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Abstract We present a method for estimating the trajectories of axon fibers through dif-
fusion tensor MRI (DTI) data that provides theoretically rigorous estimates of trajectory
uncertainty. We develop a three-step estimation procedure based on a kernel estimator for
a tensor field based on the raw DTI measurements, followed by a plug-in estimator for the
leading eigenvectors of the tensors, and a plug-in estimator for integral curves through the
resulting vector field. The integral curve estimator is asymptotically normal; the covariance
of the limiting Gaussian process allows us to construct confidence ellipsoids for fixed points
along the curve. Complete trajectories of fibers are assembled by stopping integral curve trac-
ing at locations with multiple viable leading eigenvector directions and tracing a new curve
along each direction. Unlike probabilistic tractography approaches to this problem, we pro-
vide a rigorous, theoretically sound model of measurement uncertainty as it propagates from
the raw MRI data, to the tensor field, to the vector field, to the integral curves. In addition,
trajectory uncertainty is estimated in closed form while probabilistic tractography relies on
sampling the space of tensors, vectors, or curves. We show that our estimator provides more
realistic trajectory uncertainty estimates than a more simplified prior approach for closed-
form trajectory uncertainty estimation due to Koltchinskii et al. (Ann Stat 35:1576–1607,
2007) and a popular probabilistic tractography method due to Behrens et al. (Magn Reson
Med 50:1077–1088, 2003) using theory, simulation, and real DTI scans.
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1 Introduction

Let G be a bounded set in R
d , d > 1, and let M(x), x ∈ G, be a family of symmetric

positive definite matrices, which are unknown. The main goal of this work is to estimate the
integral curve x(t), t ≥ 0, starting at a known fixed point a ∈ G and driven by a vector field
v(M(x)), x ∈ G, based on the observations

{(X j , Y (X j )), j = 1, . . . , n}, Y (X j ) = BM(X j ) + �1/2(X j )� j ,

where X j , j = 1, . . . , n, are discrete locations inG, B is a knownmatrix, and the second term
on the right represents random errors. For our purpose, the vector field v(M(x))will generally
consist of the leading eigenvectors of the tensors M(x). The integral curve x(t), t ≥ 0, is
defined as a solution of the ODE

dx(t)

dt
= v(M(x(t))), t ≥ 0, x(0) = a (1)

or equivalently of the integral equation x(t) = a + ∫ t
0 v(M(x(s)))ds. The other parts of the

model will be explained in the next sections. Below we give the motivation and application
from brain imaging research.

Diffusion tensor magnetic resonance imaging (DTI) is a prominent method for usingmag-
netic fields to measure the degree to which water molecules are diffusing along particular 3D
directions at every location in a biological specimen; e.g., see Bammer et al. (2009), Beaulieu
(2002), Chanraud et al. (2010), Mukherjee et al. (2008a, b). Because water is constrained to
diffuse along, but not across, the wire-like axons that carry an electrical charge from neuron
to neuron in the human brain, tracing trajectories along prominent water diffusion directions
through volumetric brain DTI data sets has attracted considerable scientific attention as a
means for mapping the axon architecture of the brain. Given raw DTI data, consisting of
component images that quantify the amount of water diffusion along particular 3D direc-
tions, the fiber trajectory tracing problem for DTI has traditionally been formulated in terms
of estimating a 3 × 3 positive definite matrix called the diffusion tensor that represents the
statistics of water diffusion over every direction on a 3D sphere; differential equations that
model particle motion through the field of diffusion tensor leading eigenvectors are then
solved (Fig. 1).

However, DTI component images contain a notoriously high amount of noise relative to
the water diffusion signal, resulting in noisy estimation of the diffusion tensor and leading
eigenvectors; see, e.g., Gudbjartsson and Patz (1995), Hahn et al. (2006, 2009), Zhu et al.
(2007, 2009). This in turn causes erroneous trajectory estimates that can in turn lead to
spurious scientific findings; see Basser and Pajevic (2000), Zhu et al. (2009). This problem
led to the development of a class of methods, termed probabilistic tractography, that provides
estimates of uncertainty in fiber trajectories. These approaches are generally based on the
use of sampling to explore the space of possible diffusion tensors, leading eigenvectors, or
fiber trajectories. For example, Bayesian frameworks have been presented for estimation of
parameters such as leading eigenvector directions or trajectory curve characteristics; Markov
chain Monte Carlo (MCMC) is then used to explore the space of parameter values; see, e.g.,
Parker and Alexander (2003), Friman et al. (2006), and Basser et al. (2000). Bootstrap has
also been used to repeatedly simulate novel diffusion tensors or leading eigenvectors based on
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Fig. 1 A 2D slice of a 3D DTI data set. DTI provides a 3× 3 positive definite matrix at each location in 3D;
the leading eigenvector of this matrix (direction shown in blue) indicates the most prominent direction along
which water molecules are diffusing locally. The fractional anisotropy of the matrix (FA) is a function of the
three matrix eigenvalues that gives a univariate summary of how anisotropic, i.e. strongly preferential along
a single spatial direction, the water diffusion is (higher FA is whiter). a A map of fractional anisotropy (FA)
derived from DTI data, with whiter pixels representing locations where the diffusion tensor is dominated by
its leading eigenvalue. The FA map is overlaid with the vector field of leading eigenvectors. b The FA map
is overlaid with the diffusion tensor field represented by ellipses. The major axis of each ellipse is oriented
along the leading eigenvector direction and the minor axis is oriented along the second eigenvector direction.
The major axis is scaled to have unit length and the minor axis is scaled according to the ratio of the second
eigenvalue to the leading eigenvalue. c The FA map is overlaid with an example fiber tracing with 95 %
confidence ellipsoids based on the proposed method. (Color figure online)
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subsets of component images; see, e.g., Jones (2003), Lazar and Alexander (2005), Behrens
et al. (2003). Uncertainty is assessed in terms of variability of estimates across bootstrap
samples. The key computational limitation of these approaches is the burden of drawing
large numbers of samples from high-dimensional spaces. The key theoretical limitations of
these approaches are the use of parametric models, and a lack of theoretical justification of
why the method would converge, and if it converges how fast. In addition, prior distributions
over parameter values required for MCMC need to be determined, usually through heuristic
arguments; it is not adequate to simply provide non-informative priors because these assign
non-zero prior probabilities to tensors that are not positive definite. See Chap. 8.2 in Gelman
et al. (2004) on limitations of the Bayesian framework in this regard. Additionally, bootstrap
can be misleading since it resamples from the given model, which could be inappropriate to
start with. In order for bootstrap to work, one needs to prove its consistency, which is often
equivalent to establishing asymptotic normality, and the functional that makes up the statistic
of interest needs to be continuous with respect to the underlying distribution of observations;
see, e.g. Mammen (1992) for more on what is needed for bootstrap to work and classical
situations when it fails. Whether these necessary conditions are met by DTI has not been
explored in depth. See also Yuan et al. (2008) for a discussion of various issues associated
with use of bootstrap in DTI.

An alternative to probabilistic tractography is to use smoothing estimators to trace the fiber
trajectory, and quantify uncertainty in closed form using rigorous theoretically-driven bounds
on errors. For example, Koltchinskii et al. (2007) used a Nadaraya–Watson kernel smoothing
estimator for the vector field combined with a plug-in estimator for the integral curve, under
an assumption of additive vector field noise. This approach yields asymptotically normal
estimators of integral curves as the number of spatial locations grows, it enjoys the optimal
rate of convergence locally and globally, and provides closed-form estimates of integral curve
uncertainty through the covariance of a limiting Gaussian process; see Sakhanenko (2010,
2011). This approach would need to identify locations along the integral curve trajectory
where multiple distinct principal eigenvector directions appear viable, as is common in DTI
data, and begin new integral curve trajectories along each of these directions. Complete
characterizations of uncertainty in fiber trajectories are then assembled by linking together all
such branching integral curves together with their uncertainty estimates. The key limitation
of this approach is that the input to fiber tracing is assumed to be a vector field of “true”
diffusion tensor leading eigenvectors that have been perturbed by an additive noise, thus
ignoring the possibility that the estimation error in the diffusion tensor itself may give rise
to more complex noise structures in the leading eigenvector field.

This paper provides an integral curve estimator that gives a more realistic and complete
account of hownoise inDTI data impacts fiber trajectory estimation bymodeling hownoise in
the component images enters into the estimation of diffusion tensors and leading eigenvectors.
We show that under certain geometric and smoothness assumptions the properly normalized
difference between our estimator and the true integral curve, as a random process, converges
weakly to a Gaussian process. This allows us to provide an asymptotically normal estimator
of the integral curve at a point and to use the covariance matrix of the Gaussian process
to construct confidence ellipsoids for fixed points along the integral curve. We then show
that the Koltchinskii et al. estimator only converges to this Gaussian process in very limited,
unrealistic situations: when the magnitudes of image noise and water diffusion are relatively
small, and when the gradient of the leading eigenvector field is near constant along the
integral curve. As described above, in the common case that integral curve tracing encounters
a location whose leading eigenvector direction is ambiguous, we begin traces of new integral
curves along each plausible eigenvector direction, and build complete descriptions of a fiber
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trajectory by linking together all such branching integral curves emanating from a given
starting point.

The rest of the paper is organized as follows. Notation and our framework are described
in Sect. 2. We formulate the three-step estimation procedure in Sect. 3. Important definitions
and conditions are gathered in Sect. 4. The main theoretical results, and the step-by-step
algorithm (including a test for branching), are in Sect. 5. We give a theoretical comparison
between our approach and that of Koltchinskii et al. (2007) in Sect. 6. We illustrate how our
methodworks on artificial data in Sect. 7 and on real DTI data in Sect. 8.We draw conclusions
and discuss our findings in Sect. 9. Proofs are gathered in the Appendix.

2 Notation and framework

Throughout the paper all vectors are columns and u∗ denotes the transposition of a vector
or a tensor u. In brain imaging applications d is typically 2 or 3, G represents a region of a
brain, and M(x) provides a representation of the spatial distribution of water diffusion at x .
DTI makes the estimation of M(x) possible by collecting a set of N component images, each
of which uses magnetic field gradients to measure the relative amount of water diffusion at x
along a spatial direction represented by b ∈ R

d . This relative water diffusion measurement
is denoted by S(x, b). If these measurements are collected along at least d(d + 1)/2 such
directions, and the spatial distribution ofwater diffusion at each x is assumed to be ellipsoidal,
then there is sufficient data to estimate a diffusion tensor M(x) such that for any spatial

direction b, S(x, b) is estimated as follows: log

(
S(x,b)
S0(x)

)

=: y(x, b) = −cb∗M(x)b +
σ(x, b)ξ. Here S0 is a baseline signal level measured in the absence of a magnetic field
gradient; the constant c depends only on the hydrogen gyromagnetic ratio, the gradient pulse
sequence design, duration and other timing parameters of the imaging procedure (see, e.g.,
Basser and Pierpaoli 1998); σ is a positive function that adds noise to the measurement that
may depend on x and b; and ξ is a random variable with mean zero and variance one. In the
absence of noise this relationship is known as the Stejskal–Tanner equation.

For a tensor A ∈ R
d2 , let Akl , k, l = 1, . . . , d be its components. For convenience

let d0 := d(d + 1)/2. For a symmetric tensor A ∈ R
d2 we define a d0-dimensional

vector A that consists of stacked rows of the upper triangular part of the tensor A, i.e.
A = (A11, A12, . . . , A1d , A22, A23, . . . , A2d , . . . , A(d−1)(d−1), A(d−1)d , Add)

∗. Note that

for any two symmetric tensors A, F ∈ R
d2 the trace of their product can be calculated as∑d

k,l=1 Akl Fkl = AHF, where H is a diagonal matrix with ones and twos on the diagonal.
For example, for d = 3 the diagonal of H is (1, 2, 2, 1, 2, 1).

Given N magnetic field gradient directions {b1, . . . , bN }, there is a fixed N × d0 matrix
B that is related to the set of spatial gradient directions and timing parameters of the imaging
procedure (its kth row is proportional to FH with F = bkb∗

k , k = 1, . . . , N ). At a fixed
location x ∈ R

d , we observe the N × m tensor Y (x) such that

Y (x) = BM(x)I ∗
m + �1/2(x)�x with Im = (1, . . . , 1)∗ ∈ R

m, (2)

where the columns of Y (x) are Yi ∈ R
N , i = 1, . . . ,m, and for a fixed x the N × N tensor

� is symmetric positive definite; the N × m tensor �x is a random noise. Note that this is a
linear model with the fixed design.

Throughout the paper, for a symmetric tensor A, its maximal eigenvalue is denoted by
λ(A). When it is simple (not repeated) the corresponding unit length eigenvector is denoted
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by v(A). Under certain conditions on the tensor field M(x), x ∈ G, the vector field v(M(x))
is unique locally around the integral curve, which in turn exists and is unique. Because water
diffuses preferentially along the directions of travel of axon fibers that connect disparate
regions of the brain to each other, tracing such integral curves along prominent diffusion
directions can result in x(t), t ≥ 0, described in (1), that are geometric representations of
those axon fibers. There are various downstream applications of the fiber curves; for example,
structural connectivity analysis makes use of such fiber trajectories to infer the degree to
which two distinct brain regions appear to be connected to each other, in effect quantifying
the capacity of two brain regions to communicate with each other.

3 Three-step estimation procedure

The goal of our three step estimation procedure is to (1) regularize the input tensor field, (2)
convert it to a vector field representation that allows integral curve tracing, and (3) perform
the integral curve tracing. As a preliminary step one needs to estimate the tensor M(x) at a
fixed location x ∈ G from the raw Y measurements. There are various ways to do so. For
instance, the ordinary least squares estimator of M(x), x ∈ G, is

M̃(x) = 1

m
(B∗B)−1B∗Y (x)Im, (3)

provided (B∗B)−1 exists. It is themost popular choice in the DTI literature. Another estimate
is the weighted least squares estimator of M(x), x ∈ G, which is studied extensively in the
work of Zhu et al. (2007, 2009).

Our estimation procedure is as follows:

Step (i): Smoothed tensor field estimation At each location x ∈ G, a smoothed estimate
M̂n(x) of the tensor field is constructed using the following kernel smoothing estimator:

M̂n(x) = 1

nhdn

n∑

j=1

K

(
x − X j

hn

)

M̃(X j ), (4)

where K is a kernel function and hn is the bandwidth.
Step (ii): Leading eigenvector estimation For each x ∈ G, the eigenvector v(M̂n(x))
corresponding to the simple maximal eigenvalue λ(M̂n(x)) is calculated. This quantity
is an estimator of the true unknown eigenvector v(M(x)) of M(x) corresponding to the
simple maximal eigenvalue λ(M(x)) under certain conditions on M(x).
Step (iii): Integral curve estimation We estimate x(t), t ≥ 0, starting at a fixed known
point a ∈ G driven by the vector field v(M(x)), x ∈ G, by a plug-in estimator X̂n(t), t ≥
0, which is a solution of the ODE

d X̂n(t)

dt
= v(M̂n(X̂n(t))), t ≥ 0, X̂n(0) = a (5)

or equivalently of the integral equation X̂n(t) = a+∫ t
0 v(M̂n(X̂n(s)))ds. In practice this

ODE is solved numerically; see Sect. 5.

In Step (i), isotropic kernel smoothing prevents diffusion tensors outside white matter tract
regions from exerting an influence on tensor characteristics. Near tract boundaries, the band-
width can be chosen small enough that diffusion tensors outside the tract region exert little
influence on the averaging operation.
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Step (ii) depends on the existence of a single, unambiguous leading eigenvector v(M(x))
that represents the principal direction of water diffusion at x ∈ G. However, in DTI, it is
common to have multiple distinct water diffusion directions at x ; this especially occurs at
locations where distinct fibers cross each other. We first identify these locations through
a statistical test based on the difference between the maximal and the next to maximal
eigenvalues of the tensor field. Asymptotical null distribution of this test statistic is normal.
The test rejects the null hypothesis of one single unambiguous leading eigenvalue for small
values of the test statistic. These locations are referred to as branching points in the fiber
trajectory since they suggest locations where fibers diverge or cross.

At these branching points, we modify model (2) so that the observations Y (x) arise from
a mixture of two underlying tensors M (1)(x) and M (2)(x), which have the same simple
maximal eigenvalue but different leading eigenvectors v(M (1)(x)) and v(M (2)(x)):

Y (x) = B(πM(1)(x) + (1 − π)M(2)(x))I ∗
m + �1/2(x)�x . (6)

The mixing coefficient π determines the relative contributions of M (1)(x) and M (2)(x) to
Y (x). A variety of standard clustering techniques can be applied to estimate M (1)(x) and
M (2)(x) as well as π . Below, we use k-means clustering with 2 clusters performed on obser-
vations Y (X j ), j = 1, . . . , n, within a local neighborhood around x , and set π to a constant
0.5. The neighborhood is defined to be the set of locations surrounding x that influence the
smoothing of M(x), as determined by the tensor smoothing kernel K and the associated
bandwidth hn : see Eq. (4). A detailed description of this procedure is in Sect. 5.

During the numerical estimation of the fiber trajectory, if any location X̂n(t) is determined
to be a branching point, trajectory tracing halts there, and two new integral curve tracings are
initiated from the branching point, one each along directions v(M (1)(x)) and v(M (2)(x)).
After this process terminates, the final answer for the estimated trajectory initiating from
the starting point a consists of the collection of X̂n(t) estimators that represent trajectory
segments running between a, branching points, and terminal points. This approach allows us
to deal with the common case of branching points while maintaining theoretically rigorous
estimation of integral curves over fiber segments in between them.

4 Foundations for main results

In what follows, for a number, a vector or a tensor w we denote the sum of its squared
components as |w|2. For a scalar field, a vector field or a tensor field w we denote the tensor
of derivatives of its components by ∇w. More precisely, for a function w : R

d → R the
components of the vector∇w(x) are ∂w(x)/∂xk, k = 1, . . . , d . For a vector fieldw : Rd2 →
R
d the components of the vector ∇w(M) are ∂w j (M)/∂Mkl , j, k, l = 1, . . . , d , so ∇w is a

d × d2 tensor. Somewhat opposite, for a tensor field w : Rd → R
d2 the components of the

vector ∇w(x) are ∂wkl(x)/∂x j , j, k, l = 1, . . . , d , so ∇w is a d2 × d tensor. The Kroneker
symbol is δkl = 1 for k = l and 0 for k �= l.

The following conditions are required:

(A1) G is a bounded open set in Rd with Lebesgue measure 1. It contains the support of the
twice continuously differentiable everywhere symmetric positive definite tensor field
M : Rd → R

d2 . Moreover, M(·) has the simple eigenvalues everywhere in its support
(See Sect. 5 for a relaxation of this requirement).

(A2) The initial point a is inside of the support of M(·).
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(A3) There exists a number T > 0 such that for all t1, t2 ∈ (0, T ) with t1 �= t2, x(t1) �=
x(t2).

(A4) Locations {X j , j ≥ 1} are independent uniformly distributed in G.
(A5) Weobserve {(X j , Yi (X j )), i = 1, . . . ,m, j = 1, . . . , n}, obeying themodelY (X j ) =

BM(X j )Im +�1/2(X j )� j with a fixed non-random known real-valued N ×d0 tensor
B, an unknown continuous on G symmetric positive definite N × N tensor field
� : Rd → R

N2
, and unobservable random N × m tensors � j , j = 1, . . . , n. Recall

N ≥ d0. Additionally, we assume that B∗B is invertible and E�4
kl(X1) < ∞, 1 ≤

k, l ≤ N .
(A6) The columns of random noise matrices � j , j ≥ 1, are i.i.d. as � and independent of

locations.Additionally, components of thematrix� satisfyE�ki = 0,E�ki�li = δkl ,

and E�4
ki < ∞ for all i = 1, . . . ,m, 1 ≤ k, l ≤ N .

(A7) The kernel K is nonnegative and twice continuously differentiable on its bounded
support. Moreover,

∫
Rd K (x)dx = 1,

∫
Rd xK (x)dx = 0.

(A8) The bandwidth hn satisfies the condition nhd+3
n → β > 0 as n → ∞, where β is a

known fixed number.

Condition (A1) requires the region G to be a locally contiguous region of the brain.
Conditions (A1) and (A2) guarantee that a unique solution x(t), t ∈ [0, T ], of (1) exists

and stays insideG; see formula (9) below. Condition (A1) can be relaxed to assume that M(·)
has simple eigenvalues in a neighborhood of a that contains the curve x(t), t ∈ [0, T ]. For
more details on existence, uniqueness, and smoothness of tensor fields and the associated
eigenvector fields see Kato (1980).

Condition (A3) prohibits cycles in the integral curve. This is not restrictive; when a cycle
is detected, one needs to estimate the integral curve over just one period.

Analogous versions of the main results can be proven when condition (A4) is changed to
allow diffusion tensor measurements arranged in a non-random, regular grid of locations as
is typical in practice. Furthermore, the typical number of locations n in a DTI data set is on
the order of hundreds of thousands or millions; for sample sizes this large, a regular grid of
locations is fairly well approximated by uniform i.i.d. locations.

Condition (A6) means that noise is determined independently at each location. Given the
physics ofMRI acquisition, this assumptionmay be unrealistic. But this assumption is typical
for the state of the art in diffusionMRI; it is built into the near-ubiquitous Rician noise model
for example. Accounting for spatially correlated noise structures in theoretical models of
DTI will require methodological advances that are beyond the scope of the current study.

Condition (A6) also requires that the noise is white: zero-mean and with no correlations
among the diffusion tensor entries. Previous researchers have noted that the popular Rician
noise model for DTI is well approximated by such a white noise model in the event that
the ratio of Rician model’s mean to standard deviation is moderate to large. Because this is
typically the case in real-worldDTI studies, our white noisemodel is a realistic representation
of DTI noise; see Zhu et al. (2007) and references therein.

If the second moments of K are finite, ∇K and ∇2K are uniformly bounded, and the
functions �2 and �4 defined in the proof of Theorem 1 are integrable, then condition (A7)
can be relaxed to accommodate them, even if their support is infinite. For instance, this is the
case for Gaussian kernels.

Finally, note that formula (3) can be rewritten as

M̃(X j ) = M(X j ) + � j , � j = 1

m
(B∗B)−1B∗�1/2(X j )� j Im, j ≥ 1, (7)
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where � j denotes a d0-vector representation of a random tensor in Rd2 , j ≥ 1. Note that due
to condition (A6) random tensors � j , j ≥ 1, are i.i.d. and we have for all j ≥ 1, E� j = 0
and

E(� j�
∗
j |X j ) = 1

m2 (B∗B)−1B∗
E[�1/2(X j )�1 Im I

∗
m�1(�

1/2(X j ))
∗]B(B∗B)−1

= 1

m
(B∗B)−1B∗�(X j )B(B∗B)−1 =: ��(X j ),

where �� : Rd → R
d20 is a tensor field. We remark that if the matrix B is a square matrix,

i.e. N = d0, and it is invertible then we can simplify �(·) = 1
m (B∗�(·)B)−1.

5 Main results

First, let us introduce lemmas that are required to prove the key theoretical result.

Lemma 1 Suppose conditions (A1)–(A8) hold. Then E supx∈Rd |M̂n(x) − M(x)|2 ≤ C
nhd+2

n
for sufficiently large n with a finite constant C.

Consequently, we have supx∈Rd |M̂n(x) − M(x)| →P 0 as n → ∞.

Lemma 2 Suppose conditions (A1)–(A8) hold. Then supx∈Rd |∇ M̂n(x) − ∇M(x)| →P 0
as n → ∞.

Lemma 3 Suppose conditions (A1)–(A8) hold. Then supt∈[0,T ] |X̂n(t) − x(t)| →P 0 as
n → ∞.

Lemma 4 Suppose conditions (A1)–(A8) hold. Then M̂n(x) is symmetric for all x ∈ G and
all n. Moreover, P(M̂n(x) is positive definite for all x ∈ G) → 1 as n → ∞.

In order to formulate the main result of this paper we need the following definitions. As
in the work of Koltchinskii et al. (2007) define for u ∈ R

d


(u) =
∫

Rd
K (z)K (z + u)dz, ψ(u) =

∫

R


(τu)dτ.

Let U : R2 → R
d2 be the Green’s function, defined as the solution of the following PDE

∂U (t, s)

∂t
= ∇v(M(x(t)))∇M(x(t))U (t, s), U (s, s) = I.

For a vector field w : Rd2 → R
d let ∇̃w be the d × d0 tensor of its derivatives ∂w/∂Mi , i =

1, . . . , d0. For a d2 × d2 tensor A and vector z ∈ R
d let 〈Az, z〉 be the d2-vector with

components 〈Az, z〉kl = ∑d
q,r=1 Akl,qr zq zr , 1 ≤ k, l ≤ d.

The main theorem follows.

Theorem 1 Suppose conditions (A1)–(A8) hold. Then the sequence of stochastic processes
√
nhd−1

n (X̂n(t) − x(t)), t ∈ [0, T ],
converges weakly in the space of Rd -valued continuous functions on [0, T ] to the Gaussian
process G(t), t ∈ [0, T ], with mean

μβ(t) = 0.5
√

β

∫ t

0

∫

Rd
U (t, s)∇v(M(x(s)))K (z)〈∇2M(x(s))z, z〉dzds
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and covariance

C(t1, t2) =
∫ t1∧t2

0
ψ(v(M(x(s))))U (t1, s)∇̃v(M(x(s)))

× H [M(x(s))M∗(x(s)) + ��(x(s))]H ∇̃v(M(x(s)))∗U∗(t2, s)ds.

Notice that μβ(t), t ≥ 0, satisfies the following ODE

dμβ(t)

dt
= ∇v(M(x(t)))∇M(x(t))μβ(t)

+ 0.5
√

β∇v(M(x(t)))
∫

Rd
K (z)〈∇2M(x(t))z, z〉dz, μβ(0) = 0.

By the same token C(t, t), t ≥ 0, satisfies the following ODE: C(0, 0) = 0,

dC(t, t)

dt
= ∇v(M(x(t)))∇M(x(t))C(t, t) + C(t, t)(∇v(M(x(t)))∇M(x(t)))∗

+ψ(v(M(x(t))))∇̃v(M(x(t)))H [M(x(t))M∗(x(t))
+��(x(t))]H ∇̃v(M(x(t)))∗.

Thus, Theorem 1 allows us to track the estimated curve, themean function, and the covariance
function in small steps sequentially and simultaneously, and construct confidence ellipsoids
along the curve. This will be illustrated in Sects. 7 and 8.

Sketch of proof The proof of this result, provided in the Appendix, has several steps. First,
we show that X̂n(t) − x(t), t ∈ [0, T ], is approximated by a process Zn(t), t ∈ [0, T ],
which is the solution of a linear integral equation and can be explicitly written as a linear
operator transformation of M̂n(·)−M(·). And Zn(t), t ∈ [0, T ], happens to be a sum of i.i.d.
terms. Second, we find the asymptotical mean and covariance of Zn . Finally, we show that

the sequence
√
nhd−1

n (Zn(t) − EZn(t)), t ∈ [0, T ], converges to a Gaussian process due to
Lyapunov’s condition and asymptotical equicontinuity.

Connectivity tests This result allows us to apply Theorem 2 fromKoltchinskii et al. (2007)
to perform tests of connectivity that are commonly of interest in studies of DTI data: given
a starting location a, the test is concerned with whether the integral curve originating at a
passes through a given subregion in G. We formulate this test in terms of estimating the
squared Euclidean distance between the integral curve and a one-point region r ∈ G; also
see Koltchinskii and Sakhanenko (2009).

Corollary 1 Suppose conditions (A1)–(A8) hold. Moreover, suppose there exists the unique
point τ ∈ (0, T ) such that mint∈[0,T ] |x(t) − r |2 = |x(τ ) − r |2. If x(τ ) �= r then the

sequence
√
nhd−1

n

[

mint∈[0,T ] |X̂n(t) − r |2 − |x(τ ) − r |2
]

is asymptotically normal with

mean 2μβ(τ)∗(x(τ ) − r) and variance 4(x(τ ) − r)∗C(τ, τ )(x(τ ) − r). If x(τ ) = r then
the sequence nhd−1

n mint∈[0,T ] |X̂n(t) − r |2 converges in distribution to a random variable
|Z |2 − (v(M(x(τ )))∗Z)2, where Z is a normal random variable with mean μβ(τ) and
variance C(τ, τ ).

This corollary can be used to test whether an integral curve starting at a point a ∈ G
passes closely by the point r . See Koltchinskii and Sakhanenko (2009) for details and proofs.

123



Stat Inference Stoch Process (2016) 19:289–319 299

5.1 Implementation

The complete algorithm for obtaining integral curve estimator together with confidence ellip-
soids has the following steps.

1. Initialize q = 0, tq = 0, X̂n(t0) = a, μβ(t0) = 0,C(t0, t0) = 0.
2. Track the estimated integral curve using Euler’s method, given a fixed δ > 0 and small

time steps tq = qδ, q = 0, 1, 2, . . . 1:

X̂n(tq) ≈ X̂n(tq−1) + δv(M̂n(X̂n(tq−1))), X̂n(0) = a.

3. Approximate ∇2M̂n(x), ∇ M̂n(x) and �̂n(x) as follows:

�̃�,n(X j ) = 1

m

m∑

i=1

(Yi (X j ) − BM̃(X j ))(Yi (X j ) − BM̃(X j ))
∗, j = 1, . . . , n,

�̂n(x) = 1

nhdn

n∑

j=1

K ((x − X j )/hn)�̃�,n(X j ), x ∈ G,

∇ M̂n(x) = 1

nh̃d+1
n

n∑

j=1

∇K

(
x − X j

h̃n

)

M̃(X j ), x ∈ G, nh̃d+1
n → ∞,

∇2M̂n(x) = 1

n ˜̃hd+2
n

n∑

j=1

∇2K

(
x − X j

˜̃hn

)

M̃(X j ), x ∈ G, n ˜̃hd+1
n → ∞.

And, approximate ∇v(M(x)) by ∇v(M̂n(x)) using the relationship (9) in the proof of
Lemma 3, i.e.

∂vp(M̂n(x))

∂Mkl
= (1 − 0.5δkl)

[

(λ(M̂n(x))Id − M̂n(x))
+
pkvl(M̂n(x))

+(λ(M̂n(x))Id−M̂n(x))
+
plvk(M̂n(x))

]

, 1≤ p, k, l≤d,

where A+ stands for the Moore–Penrose inverse of a matrix A.
4. Approximate μβ(tq), q ≥ 1, as

μ̂β(tq) ≈ μ̂β(tq−1) + δ∇v(M̂n(X̂n(tq−1)))∇ M̂n(X̂n(tq−1))μ̂β(tq−1)

+ 0.5δ
√

β∇v(M̂n(X̂n(tq−1)))

∫

Rd
K (z)〈∇2M̂n(X̂n(tq−1))z, z〉dz.

5. Approximate C(tq , tq) as

Ĉ(tq , tq) ≈ Ĉ(tq−1, tq−1) + δ∇v(M̂n(X̂n(tq−1)))∇ M̂n(X̂n(tq−1))Ĉ(tq−1, tq−1)

+ δĈ(tq−1, tq−1)∇ M̂n(X̂n(tq−1))
∗∇v(M̂n(X̂n(tq−1)))

∗

+ δψ(v(M̂n(X̂n(tq−1))))∇̃v(M̂n(X̂n(tq−1)))

×[M̂n(X̂n(tq−1))M̂n(X̂n(tq−1)) + ��(X̂n(tq−1))]
× ∇̃v(M̂n(X̂n(tq−1)))

∗, q ≥ 1.

1 We note that while in theory, higher-order solvers such as Runge–Kutta’s method could have provided more
accurate integral curves, we recently showed that the Runge–Kutta method provides no tangible advantages
over Euler’s method when applied to the simplified integral curve model of Koltchinskii et al. (2007) (see
Sakhanenko 2012).
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6. Approximate the 100(1 − α)% confidence ellipsoid for x(tq), q ≥ 1, as

P

{

|Ĉ(tq , tq)
−1/2(

√
nhd−1

n (X̂n(tq) − x(tq)) − μ̂β(tq))| ≤ Rα

}

≈ 1 − α,

where P(|Z | ≤ Rα) = 1 − α for a standard normal vector Z in R
d .

7. Repeat steps 2–6 until tq reaches T .

5.2 Kernel smoothing bandwidth selection

Finally, we remark on how to select β in the bandwidth hn = (β/n)1/(d+3). One approach
is to estimate the β that minimizes the mean integrated squared error (MISE) between the
estimated and the true integral curves. MISE is asymptotically equivalent to the following
expression

MISE := E

∫ T

0
(X̂n(t) − x(t))∗(X̂n(t) − x(t))dt

≈ n−4/(d+3)
[

β4/(d+3)
∫ T

0
μ1(t)

∗μ1(t)dt + β−(d−1)/(d+3)
∫ T

0
trC(t, t)dt

]

,

which is minimized by β = 0.25(d − 1)
∫ T
0 trC(t, t)dt

[
∫ T
0 μ1(t)∗μ1(t)dt

]−1

. An inter-

leaved estimation procedure for β would thus consist of starting with an initial β estimate,
estimating μ1 and C accordingly, re-estimating β based on these μ1 and C , and so on.

5.3 Modeling locations with multiple fiber directions

Note that the covariance of the limiting Gaussian process in Theorem 1 goes to infinity as
the second largest eigenvalue of M(·) (call this φ(M(·))), approaches the largest eigenvalue
λ(M(·)). More precisely, some components of the gradient ∇̃v(M(x)) in the integrand of
C(t1, t2), t1, t2 ∈ [0, T ], are proportional to (λ(M(x)) − φ(M(x)))−2 for a point x on
the curve x(t), t ∈ [0, T ]. Our approach is to devise a theoretically grounded test for this
situation, and when it occurs we decompose the tensor M(·) into components, each of which
has a dominant leading eigenvalue.

Branching point detectionWedevelop a test for branching based on the difference between
the two largest eigenvalues of the estimated tensor field M̂n(·). Let w(A) be the eigenvector
corresponding to the second largest eigenvalue φ(A) of a d × d matrix A. We utilize the
following result.

Proposition 1 Suppose conditions (A1)–(A8) hold. For any fixed x ∈ G
√
nhdn

(

(λ(M̂n(x)) − λ(M(x))) − (φ(M̂n(x)) − φ(M(x)))

)

is asymptotically normal with mean 0 and variance σ 2
λ (x) + σ 2

φ (x) − 2σλ,φ(x), where

σ 2
λ (x) =

∫
K 2(u)du�v(x)

∗H [M(x)M∗(x) + ��(x)]H�v(x),

σ 2
φ (x) =

∫
K 2(u)du�∗

w(x)H [M(x)M∗(x) + ��(x)]H�w(x),

σλ,φ(x) =
∫

K 2(u)du�∗
v(x)H [M(x)M∗(x) + ��(x)]H�w(x)
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with �v being a vector representation of the matrix �v with entries �v,i j = (2 −
δi j )vi (M)v j (M) and �w being a vector representation of the matrix �w with entries
�w,i j = (2 − δi j )wi (M)w j (M).

Combining this result with Theorem 1 bymeans of the delta method allows us to construct
the following test.We reject the null hypothesis of no branching at a location X̂n(tq+1), q ≥ 1,
if

λ(M̂n(X̂n(tq+1))) − φ(M̂n(X̂n(tq+1))) < λ(M̂n(X̂n(tq))) − φ(M̂n(X̂n(tq)))

−εα(nhdn)
−1/2[σ̂ 2

λ (X̂n(tq)) + σ̂ 2
φ (X̂n(tq)) − 2σ̂λ,φ(X̂n(tq))]1/2,

where σ̂ 2
λ , σ̂ 2

φ , and σ̂λ,φ are obtained from σ 2
λ , σ 2

φ , and σλ,φ using the estimators M̂n and �̂n

instead of M and �� and P(0 < Z < εα) = α for a standard normal variable Z .
Tensor decomposition at branching points Whenever a branching point is detected at

a location x , we use 2-means clustering method to group the raw DTI measurements
Y (X j ), j = 1, . . . , n, for X j that are within the averaging window of the smoothing kernel
K into clusters, using the Euclidean distance between Y (X j ) as a measure of their similarity.
Assuming that the branching point consists of the confluence of two distinct fiber orienta-
tions, the two clusters are expected to correspond to those two orientations respectively. The
two diffusion tensorsM(1)(x) andM(2)(x) are estimated from the two clusters individually.
We trace two new integral curves beginning at x that initially move along the v(M(1)(x)) and
v(M(2)(x)) directions, and repeat the branching test where these two curves arrive.

We apply this to the synthetic tensor field in Fig. 2. This is a linear combination of a circular
tensor field (from the example in Sect. 7) with a circle radius of 0.25 and a horizontal tensor
field in the strip |x2| < 0.05 with the same maximal eigenvalues as the circular tensor field.
We use a mixture model with π = 0.5 for the locations where the tensor fields overlap. Noise
is added to the rawmeasurements Y with thematrix� = [1, 0.8, 0.8; 0.8, 1, 0.8; 0.8, 0.8, 1].
The method successfully identifies the branching point and traces both fibers.
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(a) (b)
Fig. 2 A test for branching points and a mixture model for diffusion tensors at such points can be used
to apply the integral curve tracing method to locations where fibers diverge or cross. The point where the
semi-circular and horizontal tensor regions overlap is successfully detected as a branching point, and separate
integral curves are traced along both trajectories. a The 2 × 2 tensor field M̃ is visualized through ellipses.
Herem = 8, n = 4900, δ = 0.02, β = 0.001. b FA map is overlaid with estimated fiber trajectories and 95 %
confidence ellipses based on our method and 2-means clustering near the branching point. The initial point is
(0.1,−0.2291). We use α = 0.1 for testing. (Color figure online)
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6 Theoretical comparison of X̂n with Koltchinskii et al. (2007) estimator

Here we compare our estimator with that of the most similar fiber tracing approach to
ours, due to Koltchinskii et al. (2007). They estimate fiber trajectories with closed-form
uncertainty estimates, given noise-corrupted leading eigenvectors without reference to the
raw DTI measurements. That is, they assume input data (X j , Vj ), j = 1, . . . , n, where
Vj = v(M(X j )) + ξ j is the leading eigenvector direction at X j that has been corrupted
with i.i.d. noise variables ξ j drawn from a distribution with mean zero and covariance �K .
Given noise of the form ξ j = �K (X j )

1/2η j with i.i.d., mean 0, variance 1, random vectors
η j , j = 1, . . . , n that are also drawn independently at each X j , and given conditions similar
to (A1)–(A8), the difference between their estimator X̂ K

n (t), t ∈ [0, T ], and the true integral
curve x(t), t ∈ [0, T ], normalized by

√
nhd−1

n converges weakly in the space of Rd -valued

continuous functions on [0, T ] to the Gaussian process GK (t), t ∈ [0, T ]. The mean of this
process is

μK
β (t) = 0.5

√
β

∫ t

0

∫

Rd
U (t, s)K (z)〈 ∂2

∂x2
v(x(s))z, z〉dzds

and the covariance is

CK (t1, t2) =
∫ t1∧t2

0
ψ(v(M(x(s))))U (t1, s)[v(M(x(s)))v∗(M(x(s)))

+�K (x(s))]U∗(t2, s)ds.

Next, we show the three specific simplifications that must be made to our tensor and noise
models that are required to reduce it down to the special case covered by the Koltchinskii
et al. (2007) estimator.

The first required simplification is to model the noise applied to M(x) as a first-order
perturbation that moves M(x) within a very local neighborhood. Consider the following first
order approximation for an observation v(M(X j )+� j ) = v(M(X j ))+∇̃v(M(X j ))H� j +
α1(|� j |2),where the vector-functionα1(u)/|u|2, u ∈ R

d , is bounded in a small neighborhood
around 0. Note that the covariance matrix of the linear term v(M(X j )) + ∇̃v(M(X j ))H� j

is ∇̃v(M(X j ))H��H ∇̃v(M(X j ))
∗; this covariance matrix is required to be the same as

�K (X j ) for the measurement to comply with the Koltchinskii et al. (2007) model.
The second required simplification is to assume that we have almost a constant

gradient of v with respect to M along the integral curve. Specifically, the second deriv-

atives of v with respect to x must be simplified by the following: ∂2

∂x2
v(M(x)) =

∇2v(M(x))∇M(x)∇M(x)+∇v(M(x))∇2M(x) = ∇v(M(x))∇2M(x)(1+α2(x)),where
the vector function α2(x), x ∈ R

d , is continuous at 0, and α2(0) = 0.
The third required simplification is to assume that v is almost linear with respect to M ,

i.e. v(M(x)) = ∇̃v(M(x))HM(x) + α1(|M |2(x)), x ∈ G. Putting these simplifications
together, for all t ∈ [0, T ] and z ∈ R

d we have v(M(x(t))) ≈ ∇̃v(M(x(t)))HM(x(t)) and

∇v(M(x(t)))〈∇2M(x(t))z, z〉 ≈ 〈 ∂2

∂x2
v(M(x(t)))z, z〉.

Through these three simplifications we arrive at the model of Koltchinskii et al. (2007),
which can be thought of as a very restricted special case of our model. To apply the Koltchin-
skii model, both the noise � and the tensor M must be relatively small along the integral
curve and∇v(M) should be nearly fixed as M varies along the curve. These assumptions are
unrealistic for real-world DTI data; this may explain why the Koltchinskii estimator fails to
accurately follow fiber trajectories in the simulated examples in the next section.
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7 Synthetic examples

7.1 Comparison with Koltchinskii et al. (2007) approach

Wefirst provide two synthetic examples that compare how our estimator and that of Koltchin-
skii et al. (2007) behave when applied to separate cases that do and do not violate the
assumptions of the Koltchinskii model. The first example shows a curved trajectory of con-
stant curvature in a tensorfield corruptedbynoise that violates the assumptions ofKoltchinskii
et al. (2007). The second example comes close to satisfying this assumption. However, we
show that in both cases, our estimator provides integral curve estimators that have similar
accuracy compared to the Koltchinskii estimator, but lower covariance.

7.1.1 Circular trajectories

For the first example, we consider a 2D tensor field corresponding to a circular fiber trajectory.
Let G = [−0.5, 0.5]2. Let the true tensor field and the eigenvector corresponding to the
maximal eigenvalue be

M(x) =
⎛

⎜
⎝
1 + x22

x21+x22

−x1x2
x21+x22

−x1x2
x21+x22

1 + x21
x21+x22

⎞

⎟
⎠ , v(M(x)) =

⎛

⎜
⎝

−x2√
x21+x22
x1√

x21+x22

⎞

⎟
⎠ .

The eigenvalues are 2 and 1. The true integral curves are circles centered at the origin.
The directions are b1 = (1, 0)∗, b2 = (0, 1)∗, b3 = 2−1/2(1, 1)∗, so the design matrix is
B = [−1, 0, 0; 0, 0,−1;−0.5,−1,−0.5]. This common type of gradient direction setup is
referred to as orthogonal or pyramidal gradient encoding in the DTI literature.

For each random location X j , j = 1, . . . , n, we simulate m vectors Yi ∈ R
3 accord-

ing to the model Yi = BM(X j ) + �1/2(X j )ξ j,i , j = 1, . . . , n, i = 1, . . . ,m, with
independent standard normal 3D vectors ξ j,i and two choices for �. The first submodel,
� = [1, 0.8, 0.8; 0.8, 1, 0.8; 0.8, 0.8, 1], is a constant matrix; the second submodel is
�(x) = 0.01M(x)M(x)∗, x ∈ G. In all simulations we use the bandwidth hn = (n/β)1/5

and the standard 2D Gaussian kernel.
Both methods yield integral curve estimates that are very close to the true curve (Fig. 3).

However, the covariances of the Koltchinskii et al. (2007) estimator are much higher than
those of our estimator in both submodels. For the first sub-modelwith a fixed�, the Euclidean
norm of the covariance matrix CK is 20–35 times higher than the norm of C along the
first third of the curve, then this ratio decreases gradually to 1.2 at the end of the curve.
For the second sub-model, the ratio of the norms of CK and C is also 20–30 for the first
third of the curve and reduces to 5–6 at the end of the curve. This is to be expected since
the matrices between U and U∗ in the covariance of the limiting Gaussian processes are
r4[cos2 2s,− sin 4s sin2 2s/16;− sin 4s sin2 2s/16, sin2 s sin2 2s/4] + O(��), s ∈ [0, T ],
and [sin2 s,− sin 2s/2;− sin 2s/2, cos2 s] + O(�K ), s ∈ [0, T ], for our and Koltchinskii
et al.’s (2007) methods respectively. Both covariance matrices �� and �K are small and
r = 1/4 for the true integral curve.

7.1.2 Nearly additive vector field noise

For the second example, we attempt to design a tensor field and a noise model that come as
close as possible to meeting the additive eigenvector field noise assumption of Koltchinskii
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Fig. 3 The solid black curves with blue confidence ellipsoids correspond to the estimated integral curves
using our approach. The solid green curveswith cyan confidence ellipsoids correspond to the estimated integral
curves using themethod ofKoltchinskii et al. (2007). The solid red curves are the true integral curves. The initial
point is (0.1,−0.2291). We use a 95% confidence level. Herem = 8, n = 202 = 400, δ = 0.005, β = 0.001.
a The matrix � is fixed for all the locations. b The matrix � is of the second order with respect to the
tensor M . (Color figure online)

et al. (2007), for d = 3 and G = [0, 1]3. It is not difficult to show that there are no special
cases for which our tensor field noise model exactly yields the additive eigenvector field
noise. Therefore, we start with vectors v1(x) = (−(x2 − 0.5), x1 − 0.5, 1/(2π))∗, v2(x) =
(x1 − 0.5, x2 − 0.5, 0)∗, v3(x) = (x2 − 0.5,−(x1 − 0.5), 2π((x1 − 0.5)2 + (x2 − 0.5)2))∗.
Then let the corresponding unit vectors V1(x), V2(x), V3(x) be the eigenvectors of M(x)
for the corresponding eigenvalues (10, 2, 1). We use an orthogonal gradient encoding with
6 directions: b1 = (1, 0, 0)∗, b2 = (0, 1, 0)∗, b3 = (0, 0, 1)∗, b4 = 2−1/2(0, 1, 1)∗, b5 =
2−1/2(1, 0, 1)∗, b6 = 2−1/2(1, 1, 0)∗.

For each random location X j , j = 1, . . . , n, we simulate m vectors Y ∈ R
6 accord-

ing to the model Yi = BM(X j ) + �1/2(X j )ξ j,i , j = 1, . . . , n, i = 1, . . . ,m, with
independent standard normal 6D vectors ξ j,i and two choices for �. The first submodel

is � = 0.01[1, . . . , 1] ∈ R
62 a constant matrix; the second submodel is ��(x) =

0.01(x1, 0.1x1, 0, 0, 0, 0; 0.1x1, x1, 0.1x1, 0, 0, 0; 0, 0.1x1, x1, 0, 0, 0; 0, 0, 0, x2, 0.1x2, 0;
0, 0, 0, 0.1x2, x2, 0; 0, 0, 0, 0, 0, x3) for x ∈ G. e Koltchinskii et al. (2007) estimator to
the perturbed eigenvector fields v(M̃(X j )), j = 1, . . . , n. In all the simulations we use the
bandwidth hn = (n/β)1/6 and the standard 3D Gaussian kernel K .

Figure 4 demonstrates that both procedures approximate the true integral curve nicely.
Comparing themethodswith respect to covariance, our estimator hasmuch tighter confidence
ellipsoids than those for the estimator of Koltchinskii et al. (2007). The ratio of the Euclidean
norms of the covariance matricesCK andC is about 100 along the curve for both submodels.
Again, this is expected from the theoretical comparison of covariance expressions similar to
those done for the 2D example.

7.2 Comparison with Behrens et al. (2003) approach

We consider a popular probabilistic tractography approach by Behrens et al. (2003). This
approach uses wild bootstrap to obtain a sample of eigenvector directions at each voxel,
then applies Monte Carlo Markov chain (MCMC) sampling to those eigenvector direction
samples to generate a set of trajectory samples emanating from a given seed location. It is
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Fig. 4 The solid black curves with blue confidence ellipsoids correspond to the estimated integral curves
using our approach. The solid green curves with cyan confidence ellipsoids correspond to the estimated
integral curves using the method of Koltchinskii et al. (2007). The solid red curves are the true integral curves.
The initial point is (0.75, 0.5, 0.25). We use a 95 % confidence level to calculate the confidence ellipsoids.
Here m = 8, n = 113 = 1331, δ = 0.005, β = 0.1. a The matrix � is fixed. b The matrix � varies with
location. (Color figure online)

implemented in an open source package of programs known as the FMRIB diffusion toolbox.
We use two synthetic examples to illustrate its differences from our approach. The first is a
thin, curved trajectory that resembles the letter C. In the second example we mix the letter
C with a straight flat trajectory, thus producing a trajectory pattern shaped like the letter Y.
These two general patterns are commonly observed in real diffusionMRI scans of the human
brain: the corpus callosum is a major inter hemispheric white matter tract, many of whose
fibers are shaped like the letter C; and there are many examples of fiber tracts that converge,
diverge, or ”kiss,” thus leading to a Y-like splitting of trajectories.We show that in both cases,
our method provides better geometrical representations with theoretically well understood
statistical properties, using a fixed amount of computation.

FMRIB produces two main outputs: a set of fiber trajectories emanating from a seed loca-
tion, resulting from its MCMC sampling; and an occupancy image—an image representing
how many of those trajectories pass through each voxel in the space of the input image. Our
approach provides a different type of output: a mean trajectory and point wise covariance
matrices representing possible deviations from that mean. To be fair to FMRIB, we did not
wish to calculate a mean trajectory or pointwise covariances from their outputs, since this
step could introduce artifacts that were never intended by the authors of FMRIB. Instead,
we show our trajectory means and covariances side by side with their trajectory samples for
qualitative comparison. We also created p-value maps as introduced in Koltchinskii et al.
(2007), and compare those to the FMRIB occupancy images. More precisely, we calculate
the p-value of the test of the null hypothesis that a fiber starting at the initial point reaches
a point in the slice, using our connectivity tests as in Corollary 1. Then for all points in the
slice we visualize their corresponding p-values in color.

For the first example we have d = 3,G = [0, 1]3. We start with the unit vectors parallel
to (x2, x1, 0)∗, (−x1, x2, 0)∗, (0, 0, x3). Those serve as the eigenvectors of M(x) with the

corresponding eigenvalues (10, 2, 1) for locations in G satisfying |
√
x21 + x22 − 0.5| < 0.05

and |x3 − 0.5| < 0.05. We use the same orthogonal gradient encoding as in the previous
example, m = 1, and the independent normal vectors ξ j , j = 1, . . . , n with means 0 and
variances 0.01. We use a regular grid with 50 knots for x1 and x2 and 25 knots for x3. Thus
the sample size is n = 62,500.
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Fig. 5 C-template. a Projection of the eigenvector field on the slice z = 0.48.bP-valuemap for slice z = 0.48.
The initial point is (0.47, 0.01706, 0.48). Here δ = 0.02, β = 0.0001. c Slice z = 0.48. Visualization of how
many MCMC tracks terminated at each point. The order is 10−43. d Slice z = 0.52. Visualization of how
many MCMC tracks terminated at each point. The order is 10−41. e 400 out of 10,000 MCMC tracks. f Our
estimator together with pointwise 95 % confidence ellipsoids. (Color figure online)

Figure 5a shows the eigenvector field calculated at the grid points and projected on one
of two horizontal slices that contain the bundle of fibers. The initial point for the tracking
procedure is chosen in the first of the two slices. Figure 5b shows our p-value map. Figure 5c
and d provide visualizations of the FMRIBoccupancy images. The scale for the slice z = 0.52
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is 100 times higher than the scale for the slice z = 0.48 that contains the initial point. Figure 5e
shows 400 of the total of 10,000 MCMC tracks emanating from the initial point. Figure 5f
provides our estimated trajectory with 95 % confidence ellipsoids along it.

Most of the trajectory samples from FMRIB are short and are concentrated near the initial
point. They also deviate substantially outside the plane in which the C-shaped trajectory
was defined. The number of trajectory samples—10,000—is provided as a default parameter
setting by FMRIB, but there are no theoretically valid reasons to determine an optimal number
of samples. Meanwhile, our approach provides theoretically grounded visualizations of the
statistical uncertainty of our estimator that conform well to the general shape of the “C”
(Fig. 5b, f), and the uncertainty estimates were calculated using closed-form expressions.

To construct the second example we take the tensor from the previous example and mix
it with the tensor whose eigenvectors are parallel to (1, 1, 0)∗, (−1, 1, 0)∗ and (0, 0, 1)∗.
The eigenvalues are 10, 2, 1. This second tensor exists only for locations in G such that
|x1 − x2| < 0.05, x1 > 0.32, x2 > 0.32, |x3 − 0.5| < 0.05. We use the mixing weight
π = 0.5 for the locations where these tensors mix.

Figure 6 has the same sub-figures as Fig. 5. We again observe that MCMC trajectory
samples tend to be short and concentrated near the initial point. They trace out the letter C
much better than the remaining part of letterY. TheYpattern is almost non-existent on Fig. 6e,
where only one track out of 400 traces the diagonal. It seems to appear on Fig. 6c, while part
of the letter C disappears, but the scale is 1/100-th of the scale of Fig. 6d, where there is no Y
pattern present. On contrary, our procedure traces out the Y pattern completely but provides
very wide confidence ellipsoids for the diagonal part. This indicates high uncertainty of the
estimator in the diagonal part of the letter Y. The p-value map shows similar results, again
suggesting that our estimator provides superior geometric representation of the underlying
tensor field and the uncertainty of trajectories through it.

8 Application to real brain imaging data

Our method was applied to a DTI scan of an elderly individual who volunteered for
research at the UC Davis Alzheimer’s Disease Center. Imaging was performed at the UC
Davis Imaging Research Center on a 1.5T GE Signa Horizon LX Echospeed system.
The single-shot spin-echo echo planar imaging DTI sequence had acquisition parame-
ters including: TE: 94 ms, TR: 8000 ms, Flip angle: 90 degrees, Slice thickness: 5
mm, slice spacing: 0.0 mm, FOV: 22 cm × 22 cm, Matrix: 128 × 128, B-value: 1000
s/mm2. Each acquisition included collection of 2 images with no gradient applied and 4
diffusion-weighted images acquired along each of 6 gradient directions. The directions are
b1 = 2−1/2(1, 0, 1), b2 = 2−1/2(1, 0,−1), b3 = 2−1/2(0, 1, 1), b4 = 2−1/2(0,−1, 1),
b5 = 2−1/2(1, 1, 0), b6 = 2−1/2(−1, 1, 0). This is referred to as the oblique double gra-
dient encoding in the DTI literature. The dataset contains observations of Y on a regular
grid with 128 × 128 × 19 locations. The voxel dimensions are 1.875 × 1.875 × 5 mm
in the x, y and z directions, respectively. We scale the grid to G = [0, 1]2 × [0, 3/8].
The dataset has m = 4. The matrix B corresponding to the gradient directions is B =
−0.25(1, 0, 2, 0, 0, 1; 1, 0,−2, 0, 0, 1; 0, 0, 0, 1,−2, 1; 0, 0, 0, 1, 2, 1; 1,−2, 0, 1, 0, 0; 1,
2, 0, 1, 0, 0).

We used the standard 3D Gaussian kernel K , bandwidths hn = (n/β)−1/6, h̃n =
(n/β)−1/4 log n, ˜̃hn = (n/β)−1/5 log n with β = 0.0001. Reducing β did not change results
substantially, while increasing it produced very wide averaging windows so several tracts
were averaged together.
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Fig. 6 Y-template. Note that the Y pattern is almost non-existent on e, where only one track out of 400 traces
the diagonal. It seems to appear on c, while part of the letter C disappears, but the scale is 1/100-th of the
scale of d, where there is no Y pattern present. a Slice z = 0.48. The initial point is (0.47, 0.01706, 0.48).
Here N = 6, m = 1, n = 62,500 ; δ = 0.02, β = 0.0001. b P-value map for slice z = 0.48. The initial point
is (0.47, 0.01706, 0.48). Here δ = 0.02, β = 0.00005. c Slice z = 0.48. Visualization of how many MCMC
tracks terminated at each point. The order is 10−43. d Slice z = 0.52. Visualization of how many MCMC
tracks terminated at each point. The order is 10−41. e 400 out of 10,000 MCMC tracks. f Our estimator
together with pointwise 95 % confidence ellipsoids. (Color figure online)

First, for comparison we also estimated the fibers based on the noisy eigenvector field
calculated at grid points using the method of Koltchinskii et al. (2007). Part of the vector
field is shown in Fig. 7b. We also used Euler’s method and the same choice of the kernel and
bandwidths.
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Fig. 7 Comparison of our estimator with that of Koltchinskii et al. (2007) on a real DTI data set. a The solid
black curvewith blue confidence ellipsoids corresponds to the estimated integral curve using our approach. The
solid green curvewith cyan confidence ellipsoids corresponds to the estimated integral curve using the method
of Koltchinskii et al. (2007). We traced the fiber for 40 steps with δ = 0.005. We used a 95 % confidence
level to define the confidence ellipsoids. b The eigenvector field v(M̃(X j )), j = 1, . . . , n, is shown for the
region in a. c Several fibers are estimated using our procedure with 95 % confidence ellipsoids. d Several
fibers are estimated using the procedure of Koltchinskii et al. (2007) with 95 % confidence ellipsoids. (Color
figure online)

We chose initial points in the center of the corpus callosum, one of the major tracts of
white matter fibers in the brain. The corpus callosum fibers trace out U-shaped trajectories
that run from the left side of the brain to the right.

Figure 7a shows illustrations of the estimated integral curves overlaid onto a horizontal
slice of the DTI data. It demonstrates that our estimator keeps closer to the true integral
curve than the Koltchinskii et al. (2007) estimator. Moreover, the confidence ellipsoids are
wider for their estimator. Theirs are extended in the z direction. The Euclidean norm of the
covariance matrices for our estimator at the ends of the tract is on the order of 0.0007, while
it is 0.02 for Koltchinskii et al.’s (2007) estimator. A comparison of Fig. 7c and d suggests
that our estimators are closer to the true fibers while all of the Koltchinskii et al.’s (2007)
estimators drift away from the true U-shaped trajectory of the fiber. Choosing a smaller β to
shrink the averaging window does not change the overall performance of their estimator.

Second, for comparison we consider a popular tractography approach by Behrens et al.
(2003). Figure 8 has the same parts as Fig. 5. Upon its inspection we again observe that
MCMC tracks tend to be short and concentrated near the initial point. Also quite a lot of
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Fig. 8 Comparison of our approach with a probabilistic tractography approach due to Behrens et al. (2003).
The initial point is (0.47, 0.01706, 0.48). Here N = 6,m = 2, n = 311,296. a FA map for slice z = 9/19
is overlaid with the principle eigenvector field. b P-value map for the selected fiber in slice z = 9/19 is
constructed with δ = 0.02, β = 0.00005. c Slice z = 9/19. Visualization of how many MCMC tracks
terminated at each point. The order is 10−43. d Slice z = 10/19. Visualization of how many MCMC tracks
terminated at each point. The order is 10−41. e Slice z = 9/19. 400 out of 10,000 MCMC tracks. f Slice
z = 9/19. Our estimator together with pointwise 95 % confidence ellipsoids. Here δ = 0.02, β = 0.00005.
(Color figure online)
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them deviate in the z-direction. Note that scale is different for Fig. 8c and d. These MCMC
tracks do not trace out the underlying letter U on FA map. On the contrary, our procedure
traces out the letter U and it provides nice confidence ellipsoids that lay completely inside
the fiber. The p-value map shows similar results.

9 Discussion and conclusion

A great number of scientific analyses based on tracing axonal fibers through DTI data have
been published, many of which rely on probabilistic tractography to deal with the uncertainty
inherent to the fiber trajectories. Yet, the theoretical statistical properties of these probabilistic
tractography algorithms are not well understood, and they are computationally burdensome
due to the need for sampling from a high-dimensional distribution. This work addresses the
theoretical and computational problems by developing a rigorous statistical framework that
provides theoretically-grounded fiber trajectory estimates, along with closed-form solutions
for confidence regions.We use a nonparametric approach tomodel the tensor field, its leading
eigenvector field and the corresponding integral curve. We derive asymptotical theory for the
proposed estimator. Applications to synthetic and real human brain DTI data suggest that our
method provides realistic trajectory tracing with tighter confidence ellipsoids than a more
restrictive nonparametric approach. It also yields more intuitive geometric representations
and realistic output images than a popular probabilistic approach due to Behrens et al. (2003).

Besides its firmer theoretical foundations, the proposed method is also advantageous
over probabilistic tractography in terms of computational complexity. The proposed method
requires O(n3/(d+3)) operations to estimate the integral curve when a kernel with bounded
support is used, and O(n) operations for Gaussian or other kernels. It requires O(n2) opera-
tions for the calculation of asymptotical covariance, which is needed to construct confidence
ellipsoids. The constants in front of these O(·) terms are on the order of hundreds. In con-
trast, the estimator based on a probabilistic tractography approach due to Behrens et al.
(2003) requires O(nτn) operations, where τn is an average number of iterations needed for
MCMC to converge. To obtain ad hoc bootstrapped confidence regions, one needs O(nτn)

operations with an extremely large constant; there is no firm theoretical upper bound on τn
either. Behrens et al. (2003) used 20,000,000nτn iterations in their experiments. While in
principle, the number of MCMC iterations required for any individual data set may be lower
than this, in practice the number of iterations required is completely arbitrary. In our simula-
tion study our method took several minutes to run while the method of Behrens et al. (2003)
took hours. A more comprehensive and fair comparison of real-world computational com-
plexity between our method and probabilistic tractography methods such as that of Behrens
et al. would require a large-scale Monte Carlo study involving repeated imaging of the same
brain under the same conditions, followed by fiber tracing in each scan. For particular fiber
tracts of interest, the different tracing methods applied to the repeated scans would then pro-
vide empirical distributions of integral curves, their uncertainties, and their run times. These
distributions could be the basis for a fair comparison of the methods.

We showed that the one pre-existing method that provided theoretically rigorous trajec-
tory confidence bounds, by Koltchinskii et al. (2007), is a special case of ours and that
the asymptotical distribution of their estimator coincides with that of our estimator under
strong restrictions on our model. We argued that the assumptions required by their model
are too unrealistic for the method to be useful for DTI, and our experiments with real DTI
data supported this view. In these experiments, the estimator of Koltchinskii et al. (2007)
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had covariance matrices with larger norms along the curve, and thus it had looser confidence
ellipsoids. It also traced incorrect trajectories in regions with multiple fibers located in a close
proximity. These experiments suggest that the theoretical rigor of our approach is actually
relevant from the point of view of tract tracing applications.

Given that integral curve estimation becomes ill-conditioned at locations with multiple
viable leading eigenvector directions, we first perform a preprocessing step to identify such
locations, and if they are encountered during curve tracing, we begin separate integral curve
traces along each viable direction. The full set of estimated trajectories emanating from a
given point consists of the set of all these integral curve segments. Note that this does not
introduce much more computation than a probabilistic tractography approach, which can be
thought of as sampling trajectories over all such viable leading eigenvector directions. We
do not think it is difficult to extend this approach to greater numbers of possible leading
eigenvector directions; however, a key limitation of the current method is that uncertainty in
whether or not a location constitutes a branching point is not translated into uncertainty in the
tensors, eigenvectors, and integral curves. Instead, we apply a hard threshold to a branching
point test statistic and use it to classify all locations as either absolutely branching points,
or not. How to incorporate this branching point uncertainty into the model in a principled
way is unclear. Progress in this area will be required to insure that all relevant sources of
uncertainty are brought to bear on integral curve uncertainty.

In addition, it is unclear how this analysis extends to more elaborate mathematical rep-
resentations of the water diffusion directional distribution that are ascendant in the current
DTI literature. Some examples of these representations include diffusion tensors that are
higher than second order, spherical deconvolution models, and spherical wavelet models;
see Assemlal et al. (2011). To our knowledge, none of these models have been studied
from the standpoint of theoretically rigorous statistical error analysis. Extending the current
results to these novel diffusion representations will be an important next step for main-
taining theoretically-sound integral curve tracing as diffusion MRI technology continues to
advance.

Appendix: Proofs

Lemmas 1 and 2 are quite standard results. So the proofs are omitted.

Proof of Lemma 3

For any ε > 0 consider an event An(ε) := {supx∈Rd |M̂n(x) − M(x)| ≤ ε}. By Lemma 1,
P(An(ε)) → 1 as n → ∞. We have for any t ∈ [0, T ]

|X̂n(t) − x(t)| =
∣
∣
∣
∣

∫ t

0
[v(M̂n(X̂n(s))) − v(M(x(s)))]ds

∣
∣
∣
∣

≤
∫ t

0
|v(M(X̂n(s))) − v(M(x(s)))|ds + t sup

x∈Rd
|v(M̂n(x)) − v(M(x))|.

(8)

For a fixed tensor M0 we use Theorem 1 in Magnus (1985) to observe that λ(M) and
v(M) are infinitely continuously differentiable with respect to M in a neighborhood of M0

provided that λ(M0) is the simple eigenvalue of M0, and
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∂λ(M)

∂Mkl

∣
∣
∣
∣
M0

= (2 − δkl)vk(M0)vl(M0),

∂vp(M)

∂Mkl

∣
∣
∣
∣
M0

= (1 − δkl/2)[(λ(M0)Id − M0)
+
pkvl(M0)

+ (λ(M0)Id − M0)
+
plvk(M0)] for 1 ≤ k, l, p ≤ d, (9)

where A+ stands for Moore–Penrose inverse of A. Note that M(x) is a continuous function
of x on a compact set Ḡ with support in G, where it has the simple maximal eigenvalue
λ(M(x)). Then on the event An(ε) we can apply Theorem 1 in Magnus (1985) and obtain

sup
x∈Rd

|v(M̂n(x)) − v(M(x))| ≤ Lv sup
x∈Rd

|M̂n(x) − M(x)|

for some finite constant Lv . Moreover, due to local infinite differentiability of v, smoothness
of M(x), x ∈ G, and Ḡ being a compact set we have the following Lipschitz condition
|v(M(x1)) − v(M(x2))| ≤ LvM |x1 − x2| for all x1, x2 ∈ Ḡ and some finite constant LvM .
Then we can bound the expression in (8) on the event An(ε) as follows

|X̂n(t) − x(t)| ≤ T Lv sup
x∈Rd

|M̂n(x) − M(x)| + LvM

∫ t

0
|X̂n(s) − x(s)|ds

for all t ∈ [0, T ]. By Gronwall–Bellman inequality; see, e.g., Hille (1969), we obtain for all
t ∈ [0, T ] on the event An(ε)

|X̂n(t) − x(t)| ≤ T Lv sup
x∈Rd

|M̂n(x) − M(x)|eLvMt = oP (1) as n → ∞.

��
Proof of Lemma 4

Since M(x) is a symmetric matrix for all x ∈ G from condition (A1) and � j , j = 1, . . . , n,

are symmetric matrices by definition, by construction M̂n(x) is a symmetric matrix for all
x ∈ G.

As in proof of Lemma 3 define an event An(ε) := {supx∈Rd |M̂n(x) − M(x)| ≤ ε} for
every ε > 0. By Lemma 1, P(An(ε)) → 1 as n → ∞.

Let μ(M0) and u(M0) denote the minimal eigenvalue and the corresponding eigenvector
of a matrix M0. By Theorem 1 in Magnus (1985) the functions μ and u are infinitely dif-
ferentiable in a small neighborhood of M0, provided that μ(M0) is the simple eigenvalue.

Furthermore, ∂μ(M)
∂Mkl

∣
∣
∣
∣
M0

= (2 − δkl)uk(M0)ul(M0), 1 ≤ k, l ≤ d. Since μ(M(x)) > 0 for

all x ∈ G and Ḡ is a compact set, then on the event An(ε) the function μ(M̂n(x)) is positive
for all x ∈ G and μ(M̂n(x)) remains the simple minimal eigenvalue of M̂n by Theorem 1 in
Magnus (1985) and due to condition (A1) that all eigenvalues of M(x), x ∈ G, are simple.

��
Proof of Theorem 1

Step 1: Approximation For any ε > 0 consider an event Bn(ε) := {supt∈[0,T ] |X̂n(t) −
x(t)| ≤ ε}. By Lemma 3, P(Bn(ε)) → 1 as n → ∞. Following the notation and ideas
of the proof of Theorem 1 in Koltchinskii et al. (2007) we have
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X̂n(t) − x(t) =
∫ t

0
[v(M̂n(X̂n(s))) − v(M(x(s)))]ds

=
∫ t

0
∇v(M(x(s)))∇M(x(s))(X̂n(s) − x(s))ds

+
∫ t

0
∇v(M(x(s)))(M̂n(x(s)) − M(x(s)))ds + Rn(t), t ∈ [0, T ],

where the remainder is defined as

Rn(t) =
∫ t

0
[v(M(X̂n(s))) − v(M(x(s))) − ∇v(M(x(s)))∇M(x(s))(X̂n(s) − x(s))]ds

+
∫ t

0
[v(M̂n(X̂n(s))) − v(M(X̂n(s))) − ∇v(M(x(s)))(M̂n(x(s)) − M(x(s)))]ds

for all t ∈ [0, T ]. Note that due to local smoothness of v on the event Bn(ε) we have

v(M(X̂n(s))) − v(M(x(s))) − ∇v(M(x(s)))∇M(x(s))(X̂n(s) − x(s))

=
∫ 1

0

∫ 1

0
δ

〈

∇(∇v(M(xn,τ,δ(s)))∇M(xn,τ,δ(s)))(X̂n(s) − x(s)), X̂n(s) − x(s)

〉

dδdτ,

where xn,τ,δ(s) = τδ X̂n(s) + (1− τδ)x(s). Quite similarly, on the event An(ε) ∩ Bn(ε)

with An(ε) defined in the proof of Lemma 3, a straightforward derivation yields a similar
representation for the second term in Rn(t). Thus, we can bound the remainder Rn on
the event An(ε) ∩ Bn(ε) as

|Rn(t)| ≤ C1

∫ t

0
|X̂n(s) − x(s)|2ds + C2 sup

x∈Rd
|M̂n(x) − M(x)|

∫ t

0
|X̂n(s) − x(s)|ds

+C3 sup
x∈Rd

|M̂n(x) − M(x)|2 + C4 sup
x∈Rd

|∇ M̂n(x)−∇M(x)|
∫ t

0
|X̂n(s)−x(s)|ds

for all t ∈ [0, T ], whereC1,C2,C3,C4 are some finite positive constants. In other words,
using Lemmas 1–3

sup
t∈[0,T ]

|Rn(t)| = oP

( ∫ T

0
|X̂n(s) − x(s)|ds + sup

x∈Rd
|M̂n(x) − M(x)|2

)

.

Denote a d-dimensional random process

Zn(t) :=
∫ t

0
∇v(M(x(s)))∇M(x(s))Zn(s)ds

+
∫ t

0
∇v(M(x(s)))(M̂n(x(s)) − M(x(s)))ds, t ∈ [0, T ].

This process can also be written as

Zn(t) =
∫ t

0
U (t, s)∇v(M(x(s)))(M̂n(x(s)) − M(x(s)))ds, t ∈ [0, T ],

where U (t, s) is the Green’s function defined just before Theorem 1. The process
Zn(t), t ∈ [0, T ], approximates the process (X̂n − x)(t), t ∈ [0, T ]. Indeed, for any

123



Stat Inference Stoch Process (2016) 19:289–319 315

t ∈ [0, T ]

|X̂n(t) − x(t) − Zn(t)|
=

∣
∣
∣
∣

∫ t

0
∇v(M(x(s)))∇M(x(s))[X̂n(s) − x(s) − Zn(s)]ds + Rn(t)

∣
∣
∣
∣

≤
∫ t

0
|∇v(M(x(s)))∇M(x(s))||X̂n(s) − x(s) − Zn(s)|ds + sup

t∈[0,T ]
|Rn(t)|.

Then by Gronwall–Bellman inequality we obtain on the event An(ε) ∩ Bn(ε)

sup
t∈[0,T ]

|X̂n(t) − x(t) − Zn(t)|

≤ sup
t∈[0,T ]

|Rn(t)| sup
t∈[0,T ]

exp

{∫ t

0
|∇v(M(x(s)))∇M(x(s))|ds

}

≤ C sup
t∈[0,T ]

|Rn(t)|,

which yields

sup
t∈[0,T ]

|X̂n(t) − x(t) − Zn(t)| = oP

( ∫ T

0
|Zn(s)|ds + sup

x∈Rd
|M̂n(x) − M(x)|2

)

.

It will follow that
∫ T
0 |Zn(s)|ds = OP ((nhd−1

n )−1/2), which in combination with

Lemma 1 leads to supt∈[0,T ] |X̂n(t) − x(t) − Zn(t)| = oP ((nhd−1
n )−1/2).

Step 2:Mean and covariance of Zn Similar to Koltchinskii et al. (2007) define a d × d2-
tensor-valued function ft (s) = I[0,t](s)U (t, s)∇v(M(x(s))), for s ∈ R, t ∈ [0, T ].Note
that it belongs to L, the set of all Rd3 -valued bounded functions on R with support in
[0, T ], that are a.e. continuous in R. Furthermore, note that L is a linear space. Then we
can rewrite for t ∈ [0, T ]

Zn(t) =
∫

ft (s)(M̂n(x(s)) − M(x(s)))ds

= 1

nhdn

n∑

j=1

∫
ft (s)K ((x(s) − X j )/hn)ds(M(X j ) + � j ) −

∫
ft (s)M(x(s))ds.

We have for all t ∈ [0, T ] with o-term being uniform in t

EZn(t) = h−d
n

∫
ft (s)

∫
K ((x(s) − y)/hn)M(y)dyds −

∫
ft (s)M(x(s))ds

= −hn

∫
ft (s)∇M(x(s))

∫
uK (u)duds

+ 0.5h2n

∫
ft (s)

∫
K (u)〈∇2M(x(s))u, u〉duds + o(h2n).

Next consider the components of the covariancematrix. It ismore convenient to treat d×d
matrices as d0-vectors in the lengthy derivations below. To this end, for any t1, t2 ∈ [0, T ]
we have

123



316 Stat Inference Stoch Process (2016) 19:289–319

nh2dn Cov(Zn(t1), Zn(t2))

= Cov

( ∫
K ((x(s) − X1)/hn)U (t1, s)∇̃v(M(x(s)))H�1ds,

∫
K ((x(u) − X1)/hn)U (t2, s)∇̃v(M(x(u)))H�1du

)

+Cov

( ∫
K ((x(s) − X1)/hn)U (t1, s)∇̃v(M(x(s)))HM(X1)ds

∫
K ((x(u) − X1)/hn)U (t2, s)∇̃v(M(x(u)))HM(X1)du

)

=: nh2dn (I + I I ).

Then using two substitutions z = (x(s) − y)/hn and u = s + τhn , also utilizing
Lebesgue dominated convergence theorem [since

∫ |��|2(x)dx < ∞, ∇M and ∇v are
uniformly bounded everywhere,

∫
K 4(z)dz < ∞, and there exists � > 0 such that

| ∫ 1
0 v(M(x(s + δ(t − s))))dδ| > � for all s, t ∈ (0, T ), s �= t], we can rewrite

I = 1

nh2dn
EE

( ∫ ∫
K

(
x(s) − X1

hn

)

K

(
x(u) − X1

hn

)

U (t1, s)∇̃v(M(x(s)))

×H�1�
∗
1H ∇̃v(M(x(u)))∗U∗(t2, u)dsdu

∣
∣
∣
∣X1

)

= 1

nhd−1
n

∫ ∫ ∫
K (z)

×K

(

z + τ

∫ 1

0
v(M(x(s + τδhn)))dδ

)

U (t1, s)∇̃v(M(x(s)))H��(x(s) − zhn)

×H ∇̃v(M(x(s + τhn)))
∗U∗(t2, s + τhn)dsdτdz = 1 + o(1)

nhd−1
n∫

ψ(v(M(x(s))))U (t1, s)∇̃v(M(x(s)))H��(x(s))H ∇̃v(M(x(s)))∗U∗(t2, s)ds

with o-term being uniform in t . Quite similarly,

I I = 1

nhdn

∫ ∫ ∫
K (z)K (z + (x(u) − x(s))/hn)U (t1, s)∇̃v(M(x(s)))

× HM(x(s) − zhn)M∗(x(s) − zhn)H ∇̃v(M(x(u)))∗U∗(t2, u)dsdudz

− 1

n

( ∫ ∫
K (z)U (t1, s)∇̃v(M(x(s)))HM(x(s) − zhn)dsdz

)

×
( ∫ ∫

K (z)M∗(x(s) − zhn)H ∇̃v(M(x(u)))∗U∗(t2, u)dudz

)

= 1 + o(1)

nhd−1
n

∫
ψ(v(M(x(s))))U (t1, s)∇̃v(M(x(s)))HM(x(s))M∗(x(s))

× H ∇̃v(M(x(s)))∗U∗(t2, s)ds

with o-term being uniform in t , where we again used Lebesgue dominated convergence
theorem due to the same reasons as in the case of (I) and due to M(·) being uniformly
bounded everywhere.
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Thus, for all t1, t2 ∈ [0, T ] the covariance of Zn is

Cov(Zn(t1), Zn(t2)) = 1 + o(1)

nhd−1
n

∫
ψ(v(M(x(s))))U (t1, s)∇̃v(M(x(s)))

×H [��(x(s)) + M(x(s))M∗(x(s))]H ∇̃v(M(x(s)))∗U∗(t2, s)ds.

Step 3: Lyapunov’s condition and asymptotical equicontinuity Next we show that√
nhd−1

n (X̂n(t) − x(t)) is asymptotically normal for all t ∈ [0, T ] by checking Lya-
punov’s conditions of CLT. Let

η j =
∫

ft (s)K ((x(s) − X j )/hn)ds(M(X j ) + � j ), j ≥ 1, t ∈ [0, T ],

so that
√
nhd−1

n (Zn(t) − EZn(t)) = 1√
nhd+1

n

∑n
j=1(η j − Eη j ). Then

E|η j |4 ≤ Chd+3
n ×

∫ ∫ ∫
�(τ1, τ2, τ3)

( ∫
| ft (s)|4ds

)1/4( ∫
| ft (s + τ1hn)|4ds

)1/4

×
( ∫

| ft (s + τ2hn)|4ds
)1/4( ∫

| ft (s + τ3hn)|4ds
)1/4

dτ1dτ2dτ3

≤ Chd+3
n

∫
| ft (s)|4ds

∫ ∫ ∫
�4(τ1, τ2, τ3)dτ1dτ2dτ3, (10)

where the function � : R3 → R is defined as

�4(τ1, τ2, τ3) := sup
s1,s2,s3,s4∈[0,T ]

∫
K (z)K (z + τ1(x(s1) − x(s4))/(s1 − s4))

× K (z + τ1(x(s2) − x(s4))/(s2 − s4))K (z + τ1(x(s3) − x(s4))/(s3 − s4))dz.

It is integrable, since it is bounded and has a bounded support due to conditions (A3) and

(A7). Then E(

√
nhd−1

n (Zn(t) − EZn(t)))4 ≤ Cnhd+3
n

n2h2(d+1)
n

= C
nhd−1

n
→ 0 as n → ∞. By

Lyapunov’s condition of CLT we have the f.d.d. convergence of the stochastic processes√
nhd−1

n Zn(t), t ∈ [0, T ], and
√
nhd−1

n (X̂n(t) − x(t)), t ∈ [0, T ], to the Gaussian
process G(t), t ∈ [0, T ].
Finally, we need to check the asymptotic equicontinuity condition for the sequence of

processes
√
nhd−1

n (Zn(t) −EZn(t)), t ∈ [0, T ]. As in Koltchinskii et al. (2007) we use
the formula

E|
√
nhd−1

n (Zn(t) − EZn(t))|4 = 1

n4h4dn

[

0.5n(n − 1)

(

E|η − Eη|2
)2

+ nE|η − Eη|4
]

.

Similar to (10) we get E|η j |2 ≤ Chd+1
n

∫ | ft (s)|2ds
∫

�2(τ )dτ, where

�2(τ ) := sup
s1,s2∈[0,T ]

∫
K (z)K (z + τ(x(s1) − x(s2))/(s1 − s2))dz, τ ∈ R.

This function is integrable since it is bounded and has a bounded support due to conditions
(A3) and (A7). Then with a finite constant C

E|
√
nhd−1

n (Zn(t) − EZn(t))|4 ≤ C

[(∫
| ft (s)|2ds

)2

+ 1

nhd−1
n

∫
| ft (s)|4ds

]

,
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which we will apply to ft1 − ft2 instead of ft . Due to continuity of U , ∇v and M we
have

∫ | ft1(s) − ft2(s)|2ds ≤ C |t1 − t2| and
∫ | ft1(s) − ft2(s)|4ds ≤ C |t1 − t2| for all

t1,2 ∈ [0, T ], which yields

E|
√
nhd−1

n [(Zn(t1) − EZn(t1)) − (Zn(t2) − EZn(t2))]|4 ≤ C

[

|t1 − t2|2 + |t1 − t2|
nhd−1

n

]

.

The asymptotic equicontinuity follows by arguments in Billingsley (1999) as nhd−1
n →

∞. For more details see Koltchinskii et al. (2007). ��
Proof of Proposition

It follows from a more general result on the asymptotical joint distribution of eigenvalues of
M̂n(x) for a fixed point x ∈ G. To formulate it we need new notation λ1(A) > λ2(A) > · · · >

λd(A) for ordered eigenvalues of a symmetric positive definite matrix A. Let v(i)(A), i =
1, . . . , d, be the corresponding eigenvectors of A. With slight abuse of notation, let λ(A) be
the vector of all ordered eigenvalues of A.

Proposition 2 Suppose conditions (A1)–(A8) hold. Then for any fixed x ∈ G the difference√
nhdn(λ(M̂n(x)) − λ(M(x))) is asymptotically normal with mean 0 and the covariance

matrix with the i j -th entries

σλiλ j (x) =
∫

K 2(u)du�∗
vi

(x)H [M(x)M∗(x) + ��(x)]H�v j (x), 1 ≤ i, j ≤ d,

where �vi is defined in Proposition 1.

The proof is based on the standard asymptotical normality result for the kernel regression
estimator M̂n(x) at a fixed point x ∈ G, since � j , j = 1, . . . , n, are centered i.i.d. random
variables. Then we utilize the linearization with respect to the tensor of the eigenvalues based
on the first order Taylor expansion (9) in the proof of Lemma 3. A straightforward calculation
of asymptotical covariances completes the proof. ��

References

Assemlal H-E, Tschumperle D, Brun L, Siddiqi K (2011) Recent advances in diffusionMRImodeling: angular
and radial reconstruction. Med Image Anal 15:369–396

Bammer R, Holdsworth S, Veldhuis W, Skare S (2009) Newmethods in diffusion-weighted and diffusion
tensor imaging. Magn Reson Imaging Clin N Am 17:175–204

Basser P, Pajevic S (2000) Statistical artifacts in diffusiontensor MRI (DTI) caused by background noise.
Magn Reson Med 44:41–50

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DTI data. Magn
Reson Med 44:625–632

Basser P, Pierpaoli C (1998) A simplified method to measurethe diffusion tensor from seven MR images.
Magn Reson Med 39:928–934

Beaulieu C (2002) The basis of anisotropic water diffusion in thenervous system—a technical review. NMR
Biomed 15:435–455

Behrens T, Woolrich M, Jenkinson M, Johansen-Berg H, Nunes R, Clare S, Matthews P, Brady J, Smith S
(2003) Characterization and propagation of uncertainty indiffusion-weighted MR imaging. Magn Reson
Med 50:1077–1088

Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York
Chanraud S, Zahr N, Sullivan E, Pfefferbaum A (2010) MR diffusion tensor imaging: a window into white

matter integrity of the working brain. Neuropsychol Rev 20:209–225
Friman O, Farneback G, Westin C-F (2006) A Bayesian approach for stochastic white matter tractography.

IEEE Trans Med Imaging 25:965–978

123



Stat Inference Stoch Process (2016) 19:289–319 319

GelmanA, Carlin J, Stern H, RubinD (2004) Bayesian data analysis. Chapman&Hall/CRCTexts in Statistical
Science. Chapman & Hall/CRC, New York

Gudbjartsson H, Patz S (1995) The Rician distribution ofnoisy MRI data. Magn Reson Med 34:910–914
Hahn K, Prigarin S, Heim S, Hasan K (2006) Random noisein diffusion tensor imaging, its destructive impact

and somecorrections. In:Weickert J,HagenH (eds)Visualization andprocessing of tensor fields. Springer,
Berlin, pp 107–117

Hahn K, Prigarin S, Rodenacker K, Hasan K (2009) Denoising for diffusion tensor imaging with low signal
to noiseratios: method and Monte Carlo validation. Int J Biomath Biostat 1:63–81

Hille E (1969) Lectures on ordinary differential equations. Addison-Wesley, Reading
Jones D (2003) Determining and visualizing uncertainty inestimates of fiber orientation from diffusion tensor

MRI. Magn Reson Med 49:7–12
Kato T (1980) Perturbation theory for linear operators. Springer, New York
Koltchinskii V, Sakhanenko L, Cai S (2007) Integral curves of noisy vector fields and statistical problems in

diffusion tensor imaging: nonparametric kernel estimation and hypotheses testing. Ann Stat 35:1576–
1607

Koltchinskii V, Sakhanenko L (2009) Asymptotics of statistical estimators of integral curves. In: Houdre C,
Koltchinskii V, Mason D, Peligrad M (eds) High dimensional probability V: The Luminy Volume. IMS
Collections, pp 326–337

Lazar M, Alexander A (2005) Bootstrap white mattertractography (BOOT-TRAC). Neuroimage 24:524–532
Magnus J (1985) On differentiating eigenvalues and eigenvectors. Econom Theory 1:179–191
Mammen E (1992) When does Bootstrap work? Lecture Notes in Statistics. Springer, New York
Mukherjee P, Berman J, Chung S,HessC,HenryR (2008)Diffusion tensorMR imaging and fiber tractography:

theoretic underpinnings. Am J Neuroradiol 29:632–641
Mukherjee P, Chung S, Berman J,HessC,HenryR (2008)Diffusion tensorMR imaging and fiber tractography:

technical considerations. Am J Neuroradiol 29:843–852
Parker GJM, Alexander D (2003) Probabilistic Monte Carlo based mapping of cerebral connections utilizing

whole-brain crossing fiber information. In: Proceedings of IPMI’2003, pp 684–695
Sakhanenko L (2010) Lower bounds for accuracy of estimation in diffusion tensor imaging. Theory Probab

Appl 54:168–177
Sakhanenko L (2011) Global rate optimality in a model for diffusion tensor imaging. Theory Probab Appl

55:77–90
Sakhanenko L (2012) Numerical issues in estimation of integral curves from noisy diffusion tensor data. Stat

Probab Lett 82:1136–1144
Yuan Y, Zhu HT, Ibrahim J, Lin WL, Peterson BG (2008) A noteon bootstrapping uncertainty of diffusion

tensor parameters. IEEE Trans Med Imaging 27:1506–1514
Zhu H, Zhang H, Ibrahim J, Peterson B (2007) Statistical analysis of diffusion tensors in diffusion-weighted

magnetic resonance image data. J Am Stat Assoc 102:1081–1110
Zhu H, Li Y, Ibrahim I, Shi X, An H, Chen Y, Gao W, Lin W, Rowe D, Peterson B (2009) Regression models

for identifying noise sources in magnetic resonance images. J Am Stat Assoc 104:623–637

123


	Integral curves from noisy diffusion MRI data with closed-form uncertainty estimates
	Abstract
	1 Introduction
	2 Notation and framework
	3 Three-step estimation procedure
	4 Foundations for main results
	5 Main results
	5.1 Implementation
	5.2 Kernel smoothing bandwidth selection
	5.3 Modeling locations with multiple fiber directions

	6 Theoretical comparison of n with Koltchinskii et al. (2007) estimator
	7 Synthetic examples
	7.1 Comparison with Koltchinskii et al. (2007) approach
	7.1.1 Circular trajectories
	7.1.2 Nearly additive vector field noise

	7.2 Comparison with Behrens et al. (2003) approach

	8 Application to real brain imaging data
	9 Discussion and conclusion
	Appendix: Proofs
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Proposition

	References




