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Abstract We consider the problem of the construction of the asymptotically distribution
free test by the observations of ergodic diffusion process. It is supposed that under the basic
hypothesis the trend coefficient depends on a finite-dimensional parameter and we study the
Cramér-von Mises type statistics. The underlying statistics depends on the deviation of the
local time estimator from the invariant density with parameter replaced by the maximum
likelihood estimator. We propose a linear transformation which yields the convergence of the
test statistics to an integral of the Wiener process. Therefore the test based on this statistics
is asymptotically distribution free.

Keywords Cramér-von Mises tests · Ergodic diffusion process · Goodness of fit test ·
Asymptotically distribution free
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1 Introduction

The goodness of fit (GoF) tests occupy an important place in statistics because they provide
a bridge between the mathematical models and real data. Our work is devoted to the problem
of the construction of a GoF test in the case of observation of ergodic diffusion process in
the situation when the basic hypothesis is composite parametric. We propose asymptotically
distribution free test, which is based on linear transformation of the normalized deviation of
the empirical density.

Remind first the well-known properties of GoF tests in the statistics of i.i.d. observations
X1, . . . , Xn . If we have to test the hypothesis H0 that their distribution function F (x) =
F0 (x) we can use (among others) the Cramér-von Mises test ψ̂n = 1I{�n>cε}, where
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�n = n

∞∫

−∞

[
F̂n (x)− F0 (x)

]2
dF0 (x) , F̂n (x) = 1

n

n∑
j=1

1I{X j<x}.

Remarcable property of this (and some other) test is the fact that the statistics �n under
hypothesis H0 converges in distribution

�n �⇒ � ≡
1∫

0

B (t)2 dt,

where B (t) , 0 ≤ t ≤ 1, is a Brownian bridge. The tests with the limit distribution not
depending on the underlying model (here F0 (·)) are called asymptotically distribution free
(ADF). If we are interested in the construction of tests of asymptotically fixed first type error
ε ∈ (0, 1), i.e., the tests ψ̄n satisfying

lim
n→∞ E0 ψ̄n = ε,

then for such tests the choice of the threshold cε can be done once for all problems with the
same limit distribution. Indeed, the threshold cε for the test ψ̂n is solution of the equation
P {� > cε} = ε, which is the same for all possible F0 (·).

If the basic hypothesis H0 is parametric: F (x) = F0 (ϑ, x), where ϑ ∈ � ⊂ R
d is

an unknown parameter, then the situation changes and the limit distribution of the similar
statistics

�̂n = n

∞∫

−∞

[
F̂n (x)− F0

(
ϑ̂n, x

)]2
dF0

(
ϑ̂n, x

)
�⇒ �̂,

(ϑ̂n is the MLE) can be written in the following form

�̂ =
1∫

0

U (t)2 dt, U (t) = B (t)− (ζ, H (t)) (1)

where ζ = ζ (ϑ, F0) is a Gaussian vector and H (t) = H (ϑ, F0, t) is some deterministic
vector-function (Darling 1955). If we decide to use the test ψ̂n = 1I{

�̂n>cε
}, then we need to

find such cε = cε (ϑ, F0) that Pϑ
(
�̂ > cε

)
= ε, verify that cε (ϑ, F0) is continuous function

of ϑ and to put c̄ε = cε
(
ϑ̄n, F0

)
, where ϑ̄n is some consistent estimator of ϑ (say, MLE).

Then it can be shown that for the test ψ̂n = 1I{
�̂n>c̄ε

} we have

lim
n→∞ Eθ ψ̂n = ε for all ϑ ∈ �.

We denote the class of such tests as Kε. For a given family F0 (·) the function cε (ϑ, F0) can
be found by numerical simulations. Of course, this problem becames much more complicate
than the first one with the simple basic hypothesis. More about GoF tests can be found, e.g.,
in Lehmann and Romano (2005), Martynov (1978) or any other book on this subject.

Another possibility is to find such transformormation L [Un] of the statistic Un (x) =√
n
(

F̂n (x)− F(ϑ̂n, x)
)

that
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�̃n =
∞∫

−∞
L [Un] (x)2 dF(ϑ̂n, x) �⇒ �̃ ≡

1∫

0

w2
s ds, P

(
�̃ > cε

)
= ε,

where ws , 0 ≤ s ≤ 1, is some Wiener process. Then we will have the test ψ̃n = 1I{
�̃n>cε

} ∈
Kε . Such linear transformation was proposed in Khmaladze (1981).

In our work we consider a similar problem of the construction of ADF GoF tests by the
observations of ergodic diffusion processes. We are given a stochastic differential equation

dXs = S (Xs) ds + σ (Xs) dWs, X0, 0 ≤ s ≤ T, (2)

where Ws , 0 ≤ s ≤ T , is a Wiener process, σ (x)2 > 0 is a known function and we have to
test a composite basic hypothesis H0 that

dXs = S (ϑ, Xs) ds + σ (Xs) dWs, X0, 0 ≤ s ≤ T, (3)

i.e., the trend coefficient is some known function S (ϑ, x) which depends on the unknown
parameter ϑ ∈ � ⊂ R

d . Here and in the sequel we suppose that the initial value X0 has
the distribution function of the invariant law of this ergodic diffusion process. The invariant
distribution function and density function are denoted as F (ϑ, x) and f (ϑ, x) respectively.

Let us denote by F̂T (x) and f̂T (x) the empirical distribution function of the invariant
law and the empirical density (local time estimator of the invariant density) defined by the
relations

F̂T (x) = 1

T

T∫

0

1I{Xs<x} ds, f̂T (x) = 
T (x)

σ (x)2 T
,

where 
T (x) is the local time of the observed diffusion process (see Revuz and Yor (1991)
for the definition and properties). Remind that we call the random function f̂T (x) empirical
density because it is the derivative of empirical distribution function.

The Cramér-von Mises type statistics are based on L2 deviations of these estimators.
Denoting

η̂T (x) = √
T
(

F̂T (x)− F
(
ϑ̂T , x

))
, ζ̂T (x) = √

T
(

f̂T (x)− f
(
ϑ̂T , x

))
,

where ϑ̂T is the MLE of the parameter ϑ , these statistics can be introduced as follows

�̂T =
∞∫

−∞
η̂T (x)

2 dF
(
ϑ̂T , x

)
, δ̂T =

∞∫

−∞
ζ̂T (x)

2 dF
(
ϑ̂T , x

)
.

Unfortunatelly, the immediate use of the tests ̂T = 1I{
�̂T>cε

} and ψ̂T = 1I{
δ̂T>dε

} leads

to the same problems as in the i.i.d. case, i.e., the limit (T → ∞) distributions of these
statistics under hypothesis H0 depend on the model S (·, ·) , σ (·) and on the true value ϑ .

Moreover, in contrary to the i.i.d. case, even if the basic hypothesis is simple� = {ϑ0}, the
limit distributions depend on the model defined by the functions S (ϑ0, ·) , σ (·). Therefore,
even in this case of simple basic hypothesis we have no ADF limits for these statistics. This
means that for each model we have to find the threshold cε separately. There are sevral ADF
GoF tests for the ergodic and “small noise” diffusion processes proposed, for example, in the
works (Dachian and Kutoyants 2007; Kutoyants 2011; Negri and Nishiyama 2009), but the
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links between these tests and the “traditional” tests like Cramér-von Mises and Kolmogorov-
Smirnov (based on empirical distribution function) was not always clear.

Recently in this problem (with simple hypothesis) there was proposed a linear transfor-
mation L1 [ζT ] of the random function

ζT (x) = √
T
(

f̂T (x)− f (ϑ0, x)
)

such that

δT =
∞∫

−∞
[L1 [ζT ] (x)]2 dF (ϑ0, x) �⇒

1∫

0

w2
s ds (4)

(see Kutoyants (2012)). The proposed test statistics (after linear transformation and some
simplifications) is

δ̃T =
∞∫

−∞

⎡
⎣ 1√

T

T∫

0

1I{Xs<x}
σ (Xs)

[dXs − S (ϑ0, Xs) ds]

⎤
⎦

2

dF (ϑ0, x) (5)

with the same limit (4). See as well Negri and Nishiyama (2009), where the similar statistics
were used in the costruction of the Kolmogorov-Smirnov type ADF test.

Hence the test ψ̂T = 1I{
δ̃T>cε

} is ADF (in the case of simple basic hypothesis).

The goal of this work is to present such linear transformation L[ζ̂T ] of the random function
ζ̂T (x) that

δ̂T =
∞∫

−∞
L[ζ̂T ] (x)2 dF(ϑ̂T , x) �⇒

1∫

0

w2
s ds. (6)

Note that the general case of ergodic diffusion process with shift (one-dimensional) para-
meter was studied in Negri and Zhou (2012). They showed that the limit distribution of the
Cramér-von Mises statistic does not depend on the unknown (shift) parameter and therefore
is asymptotically parameter free.

2 Assumptions and preliminaries

We are given (under hypothesis H0) continuous time observations X T = (Xs, 0 ≤ s ≤ T )
of the diffusion process

dXs = S (ϑ, Xs) ds + σ (Xs) dWs, X0, 0 ≤ s ≤ T . (7)

We are going to study the GoF test based on the normalized difference
√

T
(

f̂T (x)− f
(
ϑ̂T , x

))

= √
T
(

f̂T (x)− f (ϑ, x)
)

−
(√

T
(
ϑ̂T − ϑ

)
, ḟ (ϑ)

)
+ o (1) .

We need three types of conditions. The first one (ES,RP and A0) provide the exis-
tence of the solution of the Eq. (7), good ergodic properties of the process (Xs, s ≥ 0)
and allow to describe the asymptotic behavior of the normalized difference ζT (ϑ, x) =√

T
(

f̂T (x)− f (ϑ, x)
)

.
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The regularity conditions R1 provide the properties of the MLE ϑ̂T (consistency, asymp-
totic normality and stochastic representation). The last condition R2 will help us to construct
the linear transformation L [·] of the process ζ̂T (·) to the Wiener process. Therefore, the test
based on this transformation is asymptotically distribution free.

We assume that the trend S (ϑ, x), ϑ ∈ � ⊂ R
d and diffusion σ (x)2 coefficients satisfy

the following conditions.
ES. The function S (ϑ, x), ϑ ∈ �, x ∈ R is locally bounded, the function σ (x)2 > 0 is

continuous and for some C > 0 the condition

x S (ϑ, x)+ σ (x)2 ≤ C
(
1 + x2)

holds.
By this condition the stochastic differential Eq. (7) has a unique weak solution for all

θ ∈ � (see, e.g., Durrett (1996)).
RP. The functions S (ϑ, ·) and σ (x)2 are such that for all ϑ ∈ �

x∫

−∞
exp

⎧⎨
⎩2

x∫

0

S (ϑ, y)

σ (y)2
dy

⎫⎬
⎭ dx −→ ±∞ as x −→ ±∞

and

G (ϑ) =
∞∫

−∞
σ (x)−2 exp

⎧⎨
⎩2

x∫

0

S (ϑ, y)

σ (y)2
dy

⎫⎬
⎭ dx < ∞.

By condition RP the diffusion process (7) is recurrent positive (ergodic) with the density
of invariant law

f (ϑ, x) = 1

G (ϑ) σ (x)2
exp

⎧⎨
⎩2

x∫

0

S (ϑ, y)

σ (y)2
dy

⎫⎬
⎭ .

We suppose that the initial value X0 has this density function, therefore the observed process
is stationary.

Introduce the class P of functions with polynomial majorants

P = {
h (·) : |h (y)| ≤ C

(
1 + |y|p)} . (8)

If the function h (·) depends on parameter ϑ , then we suppose that the constant C in (8) does
not depend on ϑ .

The condition RP is strenghtened in the following way.
A0. The functions S (ϑ, ·) , σ (·)±1 ∈ P and for all ϑ

lim|y|→∞ sgn (y)
S (ϑ, y)

σ (y)2
< 0.

Under condition A0 the empirical distribution function F̂T (x) and empirical density
f̂T (x) are unbiased, consistent, asymptotically normal and asymptotically efficient esti-
mators of the functions F (ϑ, x) and f (ϑ, x) respectively. The random processes

ηT (ϑ, x) = √
T
(

F̂T (x)− F (ϑ, x)
)
, ζT (ϑ, x) = √

T
(

f̂T (x)− f (ϑ, x)
)
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converge to the Gaussian processes η (ϑ, x) and ζ (ϑ, x), which admit the representations

η (ϑ, x) = 2

∞∫

−∞

F (ϑ, y) F (ϑ, x)− F (ϑ, y ∧ x)

σ (y)
√

f (ϑ, y)
dW (y), (9)

ζ (ϑ, x) = 2 f (ϑ, x)

∞∫

−∞

F (ϑ, y)− 1I{y>x}
σ (y)

√
f (ϑ, y)

dW (y). (10)

Here W (·) is two-sided Wiener process. For the proofs see Kutoyants (2004). These proofs
are based on the following representations

ηT (ϑ, x) = 2√
T

T∫

0

F (ϑ, x) F (ϑ, Xs)− F (ϑ, x ∧ Xs)

σ (y) f (ϑ, y)
dWs

+ 2√
T

XT∫

X0

F (ϑ, y ∧ x)− F (ϑ, y) F (ϑ, x)

σ (y)2 f (ϑ, y)
dy (11)

and

ζT (ϑ, x) = 2 f (ϑ, x)√
T

T∫

0

F (ϑ, Xs)− 1I{Xs>x}
σ (y) f (ϑ, Xs)

dWs

+ 2 f (ϑ, x)√
T

XT∫

X0

1I{y>x} − F (ϑ, y)

σ (y)2 f (ϑ, y)
dy. (12)

It is easy to see that A0 implies RP . Moreover, we can verify that the condition A0

provides the equivalence of the measures
{

P(T )ϑ , ϑ ∈ �
}

induced in the measurable space

(C [0, T ] ,B) of continuous on [0, T ] functions by the solutions of this equation with different
ϑ (see Liptser and Shiryaev (2003)). Hence, the likelihood ratio has the following form

L
(
ϑ, X T

)
= exp

⎧⎨
⎩

T∫

0

S (ϑ, Xs)

σ (Xs)
2 dXs −

T∫

0

S (ϑ, Xs)
2

2 σ (Xs)
2 ds

⎫⎬
⎭

and the MLE ϑ̂T is defined by the equation

L
(
ϑ̂T , X T

)
= sup
θ∈�

L
(
ϑ, X T

)
.

To study the tests we need to know the properties of the MLE ϑ̂T (in the regular case).
Below and in the sequel the dot means derivation w.r.t. ϑ and the prime means derivation

w.r.t. x , i.e.; Ṡ (ϑ, x) is d-vector and S̈ (ϑ, x) is a d × d matrix. The information matrix is

I (ϑ) = Eϑ

(
Ṡ (ϑ, ξ) Ṡ (ϑ, ξ)∗

σ (ξ)2

)
,

where * means transposition and ξ is the r.v. with the invariant density function f (ϑ, x). The
scalar product in R

d is denoted by 〈·, ·〉.
We have two types of regularity conditions.
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R1.

• The set � is an open and bounded subset of R
d .

• The function S (ϑ, x) has continuous derivatives w.r.t. ϑ such that

Ṡ (ϑ, x) , S̈ (ϑ, x) ∈ P.
• The information matrix is uniformly nondegerate

inf
ϑ∈� inf

|λ|=1,λ∈Rd
λ∗I (ϑ) λ > 0

and for any compact K ⊂ �, any ϑ0 ∈ � and any ν > 0

inf
ϑ∈K

inf|ϑ−ϑ0|>ν Eϑ0

(
S (ϑ, ξ)− S (ϑ0, ξ)

σ (ξ)

)2

> 0.

Here ξ is a random variable with the density function f (ϑ0, x). By the conditions A0 and
R1 the MLE is consistent, asymptotically normal

√
T
(
ϑ̂T − ϑ

)
�⇒ N (

0, I (ϑ)−1) ,
we have the convergence of all polynomial moments and this estimator is asymptotically
efficient (see Kutoyants (2004) for details). Moreover, the MLE admits the representation

√
T
(
ϑ̂T − ϑ

)
= I (ϑ)−1

√
T

T∫

0

Ṡ (ϑ, Xs)

σ (Xs)
dWs (1 + o (1)) . (13)

Let us introduce the matrix

N (ϑ, y) = I (ϑ)−1

∞∫

y

Ṡ (ϑ, z) Ṡ (ϑ, z)∗

σ (z)2
f (ϑ, z) dz.

Note that N (ϑ,−∞) = Id , where Id is the unit d × d matrix.
The next regularity condition is
R2.

• The functions Ṡ (ϑ, x) and σ (x) have continuous derivatives w.r.t. x

Ṡ′ (ϑ, x) , σ ′ (x) ∈ P.
• The matrix N (ϑ, y) for any y is uniformly in ϑ ∈ � non degenerate and there existes a

constant C > 0 such that

sup
ϑ∈�

sup
|λ|=1

λ∗N (ϑ, y)−1 λ ≤ C

1 − F (ϑ, y)
.

Let us remind what happens in the case of simple basic hypothesis, say, ϑ = ϑ0. Using the
representation (11) and (12) it is shown that the corresponding statistics have the following
limits

�T = T
∫ [

F̂T (x)− F (ϑ0, x)
]2

dF (ϑ0, x) �⇒
∫
η (ϑ0, x)2 dF (ϑ0, x) ,

δT = T
∫ [

f̂T (x)− f (ϑ0, x)
]2

dF (ϑ0, x) �⇒
∫
ζ (ϑ0, x)2 dF (ϑ0, x) .
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Therefore the tests based on these two statistics are not ADF. To construct the ADF test we
put

μ0 (ϑ0, x) = ζ (ϑ0, x)

2 f (ϑ0, y)
=

∞∫

−∞

F (ϑ0, y)− 1I{y>x}
σ (y)

√
f (ϑ0, y)

dW (y),

and note that by the CLT

ζT (ϑ0, y)

2 f (ϑ0, y)
�⇒ μ0 (ϑ0, x) .

Further, we have the convergence

L1 [ζT (ϑ0)] (x) =
x∫

−∞
σ (y) f (ϑ0, y) d

[
ζT (ϑ0, y)

2 f (ϑ0, y)

]

= 1√
T

T∫

0

1I{Xs<x} dWs + o (1) �⇒ wF(ϑ0,x). (14)

Hence

δ̄T =
∞∫

−∞
L1 [ζT (ϑ0)] (x)

2 dF (ϑ0, x)

�⇒
∞∫

−∞
w2

F(ϑ0,x) dF (ϑ0, x) =
1∫

0

w2
s ds

and the test ψ̄T = 1I{δ̄T>cε} is ADF (see the details in Kutoyants (2012)).

Moreover, we can define an asymptotically equivalent test ψ̃T = 1I{
δ̃T>cε

}, where

δ̃T =
∞∫

−∞

⎡
⎣ 1√

T

T∫

0

1I{Xs<x}
σ (Xs)

[dXs − S (ϑ0, Xs) ds]

⎤
⎦

2

dF (ϑ0, x) (15)

and this test as well is ADF.

3 Main result

Remind that the value of parameter ϑ is unknown that is why we replace ϑ by its MLE ϑ̂T

and our goal is to find the transformations

L
[
ηT

(
ϑ̂T , ·

)]
(x) , L

[
ζT

(
ϑ̂T , ·

)]
(x)

of the statistics ηT (ϑ̂T , x) = √
T
(

F̂T (x)− F(ϑ̂T , x)
)

and ζT

(
ϑ̂T , x

)
= √

T
(

f̂T
(
x
) −

f
(
ϑ̂T , x

))
such that the GoF tests constructed on it will be ADF. First note that we have

equality [
ηT (ϑ̂T , x)

]′ = ζT (ϑ̂T , x),
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therefore if we find this transformation for ζT (ϑ̂T , ·) then we obtain it for ηT (ϑ̂T , ·) too.
Moreover, we show that the linear transformation (14) of

μT

(
ϑ̂T , x

)
=

√
T ( f̂T (x)− f (ϑ̂T , x))

2 f (ϑ̂T , x)
, x ∈ R

gives us statistic which is asymptotically equivalent to the statistic

ξT

(
ϑ̂T , x

)
= 1√

T

T∫

0

1I{Xs<x}
σ (Xs)

[
dXs − S(ϑ̂T , Xs)ds

]
.

Therefore our ADF test will be based on the statistic ξT (ϑ̂T , x), which is much easier to
calculate.

Introduce the random vector

�(ϑ) =
∞∫

−∞

Ṡ (ϑ, y)

σ (y)

√
f (ϑ, y) dW (y) ∼ N (0, I (ϑ)) (16)

and the Gaussian function

μ (ϑ, x) = μ0 (ϑ, x)− 2−1
〈
I (ϑ)−1�(ϑ) ,

∂� (ϑ, x)

∂θ

〉
, x ∈ R,

where � (ϑ, x) = ln f (ϑ, x) and 〈·, ·〉 is the scalar product in R
d . Further, let us put s =

F (ϑ, y), t = F (ϑ, x), define the vector function

h (ϑ, s) = I (ϑ)−1/2 Ṡ
(
ϑ, F−1 (ϑ, s)

)
σ
(
F−1 (ϑ, s)

) ,

1∫

0

h (ϑ, s)∗ h (ϑ, s) ds = 1,

and Gaussian process

U (t) = w (t)−
〈 1∫

0

h (ϑ, s) dw (s) ,

t∫

0

h (ϑ, s) ds

〉
, (17)

where w (s) , 0 ≤ s ≤ 1 is some Wiener process. Here F−1 (ϑ, s) is the function inverse to
F (ϑ, y), i.e., the solution y of the equation F (ϑ, y) = s. Below u (x) = U (F (ϑ, x)).

Theorem 1 Let the conditions ES,A0 and R1 be fulfilled, then

μT

(
ϑ̂T , x

)
�⇒ μ (ϑ, x) , ξT

(
ϑ̂T , x

)
�⇒ u (x) , (18)

and
x∫

−∞
σ (y) f (ϑ, y) dμ (ϑ, y) = u (x) . (19)

Proof Using the consisteny of the MLE we can write

ζT

(
ϑ̂T , x

)
= √

T
(

f̂T (x)− f (ϑ, x)
)

+ √
T
(

f (ϑ, x)− f (ϑ̂T , x)
)

= ζT (ϑ, x)−
〈√

T (ϑ̂T − ϑ),
∂ f (ϑ, x)

∂ϑ

〉
+ o (1) .
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The slight modification of the proof of the Theorem 2.8 in Kutoyants (2004) allows us

to verify the joint asymptotic normality of ζT (ϑ, x) and
√

T
(
ϑ̂T − ϑ

)
as follows. Let us

denote �T
(
ϑ, X T

)
the vector score function

�T

(
ϑ, X T

)
= 1√

T

T∫

0

Ṡ (ϑ, Xs)

σ (Xs)
dWs .

The behavior of the MLE is described in Kutoyants (2004) through the weak convergence of
the normalized likelihood ratio

ZT (u) ≡
L
(
ϑ + u√

T
, X T

)

L
(
ϑ, X T

) = exp

{〈
u,�T

(
ϑ, X T

)〉
− 1

2
u∗I (ϑ) u + o (1)

}
.

By the central limit theorem for stochastic integrals we have the joint asymptotic normality:
for any (λ, ν) ∈ R

1+d

λ ζT (ϑ, x)+
〈
ν,�T

(
ϑ, X T

)〉
�⇒ λ ζ (ϑ, x)+ 〈ν,� (ϑ)〉 .

Hence following the proof of the mentioned above Theorem 2.8 we obtain the joint conver-
gence

(ζT (ϑ, x) , ZT (·)) �⇒ (ζ0 (ϑ, x) , Z (·)) ,
where

Z (u) = exp

{
〈u,� (ϑ)〉 − 1

2
u∗I (ϑ) u

}
, u ∈ R

d .

This joint convergence yields the joint asymptotic normality
(
ζT (ϑ, x) ,

√
T (ϑ̂T − ϑ)

)
�⇒ (

ζ (ϑ, x) , I (ϑ)−1�(ϑ)
)

with the same Wiener process W (·) in (10) and (16).
Now the convergence (18) follows from the consisteny of the MLE, because f (ϑ̂T , x) →

f (ϑ, x).
Therefore the limit μ (ϑ, x) of μT (ϑ, x) can be written as

∞∫

−∞

[
F (ϑ, y)− 1I{y>x} − 〈

[2I (ϑ)]−1 Ṡ (ϑ, y) , �̇ (ϑ, x)
〉

f (ϑ, y)

σ (y)
√

f (ϑ, y)

]
dW (y) .

Let us consider the linear transformation of μ (ϑ, ·) following (14):

L1 [μ] (x) =
x∫

−∞
σ (y) f (ϑ, y) dμ (ϑ, y) .

Remind the details of this transformation from Kutoyants (2012). Denote

F (ϑ, y) = s, a (ϑ, s) = σ
(
F−1 (ϑ, s)

)
, b (ϑ, s) = f

(
ϑ, F−1 (ϑ, s)

)
.
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Then we can write

∞∫

−∞

F (ϑ, y)− 1I{y>x}
σ (y)

√
f (ϑ, y)

dW (y)

=
∞∫

−∞

[
F (ϑ, y)− 1I{F(ϑ,y)>F(ϑ,x)}

]
σ (y) f (ϑ, y)

√
f (ϑ, y) dW (y)

=
1∫

0

[
s − 1I{s>t}

]
a (ϑ, s) b (ϑ, s)

dw (s)

=
t∫

0

s

a (ϑ, s) b (ϑ, s)
dw (s)+

1∫

t

s − 1

a (ϑ, s) b (ϑ, s)
dw (s)

= v (ϑ, t) , 0 < t < 1,

where w (s) , 0 ≤ s ≤ 1 is the following Wiener process

w (s) =
F−1(ϑ,s)∫

−∞

√
f (ϑ, y) dW (y) .

Note that v (ϑ, 0) = ∞ (x = −∞) and v (ϑ, 1) = ∞ (x = +∞). Therefore we define this
differential and the corresponding integrals below for t ∈ (ν, 1 − ν) with small ν > 0 and
in the sequel ν → 0 (x → ±∞).

Hence

dμ0 (ϑ, y) = dv (ϑ, s) = 1

a (ϑ, s) b (ϑ, s)
dw (s)

and

x∫

−∞
σ (y) f (ϑ, y) dμ0 (ϑ, y) =

t∫

0

a (ϑ, s) b (ϑ, s) dv (ϑ, s) = w (t) .

To calculate the second term note that

�̇ (ϑ, x) = − Ġ (ϑ)

G (ϑ)
+ 2

x∫

0

Ṡ (ϑ, y)

σ (y)2
dy.

Therefore

x∫

−∞
σ (y) f (ϑ, y) d�̇ (ϑ, y) = 2

x∫

−∞

Ṡ (ϑ, y)

σ (y)
f (ϑ, y) dy

123



306 Stat Inference Stoch Process (2014) 17:295–319

and
x∫

−∞
σ (y) f (ϑ, y) dμ (ϑ, y) = w (F (ϑ, x))

−
〈
I (ϑ)−1/2

∞∫

−∞

Ṡ (ϑ, y)

σ (y)
dw (F (ϑ, y)) , I (ϑ)−1/2

x∫

−∞

Ṡ (ϑ, y)

σ (y)
dF (ϑ, y)

〉

= U (F (ϑ, x)) = w (t)−
〈 1∫

0

h (ϑ, s) dw (s) ,

t∫

0

h (ϑ, s) ds

〉
.

Further, we have

ξT

(
ϑ̂T , x

)
= 1√

T

T∫

0

1I{Xs<x}
σ (Xs)

[dXs − S(ϑ, Xs)ds]

+ 1√
T

T∫

0

1I{Xs<x}
σ (Xs)

[
S(ϑ, Xs)− S(ϑ̂T , Xs)

]
ds

= 1√
T

T∫

0

1I{Xs<x}dWs −
〈(
ϑ̂T − ϑ

)
,

T∫

0

1I{Xs<x} Ṡ(ϑ, Xs)√
Tσ (Xs)

ds

〉
+ o (1)

�⇒ w (F (ϑ, x))−
〈
I (ϑ)−1�(ϑ) ,

x∫

−∞

Ṡ (ϑ, y)

σ (y)
dF (ϑ, y)

〉
= u (x) . (20)

It can be shown that

L1 [μT ] (x) �⇒ L1 [μ] (x) = u (x) .

The same limit has the statistic ξT (ϑ̂T , x). Therefore it is sufficient to find such transformation

L2

[
ξT (ϑ̂T , ·)

]
(x) that its limit is a Wiener process, say, L2 ([U (·)] (t) = wt . Below we omit

ϑ in h (ϑ, t) and denote the matrix

N (t) =
1∫

t

h (ϑ, s) h∗ (ϑ, s) ds = N
(
ϑ, F−1 (ϑ, t)

)
.

The transformation L2 [·] of the limit process given below in (21) coincides with one
proposed by Khmaladze (1981) and the difference is in the proofs. The transformation L [·]
in Khmaladze (1981) is based on two strong results: one is due to Hitsuda (1968), which
gives the linear representation of a Gaussian process with measure equivalent to the measure
of Wiener process and the second is due to Shepp (1966), which gives the condition of
equivalence of the process U (s) , 0 ≤ s ≤ τ (see (1)) on any interval [0, τ ] , τ < 1 to the
Wiener process Ws, 0 ≤ s ≤ τ . Then, in Khmaladze (1981), the limit τ → 1 is considered.
We do not use these two results and give the direct martingale proof using the solution of
Fredholm equation of the second kind with degenerated kernel.

Theorem 2 Suppose that h (s) is continuous vector-function and the matrix N (t) , t ∈ [0, 1)
is nondenerate. Then
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L2 ([U (·)] (t) ≡ U (t)+
t∫

0

s∫

0

h∗ (v) N (s)−1 h (s) dU (v) ds = wt , (21)

where wt , t ∈ [0, 1) is a Wiener process.

Proof The proof will be done in several steps.
Step 1. We itroduce a Gaussian process

Mt =
t∫

0

q (t, s) dU (s) , 0 ≤ t ≤ 1, (22)

where the function q (t, s) is choosen as solution of special Fredholm equation.
Step 2. Then we show that with such choice of q (t, s) the process Mt becames a martingale

and admits the representation

Mt =
t∫

0

q (s, s) dws, 0 ≤ t ≤ 1,

where ws, 0 ≤ s ≤ 1 is some Wiener process.
Step 3. This representation allows us to obtain the Wiener process by inverting this equation

wt =
t∫

0

1

q (s, s)
dMs = U (t)+

t∫

0

1

q (s, s)

s∫

0

q ′
s (s, v) dU (v) ds, 0 ≤ t ≤ 1.

This last equality provides us the linear transformation

L2 [U ] (t) = U (t)+
t∫

0

1

q (s, s)

s∫

0

q ′
s (s, v) dU (v) ds = wt ,

and we show that it is equivalent to (21).
Now we realize this program. Suppose that q (t, s) is some continuous function and the

process Mt is defined by the equality (22). Then the correlation function of Mt is (s < t)

R (t, s) = E [Mt Ms] = E

⎡
⎣

t∫

0

q (t, u) dw (u)−
t∫

0

q (t, u) 〈ζ∗, h (u)〉 du

⎤
⎦

⎡
⎣

s∫

0

q (s, v) dw (v)−
s∫

0

q (s, v) 〈ζ∗, h (v)〉 dv

⎤
⎦

=
s∫

0

q (t, u) q (s, u) du −
〈 s∫

0

q (s, v) h (v) dv,

t∫

0

q (t, u) h (u) du

〉

=
s∫

0

q (s, u)

⎡
⎣q (t, u)−

t∫

0

q (t, v) 〈h (u) , h (v)〉 dv

⎤
⎦ du.
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Therefore, if we take q (t, s) such that it solves the Fredholm equation (t is fixed)

q (t, s)−
t∫

0

q (t, v) 〈h (s) , h (v)〉 dv = 1, s ∈ [0, t] , (23)

then

E [Mt Ms] = E
[
M2

s

] =
s∫

0

q (s, u) du. (24)

The solution q (t, s) of the Eq. (23) can be found as follows. Let us put

q (t, s) = 1 +
〈 t∫

0

q (t, v) h (v) dv, h (s)

〉
= 1 + 〈A (t) , h (s)〉 = 1 + h (s)∗ A (t) ,

where the vector-function A (t) itself is solution of the following equation (after multiplying
(23) by h (s) and integrating)

A (t)−
t∫

0

h (s) h (s)∗ ds A (t) =
t∫

0

h (s) ds.

We can write ⎛
⎝Id −

t∫

0

h (s)h (s)∗ ds

⎞
⎠ A (t) = N (t) A (t) =

t∫

0

h (s) ds

(Id is d × d identity matrix) and remind that N (t) is nondegenerate, then we obtain

A (t) = N (t)−1

t∫

0

h (s) ds.

Therefore, the solution of (23) is the function

q (t, s) = 1 +
〈
N (t)−1

t∫

0

h (v) dv, h (s)

〉
. (25)

The last integral in (24) has the following property.

Lemma 1
t∫

0

q (t, s) ds =
t∫

0

q (s, s)2 ds. (26)

Proof We show that

d

dt

t∫

0

q (t, s) ds = d

dt

t∫

0

q (s, s)2 ds = q (t, t)2 .
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We have

d

dt

t∫

0

q (t, s) ds = 1 + d

dt

⎡
⎣

t∫

0

h∗ (s) ds N (t)−1

t∫

0

h (v) dv

⎤
⎦

= 1 + 2h∗ (t) N (t)−1

t∫

0

h (v) dv

+
t∫

0

h∗ (s) ds N (t)−1 h (t) h∗ (t) N (t)−1

t∫

0

h (v) dv

=
⎡
⎣1 + h∗ (t) N (t)−1

t∫

0

h (s) ds

⎤
⎦

2

= q (t, t)2 .

The next step is the following Lemma.

Lemma 2 If the Gaussian process Ms satisfies (24) and we have (26) with some continuous
positive function q (s, s), then

z (t) =
t∫

0

q (s, s)−1 dMs

is a Wiener process.

Proof Consider the partition 0 = s0 < s1 < · · · < sN = 1 and put

zN (t) =
∑
sl≤t

q (sl−1, sl−1)
−1 [Msl − Msl−1

]
.

Note that by (24) we have EMs Mt = EM2
s for s < t . Hence for l �= m

E
[
Msl − Msl−1

] [
Msm − Msm−1

] = 0.

This allows us to write

EzN (t) zN (s) =
∑
sl≤s

q (sl−1, sl−1)
−2 E

[
Msl − Msl−1

]2

=
∑
sl≤s

q (sl−1, sl−1)
−2 E

[
M2

sl
− M2

sl−1

]

=
∑
sl≤s

q (sl−1, sl−1)
−2

sl∫

sl−1

q (v, v)2 dv −→ s

as max |sl − sl−1| → 0. At the same time zN (t) → z (t) in mean-square. Therefore, Ez (t) =
0, Ez (t) z (s) = t ∧ s and z (t) is a Wiener process wt .

Hence

Mt =
t∫

0

q (s, s) dws, t ∈ [0, 1)
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is a Gaussian martingale. This implies the equality

wt =
t∫

0

1

q (s, s)
dMs = U (t)+

t∫

0

1

q (s, s)

s∫

0

q ′
s (s, v) dU (v) ds.

For the derivative q ′
t (t, s) we can write

q ′
t (t, s) = (

A′ (t) , h (s)
)

= h∗ (s)N (t)−1 h (t) h∗ (t)N (t)−1

t∫

0

h (v) dv + h∗ (s) N (t)−1 h (t)

= h∗ (s)N (t)−1 h (t)

⎡
⎣h∗ (t)N (t)−1

t∫

0

h (v) dv + 1

⎤
⎦

= h∗ (s)N (t)−1 h (t) q (t, t) .

Hence

q ′
s (s, v)

q (s, s)
= h∗ (v)N (s)−1 h (s)

and we obtain the final expression

wt = U (t)+
t∫

0

s∫

0

h∗ (v) N (s)−1 h (s) dU (v) ds.

This is the explicit linear transformation wt = L2 [U ] (t) of the process U (·) in the
Wiener process wt and this proves the Theorem 2.

Let us denote

g (ϑ, y) = Ṡ (ϑ, y)

σ (y)
, N (ϑ, x) =

∞∫

x

Ṡ (ϑ, z) Ṡ (ϑ, z)∗

σ (z)2
f (ϑ, z) dz.

Then we can write

wF(ϑ,x) = U (F (ϑ, x))

+
x∫

−∞

y∫

−∞
g∗ (ϑ, y)N (ϑ, y)−1 g (ϑ, z) dU (F (ϑ, z)) f (ϑ, y) dy,

i.e., this transformation of U (·) does not depend on the information matrix I (ϑ). Of course,
U (·) itself depends on I (ϑ).

To construct the test we have to replace U (F (ϑ, x)) , g (ϑ, y) and N (ϑ, y) in (21) by
their empirical versions based on observations only

ξT

(
ϑ̂T , x

)
, g

(
ϑ̂T , y

)
=

Ṡ
(
ϑ̂T , y

)

σ (y)
, N

(
ϑ̂T , y

)
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respectively and to study

vT

(
ϑ̂T , x

)
= ξT

(
ϑ̂T , x

)

+
x∫

−∞

y∫

−∞
g∗ (ϑ̂T , y

)
N

(
ϑ̂T , y

)−1
g
(
ϑ̂T , z

)
dξT

(
ϑ̂T , z

)
dF

(
ϑ̂T , y

)
.

Then we have to show that

vT (ϑ̂T , x)− vT (ϑ, x) → 0, vT (ϑ, x) �⇒ wF(ϑ,x).

Unfortunately we can not do it directly. We have to avoid the calculation of the integral

S
(
ϑ̂T , y

)
=

y∫

−∞
g
(
ϑ̂T , z

)
dξT

(
ϑ̂T , z

)

because this integral is equivalent in some sense to the Itô stochastic integral and ϑ̂T depends
on the whole trajectory (Xt , 0 ≤ t ≤ T ). One way is to use the discrete approximation of
this integral

Kn

(
ϑ̂T , y

)
=

∑
zi<y

g
(
ϑ̂T , zi

) [
ξT

(
ϑ̂T , zi+1

)
− ξT

(
ϑ̂T , zi

)]

and to show that

Kn

(
ϑ̂T , y

)
− Kn (ϑ, y) → 0, Kn (ϑ, y)− K (ϑ, y) → 0.

Another possibility is to replace the corresponding stochastic integral by the ordinary one
what we do below.

Introduce two functions

Q (ϑ, x, y) =
x∫

y∧x

Ṡ∗ (ϑ, v)
σ (v)

N (ϑ, y)−1 dF (ϑ, v) ,

R (ϑ, x, y) =
〈
Ṡ (ϑ, y) , Q (ϑ, x, y)

〉
σ (y)2

and the statistic

VT

(
ϑ̂T , x

)
= ξT

(
ϑ̂T , x

)

− 1

2
√

T

T∫

0

[
R′

y

(
ϑ̂T , x, Xs

)
σ (Xs)

2 ds

+ 2R
(
ϑ̂T , x, Xs

)
S(ϑ̂T , Xs)

]
ds.

The main result of this work is the following theorem.

Theorem 3 Let the conditions ES,A0 and R1,R2 be fulfilled, then the test ψ̂T = 1I{δT>cε}
with δT and cε defined by the relations
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δT =
∞∫

−∞
VT

(
ϑ̂T , x

)2
dF(ϑ̂T , x), P

⎛
⎝

1∫

0

w2
t dt > cε

⎞
⎠ = ε (27)

is ADF and belongs to Kε.

Proof Let us suppose that g (ϑ, z) is piece-wise continuous function and consider the calcu-
lation of the integral

b∫

a

g (ϑ, z) dξT (ϑ, z) .

For any partition a = z1 < z2 · · · < zK = b and max |zk+1 − zk | → 0 we have

K−1∑
k=1

g (ϑ, z̃k)
[
ξT (ϑ, zk+1)− ξT (ϑ, zk)

]

= 1√
T

T∫

0

∑N−1
k=1 g (ϑ, z̃k) 1I{zk≤Xs<zk+1}

σ (Xs)
dXs

− 1√
T

T∫

0

∑N−1
k=1 g (ϑ, z̃k) S(ϑ, Xs)1I{zk≤Xs<zk+1}

σ (Xs)
ds

−→ 1√
T

T∫

0

g (ϑ, Xs) 1I{a≤Xs<b}
σ (Xs)

dXs

− 1√
T

T∫

0

g (ϑ, Xs) S(ϑ, Xs)1I{a≤Xs<b}
σ (Xs)

ds.

Therefore we have the equality

y∫

−∞

Ṡ (ϑ, z)

σ (z)
dξT (ϑ, z) = 1√

T

T∫

0

Ṡ (ϑ, Xs) 1I{Xs<y}
σ (Xs)

2 dXs

− 1√
T

T∫

0

Ṡ (ϑ, Xs) S(ϑ, Xs)1I{Xs<y}
σ (Xs)

2 ds. (28)

Further, by Fubini theorem

JT (ϑ, x) =
x∫

−∞
g∗ (ϑ, y)N (ϑ, y)−1

y∫

−∞
g (ϑ, z) dξT (ϑ, z) dF (ϑ, y) ,

= 1√
T

T∫

0

Ṡ (ϑ, Xs)
∗

σ (Xs)
2

x∫

Xs∧x

N (ϑ, y)−1g (ϑ, y) dF (ϑ, y) dXs
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− 1√
T

T∫

0

Ṡ (ϑ, Xs)
∗ S(ϑ, Xs)

σ (Xs)
2

x∫

Xs∧x

N (ϑ, y)−1g (ϑ, y) dF (ϑ, y) ds

= 1√
T

T∫

0

R (ϑ, x, Xs) dXs − 1√
T

T∫

0

R (ϑ, x, Xs) S(ϑ, Xs) ds.

By the Itô formula

T∫

0

R (ϑ, x, Xs) dXs =
XT∫

X0

R (ϑ, x, y) dy − 1

2

T∫

0

R′
y (ϑ, x, Xs) σ (Xs)

2 ds.

Hence we have no more stochastic integrals and can substitute the estimator

√
T JT

(
ϑ̂T , x

)
=

XT∫

X0

R
(
ϑ̂T , x, y

)
dy

−
T∫

0

[
R
(
ϑ̂T , x, Xs

)
S(ϑ̂T , Xs)+ 1

2
R′

y

(
ϑ̂T , x, Xs

)
σ (Xs)

2
]

ds

=
XT∫

X0

R
(
ϑ̂T , x, y

)
dy

−
T∫

0

[
R
(
ϑ̂T , x, Xs

)
S(ϑ, Xs)+ 1

2
R′

y

(
ϑ̂T , x, Xs

)
σ (Xs)

2
]

ds

+
T∫

0

R
(
ϑ̂T , x, Xs

) [
S(ϑ, Xs)− S(ϑ̂T , Xs)

]
ds.

Further (below ûT = √
T (ϑ̂T − ϑ))

[
JT

(
ϑ̂T , x

)
− JT (ϑ, x)

]
=
〈

ûT

T
,

XT∫

X0

Ṙ (ϑ, x, y) dy

〉

−
〈

ûT

T
,

T∫

0

[
Ṙ (ϑ, x, Xs)S(ϑ, Xs)+ 1

2
Ṙ′

y (ϑ, x, Xs) σ (Xs)
2
]

ds

〉

−
〈

ûT

T
,

T∫

0

R (ϑ, x, Xs)Ṡ(ϑ, Xs)ds

〉
+ o (1) .

Note that by Theorem 2.8 in Kutoyants (2004) for any p > 0

sup
ϑ

Eϑ
∣∣∣ϑ̂T − ϑ

∣∣∣p ≤ C T − p
2 . (29)
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Using once more the Itô formula we obtain

XT∫

X0

Ṙ (ϑ, x, y) dy −
T∫

0

[
Ṙ (ϑ, x, Xs)S(ϑ, Xs)+ 1

2
Ṙ′

y (ϑ, x, Xs) σ (Xs)
2
]

ds

=
T∫

0

Ṙ (ϑ, x, Xs)dWs .

Hence

⎛
⎝Eϑ

〈
ûT

T
,

T∫

0

Ṙ (ϑ, x, Xs) dWs

〉⎞
⎠

2

≤ Eϑ
∣∣ûT

∣∣2
∣∣∣∣∣∣

1

T

T∫

0

Ṙ (ϑ, x, Xs) dWs

∣∣∣∣∣∣

2

≤ C

T
,

and we can write

JT

(
ϑ̂T , x

)
= 1√

T

T∫

0

R (ϑ, x, Xs) dWs

− 1

T

T∫

0

R (ϑ, x, Xs)
〈
ûT , Ṡ(ϑ, Xs)

〉
ds + o (1) .

Therefore

VT

(
ϑ̂T , x

)
= ξT

(
ϑ̂T , x

)
+ 1√

T

T∫

0

R (ϑ, x, Xs) dWs

− 1

T

T∫

0

R (ϑ, x, Xs)
〈
ûT , Ṡ(ϑ, Xs)

〉
ds + o (1) = V̂T

(
ϑ̂T , x

)
+ o (1) ,

where we put

V̂T

(
ϑ̂T , x

)
= ξT

(
ϑ̂T , x

)
+ 1√

T

T∫

0

R (ϑ, x, Xs) dWs

− 1

T

T∫

0

R (ϑ, x, Xs)
〈
ûT , Ṡ(ϑ, Xs)

〉
ds.
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To prove the convergence

δT =
∞∫

−∞
V̂T

(
ϑ̂T , x

)2
dF

(
ϑ̂T , x

)
+ o (1)

�⇒
∞∫

−∞
w2

F(ϑ,x)dF (ϑ, x) =
1∫

0

w2
t dt

we have to verify the following properties:

1. For any x1, . . . , xk

(
V̂T (ϑ̂T , x1), . . . , V̂T (ϑ̂T , xk)

)
�⇒ (

wF(ϑ,x1), . . . , wF(ϑ,xk )

)
. (30)

2. For any δ > 0 there exist L > 0 such that

∫

|x |>L

Eϑ V̂T (ϑ̂T , x)2 f (ϑ̂T , x) dx < δ. (31)

3. For |xi | < L , i = 1, 2,

Eϑ
∣∣∣V̂T (ϑ̂T , x2)− V̂T (ϑ̂T , x1)

∣∣∣2 ≤ C |x2 − x1|1/2 . (32)

Note that by the conditions (30) and (32) we have the convergence of the integrals

L∫

−L

V̂T (ϑ̂T , x)2 dF
(
ϑ̂T , x

)
�⇒

L∫

−L

w2
F(ϑ,x) dF (ϑ, x) =

1−ν2∫

ν1

w2
t dt,

where F (ϑ,−L) = ν1 and F (ϑ, L) = 1 − ν2.
The first convergence (30) follows from (20), central limit theorem for stochastic integrals

and the law of large numbers

1

T

T∫

0

R (ϑ, xi , Xs) Ṡ(ϑ, Xs) ds −→
∞∫

−∞
R (ϑ, xi , y) Ṡ(ϑ, y) f (ϑ, y) dy.

Here i = 1, . . . , k. Indeed, we obtain the joint asymptotic normality

V̂T (ϑ̂T , xi ) �⇒ u (x)+
∞∫

−∞
R (ϑ, xi , y) dwF(ϑ,y)

−
∞∫

−∞
R (ϑ, xi , y)

〈
I (ϑ)−1�(ϑ) , Ṡ(ϑ, y)

〉
dF (ϑ, y) .
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Note that the limit of (28) is equivalent to

y∫

−∞

Ṡ (ϑ, z)

σ (z)
du (x) =

y∫

−∞

Ṡ (ϑ, z)

σ (z)
dwF(ϑ,z)

−
y∫

−∞

〈
I (ϑ)−1�(ϑ) , Ṡ (ϑ, z)

〉 Ṡ (ϑ, z)

σ (z)2
dF (ϑ, z) .

To check (31) we write

EϑξT (x)
2 ≤ 2Eϑ

⎛
⎝ 1√

T

T∫

0

1I{Xs<x}dWs

⎞
⎠

2

+ 2Eϑ

⎛
⎝
〈

ûT ,
1

T

T∫

0

1I{Xs<x} Ṡ
(
ϑ̃T , Xs

)

σ (Xs)
ds

〉⎞
⎠

2

≤ 2F (ϑ, x)+ 2Eϑ
∣∣ûT

∣∣2
∣∣∣∣∣∣

1

T

T∫

0

1I{Xs<x} Ṡ
(
ϑ̃T , Xs

)

σ (Xs)
ds

∣∣∣∣∣∣

2

≤ C.

Remind that by conditions A0,R1,R2, all related functions have polynomial majorants. By
condition A0, the invariant density f (ϑ, x) has exponentially decreasing tails: there exist the
constants c1 > 0,C2 > 0 such that

f (ϑ, x) ≤ C2 e−c2|x |.

Therefore all mathematical expectations are finite.
Further,

Eϑ
∣∣∣V̂T

(
ϑ̂T , x2

)
− V̂T

(
ϑ̂T , x1

)∣∣∣2 ≤ 3Eϑ |ξT (x2)− ξT (x1)|2

+ 3Eϑ

∣∣∣∣∣∣
1√
T

T∫

0

[R (ϑ, x2, Xs)− R (ϑ, x1, Xs)] dWs

∣∣∣∣∣∣

2

+ 3Eϑ

∣∣∣∣∣∣
1

T

T∫

0

[R (ϑ, x2, Xs)− R (ϑ, x1, Xs)]
〈
ûT , Ṡ

(
ϑ̃T , Xs

)〉
ds

∣∣∣∣∣∣

2

≤ C (L) |x2 − x1|1/2 .

123



Stat Inference Stoch Process (2014) 17:295–319 317

For example (x1 < x2),

Eϑ |ξT (x2)− ξT (x1)|2 ≤ 2Eϑ

⎛
⎝ 1√

T

T∫

0

1I{x1<Xs<x2}dWs

⎞
⎠

2

+ 2Eϑ

⎛
⎝
〈

ûT ,
1

T

T∫

0

1I{x1<Xs<x} Ṡ
(
ϑ̃T , Xs

)

σ (Xs)
ds

〉⎞
⎠

2

≤ 2

x2∫

x1

f (ϑ, y) dy + 2
(

Eϑ
∣∣ûT

∣∣4)1/2

⎛
⎝

x2∫

x1

P (y) f (ϑ, y) dy

⎞
⎠

1/2

≤ C |x2 − x1| + C |x2 − x1|1/2 ≤ C (L) |x2 − x1|1/2 .
Here P (y) is some polynome.

These properties of VT (ϑ̂T , x) allow us (see Theorem A1.22 (Ibragimov and Has’minskii
1981)) to verify the convergence

∞∫

−∞
VT (ϑ̂T , x)2 f (ϑ̂T , x) dx �⇒

∞∫

−∞
w2

F(ϑ,x) dF (ϑ, x) =
1∫

0

w2
t dt.

Example 1 Linear case. Let us consider the one-dimensional (d = 1) linear case

dXs = ϑa (Xs) ds + σ (Xs) dWs, X0, 0 ≤ s ≤ T .

We have some simplification because we have no more problem with the calculation of
stochastic integral and the statistic can be calculated as follows. Let us denote

BT

(
ϑ̂T , x

)
= ξT (ϑ̂T , x)+

x∫

−∞

a (y) AT (ϑ̂T , y)

N

(
ϑ̂T , y

)
σ (y)

dF(ϑ̂T , y),

where

N (ϑ, y) =
∞∫

y

a (z)2

σ (z)2
f (ϑ, z) dz

and (see (28))

AT (ϑ̂T , y) = 1√
T

T∫

0

a (Xs) 1I{Xs<y}
σ (Xs)

2

[
dXs − ϑ̂T a (Xs) ds

]
.

Then we obtain the convergence

δT =
∞∫

−∞
BT (ϑ̂T , x)2dF(ϑ̂T , x) �⇒

1∫

0

w2
t dt

Hence the test ψ̂T = 1I{δT>cε} is ADF.
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4 Discussion

In Theorem 2 the condition of existence of the finite solution on the interval [0, 1) is the
following: the matrix

N (t) =
1∫

t

h (v) h∗ (v) dv, is positive definite for any t ∈ (0, 1) . (33)

Of course, we have to check it for any close to 1 value of t < 1. The quantity N (t) =
I (ϑ)−1 It (ϑ), where (t = F (ϑ, x))

It (ϑ) = IF(ϑ,x) (ϑ) =
∞∫

x

Ṡ (ϑ, y) Ṡ (ϑ, y)∗

σ (y)2
f (ϑ, y) dy

is the Fisher information in the case of censored observations

Ys = Xs 1I{Xt>x}, 0 ≤ s ≤ T

and the condition (33) means that this Fisher information is positive definite for any x < ∞.
For example, if d = 1 and we suppose that

h (1) = lim
t→1

∣∣Ṡ (ϑ, F−1 (ϑ, t)
)∣∣

σ
(
F−1 (ϑ, t)

)√
I (ϑ)

= lim
y→∞

∣∣Ṡ (ϑ, y)
∣∣

σ (y)
√

I (ϑ)
> 0,

then the condition (33) is fulfilled.
It is easy to see that for Ornstein-Uhlenbeck process h (1) = ∞, but the integral of h (·)2

on [0, 1] is finite and equal to 1.
Note that if the function Ṡ (ϑ, y) = 0 for y ≥ b with some b, then we have finite solution

q (t, s) , s ∈ [0, t] for the values t ∈ [0, F (ϑ, b)) only.
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