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Abstract A parameter estimation problem for a one-dimensional reflected Ornstein–
Uhlenbeck is considered. We assume that only the state process itself (not the local time
process) is observable and the observations are made only at discrete time instants. Strong
consistency and asymptotic normality are established. Our approach is of the method of
moments type and is based on the explicit form of the invariant density of the process. The
method is valid irrespective of the length of the time intervals between consecutive observa-
tions.
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1 Introduction

We consider the parameter estimation problem for a one-dimensional reflected Ornstein–
Uhlenbeck (ROU) process with infinitesimal drift −γ x and infinitesimal variance σ 2, where
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γ ∈ (0,∞) and σ ∈ (0,∞). The ROU behaves like a standard OU process in the interior
of its domain (0,∞). However, when it reaches the boundary zero, then the sample path
returns to the interior in a manner that the “pushing” force is minimal. Our main interest in
this model stems from the fact that the ROU process arises as the key approximating process
for queueing systems with reneging or balking customers [see Ward and Glynn (2003a, b,
2005) and the references therein]. In such cases, the drift parameter γ carries the physical
meaning of customers’ reneging (or, balking) rate from the system. Other application areas
of the ROU process include financial engineering and mathematical biology [see, e.g., Attia
(1991), Bo et al. (2011a, 2010), Ricciardi (1985)].

Given a filtered probability space Λ := (Ω,F, (Ft )t≥0,P) with the filtration (Ft )t≥0

satisfying the usual conditions, we define the ROU process {X (t) : t ≥ 0} reflected at the
boundary zero as follows. Let {X (t) : t ≥ 0} be the strong solution [whose existence is
guaranteed by an extension of the results of Lions and Sznitman (1984)] to the stochastic
differential equation:

dX (t) = −γ X (t)dt + σdB(t) + dL(t),
X (t) ≥ 0 for all t ≥ 0,

}
(1)

where γ ∈ (0,∞), σ ∈ (0,∞) and B = (B(t))t≥0 is a one-dimensional standard Brownian
motion on Λ. Here, L = (L(t))t≥0 is the minimal non-decreasing and non-negative process,
which makes the process X (t) ≥ 0 for all t ≥ 0. The process L increases only when X hits
the boundary zero, so that ∫

[0,∞)

I (X (t) > 0)dL(t) = 0, (2)

where I (·) is the indicator function. It is often the case that the reflecting barrier is assumed
to be zero in applications to queueing system, storage model, engineering, finance, etc. This
is mainly due to the physical restriction of the state processes such as queue-length, inventory
level, content process, stock prices and interest rates, which take non-negative values. We
refer the reader to Harrison (1985) and Whitt (2002) for more details on reflected stochastic
processes and their broad applications.

Our interest lies in the statistical inference for the ROU process defined in (1) and (2).
More specifically, we would like to estimate the unknown drift parameter γ ∈ (0,∞) in
the Eq. (1) based on discrete observations of the state process {X (t)}t≥0. Fix a time interval
h > 0. We assume that {X (kh) : 1 ≤ k ≤ n} are known. The recent papers Bo et al. (2011b),
Lee et al. (2012) studied the maximum likelihood estimator (MLE) and the sequential MLE
for the drift parameter γ , respectively, based on the continuous time observations throughout
a (fixed or random) time interval [0, T ]. Moreover, they assume that the local time process
L = {L(t)}t≥0 is also observable. However, this means that the observer has the complete
information on the system. It is evident that one often encounters practical difficulties to
obtain a complete continuous observation of the sample path, and only the discrete time
observations are possible.

In this paper, we overcome the afore-mentioned difficulties by assuming that only the state
process X = {X (t)}t≥0 (not the local time process L) is observable and only at discrete time
instants. Our approach is based on the explicit form of the invariant density of the process
and the method of moment type estimators together with the ergodic theorem. Hence, we
bypass the obstacles associated with the transition densities of X which are usually unknown
except in very special cases, or oftentimes computationally cumbersome to handle.

One of the note-worthy advantages is that the method is valid irrespective of the time
between consecutive observations h, and hence we do not require h go to 0 [see a recent work
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in the fractional Brownian motion case without reflection Hu and Song (2013)]. That means
one does not need very frequent observations. Our method is, therefore, widely applicable in
many practical situations involving models with ergodic diffusion processes (see comments
in Sect. 5 for more details). However, we mention that our proposed approach does not allow
to estimate γ > 0 andσ > 0 simultaneously (only γ but notσ 2). This is due to some technical
reasons (see Remark 1) presented in the expression of the invariant density of the process.
This is sufficient when σ 2 is known. However, if σ 2 is unknown, we need to assume the data
is of high frequency type. In this case, σ 2 can be estimated through a more conventional way
(see Remark 6 for more details).

The remainder of the paper is organized as follows. In Sect. 2, we introduce the unique
invariant density and prove an ergodic theorem, which is the crucial basis of the main results.
We present the method of moment estimator and the main theoretical results in Theorems 1
and 2. Then in Sect. 3, we extend our method to the more general cases in which the multiple
parameters are present and we try to jointly estimate them. Section 4 is devoted to the various
numerical studies of the estimator. Section 5 concludes with some discussion and remarks
on the further work.

2 Strong consistency and asymptotic normality

We shall use a result of Ward and Glynn (2003b) [see also Linetsky (2005)]. It can be proved
that the process {X (t)}t≥0 is ergodic (see Lemma 1 below) and the unique invariant density
of {X (t)}t≥0 is given [Ward and Glynn (2003b), Linetsky (2005)] by

p(x) = 2

√
2γ

σ 2 φ

(√
2γ

σ 2 x

)
, x ∈ [0,∞), (3)

where φ(u) = (2π)−1/2e− u2
2 is the (standard) Gaussian density function. The following

result is based on basic stability theories of Markov processes and is crucial in our approach
of constructing estimators.

Lemma 1 The discretely observed process {X (kh) : k ≥ 0} is ergodic, namely, the following
mean ergodic theorem holds: For any x ∈ S := [0,∞) and any f ∈ L1(S,B(S)),

lim
n→∞

1

n

n∑
k=1

f (X (kh)) = E [ f (X (∞))] =
∫ ∞

0
f (x)p(x)dx a.s. [Px ].

Proof The continuous time process {X (t) : t ≥ 0} and its h-skeleton {X (kh) : k ≥ 0} share
the same invariance measure π on S: Let Pt (x, A) := Ex [X (t) ∈ A] and (Pt (x, A) : x ∈
S, A ∈ B(S)) be the transition probability kernel of X . Then we have

||Pt (x, ·) − π{·}|| ≤ ||Pkh(x, ·) − π{·}|| ≤ ||Pt+h(x, ·) − π{·}||,
whenever t ≤ kh ≤ t + h for some h > 0. Therefore, it suffices to show that X := {X (t) :
t ≥ 0} is bounded in probability on average and is a T -process [cf. Meyn and Tweedie
(1993)]. Then the desired conclusion will follow from Theorem 8.1(i) of Meyn and Tweedie
(1993). We note that theMarkov process X is Feller and λ-irreducible, where λ is a Lebesgue
measure on S [see, e.g., Lemma 5.7 of Budhiraja and Lee (2007)]. Also, the cited lemma
yields that the support of the maximal irreducibility measure for X is all of S. Thus we have
from Theorem 6.2.9 of Meyn and Tweedie (2009) that X is a T -process. Then, owing to
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Theorem 3.2(ii) of Meyn and Tweedie (1993) we conclude that X is bounded in probability
on average since X is a positive Harris recurrent process. ��

Recall the invariant density p(x) in (3). After some algebraic computations, we obtain
the following simple formula for the stationary moment: For all η > −1, η 	= 0,

E|X (∞)|η =
∫ ∞

0
xη p(x)dx = Γ

(
η + 1

2

)
ση

√
π

γ −η/2. (4)

Hence, a natural method of moment estimator of γ is given by

γ̂η,n := (Γ ((η + 1)/2))2/η σ
2

π1/η

(
1

1
n

∑n
k=1 |X (kh)|η

)2/η

(5)

for an arbitrary h > 0 and any η > −1, η 	= 0. [Note that the term
∑n

k=1 |X (kh)|η in the
denominator is positive almost surely; cf. Appendix of Budhiraja and Lee (2007)]. Here,
Γ (·) denotes the Gamma function. It is worthy to note that when η = 1, we have

γ̂n = γ̂1,n = σ 2

π

(
1

1
n

∑n
k=1 |X (kh)|

)2

. (6)

The following theorem shows the strong consistency of the estimators γ̂η,n of γ .

Theorem 1 Fix any η > −1, η 	= 0 and any h > 0. As n → ∞, γ̂η,n → γ almost surely.

Proof This is an immediate consequence of the ergodic theorem in Lemma 1 by setting
f (x) = |x |η. ��
Remark 1 Notice that, in the above approach, we cannot estimate γ > 0 and σ > 0 simul-
taneously. This is because the invariant density p(x) in (3) is a function of γ

σ 2 . We can use
p(x) to determine only γ

σ 2 .

Remark 2 We note the persistent bias presence in the estimator γ̂n = γ̂1,n . The unconditional
bias of γ̂n is given by E[γ̂n −γ ]. This will not in general be equal to zero because of Jensen’s
inequality. The nonlinear transformation g(x) = σ 2

π

( 1
x

)2
in (6) of the sample mean is a

convex function, and it follows immediately from the Jensen’s inequality that its bias is
positive. However, the unconditional bias of γ̂n can be approximated using second order
Taylor series expansion for γ̂n around γ , which yields

E[γ̂n − γ ] ≈ 1

2
g′′(EX (∞))E

(
1

n

n∑
k=1

|X (kh)| − EX (∞)

)2

.

In practice, the first factor above g′′(EX (∞)) can be approximated by plugging in the sample
mean g′′ ( 1

n

∑n
k=1 X (kh)

)
due to an ergodic theorem, and the second factor by the empirical

variance of the sample mean. Therefore, one could use the following estimate as the bias
correction term in practice:

σ 2

π
× 3( 1

n

∑n
k=1 |X (kh)|)4 × V̂ar

(
1

n

n∑
k=1

|X (kh)|
)

.

Next, we establish the central limit theorem.
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Theorem 2 As n → ∞, √
n(γ̂η,n − γ ) ⇒ N (0, �η) (7)

where �η is a nonnegative constant.

Proof Only the case η = 1 will be treated here. The extension to general η > −1 is
accomplished by a straightforward computation; it only increases the notational complexity.
We notice that {X (kh) : k ≥ 0} is a positive Harris chain with invariant probability π

with density p(x) (recall Lemma 1). Furthermore, it can be shown that {X (kh) : k ≥ 0}
is V -uniformly ergodic with a function V that grows exponentially [see Corollary 5.10 of
Budhiraja and Lee (2007)], i.e., there exist ρ ∈ (0, 1) and D ∈ (0,∞) such that for all
x ∈ (0,∞),

||Pn(x, ·) − π ||V ≤ DV (x)ρn, (8)

where Pn(x, A) := Pnh(x, A) := Px (X (nh) ∈ A) is an n-step transition probability kernel
of the chain {X (kh) : k ≥ 0}. (The positive constants D and ρ above depend on the parameter
γ .) Therefore, the constant

σ̄ 2 := Varπ [X (0)] + 2
∞∑
k=1

Covπ (X (0), X (kh))

is well defined, non-negative and finite, and coincides with the asymptotic variance in

√
n

(
1

n

n∑
k=1

X (kh) − EX (∞)

)
⇒ N

(
0, σ̄ 2) (9)

fromTheorem17.0.1(ii) ofMeyn andTweedie (2009). Letting g(x) = σ 2

π

( 1
x

)2
, the transform

in (6), we get from the delta-method that
√
n(γ̂n − γ ) ⇒ N (0,Σ1) as n → ∞, where the

variance Σ1 = σ̄ 2(g′(E(X (∞))))2. [Note that g′(E(X (∞))) exists and is non-zero valued

because E(X (∞)) is strictly positive]. From (4), it is explicitly given by Σ1 = σ̄ 2 4πγ 3

σ 2 . ��
Remark 3 For the non-ergodic (γ < 0) and non-stationary (γ = 0) cases, our methods do
not apply since it is based upon ergodic theorem and explicit form of a stationary density of
the process. As a related work, the paper Bo et al. (2011b) deals with the ergodic case (i.e.,
γ > 0) as well and establishes similar consistency and asymptotic normality for an ordinary
MLE based on the continuous time observations. In contrast, the sequential estimations of
Lee et al. (2012) do not need ergodicity of the process and their sequential MLE exhibits
unbiasedness and exact normality for all γ ∈ (−∞,∞).

Remark 4 At the end of the preceding proof, an asymptotic variance in the CLT is given as

Σ1 = σ̄ 2 4πγ 3

σ 2 , where σ̄ 2 = Varπ [X (0)]+ 2
∑∞

k=1 Covπ (X (0), X (kh)) also depends on the
parameter γ > 0. When γ > 0 is small, the process (Xt ) is more unstable, and therefore the
terms γ 3 and σ̄ 2 compete with each other in Σ1 as γ gets smaller. Our numerical study in
Sect. 4 indicates that the estimator actually performs better (in terms of mean squared error)
when γ > 0 is smaller; see Fig. 1 (when γ = 0.5) and Fig. 2 (when γ = 0.05).

In general, computation or estimation of the asymptotic variance σ̄ 2 is challenging and
requires specialized techniques. We provide below a possible method of evaluating it. If the
process is stationary, namely, if X (0)has the invariantmeasureπ , then σ̄ 2 maybe computed in
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Fig. 1 MSE of γ̂η,n against η (when γ = 0.5)
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Fig. 2 MSE of γ̂η,n against η (when γ = 0.05)

the following way.We denote 〈 f, g〉 = ∫
[0,∞)

f (x)g(x)dx and Pkhg(X (0)) = E (g(X (kh)).
We denote g(x) = x . Then

σ̄ 2 = Varπ [X (0)] + 2
∞∑
k=1

Covπ (X (0), X (kh))

= Var[X (∞)] + 2
∞∑
k=1

[E (X (kh)X (0)) − E (X (kh))E (X (0))]

= Var[X (∞)] + 2
∞∑
k=1

[E (Pkhg(X (0))X (0)) − E (Pkhg(X (0)))E (X (0))]
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= Var[X (∞)] + 2〈pg,
∞∑
k=1

(Pkhg − 〈p, Pkhg〉)〉

=
∫ ∞

0

(
x − σ√

πγ

)2

p(x)dx + 2〈pg, f 〉

= σ 2

γ

(
1

2
− 1

π

)
+ 2〈pg, f 〉 , (10)

where

f :=
∞∑
k=1

(Pkhg − 〈p, Pkhg〉).

The above defined f satisfies the following two properties. First, it is easy to verify that

〈p, f 〉 =
∫ ∞

0
p(x) f (x)dx = 0. (11)

Second, if we apply I − Ph to the equation defined by f , then we have

(I − Ph) f = Phg, and hence f = (I − Ph)
−1g. (12)

We note that there is a method for evaluating the transition probability function operator Ph
[and (I − Ph)−1] based on the results in Linetsky (2005). More precisely, one can employ a
useful eigenfunction expansion for the transition density of the reflected process X established
in Section 5.2 in Linetsky (2005). We refer the reader to pages 450–451 therein for more
details about the eigenfunction and eigenvalue computations using the Hermite functions.
Thus the asymptotic variance σ̄ 2 can be computed by (10) with f being given by (11) and
(12).

3 Extension to multiple-parameter case

The method in the previous section is simple, yet powerful; it can be extended to the more
general cases in which the multiple parameters are present. We consider the following more
general ROU model:

dX (t) = (α − γ X (t))dt + σdB(t) + dL(t), (13)

where L = (L(t) : t ≥ 0) is the minimal nondecreasing process which makes X (t) ≥ 0 for
all t ≥ 0. In the above model, σ > 0 is known and the parameters α > 0 and γ > 0 are
deterministic but unknown. Our goal is to jointly estimate parameters α and γ .

It can be shown that the process {X (t)}t≥0 in (13), as well as its discrete time h-skeleton
process, is (V -uniformly) ergodic (recall Lemma 1 and see the proof of Theorem 4 below)
and the unique invariant density of X (t) is now given [Ward and Glynn (2003b), Linetsky
(2005)] by

p(x) =
√
2γ

σ 2

φ

(√
2γ
σ 2

(
x − α

γ

))

1 − Φ
(
−

√
2α2

γ σ 2

) , x ∈ [0,∞), (14)

where φ(u) = (2π)−1/2e− u2
2 and Φ(y) = ∫ y

−∞ φ(u)du are the Gaussian density and the
error function, respectively. Notice that γ

σ 2 behaves as a single factor in the above expression
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and therefore we are unable to estimate γ and σ 2 simultaneously using p(x) alone, as noted
in Remark 1. Henceforth, we shall assume that σ > 0 is known; however, when the data is
of high frequency (i.e., h → 0), one can then estimate the parameter σ 2 (see Remark 6).

We shall now construct our estimators. For u ∈ R, denoting g(u) = 1 − Φ(−
√

2α2

γ σ 2 −√
σ 2

2γ u), we can obtain the following stationary moments from the Maclaurin series of the

m.g.f. EeuX (∞):

EX (∞) = α

γ
+ 1

g(0)
φ

⎛
⎝−

√
2α2

γ σ 2

⎞
⎠

√
σ 2

2γ
, (15)

1

2
EX (∞)2 = σ 2

4γ
+ α2

2γ 2 + 1

g(0)
φ

⎛
⎝−

√
2α2

γ σ 2

⎞
⎠

√
σ 2

2γ

(
1

2

α

γ

)
. (16)

Motivated from the above expressions, we construct the following equations for the esti-
mators based on the observation process {X (kh)}k≥1:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

n

n∑
k=1

X (kh) ≈ α

γ
+ 1

g(0)
φ

⎛
⎝−

√
2α2

γ σ 2

⎞
⎠

√
σ 2

2γ
,

1

2n

n∑
k=1

X (kh)2 ≈ σ 2

4γ
+ α2

2γ 2 + 1

g(0)
φ

⎛
⎝−

√
2α2

γ σ 2

⎞
⎠

√
σ 2

2γ

(
1

2

α

γ

)
.

(17)

Denote the terms on the left side by Ti,n, i = 1, 2. To obtain the estimators for α and γ ,
we set (17) to identities. On the right hand side of (17) we make the substitutions x = α

γ

and y =
√

2α2

γ σ 2 . Thus we can get the estimators x̂n = α̂n
γ̂n

and ŷn =
√

2α̂2
n

γ̂n σ̂ 2
n
by solving the

following equations ⎧⎪⎪⎨
⎪⎪⎩
T1,n = x + φ(−y)

1 − Φ(−y)

x

y
,

T2,n = 1

2

[
x2 + x2

y2

]
+ φ(−y)

1 − Φ(−y)

x2

2y
.

(18)

Inwhat followswe intend to obtain the estimators x̂n = α̂n
γ̂n

and ŷn =
√

2α̂2
n

γ̂nσ 2 by using (18).

We need to show that this system of two equations is solvable. Denote the right hand sides
of (18) by g1(x, y) and g2(x, y), respectively. Let A = φ(−y)

1−Φ(−y) and B = −1 + A 1
y − 1

y2
.

Then the Jacobian matrix J of (g1, g2) is given by⎛
⎜⎜⎝
1 + A

y
, x AB

x + x

y2
+ A

x

y
, − x2

y3
+ x2

2
AB

⎞
⎟⎟⎠ . (19)

The determinant of J is

det(J ) = − x2

y3
− x2AB

2
− x2A2B

2y
− Ax2

y4
− x2AB

y2

= − x2

2y3
(
2 − Ay3 − 3Ay + A3y + A2) .

123



Stat Inference Stoch Process (2015) 18:279–291 287

We claim that det(J ) 	= 0 for all x, y > 0. To this end, it suffices to show that 2−Ay3−3Ay >

0 for all y > 0.Note that 1−Φ(−y) = 1
2 +∫ y

0 φ(x)dx in A and then it is equivalent to show
F(y) := 1 + 2

∫ y
0 φ(x)dx − φ(y)(y3 + 3y) > 0. However, F ′(y) = φ(y)

(
y4 − 1

) = 0
implies that y = 1 is the only critical point on (0,∞) and sincewehave F ′′(1) > 0, F(1) > 0,
we can conclude that F(y) > 0 for y ∈ (0,∞).Therefore, from the inverse function theorem,
there exists a continuous inverse function h = (h1, h2) of (g1, g2).

Recall that from the ergodic theorem, we have Ti,n → gi (x, y), i = 1, 2 almost surely.
Since h = (h1, h2) is a continuous function, the estimators defined by

x̂n := h1(T1,n, T2,n), ŷn := h2(T1,n, T2,n) (20)

will converge almost surely to the parameters

x = h1(g1(x, y), g2(x, y)) = α

γ
, y = h2(g1(x, y), g2(x, y)) =

√
2α2

γ σ 2 ,

respectively, as n tends to infinity. This implies the following result.

Theorem 3 The estimators defined by

α̂n := σ 2 ŷ2n
2x̂n

, γ̂n := σ 2 ŷ2n
2x̂2n

, (21)

where x̂n and ŷn are defined by Eq. (20), are strongly consistent for the parameters (α, γ ).

In contrast to the single parameter case, the estimators α̂n and γ̂n have only implicit expres-
sions (via the inverse functions h1 and h2), and hence, bias correction terms are difficult
to obtain in this case. However, it is not difficult to argue that h1 and h2 are continuously
differentiable. Therefore, similar to Theorem 2, we establish the following CLT for the vector
estimator (α̂n, γ̂n).

Theorem 4 As n → ∞,

√
n

(
(α̂n, γ̂n)

T − (α, γ )T
)

⇒ N (0,Σ)

for some covariance matrix Σ , and its explicit expression is provided in (26) below.

Proof From Cramér-Wold device, it is sufficient to establish the following one-dimensional
CLT: for all (a1, a2) ∈ R

2,
√
n(a1α̂n +a2γ̂n) converges in distribution to a univariate normal

random variable. Then, since h1 and h2 are continuously differentiable, it is enough to
show the following univariate CLT holds [cf. Theorem 4.1 of van der Vaart (1998)]: for
all (a1, a2) ∈ R

2,
√
n(a1T1,n + a2T2,n) converges in distribution to some normal random

variable. This result readily follows from an application of the CLT for V -uniformly ergodic
Markov chains [cf. Chapter 17 of Meyn and Tweedie (2009)]. More precisely, Lemma 5.9
and Corollary 5.10 of Budhiraja and Lee (2007) establish the V -uniform ergodicity for the
process {X (kh) : k ≥ 0}, where V is an exponentially growing Lyapunov function. (Indeed,
the key stability Condition 5.5 of Budhiraja and Lee (2007) is satisfied with δ = α and taking
A = [0, 2α

γ
] therein). For x ∈ [0,∞) and any (a1, a2) ∈ R

2, we let g(x) = a1x + a2
2 x

2.
Then,

√
n(a1T1,n + a2T2,n) = 1√

n

n∑
k=1

g(X (kh)) =: 1√
n
Sn(g),

123



288 Stat Inference Stoch Process (2015) 18:279–291

and also g2 is π-integrable [where π has a density p(·) in (14)]. An application of Theorem
17.3.6 ofMeyn and Tweedie (2009) yields the desired univariate CLT. For a related functional
CLT, we refer the reader to Theorem 4.4 of Glynn and Meyn (1996) for general V -uniform
Markov processes and, also Corollary 5.11(7) of Budhiraja and Lee (2007) for a wide class
of reflected diffusion processes.

To obtain an explicit expression for the covariance matrix Σ , we (i) use the bivariate CLT
for (T1,n, T2,n)T , established as above, and then (ii) apply the bivariate delta method. From
now on, let π denote the stationary distribution of the process, namely, X (∞) ∼ π . The
multivariate Markov chain CLT [see, e.g., Section 1.8.1 in Brooks et al. (2011)] says that, as
n → ∞,

√
n

(
(T1,n, T2,n)

T −
(
EX (∞),

1

2
EX (∞)2

)T
)

⇒ N (0, Σ̄). (22)

The asymptotic covariance matrix Σ̄ above is given by

Σ̄ := Varπ [F(X (0))] + 2
∞∑
k=1

Covπ (F(X (0)), F(X (kh))), (23)

where, with a slight abuse of notation, Varπ [F(X (0))] denotes the 2 × 2 matrix with the
(i, j)-th entry Covπ {Fi (X (0)), Fj (X (0))}(i, j ∈ {1, 2}) and F1(x) := x, F2(x) := x2/2.
Similarly, Covπ (F(X (0)), F(X (kh))) denotes the matrix with the (i, j)-th component
Covπ {Fi (X (0)), Fj (X (kh))} for i, j ∈ {1, 2}.

Next, we invoke the bivariate delta method. Recalling the estimators defined by (20) and
(21), we define two maps

h : (x1, x2) �→ (h1(x1, x2), h2(x1, x2)) , � : (x1, x2) �→
(

σ 2x22
2x1

,
σ 2x22
2x21

)
.

Then, denoting Θ := (
EX (∞), 1

2EX (∞)2
)
[whose formulas are given in (15)–(16)], we

have
� ◦ h(T1,n, T2,n) = (α̂n, γ̂n) and � ◦ h(Θ) = (α, γ ). (24)

An application of bivariate delta method [see Theorem 3.1 of van der Vaart (1998)] to (22)
yields that as n → ∞

√
n

(
h(T1,n, T2,n)

T − h(Θ)T
)

⇒ N
(
0, Σ̃

)
with Σ̃ = ∇h(Θ)Σ̄∇h(Θ)T , (25)

where ∇h(Θ) denotes the Jacobian matrix of h evaluated at Θ . We note that sufficient
conditions of themultivariate deltamethod [Theorem3.1 of vanderVaart (1998)] are justified;
all partial derivatives ∂h j (x)/∂xi exist for x in a neighborhood of Θ (note that Θi > 0, i =
1, 2) and are continuous at Θ , which can be checked from the inverse of the Jacobian matrix
J of g = (g1, g2) (i.e., an inverse map of h) displayed in (19) and its determinant. (Clearly,
∇h is non-singular at Θ .) Lastly, applying the bivariate delta method once more to (25), we
have as n → ∞
√
n

(
�(h(T1,n, T2,n))

T − �(h(Θ))T
)

⇒ N (0,Σ) with Σ = ∇�(h(Θ))Σ̃∇�(h(Θ))T .

(26)
Again, this delta method is justified because a direct computation shows that all partial
derivatives ∂� j (x)/∂xi exist for x in a neighborhood of h(Θ) and are continuous at h(Θ),
and clearly∇� is non-singular at that point. Combining (24) and (26), we establish the desired
result. ��
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Remark 5 It does not seem to be possible to derive the explicit formula for the matrix Σ̄ in
(23). As a remedy, one can estimate it in the following way: (Step 1) Carry out parameter
estimations, i.e., compute (α̂n, γ̂n). (Step 2) Using these estimates, simulate the independent
p copies of the process X with the initial distribution being π (recall its density function (of
truncated normal random variable) is given in (14)). Denote them by X̃m,m = 1, . . . , p.
(Step 3) From those Monte-Carlo samples, estimate the expectation appearing in the series
of (23) via corresponding Monte-Carlo average: for instance, for large p, we can estimate

Eπ [Fi (X (0))Fj (X (kh))] ≈ 1

p

p∑
m=1

Fi (X̃m(0))Fj (X̃m(kh)).

Alternatively, one might also use the batch mean method [see Section 1.10 of Brooks et al.
(2011) and the references therein] using long-time simulation (instead of many independent
p copies as above). Basically, it divides the output X (h), . . . , X (nh) of a long simulation
run into a number of (almost stationary) batches and uses the sample means of these batches
(i.e., batch means) to approximate the steady state mean or variance.

Remark 6 The case when σ > 0 is unknown: As we pointed out, when we fix the time
between two consecutive observations h > 0 it is hard to simultaneously estimate σ 2 and
γ by using our approach. However, if the data is of high frequency (which means h → 0),
then we can use the usual approach to estimate σ 2. More precisely, (assuming α = 0 for
simplicity of presentation) let

σ̂ 2
n := 1

T

n−1∑
k=0

(
X(k+1)h − Xkh

)2

= 1

T

n−1∑
k=0

(
−γ

∫ (k+1)h

kh
Xsds + σ

(
B(k+1)h − Bkh

) + (
L(k+1)h − Lkh

))2

,

where h = T/n for any fixed T > 0. Then, it is easy to show that as n → ∞, σ̂ 2
n converges

to σ 2 in L2 and therefore in probability. This is essentially due to the fact that the local time
process (Lt )t≥0 is non-decreasing and thus it is of bounded variation. Hence, the quadratic
variation of (Lt ) as well as other cross-product terms in the summand above vanish over any
interval [0, T ] as n → ∞ (i.e., h → 0).

4 Numerical results

We examine the numerical behavior of the proposed estimator γ̂η,n in (5). For a simulation
of the ROU, we adopt the numerical scheme presented in Lépingle (1995), which is known
to yield the same rate of convergence as the usual Euler-Maruyama scheme. Denote the time
between each discretization step by h > 0 and we generate N = 1, 000 Monte Carlo simu-
lations of the sample paths with h = 0.01 and n = 100, 000 under the setting γ = 0.5 (for
Table 1; Fig. 1) and σ = 1. For Fig. 2, γ is set to be 0.05 while other parameters are kept the
same.

Table 1 shows the tradeoff between bias and variance for estimators γ̂η,n with a range of
η values. Although the case with η = −0.5 provides a legitimate estimator, its empirical
performance is not satisfactory in practice. The estimator is biased downward for a choice
of lower moment and as the moment η increases, the bias goes up. Magnitude of bias is
minimized at η = 4. The variance tends to increase as η increases. The empirical MSE
(mean squared error) of the estimator is minimized at η = 2 as shown in Fig. 1. Based on
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Table 1 Bias, variance and MSE of the estimator γ̂η,n

η −0.5 1 2 3 4 5 6 7

Bias −0.1572 −0.0282 −0.0126 −0.0058 −0.0013 0.0026 0.0067 0.0112

Var 0.0012 0.0017 0.0018 0.0020 0.0022 0.0026 0.0031 0.0036

MSE 0.0259 0.0025 0.0020 0.0020 0.0023 0.0026 0.0031 0.0037

the numerical analysis, the estimator based on 2nd or 3rd moments is recommended. We
find that it is quite challenging to theoretically compare the MSE’s of γ̂η,n with different η

values. Computations of the variance, let alone the bias, seem to be cumbersome since the
transition probability density [whose representation is available only through infinite series
of eigenfunctions, cf. Section 5.2 in Linetsky (2005)] is not so tractable for such purposes.

5 Concluding remarks

We conclude the paper with a few remarks. We have considered a parameter estimation
problem with discrete observations for a one-dimensional ROU process having a single
(lower) barrier. Our method can be readily applied to the ROU processes with two-sided
barriers 0 and r > 0. The unique invariant density is known in the literature, see, e.g. Section
5.1 of Linetsky (2005), which is given by

p(x) =
√
2γ

σ

φ
(√

2γ
σ

x
)

Φ
(√

2γ
σ

r
)

− 1
2

, x ∈ [0, r ].

Hence its stationary moments can be calculated. However, in such cases, an explicit formula

for the estimator of γ [due to the presence of Φ
(√

2γ
σ

r
)
] is not available and it needs to

be computed numerically. Nonetheless, we can apply our parameter estimation method to
Brownian motions with drift parameterμ ∈ R on [0, r ], reflected at 0 and r , to obtain explicit
form of estimators and their asymptotic properties. In this case, the stationary density is given
as a simple modified exponential distribution p(x) = 2μe2μx/(e2μr − 1) for x ∈ [0, r ]. In
order to expand the applicability of our methods, we are currently working on the generalized
ROU model with jumps [cf. Xing et al. (2009)], where the parameters of interest would be
jump intensity as well as infinitesimal drift. We observe that our method provides a versatile
approach in estimating parameters for the ergodic diffusion processes, in particular, with
state constraints.
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