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Abstract Fractional Ornstein–Uhlenbeck process of the second kind (fOU2) is a solution
of the Langevin equation dXt = −θ Xt dt + dY (1)

t , θ > 0 with a Gaussian driving noise
Y (1)

t := ∫ t
0 e−s dBas , where at = He

t
H and B is a fractional Brownian motion with Hurst

parameter H ∈ (0, 1). In this article we consider the case H > 1
2 , and by using the ergodicity

of fOU2 process we construct consistent estimators for the drift parameter θ based on discrete
observations in two possible cases: (i) the Hurst parameter H is known and (i i) the Hurst
parameter H is unknown. Moreover, using Malliavin calculus techniques we prove central
limit theorems for our estimators which are valid for the whole range H ∈ ( 12 , 1).

Keywords Fractional Ornstein–Uhlenbeck processes · Malliavin calculus ·
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1 Introduction

1.1 Motivation and overview

Assume B = {Bt }t≥0 is a fractional Brownian motion with Hurst parameter H ∈ (0, 1), i.e
a continuous, centered Gaussian process with covariance function

RH (s, t) = 1

2

{
s2H + t2H − |t − s|2H

}
, s, t ≥ 0.
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Consider the following Langevin equation with a drift parameter θ > 0 and a driving
noise N

dXt = −θ Xt dt + dNt . (1.1)

When the driving noise N = B is a fractional Brownianmotion, a solution of the Langevin
equation (1.1) is called the fractional Ornstein–Uhlenbeck process of the first kind, (fOU1)

in short. The fractional Ornstein–Uhlenbeck process of the second kind is a solution of the
Langevin Eq. (1.1) with a driving noise Nt = Y (1)

t := ∫ t
0 e−s dBas , where at = He

t
H . Terms

“of the first kind” and “of the second kind” are taken from Kaarakka and Salminen (2011).
It is well known that the classical Ornstein–Uhlenbeck process, i.e. when the driving noise
N = W is a standard Brownian motion, has the same finite dimensional distributions as the
Lamperti transformation (see 2.6 for definition) of Brownian motion. However, when one
replaces Brownian motion with a fractional Brownian motion the solution of the Langevin
equation (1.1) is different from the one that is obtained by the Lamperti transformation of
a fractional Brownian motion, see Cheridito et al. (2003), Kaarakka and Salminen (2011).
The motivation behind introducing the noise process N = Y (1) is related to the Lamperti
transformation of fractional Brownian motion. We refer to Subsection 2.2.2 or (Kaarakka
and Salminen 2011, Sect. 3) for more details.

Usually statistical models with fractional processes exhibit short (long) memory property
for H < 1

2 (H > 1
2 , respectively) and this is true for (fOU1) processes. In contrast, the

fOU2 process always exhibits short range dependence regardless of the Hurst parameter
H . This phenomenon makes fOU2 an interesting process for modelling in many different
disciplines. For example, for applications of short memory processes in econometric or in
modelling the extremes of time series see Mynbaev (2011), Chavez-Demoulin and Davison
(2012) respectively.

In this article we use ergodicity of the fOU2 process to construct consistent estimator of
the drift parameter θ based on observations of the process at discrete times. More precisely,
assume that the process is observed at discrete times 0,�N , 2�N , . . . , N�N and let TN =
N�N denote the length of the observation window. We show that:

(i) when H is known one can construct a strongly consistent estimator θ̂ , introduced in
Theorem 3.2, with asymptotic normality property under the mesh conditions

TN → ∞, and N�2
N → 0

with arbitrary mesh �N such that �N → 0 as N tends to infinity.
(ii) when H is unknown one can construct another strongly consistent estimator θ̃ , intro-

duced in Theorem 5.1, with asymptotic normality property under the restricted mesh
condition

�N = N−α, with α ∈
(
1

2
,

1

4H − 2
∧ 1

)

.

1.2 History and further motivations

Statistical inference of the drift parameter θ based on a data recorded from continuous (dis-
crete) trajectories of X is an interesting problem in the realm of mathematical statistics. In
the case of diffusion processes with Brownian motion as a driving noise the problem is well
studied (e.g. see Kutoyants (2004) and references therein among many others). However,
the estimation of the drift parameter becomes very challenging with fractional processes as
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a driving noise. This is mainly because of the fact that fractional Brownian motion B with
Hurst parameter H �= 1

2 is neither a semimartingale nor a Markov process (we refer to the
recent book Prakasa Rao (2010) for more details). In the case of the fractional Ornstein–
Uhlenbeck process of the first kind, maximum likelihood (MLE) and least squares (LSE)

estimators based on continuous observations of the process are considered in Kleptsyna and
Breton (2002) and Hu and Nualart (2010) respectively. In this case it turns out that both
MLE and LSE provide strongly consistent estimators. Moreover, the asymptotic normality
of MLE is shown in Bercu et al. (2011) for values H > 1

2 and for LSE in Hu and Nualart
(2010) for values H ∈ [ 12 , 3

4 ). In the case of the fractional Ornstein–Uhlenbeck process of
the second kind, Azmoodeh and Morlanes (2013) showed that LSE is a consistent estimator
using continuous observations. Moreover, they showed that a central limit theorem for LSE
holds for the whole range H > 1

2 .
The main feature of this paper is to provide strongly consistent estimators for the drift

parameter θ based on discrete observations of the process X together with CLTs using the
modern approach of Malliavin calculus for normal approximations Nourdin and Peccati
(2012). From practical point of view, it is very important to assume that we have a data
collected from process X observed at discrete times. In addition to its applicability, such a
demand makes the problem more delicate. Therefore, such a problem could not remain open
for the fractional Ornstein–Uhlenbeck process of the first kind. In fact, estimation of the
drift parameter θ for the fOU1 process with discretization procedure of integral transform
is considered in Xiao et al. (2011) assuming that the Hurst parameter H is known. In the
same setup, Brouste and Iacus (2012) introduced an estimation procedure that can be used to
estimate both the drift parameter θ and the Hurst parameter H based on discrete observations.
In this paper, we also display a new estimation method that can be used to estimate the drift
parameter θ of the fOU2 process based on discrete observations when the Hurst parameter
H is unknown (Theorem 5.1).

1.3 Plan

The paper is organized as follows. In Sect. 2 we give auxiliary facts on Malliavin calculus
and fractional Ornstein–Uhlenbeck processes. Section 3 is devoted to estimation of the drift
parameter when H is known. In Sect. 4 we give a short explanation how the Hurst parameter
H can be estimated by using discrete observations. Section 5 deals with estimation of the drift
parameter when H is unknown. Finally, some technical lemmas are collected to Appendix A.

2 Auxiliary facts

2.1 A brief review on Malliavin calculus

In this subsection we briefly introduce some basic facts on Malliavin calculus with respect to
Gaussian processes needed in this paper. We also recall some results howMalliavin calculus
can be used to obtain a central limit theorem for a sequence of multiple Wiener integrals. For
more details on the topic, we refer to Alos et al. (2001), Nualart (2006), Nourdin and Peccati
(2012). Let W be a Brownian motion and let G = {Gt }t∈[0,T ] be a continuous centered
Gaussian process of the form

Gt =
∫ t

0
K (t, s)dWs ,
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where the Volterra kernel K , i.e. K (t, s) = 0 for all s > t , satisfies supt∈[0,T ]
∫ t
0 K (t, s)2

ds < ∞. Moreover, we assume that for any s the function K (·, s) is of bounded variation on
any interval (u, T ] for all u > s. A typical example of this type of Gaussian processes is a
fractional Brownian motion. It is known that for H > 1

2 the kernel takes the form

K H (t, s) = cH s
1
2−H

∫ t

s
(u − s)H− 3

2 u H− 1
2 du.

Moreover, we have the following inverse relation

Wt = B
(
(K ∗

H )−1(1[0,t])
)
, (2.1)

where the operator K ∗
H is defined as

(K ∗
H ϕ)(s) =

∫ T

s
ϕ(t)

∂K H

∂t
(t, s)dt.

Consider the set E of all step functions on [0, T ]. The Hilbert space H associated to the
process G is the closure of E with respect to inner product

〈1[0,t], 1[0,s]〉H = RG(t, s),

where RG(t, s) denotes the covariance function of G. The mapping 1[0,t] �→ Gt can be
extended to an isometry between the Hilbert spaceH and the Gaussian spaceH1 associated
with the process G. Consider next the space S of all smooth random variables of a form

F = f (G(ϕ1), . . . , G(ϕn)), ϕ1, . . . , ϕn ∈ H, (2.2)

where f ∈ C∞
b (Rn). For any smooth random variable F of the form (2.2), we define its

Malliavin derivative D(G) = D as an element of L2(�;H) by

DF =
n∑

i=1

∂i f (G(ϕ1), . . . , G(ϕn))ϕi .

In particular, DGt = 1[0,t]. We denote by D
1,2
G = D

1,2 the space of all square integrable
Malliavin derivative random variables as the closure of the set S of smooth random variables
with respect to the norm

‖F‖21,2 = E|F |2 + E(‖DF‖2H).

Consider next a linear operator K ∗ from E to L2[0, T ] defined by

(K ∗ϕ)(s) = ϕ(s)K (T, s) +
∫ T

s
[ϕ(t) − ϕ(s)] K (dt, s),

where K (dt, s) stands for the measure associated to the bounded variation function K (·, s).
The Hilbert space H generated by covariance function of the Gaussian process G can be
represented as H = (K ∗)−1(L2[0, T ]) and D

1,2
G (H) = (K ∗)−1

(
D
1,2
W (L2[0, T ])). Further-

more, for any n ≥ 1 let Hn be the nth Wiener chaos of G, i.e. the closed linear subspace
of L2(�) generated by the random variables {Hn (G(ϕ)) , ϕ ∈ H, ‖ϕ‖H = 1} where Hn

is the nth Hermite polynomial. It is well known that the mapping I G
n (ϕ⊗n) = n!Hn (G(ϕ))

provides a linear isometry between the symmetric tensor product H�n and the space Hn .
The random variables I G

n (ϕ⊗n) are called multiple Wiener integrals of order n with respect
to the Gaussian process G.
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Let N (0, σ 2) denote the Gaussian distribution with zero mean and variance σ 2. We use

notation
law−→ for convergence in distribution. The next proposition provides a central limit

theorem for a sequence of multiple Wiener integrals of fixed order.

Proposition 2.1 Nualart and Ortiz-Latorre (2008) Let {Fn}n≥1 be a sequence of random
variables in the qth Wiener chaos Hq with q ≥ 2 such that limn→∞ E(F2

n ) = σ 2. Then the
following statements are equivalent:

(i) Fn
law−→ N (0, σ 2) as n tends to infinity.

(ii) ‖DFn‖2H converges in L2(�) to qσ 2 as n tends to infinity.

2.2 Fractional Ornstein–Uhlenbeck processes

In this subsection we briefly introduce fractional Ornstein–Uhlenbeck processes although
we mostly focus on fractional Ornstein–Uhlenbeck process of the second kind for which we
also provide some new results. Our main references are Cheridito et al. (2003), Kaarakka
and Salminen (2011).

2.2.1 Fractional Ornstein–Uhlenbeck processes of the first kind

Let B = {Bt }t≥0 be a fractional Brownian motion with Hurst parameter H ∈ (0, 1). To
obtain a fractional Ornstein–Uhlenbeck process, consider the following Langevin equation

dU (H,ξ0)
t = −θU (H,ξ0)

t dt + d Bt , U (H,ξ0)
0 = ξ0. (2.3)

The solution of the SDE (2.3) can be expressed as

U (H,ξ0)
t = e−θ t

(

ξ0 +
∫ t

0
eθs dBs

)

. (2.4)

Notice that the stochastic integral can be understood as a pathwise Riemann-Stieltjes
integral or, equivalently, as a Wiener integral. Let B̂ denote a two sided fractional Brownian
motion. The special selection

ξ0 :=
∫ 0

−∞
eθs d B̂s

leads to a unique (in the sense of finite dimensional distributions) stationary Gaussian process
U (H) of the form

U (H)
t =

∫ t

−∞
e−θ(t−s) d B̂s . (2.5)

Definition 2.1 Kaarakka and Salminen (2011) The process U (H,ξ0) given by (2.4) is called
a fractional Ornstein–Uhlenbeck process of the first kind with initial value ξ0. The process
U (H) defined in (2.5) is called a stationary fractional Ornstein–Uhlenbeck process of the first
kind.

Remark 2.1 It is shown inCheridito et al. (2003) that the covariance function of the stationary
process U (H) decays like a power function, and hence U (H) is ergodic. Furthermore, for
H ∈ ( 12 , 1) the process U (H) exhibits long range dependence.
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2.2.2 Fractional Ornstein–Uhlenbeck processes of the second kind

Nowwe define a new stationary Gaussian process X (α) by means of Lamperti transformation
of the fractional Brownian motion B. More precisely, we set

X (α)
t := e−αt Bat , t ∈ R, (2.6)

where α > 0 and at = H
α

e
αt
H . We aim to represent the process X (α) as a solution to the

Langevin equation. To this end, we consider the process Y α
t defined via

Y (α)
t :=

∫ t

0
e−αs dBas , t ≥ 0,

where again the stochastic integral can be understood as a pathwiseRiemann-Stieltjes integral
as well as aWiener integral. Using the self-similarity property of fractional Brownian motion
one can see that (Kaarakka and Salminen 2011, Proposition6) the process Y (α) satisfies a
scaling property

{
Y (α)

t/α

}

t≥0

f.d.d=
{
α−H Y (1)

t

}

t≥0
, (2.7)

where
f.d.d= stands for equality in finite dimensional distributions. Using Y (α), the process X (α)

can be viewed as a solution of the Langevin equation

dX (α)
t = −αX (α)

t dt + dY (α)
t

with random initial value X (α)
0 = Ba0 = BH/α ∼ N (0, ( H

α
)2H ). Taking into account the

scaling property (2.7), we consider the following Langevin equation

dXt = −θ Xt dt + dY (1)
t , θ > 0 (2.8)

with Y (1) as the driving noise. The solution of the Eq. (2.8) is given by

Xt = e−θ t
(

X0 +
∫ t

0
eθs dY (1)

s

)

= e−θ t
(

X0 +
∫ t

0
e(θ−1)s dBas

)

(2.9)

with α = 1 in at . Moreover, special selection X0 = ∫ 0
−∞ e(θ−1)s dBas for the initial value

X0 leads to the following unique stationary Gaussian process

Ut = e−θ t
∫ t

−∞
e(θ−1)s dBas . (2.10)

Definition 2.2 Kaarakka and Salminen (2011) The process X given by (2.9) is called the
fractional Ornstein–Uhlenbeck process of the second kind with initial value X0. The process
U defined in (2.10) is called the stationary fractional Ornstein–Uhlenbeck process of the
second kind.

For the rest of the paper we assume H > 1
2 and we take X0 = 0 in the general solution

(2.9). Then the corresponding fractional Ornstein–Uhlenbeck process of the second kind
takes the form

Xt = e−θ t
∫ t

0
e(θ−1)s dBas , (2.11)
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and we have a useful relation

Ut = Xt + e−θ tξ, ξ =
∫ 0

−∞
e(θ−1)sdBas . (2.12)

We start with a series of known results on fractional Ornstein–Uhlenbeck processes of the
second kind required for our purposes.

Proposition 2.2 Azmoodeh and Morlanes (2013) Denote B̃t = Bt+H − BH the shifted
fractional Brownian motion and let X be the fractional Ornstein–Uhlenbeck process of the
second kind given by (2.11). Then there exists a regular (see (Alos et al., 2001, page767) for
definition) Volterra kernel L̃ such that

{Xt }t∈[0,T ]
f.d.d=

{∫ t

0
e−θ(t−s)dG̃s

}

t∈[0,T ]
(2.13)

where the Gaussian process G̃ is given by

G̃t =
∫ t

0

(
K H (t, s) + L̃(t, s)

)
dW̃s

and W̃ is a standard Brownian motion.

Remark 2.2 Notice that by a direct computation and applying Lemma 4.3 of Azmoodeh
and Morlanes (2013), the inner product of the Hilbert space H̃ generated by the covariance
function of the Gaussian process G̃ is given by

〈ϕ,ψ〉H̃ = αH H2H−2
∫ T

0

∫ T

0
ϕ(u)ψ(v)e

(u+v)
(

1
H −1

) ∣
∣
∣e

u
H − e

v
H

∣
∣
∣
2H−2

dvdu

where ϕ,ψ ∈ H̃ and αH = H(2H − 1).

The following lemma plays an essential role in the paper. More precisely, we use this
lemma to construct our estimators for drift parameter. In what follows, B(x, y) denotes the
complete Beta function with parameters x and y.

Proposition 2.3 Azmoodeh and Morlanes (2013) Let X be the fractional Ornstein–
Uhlenbeck process of the second kind given by (2.11). Then

1

T

∫ T

0
X2

t dt → �(θ), T → ∞

almost surely and in L2(�), where

�(θ) = (2H − 1)H2H

θ
B((θ − 1)H + 1, 2H − 1). (2.14)

Proposition 2.4 Kaarakka and Salminen (2011) The covariance function c of the station-
ary process U decays exponentially and hence U exhibits short range dependence. More
precisely, we have

c(t) := E(UtU0) = O

(

exp
(

− min
{
θ,

1 − H

H

}
t
))

, as t → ∞.
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Let vU be the variogram of the stationary process U , i.e.

vU (t) := 1

2
E (Ut+s − Us)

2 = c(0) − c(t).

The following lemma tells us the behavior of the variogram function vU near zero. For
functions f and g, the notation f (t) ∼ g(t) as t → 0 means that f (t) = g(t) + r(t), where
r(t) = o(g(t)) as t → 0.

Lemma 2.1 The variogram function vU satisfies

vU (t) ∼ Ht2H as t → 0+.

Proof Due to (Kaarakka and Salminen, 2011, Proposition3.11) there exists a constant
C(H, θ) = H(2H − 1)H2H(1−θ) such that

c(t) = C(H, θ)e−θ t
(∫ at

0

∫ a0

0
(xy)(θ−1)H |x − y|2H−2dxdy

)

.

Denote the term inside parentheses by �(t). Then with some direct computations, one can
see that

�(t)= a2θ H
0

θ H
B((θ − 1)H + 1, 2H − 1)+ 1

2θ H

(
a2θ H

t −a2θ H
0

) ∫ a0
at

0
z(θ−1)H (1 − z)2H−2dz.

Therefore,

c(t) = (2H − 1)H2H

θ
B((θ − 1)H + 1, 2H − 1)e−θ t

+ (2H − 1)H2H

2θ
(eθ t − e−θ t )

∫ a0
at

0
z(θ−1)H (1 − z)2H−2dz

= c(0) − (2H − 1)H2H × t ×
∫ 1

a0
at

z(θ−1)H (1 − z)2H−2dz + r(t)

(2.15)

where r(t) = o(t2H ) as t → 0+. Hence, by use of the mean value theorem, we infer that as
t → 0+ we have

∫ 1

a0
at

z(θ−1)H (1 − z)2H−2dz ∼ H H−2H

2H − 1
t2H−1. (2.16)

Substituting (2.16) into (2.15) we obtain the claim. ��
The next lemma studies the regularity of sample paths of the fractional Ornstein–

Uhlenbeck process of the second kind X . Usually Hölder constants are almost surely finite
random variables and depend on bounded time intervals where the process is considered.
The next lemma gives more probabilistic information on Hölder constants.

Lemma 2.2 Let X be the fractional Ornstein–Uhlenbeck process of the second kind given
by (2.11). Then for every interval [S, T ] and every 0 < ε < H, there exist random variables
Y1 = Y1(H, θ), Y2 = Y2(H, θ, [S, T ]), Y3 = Y3(H, θ, [S, T ]), and Y4 = Y4(H, ε, [S, T ])
such that for all s, t ∈ [S, T ]

|Xt − Xs | ≤ (Y1 + Y2 + Y3) |t − s| + Y4|t − s|H−ε
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almost surely. Moreover,

(i) Y1 < ∞ almost surely,

(ii) Yk(H, θ, [S, T ]) law= Yk(H, θ, [0, T − S]), k = 2, 3,

(iii) Y4(H, ε, [S, T ]) law= Y4(H, ε, [0, T − S]).
Furthermore, all moments of random variables Y2, Y3 and Y4 are finite, and Y2(H, θ, [0, T ]),

Y3(H, θ, [0, T ]) and Y4(H, ε, [0, T ]) are increasing in T .

Proof Assume s < t . By change of variables formula we obtain

Xt = e−t Bat − e−θ t Ba0 − Zt ,

where

Zt = e−θ t
∫ t

0
Bau e(θ−1)udu.

Therefore

|Xt − Xs | ≤ |Ba0 ||e−θ t − e−θs | + e−t |Bat − Bas | + |Bas ||e−t − e−s |
+
∣
∣
∣
∣e

−θ t
∫ t

0
Bau e(θ−1)udu − e−θs

∫ s

0
Bau e(θ−1)udu

∣
∣
∣
∣

= I1 + I2 + I3 + I4.

For the term I1, we obtain

I1 ≤ θ |Ba0 ||t − s|
where θ |Ba0 | is almost surely finite random variable. Similarly for the term I3 we get

I3 ≤ sup
u∈[S,T ]

e−u |Bau ||t − s|.

Note next that Z is a differentiable process. Hence for the term I4 we get

I4 ≤
[

θ sup
u∈[S,T ]

|Zu | + sup
u∈[S,T ]

e−u |Bau |
]

|t − s|.

Moreover, by using (2.12), we have

|Xt | ≤ |Ut | + |ξ |.
As a result we obtain

|Zu | ≤ |Uu | + |ξ | + |Ba0 | + |e−u Bau |
which implies

I4 ≤
[

θ sup
u∈[S,T ]

|Uu | + θ |ξ | + θ |Ba0 | + (θ + 1) sup
u∈[S,T ]

e−u |Bau |
]

|t − s|.

Collecting the estimates for I1, I3 and I4 we obtain

I1 + I3 + I4 ≤
[
2θ |Ba0 | + θ |ξ |

]
|t − s|

+
[

θ sup
u∈[S,T ]

|Uu | + (θ + 2) sup
u∈[S,T ]

e−u |Bau |
]

|t − s|.
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Put

Y1 = 2θ |Ba0 | + θ |ξ |, Y2(H, θ, [S, T ]) := θ sup
u∈[S,T ]

|Uu |

and finally

Y3(H, θ, [S, T ]) := (θ + 2) sup
u∈[S,T ]

e−u |Bau |.

Obviously the random variable Y1 fulfils property (i). Notice also that Ut and e−u Bat are
continuous, stationary Gaussian processes from which property (i i) follows. Moreover, all
moments of supremum of a continuous Gaussian process on a compact interval are finite (see
Lifshits (1995) for details on supremum of continuous Gaussian process). Hence it remains
to consider the term I2. By Hölder continuity of the sample paths of fractional Brownian
motion we obtain

I2 ≤ e−t C(ω, H, ε, [S, T ])|at − as |H−ε

≤ C(ω, H, ε, [S, T ])|t − s|H−ε .

To conclude, we obtain (see Nualart and Răşcanu (2002) and remark below) that the

random variable C(ω, H, ε, [S, T ]) has all the moments and C(ω, H, ε, [S, T ]) law=
C(ω, H, ε, [0, T − S]). Now it is enough to take Y4 = C(ω, H, ε, [S, T ]). ��

Remark 2.3 The exact form of the random variable C(ω, H, ε, [0, T ]) is given by

C(ω, H, ε, [0, T ]) = CH,εT H−ε

(∫ T

0

∫ T

0

|Bt − Bs | 2ε
|t − s| 2H

ε

dtds

) ε
2

,

where CH,ε is a constant. Moreover, for all p ≥ 1 there exists a constant cε,p such that
EC(ω, H, ε, [0, T ])p ≤ cε,pT εp .

3 Estimation of the drift parameter when H is known

We start with the fact that the function � is invertible. This fact allows us to construct an
estimator for the drift parameter θ .

Lemma 3.1 The function � : R+ → R+ given by (2.14) is bijective, and hence invertible.

Proof It is straightforward to see that � is surjective. Hence the claim follows because for
any fixed parameter y > 0, the complete Beta function B(x, y) is decreasing in the variable
x . ��

We continue with the following central limit theorem.

Theorem 3.1 Let X be the fractional Ornstein–Uhlenbeck process of the second kind given
by (2.11). Then as T tends to infinity, we have

√
T

(
1

T

∫ T

0
X2

t dt − �(θ)

)
law−→ N (0, σ 2)
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where the variance σ 2 is given by

σ 2 = 2α2
H H4H−4

θ2

∫

[0,∞)3

[
e−θx−θ |y−z|e

(
1− 1

H

)
(x+y+z)

×
(
1 − e− y

H

)2H−2 ∣∣
∣e− x

H − e− z
H

∣
∣
∣
2H−2 ]

dzdxdy.

(3.1)

The proof relies on two lemmas proved in the Appendix where we also show that σ 2 < ∞.
The variance σ 2 is given as iterated integral over [0,∞)3 and the given equation is probably
the most compact form.

Proof of Theorem 3.1 For further use put

FT = 1√
T

I G̃
2 (g̃), (3.2)

where the symmetric function g̃ of two variables is given by

g̃(x, y) = 1

2θ

[
e−θ |x−y| − e−θ(2T −x−y)

]
.

The notation I G̃
2 refers to multipleWiener integral with respect to G̃ introduced in Subsection

2.1. By Proposition 2.2 we have

Xt
law= I G̃

1 (h(t, ·)) , h(t, s) = e−θ(t−s)1s≤t .

Using product formula for multiple Wiener integrals and Fubini’s theorem we infer that

1

T

∫ T

0
X2

t dt
law= 1

T

∫ T

0
‖h(t, ·)‖2H̃dt + 1

T
I G̃
2

(∫ T

0

(
h(t, ·)⊗̃h(t, ·)) dt

)

= 1

T

∫ T

0
EX2

t dt + 1

T
I G̃
2 (g̃) .

We get

√
T

(
1

T

∫ T

0
X2

t dt − �(θ)

)
law= √

T

(
1

T

∫ T

0
EX2

t dt − �(θ)

)

+ FT . (3.3)

Next we note that (see Azmoodeh and Morlanes 2013, Lemma3.4)

�(θ) = EU 2
0 = 1

T

∫ T

0
EU 2

0 dt.

Hence

1

T

∫ T

0
EX2

t dt − �(θ) = 1

T

∫ T

0

(
EX2

t − EU 2
0

)
dt

= EU 2
0

1

T

∫ T

0
e−2θ tdt − 2

T

∫ T

0
e−θ tE(UtU0)dt,

and thus we obtain
√

T

(
1

T

∫ T

0
EX2

t dt − �(θ)

)

→ 0. (3.4)

Therefore it suffices to show that

FT
law→ N (0, σ 2)
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as T tends to infinity. Now by Lemmas 5.1 and 5.2 presented in the Appendix A we have

‖Ds FT ‖2H̃
L2(�)−→ 2σ 2 and E(F2

T ) = 2

T
‖g̃‖2H̃⊗2 −→ σ 2.

Hence the result follows by applying Proposition 2.1. ��

Now we are ready to state the main result of this section.

Theorem 3.2 Assume we observe the fractional Ornstein–Uhlenbeck process of the second
kind X given by (2.11) at discrete time points {tk = k�N , k = 0, 1, . . . , N } and put TN =
N�N . Assume that �N → 0, TN → ∞ and N�2

N → 0 as N tends to infinity. Define

μ̂2,N = 1

TN

N∑

k=1

X2
tk �tk and θ̂N := �−1 (μ̂2,N

)
, (3.5)

where �−1 is the inverse of the function � given by (2.14). Then θ̂ is a strongly consistent
estimator of the drift parameter θ in the sense that as N tends to infinity, we have

θ̂N −→ θ (3.6)

almost surely. Moreover, we have

√
TN (θ̂N − θ)

law−→ N (0, σ 2
θ ), N → ∞, (3.7)

where

σ 2
θ = σ 2

[� ′(θ)]2 (3.8)

and σ 2 is given by (3.1).

Proof Applying Lemma 2.2 we obtain for any ε ∈ (0, H) that

√
TN

∣
∣
∣μ̂2,N − 1

TN

∫ TN

0
X2

t dt
∣
∣
∣ = 1√

TN

∣
∣
∣
∣
∣

N∑

k=1

∫ tk

tk−1

(X2
tk − X2

t )dt

∣
∣
∣
∣
∣

≤ 2√
TN

(
N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |
∫ tk

tk−1

|Xtk − Xt |dt

)

≤ 2Y1(H, θ)√
TN

(
N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |
∫ tk

tk−1

(tk − t)dt

)

+ 2√
TN

(
N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y2(H, θ, [tk−1, tk])
∫ tk

tk−1

(tk − t)dt

)

+ 2√
TN

(
N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y3(H, θ, [tk−1, tk])
∫ tk

tk−1

(tk − t)dt

)

+ 2√
TN

(
N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y4(H, ε, [tk−1, tk])
∫ tk

tk−1

(tk − t)H−εdt

)

=: I1 + I2 + I3 + I4.

123



Stat Inference Stoch Process (2015) 18:205–227 217

We begin with last term I4. Clearly we have

N∑

k=1

sup
u∈[tk−1,tk ]

|Xu | Y4(H, ε, [tk−1, tk]) ≤ N sup
u∈[0,TN ]

|Xu | Y4(H, ε, [0, TN ]).

By Remark 2.3, we have EY4(H, ε, [0, TN ])p ≤ CT εp
N for any p ≥ 1. Hence, thanks to

Markov’s inequality, we obtain for every δ > 0 that

P
(
N−γ Y4(H, ε, [0, TN ]) > δ

) ≤ C pT εp
N

N γ pδ p
.

Now by choosing ε < γ and p large enough we obtain

∞∑

N=1

P
(
N−γ Y4(H, ε, [0, TN ]) > δ

)
< ∞.

Consequently, Borel-Cantelli Lemma implies that

N−γ Y4(H, ε, [0, TN ]) → 0

almost surely for any γ > ε. Similarly, we obtain

N−γ sup
u∈[0,TN ]

|Xu | → 0

almost surely for any γ > 0. Consequently, we get

1

N 1+2γ

N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y4(H, ε, [tk−1, tk]) −→ 0

almost surely for any γ > ε. Note also that by choosing ε > 0 small enough we can
choose γ in such way that 1 + 2ε < 1 + 2γ < 3

4 + H−ε
2 . In particular, this is possible if

ε < min
{

H − 1
2 ,

H
5

}
. With this choice we have

I4 ≤ 2

H − ε + 1

√
TN �H−ε

N
1

N

N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y4(H, ε, [tk−1, tk])

= 2

H − ε + 1

√
TN �H−ε

N N 2γ 1

N 1+2γ

N∑

k=1

sup
u∈[tk−1,tk ]

|Xu |Y4(H, ε, [tk−1, tk])

−→ 0

almost surely, because the condition N�2
N → 0 and our choice of γ implies that

√
TN �H−ε

N N 2γ =
(

N�
2H+1−2ε

1+4γ
N

)2γ+ 1
2 ≤ (

N�2
N

)2γ+ 1
2 → 0.

Treating I1, I2, and I3 in a similar way, we deduce that

√
TN

∣
∣
∣
∣μ̂2,N − 1

TN

∫ TN

0
X2

t dt

∣
∣
∣
∣ → 0 (3.9)
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almost surely. Moreover, we have convergence (3.6) by Lemma 2.3. To conclude the proof,
we set μ = �(θ) and use Taylor’s theorem to obtain

√
TN

(
θ̂N − θ

) = d

dμ
�−1(μ)

√
TN

(
μ̂2,N − �(θ)

)

+ R1(μ̂2,N )
√

TN
(
μ̂2,N − �(θ)

)

= d

dμ
�−1(μ)

√
TN

(
1

TN

∫ TN

0
X2

t dt − �(θ)

)

+ d

dμ
�−1(μ)

√
TN

(

μ̂2,N − 1

TN

∫ TN

0
X2

t dt

)

+ R1(μ̂2,N )
√

TN
(
μ̂2,N − �(θ)

)

for some reminder function R1(x) such that R1(x) → 0 when x → �(θ). Now continuity
of d

dμ�−1 and �−1 implies that R1 is also continuous. Hence the result follows by using
(3.9), Theorem 3.1, Slutsky’s theorem and the fact that

d

dμ
�−1(μ) = 1

� ′(θ)
.

��
Remark 3.1 We remark that it is straightforward to construct strongly consistent estimator
without the mesh restriction �N → 0. However, in order to obtain central limit theorem
using Theorem 3.1, one need to pose the condition �N → 0 to get the convergence

√
TN

∣
∣
∣
∣μ̂2,N − 1

TN

∫ TN

0
X2

t dt

∣
∣
∣
∣ → 0.

Remark 3.2 Note that we obtained a consistent estimator which depends on the inverse of
the function �. However, to the best of our knowledge there exists no explicit formula for
the inverse and hence the inverse has to be computed numerically.

Remark 3.3 Theorem 3.2 imposes different conditions on the mesh�N . One possible choice
for the mesh satisfying such conditions is �N = log N

N .

Remark 3.4 Notice that we obtained strong consistency of the estimator θ̂ without assum-
ing uniform discretization of the partitions. The uniform discretization will play a role in
estimating the Hurst parameter H .

4 Estimation of the Hurst parameter H

There are different approaches to estimate the Hurst parameter H of fractional processes.
Here we consider an approach which is based on filtering. For more details we refer to Istas
and Lang (1997), Coeurjolly (2001).

Let a = (a0, a1, . . . , aL) ∈ RL+1 be a filter of length L + 1, L ∈ N, and of order p ≥ 1,
i.e. for all indices 0 ≤ q < p,

L∑

j=0

a j jq = 0 and
L∑

j=0

a j j p �= 0.
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We define the dilated filter a2 associated to the filter a by

a2
k =

{
ak′ , k = 2k′

0, otherwise

for 0 ≤ k ≤ 2L . Assume that we observe the process X given by (2.11) at discrete time
points {tk = k�N , k = 1, . . . , N } such that �N → 0 as N tends to infinity. We denote the
generalized quadratic variation associated to filter a by

VN ,a = 1

N

N−L∑

i=0

⎛

⎝
L∑

j=0

a j X(i+ j)�N

⎞

⎠

2

and we consider the estimator ĤN given by

ĤN = 1

2
log2

VN ,a2

VN ,a
. (4.1)

Assumption (A):
We say the filter a of the length L + 1 and order p satisfies assumption (A) if for any real

number r such that 0 < r < 2p and r is not an even integer, the following property holds:

L∑

i=0

L∑

j=0

ai a j |i − j |r �= 0.

Example 1 A typical example of a filter with finite order satisfying assumption (A) is a =
(1,−2, 1) with order p = 2.

Theorem 4.1 Let a be a filter of the order p ≥ 2 satisfying assumption (A) and put �N =
N−α for some α ∈ ( 12 ,

1
4H−2 ). Then

ĤN −→ H

almost surely as N tends to infinity. Moreover, we have

√
N (ĤN − H))

law−→ N (0, �(H, θ, a))

where the variance � depends on H, θ and the filter a and is explicitly computed in Coeurjolly
(2001) and also given in Brouste and Iacus (2012).

Remark 4.1 It is worth to mention that when H < 3
4 , it is not necessary to assume that the

observation window TN = N�N tends to infinity whereas for H ≥ 3
4 condition TN → ∞

is necessary (see Istas and Lang 1997). Notice also that H ≥ 3
4 if and only if 1

4H−2 ≤ 1.

Proof of Theorem 4.1 Let vU denote the variogram of the process U . By Lemma 2.1 we
have

vU (t) = Ht2H + r(t)

as t → 0+, where r(t) = o(t2H ). Moreover, r(t) is differentiable and direct calculations
show that for ε ∈ (0, 1)

r (4)(t) ≤ G|t |2H+1−ε−4.
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Hence the claim follows by following the proof in Brouste and Iacus (2012) for the fractional
Ornstein–Uhlenbeck process of the first kind and applying results of Istas and Lang (1997,
Theorem3). To conclude, we note that the given variance is also computed in Coeurjolly
(2001, p. 223). ��

5 Estimation of the drift parameter when H is unknown

In this section we consider�(θ, H) instead of�(θ) to take account the dependence on Hurst
parameter H . Let μ = �(θ, H). Now implicit function theorem implies that there exists a
continuously differentiable function g(μ, H) such that

g(μ, H) = θ

where θ is the unique solution to equation μ = �(θ, H). Hence for every fixed H , we have

∂g

∂μ
(μ, H) = 1

∂�
∂θ

(θ, H)
.

Moreover, by chain rule we obtain

0 = d

dH
g(�(θ, H), H) = ∂g

∂ H
+ ∂g

∂μ

∂μ

∂ H
,

and note that here ∂g
∂μ

and ∂μ
∂ H are known from which we can compute ∂g

∂ H . Let μ̂2,N be given

by (3.5) and let ĤN be given by (4.1) for some filter a of order p ≥ 2 satisfying assumption
(A). We consider the estimator

θ̃N = g(μ̂2,N , ĤN ) (5.1)

for which we have the following result.

Theorem 5.1 Assume �N = N−α for some number α ∈ ( 12 ,
1

4H−2 ∧ 1). Then the estimator

θ̃N given by (5.1) is strongly consistent, i.e. as N tends to infinity, we have

θ̃N −→ θ (5.2)

almost surely. Moreover, we have

√
TN

(
θ̃N − θ

) law−→ N (0, σ 2
θ ), (5.3)

where the variance σ 2
θ is given by (3.8).

Proof First note that
√

TN
(
θ̃N − θ

) = √
TN

(
g(μ̂2,N , ĤN ) − g(μ̂2,N , H)

)

+ √
TN

(
g(μ̂2,N , H) − g(μ, H)

)
.

(5.4)

Now convergence

√
TN

(
g(μ̂2,N , H) − g(μ, H)

)
law−→ N (0, σ 2

θ )

123



Stat Inference Stoch Process (2015) 18:205–227 221

is in fact Theorem 3.2. Moreover, by Taylor’s theorem we get

√
TN

(
g(μ̂2,N , ĤN ) − g(μ̂2,N , H)

)
= ∂g

∂ H
(μ̂2,N , H)

√
TN (ĤN − H)

+ ∂g

∂ H
(μ̂2,N , H)R2(μ̂2,N , ĤN )

√
TN (ĤN − H)

for some reminder function R2 which converges to zero as (μ̂2,N , ĤN ) → (μ, H). Therefore,
by continuity and Theorem 4.1 we obtain

√
TN

(
g(μ̂2,N , ĤN ) − g(μ̂2,N , H)

) −→ 0

in probability. Hence, we also have
√

TN
(
θ̂N − θ

) law−→ N (0, σ 2
θ )

by Slutsky’s theorem. To conclude the proof, we obtain (5.2) from Eq. (5.4) by continuous
mapping theorem. ��
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Appendix

Computations used in the paper

Lemma 5.1 For FT given by (3.2) and the variance σ 2 given by (3.1) we have

‖Ds FT ‖2H̃
L2(�)−→ 2σ 2 (5.5)

as T tends to infinity.

Proof It is sufficient to show that as T tends to infinity, we have

E
[
‖Ds FT ‖2H̃ − E‖Ds FT ‖2H̃

]2 → 0. (5.6)

Indeed, since

lim
T →∞E‖Ds FT ‖2H̃ = 2 lim

T →∞E(F2
T ),

we obtain that (5.6) implies (5.5). Now we have

Ds FT = 2√
T

I G̃
1 (g̃(s, ·)).

Hence, using Remark 2.2, we can write

‖Ds FT ‖2H̃ = 4αH H2H−2

T

∫ T

0

∫ T

0
I G̃
1 (g̃(u, ·))I G̃

1 (g̃(v, ·))

× e
(u+v)

(
1
H −1

) ∣
∣
∣e

u
H − e

v
H

∣
∣
∣
2H−2

dvdu.
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Let now K (u, v) denote the kernel associated to the space H̃ i.e.

K (u, v) = e
(u+v)

(
1
H −1

) ∣
∣
∣e

u
H − e

v
H

∣
∣
∣
2H−2

. (5.7)

Using multiplicative formula for multiple Wiener integrals we see that

I G̃
1 (g̃(u, ·)) I G̃

1 (g̃(v, ·))
= 〈g̃(u, ·), g̃(v, ·)〉H̃ + I G̃

2

(
g̃(u, ·)⊗̃g̃(v, ·))

=: A1(u, v) + A2(u, v).

Here A1 is deterministic and A2 has expectation zero. Hence, in order to have (5.6), we need
to show that

E

[
1

T

∫ T

0

∫ T

0
A2(u, v)K (u, v)dvdu

]2
→ 0. (5.8)

Therefore, by applying Fubini’s Theorem, it suffices to show that

1

T 2

∫

[0,T ]4
E [A2(u1, v1)A2(u2, v2)]

× K (u1, v1)K (u2, v2)du1dv1du2dv2 → 0
(5.9)

as T tends to infinity. First we get

E [A2(u1, v1)A2(u2, v2)]

= 2
∫

[0,T ]4
(
g̃(u1, ·)⊗̃g̃(v1, ·)

)
(x1, y1)

(
g̃(u2, ·)⊗̃g̃(v2, ·)

)
(x2, y2)

× K (x1, x2)K (y1, y2)dx1dy1dx2dy2.

By plugging into (5.9) we obtain that it suffices to have

1

T 2

∫

[0,T ]8
(
g̃(u1, ·)⊗̃g̃(v1, ·)

)
(x1, y1)

(
g̃(u2, ·)⊗̃g̃(v2, ·)

)
(x2, y2)

×K (x1, x2)K (y1, y2)K (u1, v1)K (u2, v2)

dv1du2dv2du1dx1dy1dx2dy2 → 0 (5.10)

as T tends to infinity. Here we have

(
g̃(u, ·)⊗̃g̃(v, ·)) (x, y) = 1

2

[
g̃(u, x)g̃(v, y) + g̃(u, y)g̃(v, x)

]
.

Note first that for every 0 ≤ x, y ≤ T , we have that

e−θ(2T −x−y) ≤ e−θ |x−y|.

As a consequence, we can omit the term e−θ(2T −x−y) on function g̃(x, y). This implies that
instead of

(
g̃(u1, ·)⊗̃g̃(v1, ·)

)
(x1, y1)

(
g̃(u2, ·)⊗̃g̃(v2, ·)

)
(x2, y2)
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it is sufficient to consider the following integrand:

e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−x2|e−θ |v2−y2|

+ e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−y2|e−θ |v2−x2|

+ e−θ |u1−y1|e−θ |v1−x1|e−θ |u2−x2|e−θ |v2−y2|

+ e−θ |u1−y1|e−θ |v1−x1|e−θ |u2−y2|e−θ |v2−x2|.

(5.11)

Next we consider the first term and show that

1

T 2

∫

[0,T ]8
e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−x2|e−θ |v2−y2|

× K (x1, x2)K (y1, y2)K (u1, v1)K (u2, v2)

du1dv1du2dv2dx1dy1dx2dy2 → 0.

(5.12)

In what follows C is a non-important constant which may vary from line to line. First it is
easy to prove that

∫ T

0
e−θ |x−y|dx ≤ C, (5.13)

where constant does not depend on y or T . Moreover, by change of variable we obtain
∫ T

0
K (x, y)dx ≤ 2H B(1 − H, 2H − 1) (5.14)

for every y and T . Consider now the iterated integral in (5.12). The value of the integral
depends on the order of the variables, and eight variables can be ordered in 8! = 40320 ways.
However, it is clear that without loss of generality we can choose the smallest variable, say
y2, and integrate over region {0 < y2 < u1, u2, v1, v2, x1, x2, y1 < T }. Other cases can
be treated similarly with obvious changes. Assume now that the smallest variable is y2 and
denote the second smallest variable by r7, i.e.

r7 = min(u1, u2, v1, v2, x1, x2, y1).

Integrating first with respect to y2 and applying upper bound eθy2 ≤ eθr7 together with (5.14),
we obtain that

∫

[0,T ]7

∫ r7

0
e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−x2|e−θv2+θy2

× K (x1, x2)K (y1, y2)K (u1, v1)K (u2, v2) dy2du1dv1du2dv2dx1dy1dx2

≤ C
∫

[0,T ]7
e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−x2|e−θv2+θr7

× K (x1, x2)K (u1, v1)K (u2, v2) du1dv1du2dv2dx1dy1dx2.

Next we integrate with respect to y1. In the case when r7 = y1, we have
∫ r6

0
e−θ(v1+v2−2y1)dy1 ≤ Ce−θ(v1+v2−2r6) ≤ C,

where r6 is the third smallest variable, and in the case when r7 �= y1, we obtain by (5.13)
∫ T

0
e−θ |v1−y1|e−θv2+θr7dy1 ≤ C.
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Hence we obtain upper bound

∫

[0,T ]7
e−θ |u1−x1|e−θ |v1−y1|e−θ |u2−x2|e−θv2+θr7

× K (x1, x2)K (u1, v1)K (u2, v2) du1dv1du2dv2dx1dy1dx2

≤ C
∫

[0,T ]6
e−θ |u1−x1|e−θ |u2−x2|

× K (x1, x2)K (u1, v1)K (u2, v2) du1dv1dv2dx1du2dx2.

Next we integrate first with respect to variables v1 and v2 and then with respect to variables
u1 and u2. Together with estimates (5.13) and (5.14) this yields

∫

[0,T ]6
e−θ |u1−x1|e−θ |u2−x2|

× K (x1, x2)K (u1, v1)K (u2, v2) dv1dv2du1du2dx1dx2

≤ C
∫

[0,T ]4
e−θ |u1−x1|e−θ |u2−x2|K (x1, x2) du1du2dx1dx2

≤ C
∫

[0,T ]2
K (x1, x2)dx1dx2

≤ CT

which gives (5.12). It remains to note that other three terms in (5.11) can be treated with
the same arguments since only the ”pairing” of variables in terms of form e−θ |x−y| changes.
Thus we have (5.10) and implications (5.10)⇒(5.8)⇒(5.6) ⇒(5.5) complete the proof. ��

Lemma 5.2 For FT given by (3.2) and σ 2 given by (3.1) we have

E[F2
T ] −→ σ 2 (5.15)

as T tends to infinity.

Proof Using isometry we obtain

E[F2
T ] = 2

T
‖g̃‖2H̃⊗2 =: 2IT

T

where

IT = α2
H H4H−4

∫

[0,T ]4
g̃(u1, v1)g̃(u2, v2)e

(
1
H −1

)
(u1+v1+u2+v2)

×
∣
∣
∣e

u2
H − e

u1
H

∣
∣
∣
2H−2 ∣∣

∣e
v2
H − e

v1
H

∣
∣
∣
2H−2

du1du2dv1dv2.

Recall that

g̃(x, y) = 1

2θ
e−θ |x−y| − 1

2θ
e−θ(2T −x−y).
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We first show that we can omit the second term 1
2θ e−θ(2T −x−y) in the function g̃. To see this,

we have
∫

[0,T ]4
e−θ(2T −u1−v1) g̃(u2, v2)e

(
1
H −1

)
(u1+v1+u2+v2)

×
∣
∣
∣e

u2
H − e

u1
H

∣
∣
∣
2H−2 ∣∣

∣e
v2
H − e

v1
H

∣
∣
∣
2H−2

du1du2dv1dv2

≤ C(θ)

∫

[0,T ]4
e−θ(2T −u1−v1)e

(
1
H −1

)
(u1+v1+u2+v2)

×
∣
∣
∣e

u2
H − e

u1
H

∣
∣
∣
2H−2 ∣∣

∣e
v2
H − e

v1
H

∣
∣
∣
2H−2

du1du2dv1dv2

= C(θ)

[∫ T

0

∫ T

0
e
−θ(T −v)+

(
1
H −1

)
(v+u)

∣
∣
∣e

u
H − e

v
H

∣
∣
∣
2H−2

dvdu

]2
.

By change of variables ṽ = T − v, ũ = T − u, and then x = e− ṽ
H , y = e− ũ

H we infer that
this is the same as

[∫ 1

e− T
H

∫ 1

e− T
H

x (θ−1)H y−H |y − x |2H−2dxdy

]2
.

Let now x < y. By change of variable z = x
y we obtain

∫ 1

e− T
H

∫ y

e− T
H

x (θ−1)H y−H |y − x |2H−2dxdy

≤
∫ 1

0

∫ 1

0
yθ H−1z(θ−1)H (1 − z)2H−2dzdy

≤ 1

θ H
B((θ − 1)H + 1, 2H − 1)

which converges to zero when divided with T tending to infinity. The case x > y can be
treated in a similar way, and hence it is sufficient to consider the function

1

2θ
e−θ |x−y|

instead of g̃(x, y). We shall use L’Hopital’s rule to compute the limit. Taking derivative with
respect to T , we obtain

dIT

dT
= α2

H H4H−4

θ2

∫

[0,T ]3
e−θ |T −u1|e−θ |u2−v2|e

(
1
H −1

)
(T +u1+u2+v2)

×
∣
∣
∣e

u2
H − e

u1
H

∣
∣
∣
2H−2 ∣∣

∣e
T
H − e

v1
H

∣
∣
∣
2H−2

du1du2dv1dv2.

By change of variables x = T − u1, y = T − u2 and z = T − v1, this reduces to

dIT

dT
= α2

H H4H−4

θ2

∫

[0,T ]3
e−θx e−θ |y−z|e

(
1− 1

H

)
(x+y+z)

×
(
1 − e− y

H

)2H−2 ∣∣
∣e− x

H − e− z
H

∣
∣
∣
2H−2

dzdxdy.
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Therefore, we have

lim
T →∞

dIT

dT
= α2

H H4H−4

θ2

∫

[0,∞)3
e−θx e−θ |y−z|e

(
1− 1

H

)
(x+y+z)

×
(
1 − e− y

H

)2H−2 ∣∣
∣e− x

H − e− z
H

∣
∣
∣
2H−2

dzdxdy.

We end the proof by showing that this triple integral, denoted by I , is finite. By use of the
obvious bound e−θ |z−y| ≤ 1 we infer that

I ≤
∫

[0,∞)3
e−θx e

(
1− 1

H

)
(x+y+z)

×
(
1 − e− y

H

)2H−2 ∣∣
∣e− x

H − e− z
H

∣
∣
∣
2H−2

dzdxdy

=
[∫ ∞

0
e

(
1− 1

H

)
y
(
1 − e− y

H

)2H−2
dy

]

×
[∫ ∞

0

∫ ∞

0
e−θx e

(
1− 1

H

)
(x+z)

∣
∣
∣e− x

H − e− z
H

∣
∣
∣
2H−2

dzdx

]

= I1 × I2.

For the term I1, we obtain by change of variable u = e− y
H that

I1 = C
∫ 1

0
u−H (1 − u)2H−2du < ∞.

For the term I2, we obtain by change of variables u = e− x
H and v = e− z

H that

I2 = C
∫ 1

0

∫ 1

0
u(θ−1)H v−H |u − v|2H−2dudv

=
[∫ 1

0

∫ u

0
+
∫ 1

0

∫ 1

u

]

u(θ−1)H v−H |u − v|2H−2dvdu

= I2,1 + I2,2.

For the term I2,1, we obtain by change of variable z = v
u that

I2,1 = C
∫ 1

0
uθ H−1

∫ 1

0
z−H (1 − z)2H−2dzdu = 1

θ H
B(1 − H, 2H − 1).

Similarly for the term I2,2, we get by change of variable z = u
v
that

I2,2 = 1

θ H
B((θ − 1)H + 1, 2H − 1).
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