of research, see, e.g., the monograph (Devroye et al. 1996). There, in addition
to (X, Y ), we have a learning sequence (X ′

1, Y
′
1), (X

′
2, Y

′
2), . . . , (X

′
n, Y

′
n) of independent

copies of (X, Y ), i.e. having the same distribution. This sequence is sampled independently
of (X, Y ) and is used for learning proposes, in a statistical sense for the estimation of unknown
distributions to construct the classification procedure.

In this paper we take a different approach which is motivated by an on-line classification
settingwhichwemodel in the followingway:There is given a stochastic process (X−n, Y−n)n ,
the present time-point being denoted by 0, with observables in temporal order

. . . , X−n, X−n+1, . . . , X−1, X0

from which the pattern Y0 is to be inferred. The time parameter n belongs to some set
of the form {0, 1, . . . ,m} or, for mathematical purposes, to N0 = {0, 1, . . .}. So in this
classification setting, previous observations may be used to classify the present observation.
If (X0, Y0) is independent of the past (X−n, Y−n)n≥1 then clearly previous observations carry
no information on Y0 and our optimal classification would be given by argmaxy P(Y0 =
y|X0 = x0).

But in a variety of classification problems we encounter dependence. Looking e.g. at the
on-line classification of handwritten characters the dependence structure in natural language
could be taken into account. In this situation, X0 would be the current handwritten character
to be classified, Y0 the unknown true character, the foregoing handwritten character would
be X−1 and the unknown true character Y−1, and in general X−n would be the n-th one
preceding X0 with unknown Yn . So, there is a well-known dependence between the Yn’s,
described by linguists using Markov models (see e.g., Institute for Defense Analyses 1980
for early discussions), and this dependence is of course inherited by the Xn’s. A popular
model for this situation is given by a hidden Markov model, which we shall also use in this
paper.
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Coming back to the general model, we prescribe to use the present and in addition the last
l preceding observables. Then a classification rule with memory l takes the form

(x0, x−1, . . . , x−l) �→ δ(x0, x−1, . . . , x−l)

for some measurable δ : X l+1 → M . The optimal rule is given by

(x0, x−1, . . . , x−l) �→ argmax
y

P(Y0 = y|X0 = x0, X−1 = x−1, . . . , X−l = x−l)

with Bayes risk

Rl =
∫

min
y

P(Y0 �= y|X0, X−1, . . . , X−l)dP.

Obviously

R0 ≥ R1 ≥ · · · ≥ Rl ≥ · · ·
Assume that we have such a process (X−n, Y−n)n∈N0 with full past for our mathematical
model. By martingale convergence it follows that for l → ∞

Rl → R∗ =
∫

min
y

P(Y0 �= y|(X−n)n∈N0)dP.

Here it is important to point out that this paper centers around the behaviour of the optimal
classification procedure in dependence on l, the number of past observations used. This differs
markedly from one of the main lines of research in the i.i.d. model of supervised learning
where the focus is on the behaviour of classification procedures in dependence on n, the size
of the training sequence.

To investigate the behaviour of procedures which incorporate preceding information into
classification rules we will use the setting of hidden Markov models. This class of models
has been of considerable interest in the theory and applications of pattern recognition, see
the monographs byMacDonald and Zucchini (1997) and by Huang et al. (1990) from a more
practical viewpoint. It provides a class which allows good modelling for various problems
with dependence and still may be handled well from the analytical, the algorithmic, and the
statistical point of view, see the monograph by Cappé et al. (2005). The applications range
from biology to speech recognition to finance; the above monographs contain a wealth of
such examples.

A theoretical contribution to pattern recognition for such models was given by Holst
and Irle (2001) where the asymptotic risk of misclassification for nearest neighbor rules in
dependentmodels including hiddenMarkovmodelswas derived. Similarmodelswere treated
in Ryabko (2006) to obtain consistency for certain classes of procedures, i.e. convergence
of the risk of misclassification to the Bayes risk. As consistency for classification follows
from consistency in the corresponding regression problem, see e.g. (Devroye et al. 1996,
6.7), any result on regression consistency yields a result on classification consistency, and
a wealth of such results is available, e.g. under mixing conditions. All these results invoke
the convergence of the size n of a training sequence to infinity and do not cover the topic of
this paper. Closer to our paper is the problem of predicting Y0 from (X0, Y−1, . . . , Y−l) for
stationary and ergodic time series, see e.g. (Györfi et al. 2002, Chap. 27). Our treatment differs
as we do not have knowledge (just guesses of) (Y−1, . . . , Y−l) in on-line pattern recognition,
only that of (X0, X−1, . . . , X−l).

The hidden Markov model as it will be used in this paper takes the following
form. We assume that for each m we have, written in their temporal order, observables
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X−m, X−m+1, . . . , X−1, X0 and unobservables Y−m, Y−m+1, . . . , Y−1, Y0. The unobserv-
ables form a Markov chain. The observables are conditionally independent given the
unobservables in the form of

P
(
X0 ∈ B0, . . . , X−m ∈ B−m |Y0 = y0, . . . , Y−m = y−m

) = Q(B0, y0) . . . Q(B−m, y−m)

for some stochastic kernel Q and are not Markovian in general. This stochastic kernel and
the transition matrix of the chain are assumed to be the same for eachm. But we allow for the
flexibility that, for each m, a different initial distribution, i.e. distribution of Y−m may occur.
Note that m stands for the time point in the past where our model would be started and the
distribution of Y−m would not be known.

For being completely precise we would have to use the notation Y (m)
−m , . . . , Y (m)

0

since, due to our flexibility in initial distribution, the distribution of Y (m)
−m , . . . , Y (m)

0 and

Y (m+1)
−m , . . . , Y (m+1)

0 need not coincide. Hence also Rl ≥ Rl+1 does not hold in general
where Rl is computed in a model started at some time −m,m ≥ l, and Rl+1 in a model with
a possibly different initial distribution. But all our bounds will only involve the transition
matrix and the stochastic kernel which do not depend on the index m. So we shall omit this
upper index in order not to overburden our notations.

We assume that the transitionmatrix of the chain is such that there exists a unique stationary
probability distribution π , characterized by the property that if Y−m has the distribution π

then all later Y−m+k, k ≥ 0, have the same distribution π . For our chain with full past
(X−n, Y−n)n∈N0 we consider the stationary setting where each Y−n has the same distribution
π . Then of course R∗

l ≥ R∗
l+1 and liml R∗

l = R∗ denoting the risk in the stationary case with
an additional ∗.

Without loss of generality we let the probability measures Q(·, y) be given by densities
fy with respect to some σ -finite measure μ on X . So we have for all n

P
(
X−n ∈ B|Y−n = y

) =
∫

B
fy(x)μ(dx).

This provides a unified treatment for the case of discrete X where μ might be the counting
measure, and for the case of Lebesgue densitieswhereX = R

d andμmight be d-dimensional
Lebesgue measure.

In Sect. 2 we shall show under a suitable assumption that liml Rl exists and is independent
of the particular sequence of initial distributions, hence liml Rl = R∗. Furthermore this
convergence is exponentially fast and we provide a bound for supk |Rl −Rl+k | in this respect.
Let us remark that, as we are looking backwards in time, the usual geometric ergodicity
forward in time does not seem to yield an immediate proof. In Sect. 3 we introduce kernel
classification rules with memory and discuss their theoretical and practical performance. Our
findings indicate that it might be useful to include a small number l of preceding observations,
starting with l = 1, to increase the performance of classification rules with an acceptable
increase in computational complexity. Various technical proofs are given in Sect. 4.

2 Exponential convergence

We consider a hidden Markov model as described in the Introduction. For this model we
make the following assumption:

(A) All entries pi j , i, j ∈ M , in the transition matrix are > 0. All densities are > 0 on X .
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(A)will be assumed to hold throughout Sects. 2 and 4. It implies the finiteness of the following
quantities which will be used in our bounds.

Remark 2.1 Set

α = max
ι,κ,i, j∈M

pi ι pιj

piκ pκ j
, α(x) = max

ι,κ,i, j∈M
pi ι pιj fι(x)

piκ pκ j fκ (x)
for x ∈ X .

Then 1 ≤ α, α(x) < ∞.
Furthermore, with |M | denoting the number of classes, let

η = (
1 + (|M | − 1)α

)−1
, η(x) = (

1 + (|M | − 1)α(x)
)−1 for x ∈ X .

Then 0 < η, η(x) ≤ 1/2.

The following result provides the main technical tool. Its proof will be given in Sect. 4.
We use the notation x0−n for (x0, . . . , x−n) and in the same manner we use X0−n .

Theorem 2.2 Let l, n ∈ N. Consider a hiddenMarkov model which starts in some time point
−m < min{−l,−n}. Let A ⊆ M and fix x0, . . . , x−n ∈ X . Set

m+
l = max

i∈M P(Y0 ∈ A|X0−n = x0−n, Y−l = i), l ∈ N

and

m−
l = min

i∈M P(Y0 ∈ A|X0−n = x0−n, Y−l = i), l ∈ N .

Then for all l ∈ N

m+
l − m−

l ≤
0∏

j=−l+1

(1 − 2η̂ j ),

where η̂ j = η(x j ) for j ∈ {−n, . . . , 0} and η̂ j = η for j /∈ {−n, . . . , 0}.
In the following corollary the probabilities P

(
Y0 ∈ A|X0−l = x0−l

)
and P

(
Y0 ∈

A|X0−l−k = x0−l−k

)
are treated. The first will pertain to a hidden Markov model which

starts in some time point < −l, the second to one which starts in some time point < −l − k.
Note that terms of the form P(Y0 ∈ A|X0−l = x0−l , Y−l−1 = i) are identical in both models
due to the identical transition matrix and the identical kernel Q.

Corollary 2.3 Let l, k ∈ N, A ⊆ M and x0, x−1, . . . , x−l−k ∈ X . Then

∣∣P(Y0 ∈ A|X0−l = x0−l) − P(Y0 ∈ A|X0−l−k = x0−l−k)
∣∣ ≤

0∏

j=−l

(
1 − 2η(x j )

)
.

Proof We obtain
∣∣P

(
Y0 ∈ A|X0−l = x0−l

) − P
(
Y0 ∈ A|X0−l−k = x0−l−k

)∣∣

=
∣∣∣∣
∑

ι∈M
P

(
Y0 ∈ A|X0−l = x0−l , Y−l−1 = ι

)
P

(
Y−l−1 = ι|X0−l = x0−l

)

−
∑

κ∈M
P

(
Y0 ∈ A|X0−l−k = x0−l−k, Y−l−1 = κ

)
P

(
Y−l−1 = κ|X0−l−k = x0−l−k

)
∣∣∣∣
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=
∣
∣
∣
∣
∑

ι∈M
P

(
Y0 ∈ A|X0−l = x0−l , Y−l−1 = ι

)
P

(
Y−l−1 = ι|X0−l = x0−l

)

−
∑

κ∈M
P

(
Y0 ∈ A|X0−l = x0−l , Y−l−1 = κ

)
P

(
Y−l−1 = κ|X0−l−k = x0−l−k

)
∣
∣
∣
∣

≤ max
i∈M P

(
Y0 ∈ A|X0−l = x0−l , Y−l−1 = i

)

−min
i∈M P

(
Y0 ∈ A|X0−l = x0−l , Y−l−1 = i

)

= m+
l+1 − m−

l+1 ≤
0∏

j=−l

(
1 − 2η(x j )

)
.

using Theorem 2.2. �
We now introduce the constants used for the exponential bound.

Remark 2.4 (i) Set

β = min
k∈M

∫
1

1 + (|M | − 1
)
α(x)

fk(x)μ(dx) and γ = 1 − 2β .

Then

0 < β ≤ 1

2
and 0 ≤ γ < 1.

For all k ∈ M
∫ (

1 − 2η(x)
)
fk(x)μ(dx) ≤ γ.

(ii) For the following result we need additional constants which arise from basic Markov
process theory. A transition matrix Q is called uniformly ergodic if there exists a unique
stationary probability distribution π and there exist constants a > 0, 0 < b < 1, such
that for any Markov chain (Yn)n≥t with transition matrix Q and any initial distribution
at time t

‖PYt+k − π‖ ≤ a · bk, k ∈ N,

in total variation norm ‖ · ‖. With the same meaning, also the process (Yn)n≥t is called
uniformly ergodic. Assumption (A) above implies uniform ergodicity, so that we have
for each Markov chain constants a, b as above, see (Meyn and Tweedie 2012, Chap. 16)
for a general treatment.

Theorem 2.5 There exist constants a > 0, 0 < b, γ < 1 such that for all l, k ∈ N

|Rl − Rl+k | ≤ γ l+1 ,

if Rl and Rl+k come from the same model started at some time point < −l − k,

|Rl − Rl+k | ≤ 2(γ l/2 + abl/2) ,

in the general case that Rl and Rl+k come from possibly different models, the first started in
some time point < −l, the second in some time point < −l − k.
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Proof The constants a, b, γ will be those introduced in Remark 2.4.
Let us firstly consider the case that Rl and Rl+k stem from the same model. Using the

generic symbol f to denote densities in this model we write the joint density as f (x0−l−k)

and the joint conditional density as fy0−l−k
(x0−l−k). With this notation we have

f (x0−l−k)=
∑

y0−l−k

P(Y 0−l−k = y0−l−k) fy0−l−k
(x0−l−k) and fy0−l−k

(x0−l−k)=
0∏

j=−l−k

fy j (x j ),

furthermore

Rl =
∫

X l+k+1
min
i∈M P

(
Y0 �= i |X0−l = x0−l

)
f (x0−l−k)μ

l+k+1(dx0−l−k),

Rl+k = −
∫

X l+k+1
min
i∈M P

(
Y0 �= i |X0−l−k = x0−l−k

)
f (x0−l−k)μ

l+k+1(dx0−l−k).

We obtain from Corollary 2.3 and conditional independence

|Rl − Rl+k |
≤

∫

X l+k+1
max
i∈M

∣∣P(Y0 �= i |X0−l = x0−l) − P
(
Y0 �= i |X0−l−k = x0−l−k

)∣∣

f (x0−l−k)μ
l+k+1(dx0−l−k)

≤
∫

X l+1

0∏

j=−l

(
1 − 2η(x j )

)
f (x0−l)μ

l+1(dx0−l)

=
∑

y0−l

⎡

⎣P
(
Y 0−l = y0−l

) ∫

X l+1

0∏

j=−l

(
1 − 2η(x j )

)
fy0−l

(x0−l)μ
l+1(dx0−l)

⎤

⎦

=
∑

y0−l

⎡

⎣P
(
Y 0−l = y0−l

) 0∏

j=−l

∫

X

(
1 − 2η(x j )

)
fy j (x j )μ(dx j )

⎤

⎦

≤
∑

y0−l

P
(
Y 0−l = y0−l

)
γ l+1 = γ l+1 .

Let us now look at the general case with models 1 and 2, Rl = R1
l stemming from model 1,

Rl+k = R2
l+k from model 2 respectively. Then
∣∣R1

l − R2
l+k

∣∣ ≤ ∣∣R1
l − R1�l/2�

∣∣ + ∣∣R1�l/2� − R2�l/2�
∣∣ + ∣∣R2�l/2� − R2

l+k

∣∣.

From the first part of the assertion
∣∣R1

l − R1�l/2�
∣∣ + ∣∣R2�l/2� − R2

l+k

∣∣ ≤ 2γ l/2.

To treat R1�l/2� and R2�l/2� we note that the conditional Bayes risks for time lag �l/2� given
Y−�l/2� are the same in both models hence the unconditional risks differ by at most the total
variation distance between the two distributions of Y�l/2� in the two models. This quantity is
≤ 2abl/2 since both models have been running for at least l − �l/2� time points, hence

∣∣R1�l/2� − R2�l/2�
∣∣ ≤ 2abl/2.

�
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From this we easily obtain our main result.

Theorem 2.6 There exist constants a > 0, 0 < b, γ < 1 such that for all l ∈ N

|R∗ − Rl | ≤ 2(γ l/2 + abl/2) ,

in particular for l → ∞
Rl → R∗ .

Proof As in Theorem 2.5, the constants a, b, γ are those of Remark 2.4. Recall that R∗
l is

the Bayes risk in the stationary case. As already stated earlier, liml R∗
l = R∗ by martingale

convergence. Theorem 2.5 shows

|Rl − R∗
l+k | ≤ 2(γ l/2 + abl/2)

for all k, proving the assertion. �

3 Kernel classification with memory

Optimal classification procedures provide benchmarks for the actual behaviour of data driven
classification procedures which do not require knowledge of the underlying distribution. A
general principle from statistical classification involves the availability of a training sequence
(x ′

1, y
′
1, . . . , x

′
n, y

′
n) where the x ′

i have been recorded together with the y′
i . This training

sequence is used for the construction of a regression estimator

p̂(y|x; x ′
1, y

′
1, . . . , x

′
n, y

′
n) for P(Y = y|X = x)

which leads to the classification rule

x �→ argmax
y

p̂
(
y|x; x ′

1, y
′
1, . . . , x

′
n, y

′
n

)
.

When we choose a kernel

K : X → [0,∞)

and use the common kernel regression estimate we arrive at the kernel classification rule

x �→ argmax
y

n∑

i=1

K

(
x − x ′

i

h

)
1{y′

i=y}.

The asymptotic behaviour, as the size of the training sequence tends to infinity, has been
thoroughly investigated for such classification rules and in particular for kernel classification
rules. In the i.i.d. case or more generally under suitable mixing conditions, such procedures
are risk consistent in the following sense: Kernel classification rules asymptotically achieve
theminimal risk of misclassification forX = R

d if the size n of the training sequence tends to
∞ and h = h(n) satisfies h(n) → 0 and nh(n)d → ∞. As remarked in the Introduction, this
type of consistency follows from the consistency of the corresponding regression estimator,
hence any result on regression consistency translates into a result on risk consistency.

It is the aim of this section to discuss the applicability of kernel classification withmemory
in hiddenMarkovmodels. Assume that the training sequence X ′

1, Y
′
1, . . . , X

′
n, Y

′
n is generated

according to a hidden Markov model and that there is a sequence of observations

. . . , X−l , X−l−1, . . . , X0 to be classified
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which stems from the stationary hiddenMarkovmodelwith the same transitionmatrix and the
same kernel and is stochastically independent of the training sequence. For the classification
of X0 = x0 the usual kernel classification rule as described above would classify x0 as
belonging to the class

argmax
y

n∑

i=1

K

(
x0 − X ′

i

h

)
1{Y ′

i =y}.

This ignores the Markovian structure, so we want to use memory as in the optimal classi-
fication of the preceding Sect. 2. We propose the following procedure. Fix some memory
l = 1, 2, . . . prescribing the number of preceding observations used in the classification of
the current one. Use a kernel

K : X l+1 → [0,∞)

and, assuming a training sequence of size n + l, classify observation x0 as originating from
the class

argmax
y

n∑

i=1

K

(
1

h

(
(x−l , . . . , x0) − (X ′

i , . . . , X
′
i+l)

))
1{Y ′

i+l=y}.

Compared to rules without memory the role of x0 is taken by (x−l , . . . , x0) whereas the role
of (X ′

i , Y
′
i ) is taken by (X ′

i , Y
′
i , . . . , X

′
i+l , Y

′
i+l).

The approach we propose here leads to a risk consistent procedure for hidden Markov
models, i.e. the risk converges to the corresponding Bayes risk when, for fixed l, the size of
the training sample n tends to ∞. The proof of this risk consistency adapts the methods of
proof for the i.i.d. case to the Markov model we have here. We present the basic facts here
and refer to Irle (1997) for a detailed treatment; see also (Györfi et al. 1989, Chap. 13).

The kernel K has to satisfy that for any y

E1{Y=y}K
( 1
k [(x−l , . . . , x0) − (X−l , . . . , X0)]

)

EK
( 1
k [(x−l , . . . , x0) − (X−l , . . . , X0)]

) → P
(
Y = y|X−l = x−l , . . . , X0 = x0

)

for a.a. (x−l , . . . , x0) as k → 0. Any kernel K such that K ≥ 0, K is bounded with bounded
support, and there exist t0, c > 0 such that K (z) ≥ c for ‖z‖ ≤ t0, fulfills the above condition,
see, e.g., (Devroye et al. 1996, 10.1). We call such a kernel regular.

Next note that we consider a uniformly ergodic transition matrix for our Markov chain.
Looking at the hidden Markov model forward in time, the process (X ′

n, Y
′
n)n∈N forms a

Markov chain with state space X × M in discrete time. The stationary distribution for this
process is given by

π ′(A × B) =
∑

y∈B
Q(A, y)π

({y}).

It follows immediately that this process is again uniformly ergodic such that for a > 0, 0 <

b < 1, the constants for the Y -process, it holds that for all n

∥∥P(X ′
n ,Y

′
n) − π ′∥∥ ≤ a · bn

since
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∣
∣P(X ′

n ,Y
′
n)(A × B) − π ′(A × B)| = |

∑

y∈B
Q(A, y)

(
P(Y ′

n = y) − π({y}))∣∣

≤ ∣
∣P(Y ′

n ∈ B) − π(B)
∣
∣ ≤ a · bn .

In exactly the samemanner, the process (Zn)n∈N = (X ′
n, Y

′
n, . . . , X

′
n+l , Y

′
n+l) is aMarkov

chain with state space Z = (X × M)l+1 and stationary probability distribution π(l) given by

π(l)
( l+1∏

i=1

(Ai × Bi )

)
=

∑

y1∈B1,...,yl+1∈Bl+1

(
l+1∏

i=1

Q(Ai , yi )

)

π({y1})py1,y2 . . . pyl ,yl+1 ,

the p’s denoting the transition probabilities for the original chain. It is easily seen that this
process is again uniformly ergodic where, with the same constants a, b, we have for all n

∥
∥PZn − π(l)

∥
∥ ≤ a · bn .

Finally we note that any uniformly ergodic process is geometrically mixing in the sense
that there exist α > 0, 0 < β < 1 such that for all n

∣
∣E f (Zi+n)g(Zn) − E f (Zi+n)Eg(Zn)

∣
∣ ≤ αβ i

for any measurable f, g : Z → R, | f |, |g| ≤ 1, and any initial distribution, see (Meyn and
Tweedie 2012, Theorem 16.1.5).

Using the foregoing notations we can obtain the following result.

Theorem 3.1 Let K be regular and let h(n) > 0, n = 1, 2, . . . be such that h(n) → 0 and
nh(n)d(l+1) → ∞. Denote the risk of the kernel classification rule by L(l)

n . Then as n → ∞
L(l)
n → R∗

l .

Proof The proof is based on the observation that classification is easier than regression
function estimation, see (Devroye et al. 1996, 6.7). To adapt this to our setting fix y ∈ M .
Let for (x−l , ...., x0) ∈ X l+1

p̂n(x−l , ...., x0) =
∑n

i=1 K
( 1
h(n)

((x−l , . . . , x0) − (X ′
i , . . . , X

′
i+l))

)
1{Y ′

i+l=y}
∑n

i=1 K
( 1
h(n)

((x−l , . . . , x0) − (X ′
i , . . . , X

′
i+l))

) .

This is the kernel regression function estimator of size n for

p(x−l , . . . , x0) = P(Y0 = y|(X−l , . . . , X0) = (x−l , . . . , x0)),

with corresponding kernel classification rule

argmax
y

n∑

i=1

K

(
1

h(n)

(
(x−l , . . . , x0) − (X ′

i , . . . , X
′
i+l)

))
1{Y ′

i+l=y}.

Now to show L(l)
n → R∗

l it is enough to show that as n → ∞
p̂n(x−l , . . . , x0) → p(x−l , . . . , x0) (1)

in probability for almost all (x−l , . . . , x0), see (Devroye et al. 1996, Theorem 6.5). For this
we may apply (Irle 1997, Theorem 1) and the application to kernel regression estimators in
ibid, part 3, in particular the representation for p̂n , p.138. We than use uniform ergodicity,
geometric mixing, regularity of the kernel, together with nh(n)d(l+1) → ∞ to infer that the
conditions to apply (Irle 1997, Theorem 1 (i)) are fulfilled. This then shows the assertion.

�
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Remark 3.2 (i) Themore complicated result of almost sure convergence p̂n(x−l , . . . , x0) →
p(x−l , . . . , x0) in (1) needs additional conditions; see (Irle 1997, Corollary 4), (Györfi
et al. 1989, Chap. 13). But here, we only need convergence in probability.

(ii) This method of using past information to construct a classification procedure seems
generally applicable. We simply have to replace x0 by (x−l , . . . , x0) and the learning
sequence (X ′

n, Y
′
n)n by (X ′

n, Y
′
n, . . . , X

′
n+l , Y

′
n+l)n . E.g. for a nearest neighbor classi-

fication we would look for the nearest neighbor among the (X ′
n, Y

′
n, . . . , X

′
n+l , Y

′
n+l)

and use the resulting Y ′
n+l for classification. To show consistency, we can proceed in

the same way as for kernel classification using the nearest neighbor regression estimate,
compare (Irle 1997, Part 4).

So asymptotically as n tends to infinity, the kernel classification rule performs as the
optimal rule of Sect. 2 and may be used as a typical nonparametric rule to test the usefulness
of invoking preceding information.

From a practical point of view we now comment on the performance in simulations
and in recognition problems for isolated handwritten letters which points to a saving in
misclassifications.

3.1 Performance studies

In the following we report on some typical results in our studies of the actual behaviour of the
kernel classification rule as proposed in this paper. As a general experience we point out that
memory l > 1 did not lead to significant improvement over l = 1 so that we only compare
the cases l = 0, l = 1.

(i) In simulations 1 and 2 we choose . . . Y−1, Y0, Y1, . . . as aMarkov chain with four states
and transition probabilities

⎡

⎢⎢
⎣

0 0 1 0
0 0 0 1
0.3 0.7 0 0
0.7 0.3 0 0

⎤

⎥⎥
⎦

with stationary distribution (0.25, 0.25, 0.25, 0.25).
In simulation 3 we choose Y1, Y2, . . . i.i.d. following the stationary distribution. The Xi ’s

have a three-dimensional normal distribution with identical covariance matrix and mean
vectors

(0, 0, 0) in simulations 1,2,3 for class 1 ,

(4, 0, 0) in simulations 1,2,3 for class 2 ,

(3.9, 3.9, 0) in simulation 1, (4,4,0) in simulations 2,3 for class 3,
(0, 3.9, 0) in simulation 1, (3.8,3.8,0) in simulations 2,3 for class 4.

So there is good distinction between all classes in simulation 1 with easy classification, there
is poor distinction between classes 3 and 4 in simulations 2 and 3. The following table gives
the error rate for classification with size n of the training sequence in the first row. A normal
kernel is used.

123



332 Stat Inference Stoch Process (2016) 19:321–336

Sim l 100 300 500
1 0 0.03 0.03 0.03

1 0.01 0.03 0.02
2 0 0.21 0.19 0.21

1 0.05 0.05 0.04
3 0 0.30 0.28 0.31

1 0.34 0.33 0.30

This shows that use of the Markov structure in simulation 2 through l = 1 leads to the
possibility of distinguishing between classes 3 and 4. In the i.i.d. case of simulation 3 an
appeal to memory of course does not help.

(ii) The classification of handwritten isolated capital letters was performed using kernel
methods. Features were obtained by transforming handwritten letters into 16×16 grey-value
matrices. The learning sequence was obtained by merging samples from seven different per-
sons.

The following typical error rates resulted from the classification of the word SAITE
(german for ’string’) where error rates are writer dependent. A normal kernel was used with
h = 1.0 and h = 0.25.

Writer l 1.0 0.25
1 0 0.261 0.083

1 0.012 0.007
2 0 0.334 0.115

1 0.025 0.022
3 0 0.166 0.075

1 0.030 0.024

Use of the Markov structure through l = 1 seems to lead to improved performance. Of
course, the incorporation of memory can be applied to any procedure of pattern recognition.
In particular we have also looked into nearest neighbor rules with memory l. Our findings
have been similar to those for the kernel rule as discussed above and also advocate the use
of memory l = 1.

4 Proofs for Section 2

Lemma 4.1 Let l ∈ N0. Consider a hidden Markov model which starts in some time point
−m < −l and let T ⊆ {−m,−m + 1, . . . , 0}.

For any xt ∈ X , t ∈ T, and i, ι, κ ∈ M we have

(i) for −l ∈ T

P(Y−l = ι|Y−l−1 = i, Xt = xt , t ∈ T )

P(Y−l = κ|Y−l−1 = i, Xt = xt , t ∈ T )
≤ α(x−l) ,

(ii) for −l /∈ T

P(Y−l = ι|Y−l−1 = i, Xt = xt : t ∈ T )

P(Y−l = κ|Y−l−1 = i, Xt = xt , t ∈ T )
≤ α .
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Proof We shall use the symbol f in a generic way to denote joint and conditional joint
densities; also we use T≥s = {t ∈ T : t ≥ s}. From the properties of a hidden Markov model
we obtain

P(Y−l = ι|Y−l−1 = i, Xt = xt , t ∈ T )

P(Y−l = κ|Y−l−1 = i, Xt = xt , t ∈ T )

= P(Y−l = ι|Y−l−1 = i, Xt = xt , t ∈ T≥−l)

P(Y−l = κ|Y−l−1 = i, Xt = xt , t ∈ T≥−l)

= P(Y−l−1 = i, Y−l = ι|Xt = xt , t ∈ T≥−l)

P(Y−l−1 = i, Y−l = κ|Xt = xt , t ∈ T≥−l)

=
∑

j P(Y−l−1 = i, Y−l = ι, Y−l+1 = j |Xt = xt , t ∈ T≥−l)
∑

j P(Y−l−1 = i, Y−l = κ, Y−l+1 = j |Xt = xt , t ∈ T≥−l)

=
∑

j P(Y−l−1 = i, Y−l = ι, Y−l+1 = j) f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = ι, Y−l+1 = j)
∑

j P(Y−l−1 = i, Y−l = κ, Y−l+1 = j) f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = κ, Y−l+1 = j)

=
∑

j P(Y−l−1 = i) pi ι pιj f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = ι, Y−l+1 = j)
∑

j P(Y−l−1 = i) piκ pκ j f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = κ, Y−l+1 = j)

= pi ι
∑

j pιj f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = ι, Y−l+1 = j)

piκ
∑

j pκ j f (xt , t ∈ T≥−l |Y−l−1 = i, Y−l = κ, Y−l+1 = j)

= pi ι
∑

j pιj fι(x−l) f j (x−l+1) f (xt , t ∈ T≥−l+2|Y−l+1 = j)

piκ
∑

j pκ j fκ (x−l) f j (x−l+1) f (xt , t ∈ T≥−l+2|Y−l+1 = j)
(∗)

≤ pi ι fι(x−l)

piκ fκ (x−l)
max

j

pιj f j (x−l+1) f (xt , t ∈ T≥−l+2|Y−l+1 = j)

pκ j f j (x−l+1) f (xt , t ∈ T≥−l+2|Y−l+1 = j)

= pi ι fι(x−l)

piκ fκ (x−l)
max

j

pιj

pκ j

≤ max
ι,κ,i, j

pi ι pιj fι(x−l)

piκ pκ j fκ (x−l)
.

Note that the term f j (x−l+1) in line (∗) only appears for −l + 1 ∈ T . In the second part
of the assertion we have −l /∈ T hence the terms fι(x−l) and fκ (x−l) do not appear in line
(∗). Thus the dependence on x−l disappears. �

As a consequence we obtain:

Corollary 4.2 Consider the situation of Lemma 4.1. Then

(i) for −l ∈ T

P
(
Y−l = j |Y−l−1 = i, Xt = xt , t ∈ T

) ≥ η(x−l) > 0 ,

(ii) for −l /∈ T

P
(
Y−l = j |Y−l−1 = i, Xt = xt , t ∈ T

) ≥ η > 0 .

Proof Set α̂ = α(x−l) for −l ∈ T and α̂ = α for −l /∈ T . Lemma 4.1 implies

1

P
(
Y−l = j |Y−l−1 = i, Xt = xt , t ∈ T

)

=
∑

k

P(Y−l = k|Y−l−1 = i, Xt = xt , t ∈ T )

P(Y−l = j |Y−l−1 = i, Xt = xt : t ∈ T )
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≤ 1 + (m − 1)α̂ ,

hence

P
(
Y−l = j |Y−l−1 = i, Xt = xt , t ∈ T

) ≥ (
1 + (m − 1)α̂

)−1
.

�
We now give the proof of Theorem 2.2.

Proof For A = M we have m+
l − m−

l = 1 − 1 = 0. So assume A �= M . We use induction
in l and shall apply Corollary 4.2.

Let l = 1: Chose j ∈ Ac.

m+
1 − m−

1 = max
i∈M P(Y0 ∈ A|X0−n = x0−n, Y−1 = i) − m−

1

= 1 − min
i∈M P(Y0 /∈ A|X0−n = x0−n, Y−1 = i) − m−

1

≤ 1 − min
i∈M P(Y0 = j |X0−n = x0−n, Y−1 = i) − m−

1

≤ 1 − η̂0 − η̂0 = (1 − 2η̂0) .

The inductive step:
Assume that the assertion is true for l ∈ N. Let j+ and j− be such that the maximum and

minimum respectively, are attained in these values, i.e. j+ = argm+
l , j− = argm−

l . Then

m+
l+1 = max

i∈M P(Y0 ∈ A|X0−n = x0−n, Y−l−1 = i)

= max
i∈M

{ ∑

j∈M
P(Y0 ∈ A|X0−n = x0−n, Y−l = j, Y−l−1 = i)

×P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

}

= max
i∈M

{ ∑

j∈M
P(Y0 ∈ A|X0−n = x0−n, Y−l = j)

× P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

}

= max
i∈M

{ ∑

j �= j−
P(Y0 ∈ A|X0−n = x0−n, Y−l = j)

×P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

+m−
l P(Y−l = j−|X0−n = x0−n, Y−l−1 = i)

}

≤ max
i∈M

{ ∑

j �= j−
m+

l P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

+m−
l P(Y−l = j−|X0−n = x0−n, Y−l−1 = i)

}

= max
i∈M {m+

l (1 − P(Y−l = j−|X0−n = x0−n, Y−l−1 = i))
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+m−
l P(Y−l = j−|X0−n = x0−n, Y−l−1 = i)

︸ ︷︷ ︸
≥η̂−l

}

≤ max
i∈M {m+

l (1 − η̂−l) + m−
l η̂−l}

= m+
l (1 − η̂−l) + m−

l η̂−l ,

Similarly

m−
l+1 = min

i∈M P(Y0 ∈ A|X0−n = x0−n, Y−l−1 = i)

= min
i∈M

{ ∑

j∈M
P(Y0 ∈ A|X0−n = x0−n, Y−l = j, Y−l−1 = i)

×P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

}

= min
i∈M

{ ∑

j∈M
P(Y0 ∈ A|X0−n = x0−n, Y−l = j)

×P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

}

= min
i∈M

{ ∑

j �= j+
P(Y0 ∈ A|X0−n = x0−n, Y−l = j)

×P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

+m+
l P(Y−l = j+|X0−n = x0−n, Y−l−1 = i)

}

≥ min
i∈M

{ ∑

j �= j+
m−

l P(Y−l = j |X0−n = x0−n, Y−l−1 = i)

+m+
l P(Y−l = j+|X0−n = x0−n, Y−l−1 = i)

}

= min
i∈M{m−

l (1 − P(Y−l = j+|X0−n = x0−n, Y−l−1 = i))

+m+
l P(Y−l = j+|X0−n = x0−n, Y−l−1 = i)

︸ ︷︷ ︸
≥η̂−l

}

≥ min
i∈M{m−

l (1 − η̂−l) + m+
l η̂−l}

= m−
l (1 − η̂−l) + m+

l η̂−l .

This implies

m+
l+1 − m−

l+1 ≤ (1 − 2η̂−l)m
+
l − (1 − 2η̂−l)m

−
l

≤ (1 − 2η̂−l)

0∏

j=−l+1

(1 − 2η̂ j )

123



336 Stat Inference Stoch Process (2016) 19:321–336

=
0∏

j=−l

(1 − 2η̂ j ).

�
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