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Exact Inference for Random Dirichlet Means
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Abstract. Two characterisations of a random mean from a Dirichlet process, as a limit of
finite sums of a simple symmetric form and as a solution of a certain stochastic equa-
tion, are developed and investigated. These are used to reach results on and new insights
into the distributions of such random means. In particular, identities involving functional
transforms and recursive moment formulae are established. Furthermore, characterisations
for several choices of the Dirichlet process parameter (leading to symmetric, unimodal,
stable, and finite mixture distributions) are provided. Our methods lead to exact simula-
tion recipes for prior and posterior random means, an approximation algorithm for the
exact densities of these means, and limiting normality theorems for posterior distributions.
The theory also extends to mixtures of Dirichlet processes and to the case of several ran-
dom means simultaneously.
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1. Introduction and Summary

The Dirichlet process was brought to the attention of the statistical commu-
nity as the first genuine nonparametric prior for use in Bayesian statistics by
Ferguson (1973, 1974). It is still a cornerstone in nonparametric Bayesian
methodology, where it is often used separately or as an ingredient in more
complicated priors. It is also a special case of larger classes of nonparamet-
ric priors, like neutral to the right and tailfree processes, Beta processes and
Pólya trees; see Walker et al. (1999) Hjort (2003) for recent reviews and dis-
cussion. This paper is concerned with distributional aspects for important
functionals of the Dirichlet process. In Bayesian contexts one is more inter-
ested in the posterior distributions of such functionals, i.e. given a set of
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observations, but since the random distribution underlying the data contin-
ues to be a Dirichlet process given the data, only with updated parameters,
the distributional results we reach here continue to be relevant.

Let P be a Dirichlet process on some sample space �, with parame-
ter aP0, in terms of a probability distribution P0 and a positive strength
parameter a. It is characterised by the property that for any measur-
able partition (A1, . . . ,Ak), the vector (P (A1), . . . , P (Ak)) is Dirichlet dis-
tributed with parameter vector (aP0(A1), . . . , aP0(Ak)), and we write P ∼
Dir(aP0). We shall be interested in the random mean θ = θ(P ) = ∫

g dP .
Here g is in principle any measurable function making the integral finite
almost surely (a.s.). Note that the mean can be represented as

θ =
∫

�

g(x)dP(x)=
∫ ∞

−∞
y dQ(y), (1.1)

where Q=Pg−1 is the transformed Dirichlet process with parameter aQ0 =
aP0g

−1 on the real line.
There is a growing literature on formulae for and numerical approx-

imations to distributions of random Dirichlet means. After some earlier
and partial results of Hannum et al. (1981) and Yamato (1984), Cifar-
elli and Regazzini (1990, 1994) reached more general results, giving in
particular (admittedly somewhat complicated) formulae in terms of limits
of integrals in regions of the complex plane, following inversion of certain
transforms. Diaconis and Kemperman (1996) provided new tools and sur-
prising connections to other areas of probability and mathematics, and also
gave some explicit formulae for the special case of a=1, following the lead of
Cifarelli and Regazzini; see also Kerov (1998). The recent paper of Regazzini
et al. (2002) sums up earlier work and also discusses successes and difficul-
ties with attempts at the quite nontrivial computer implementation of the
mathematical results.

Random Dirichlet means can be used in several statistical contexts in
addition to the most natural one, which is to make inference on such mean
parameters in a framework of nonparametric Bayesian statistics. Ferguson
(1983) and Lo (1984) were early papers working on Bayesian density estima-
tion where the prior involves a kernel smoothed integral of a Dirichlet pro-
cess (see also Hjort, 1996). In a Bayesian regression framework one would
like to model noise with mean zero around the main structure, and this can
be accomplished with a Dirichlet process having its mean subtracted. This
calls for somewhat complicated calculations involving simultaneous aspects
of the process and its mean, where results and moment formulae of this
paper are relevant. Finally, in Hjort (2003) a model for random shapes is
being discussed, involving a smoothed normalised gamma process to rep-
resent a process of random radii. The random shape thus takes the form
(R(s) cos(2πs),R(s) sin(2πs)), with random radius
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R(s)=
∫

h−1K(h−1(s −u))dP(u) for 0� s �1

in terms of a Dirichlet process P on the unit interval and a kernel func-
tion K with support [−1/2,1/2], involving a window width parameter h;
the integral is modulo the circle, so that in particular R(0)=R(1). The ran-
dom radii are accordingly of the type (1.1).

We shall investigate here two representations of a random Dirichlet mean,
with the aim of demonstrating their potential both for reaching new results
and for giving independent and simpler proofs of earlier results. The lay-out
of our article is as follows. In Sections 2 and 3 the two representations are
introduced and applied to prove general results for random Dirichlet means.
Specifically, in Section 2 Dirichlet means are constructed as limits of finite
sums of simple symmetric random variables. This enables us to obtain neces-
sary and sufficient conditions for finiteness of a Dirichlet mean and a char-
acterisation in terms of characteristic functions. This also leads to explicit
expressions for the so-called generalised Stieltjes transform (also called the
generalised Hilbert transform) of a random Dirichlet mean. Furthermore, we
develop a strategy for simulating from the exact prior or posterior distribu-
tion of a Dirichlet mean, and describe the asymptotic behaviour of θ as a

grows. This leads to asymptotic normality of the posterior distribution of θ

as the sample size grows, as explained in detail in Section 6.2.
In Section 3 Dirichlet means are characterised as solutions to certain

stochastic equations. For any fixed value of the parameter a, such stochas-
tic equations are shown to establish a one-to-one correspondence between
the law of a Dirichlet mean and the distribution Q0 =P0g

−1. This is also
related to the generalised Stieltjes transform. As a further direct conse-
quence of such equations, simple recursive formulae are derived for direct
and centralised moments, together with necessary and sufficient conditions
for their existence.

The two representations are then applied in Section 4 to obtain useful
information for Dirichlet means associated with distributions Q0 belong-
ing to various general classes of interest. In particular we consider sym-
metric, unimodal, and stable distributions. In Section 5 we deal with both
mixtures of Dirichlet means and means of Dirichlet mixtures, with a num-
ber of illustrations. Finally in Section 6 we briefly address extensions of
our results to the multi-dimensional case, give an approximation algorithm
for computing the exact density of a random Dirichlet mean, and use our
methods to derive a general Bernshteı̆n–von Mises theorem for Dirichlet
process priors.

We should make clear that these two approaches to studying Dirichlet
means are not entirely new, as other recent articles have presented related
techniques and results, partly independently of the efforts of the present
authors. The relation to other literature is discussed in more detail in
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Sections 2 and 3. Our contribution is to develop the techniques further
and to reach various new results, and to re-prove some existing results
in new and sometimes simpler ways. In particular, our exact simulation
strategies for prior and posterior distributions are new (avoiding Markov
chain Monte Carlo methods that need convergence diagnostics), as are our
results for mixtures of means and means of mixtures.

2. Construction as Limit of Symmetric Distributions

A basic tool used in the following to derive results for the random mean
θ = ∫

g dP is based on approximations via finite sums of certain symmet-
ric distributions. This stems from the following simple approximation of
a Dirichlet process. Let ξ1, . . . , ξm be independent from P0 and indepen-
dent of (β1, . . . , βm), which we give a symmetric Dirichlet distribution with
parameter (a/m, . . . , a/m). Then the random probability measure

Pm =
m∑

j=1

βjδ(ξj ) (2.1)

converges in distribution to a Dirichlet process with parameter aP0 as m→
∞; for a proof, see Hjort and Ongaro (2004), Hjort (2003). Here δ(ξ)

denotes unit point mass at position ξ . As a direct consequence of this one
obtains (see Theorem 4.2 in Kallenberg, 1986) convergence in distribution
of

θm =
∫

g dPm =
m∑

j=1

g(ξj )βj (2.2)

to θ when g is a continuous function with compact support. It is the sym-
metry of the Dirichlet distribution used in (2.1) and (2.2) that for some
applications gives a simpler treatment than if working with other charac-
terisations of the Dirichlet process.

The random probability (2.1) has been considered by several authors,
independently and partly in quite unrelated contexts; an extensive list of
references is given in Ishwaran and Zarepour (2002, Section 4). In partic-
ular, Ishwaran and Zarepour proved convergence of θm under the assump-
tion that g is P0-integrable.

In the following theorem we shall prove convergence of θm under
completely general conditions, i.e. whenever θ exists and is finite. As a con-
sequence of this approximation, we shall also derive necessary and suffi-
cient conditions for finiteness of θ and an identity in terms of characteristic
functions which fully determines its distribution. The latter identity pro-
duces, as a special case, the so-called Stieltjes transform of order a for θ .
Below we denote by ξ a random variable with distribution P0.
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THEOREM 1. Let P ∼ Dir(aP0) and consider θ = ∫ g dP for a measurable
g for which

E log{1+|g(ξ)|}=
∫

log(1+|g|)dP0 =
∫ ∞

−∞
log(1+|y|)dQ0(y) (2.3)

is finite. Let furthermore Ga ∼ Gam (a,1) be independent of θ . Then θ is
a.s. finite and its distribution is fully characterised by the characteristic func-
tion of (Gaθ,Ga):

E exp{i(tGaθ + sGa)}= exp[−a E log{1− i(tg(ξ)+ s)}] for t, s ∈R.

(2.4)

As a special case one obtains

E exp(itθGa)=E
( 1

1− itθ

)a

= exp[−a E log{1− itg(ξ)}] for t ∈R.

(2.5)

Furthermore, θm of (2.2) converges in distribution to θ . If on the other hand
E log{1 + |g(ξ)|} is infinite, then

∫ |g|dP is a.s. infinite, so that θ does not
exist finite.

Proof. Write βj = Gj/Sm in terms of independent and identically dis-
tributed Gj ∼ Gam (a/m,1), with sum Sm =∑m

j=1 Gj . This leads to θm =
Rm/Sm, with Rm =∑m

j=1 Gjg(ξj ) being a random mixture of many indepen-
dent small gammas. We shall first compute the characteristic function of
(Rm,Sm) and its limit under condition (2.3).

Use first E exp(itGj )= (1− it)−a/m to find

E
[
exp{i(tRm + sSm)} | ξ1, . . . , ξm

]=
m∏

j=1

{1− i(tg(ξj )+ s)}−a/m

= exp
[
−a

1
m

m∑

j=1

log{1− i(tg(ξj )+ s)}
]
.

Note that if (2.3) holds, then automatically also E log{1 − i(tg(ξ) + s)} is
finite for all t, s ∈R. Under this assumption,

E exp{i(tRm + sSm)}→ exp[−a E log{1− i(tg(ξ)+ s)}] as m→∞ (2.6)

by the law of large numbers.
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Suppose now that g is bounded and write θ = ∫
y dQ(y) with Q ∼

Dir(aP0g
−1). Convergence of θm to θ is then a consequence, by Theorem

4.2 in Kallenberg (1986), of convergence in distribution of Pm in (2.1). This
in turn implies (Rm,Sm)∼ (Gaθm,Ga)→d (Gaθ,Ga), where Ga ∼Gam (a,1)

is independent of θm and θ . It follows then by (2.6) that relation (2.4) must
hold when g is bounded.

Consider next a general measurable g and let us see when θ exists and is
finite, i.e. when θ+ = ∫ |g|dP <∞ a.s.. Let hk(y)=yI {|y|� k}+ kI {y >k}−
kI {y <−k}. Then as |hk(y)|↑ |y|, by the theorem on monotone convergence
we have θ+

k = ∫ |hk(g)|dP ↑ θ+ a.s., where θ+ is an extended nonnegative
random variable. This implies Gaθ

+
k ↑Gaθ

+, which in its turn leads to con-
vergence of the Laplace transform E exp(−tGaθ

+
k ) to E exp(−tGaθ

+) for
t >0. Note that this convergence takes place even if Gaθ

+ is not finite with
probability one. Noticing that |hk(g)|�k, the same argument used to prove
(2.6) gives

E exp(−tGaθ
+
k )= exp

[−a E log{1+ t |hk(g(ξ))|}].

The latter, again by monotone convergence, tends to exp[−a E log{1 +
t |g(ξ)|}], which is then the Laplace transform of Gaθ

+. Under condition
(2.3) E log{1 + t |g(ξ)|} is finite for any positive t , so that such a Laplace
transform tends to 1 as t ↑0+. This implies that Gaθ

+ and therefore θ+ are
finite a.s.

If on the other hand E log{1+|g(ξ)|}=∞, so that E log{1+ t |g(ξ)|}=∞
for any positive t , then

Pr{Gaθ
+ <∞}= lim

t→0+
E exp(−tGaθ

+)=0.

Consequently, θ+ =∞ a.s.
Let us prove that (2.4) holds under condition (2.3). Consider θk =∫

hk(g)dP . As hk(g)→ g and |hk(g)|� |g| with |g| integrable, we have by
the theorem on dominated convergence that θk → θ a.s.. This implies con-
vergence in distribution of (Gaθk,Ga) to (Gaθ,Ga) and therefore conver-
gence of the corresponding characteristic functions. As hk is bounded, the
characteristic function E exp{i(tGaθk + sGa)} is equal to exp[−a E log{1 −
i(thk(g(ξ)) + s)}]. Furthermore, under condition (2.3), E log{1 − i(tg(ξ) +
s)} is finite, and it is possible to apply the theorem on dominated conver-
gence to show that this characteristic function converges to exp[−a E log{1−
i(tg(ξ)+ s)}]. This proves relation (2.4).

Note now that the characteristic function of (Gaθm,Ga) converges to the
characteristic function of (Gaθ,Ga), by (2.6); this implies

(Gaθm,Ga)→d (Gaθ,Ga)
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and by the continuous mapping theorem θm →d θ . Finally, relation (2.5)
is obtained by setting s = 0 in (2.4) and then computing the characteristic
function of Gaθ conditionally on θ .
Remarks. Several comments and illustrations are now in order.

(1) We term the (2.5) transform the generalised Stieltjes transform, of
order a, since the original Stieltjes transform corresponds to a = 1. It is
sometimes also called the generalised Hilbert transform; see Henrici (1993),
Widder (1971), and Guglielmi (1998).

(2) Condition (2.3) for finiteness of θ and relation (2.5) are known (see
Regazzini et al., 2002, and references therein). Their proof is based on
properties of the Gamma process and its relation with the Dirichlet pro-
cess. The above proof, albeit somewhat similar, uses only elementary tools
and well-known properties of the Dirichlet distribution.

(3) The characteristic function in (2.4) is related to the Laplace trans-
form of a Gamma process, see e.g. Hjort (1990) and Vershik et al. (2001),
where similar results are discussed.

(4) Attempts at inverting expression (2.4) to exhibit the underlying den-
sity fa(r, s) for (R,S) ≡ (Gaθ,Ga) lead to complexities resembling those
encountered in Cifarelli and Regazzini (1990) and Regazzini et al. (2002).
A relatively simple formula emerges only for a =1, where the density d1 of
θ is equal to

d1(t)=π−1 sin(πF0(t)) exp
{
−
∫ ∞

−∞
log |y − t |dQ0(y)

}
, (2.7)

where F0(t) denotes the distribution function associated with Q0 = P0g
−1;

see also Diaconis and Kemperman (1996). For this case (θ,Ga) has den-
sity d1(t) exp(−s), implying a density for (R,S) of the form

f1(r, s)=d1(r/s) exp(−s)s−1. (2.8)

(5) It is also clear that the density fa(r, s) can be expressed as the con-
volution f1 � · · ·�f1. This generally produces analytically rather complicated
expressions, however, even for special cases of P0.

(6) These results also lead to a simulation recipe for a an arbitrary inte-
ger, as follows. First notice that (R,S) is an infinitely divisible random
vector, as the right hand side of (2.4) is a characteristic function for any
positive a. Let then (R̄i, S̄i) for i = 1, . . . , a be independently drawn from
f1(r, s). This is accomplished by drawing a unit exponential S̄i and inde-
pendently a θi from d1(t) using e.g. a rejection-acceptance routine, and then
setting R̄i = θiS̄i . Then (R,S), with R =∑a

i=1 R̄i and S =∑a
i=1 S̄i , has the

density fa(r, s) of (R,S), and θ = R/S is a simulated outcome from the
exact density da(t) of θ . This, in particular, allows exact simulation from
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the posterior distribution of θ , whenever the total mass parameter of the
prior is an integer. This contrasts with the Markov chain Monte Carlo
method described in conjunction with Proposition 2 in Section 3.

(7) For nonnegative random variables it is more convenient to work in
terms of Laplace transforms, rather than with characteristic functions. The
parallel of (2.5) says for such cases that

E exp{−a log(1+uθ)}= exp{−a E log(1+uY )} for u�0,

where Y =g(ξ). As an illustration, take P0 to be the Beta(1/2,1/2) distri-
bution on the unit interval and let θ = ∫ 1

0 x dP be the random mean when
P ∼Dir(aP0). Then some calculations give

∫ 1

0
log(1+ux)f0(x)dx =2 log{ 1

2 + 1
2(1+u)1/2}

for f0 the Beta(1/2,1/2) density, and this leads to

E(1+uθ)−a ={ 1
2 + 1

2(1+u)1/2}−2a
for u�0.

In this case we are actually able to invert the transform explicitly, as one
may show that

∫ 1

0
(1+uθ)−a �(1+2a)

�(1/2+a)2
{θ(1− θ)}a−1/2 dθ ={ 1

2 + 1
2(1+u)1/2}−2a

.

Thus θ ∼Beta(a +1/2, a +1/2), as has also been discovered through differ-
ent methods in Cifarelli and Melilli (2000, p. 1393). See also our discussion
of formula (3.4) below.

A similar example lets P0 have density f0(x) = π−1x−1/2(1 + x)−1 on
(0,∞), for which one finds

∫ ∞

0
log(1+ux)f0(x)dx =2 log(1+u1/2),

which then leads to E(1 + uθ)−a = (1 + u1/2)−2a for the random Dirichlet
mean. But one may demonstrate that

∫ ∞

0
(1+uθ)−a �(a +1)

�(a + 1
2)

√
π

θa−1/2

(1+ θ)a+1
dθ = 1

(1+√
u)2a

for u�0 and a >0. The density for θ is accordingly

da(θ)=k(a)
θa−1/2

(1+ θ)a+1
, with k(a)= �(a +1)

�(a + 1
2)

√
π

.

Note that the random mean has a density even though P0 has infinite
mean. Cifarelli and Melilli (2000, p. 1394) also lists this result, but with an
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incorrect constant for the density, and as being valid only for a � 1. Our
method shows that da(θ) is the correct density, also for a ∈ (0,1).

As a further application of relation (2.4) and, in particular, of the infi-
nite divisibility property of (R,S), we may now rather easily determine the
behaviour of θ for a large.

PROPOSITION 1. Assume that θ0 and σ0, the mean and standard deviation
of Y =g(ξ), where ξ ∼P0, are finite. Then (a+1)1/2(θ −θ0) tends to a normal
(0, σ 2

0 ) as a grows.

Proof. Take a as an integer, for simplicity, and write θ as R̄(a)/S̄(a),
where R̄(a) =∑a

i=1 R̄i and S̄(a) =∑a
i=1 S̄i , with (R̄i, S̄i) being independent

from the same distribution, namely the one of (R,S) for the case of a =1
(see (2.8)). These have mean vector and covariance matrix equal to

(
θ0

1

)

and
(

σ 2
0 + θ2

0 θ0

θ0 1

)

,

respectively, as found by a little analysis. The conclusion follows from the
central limit theorem and the delta method.

We note that the result of course must hold with scaling a1/2 too; we
use (a + 1)1/2 here to match the exact variance. It may also be pointed
out that the representation of θ as a ratio between i.i.d. averages may
be used to give suitable modifications to the first order asymptotic result
above, for example via saddlepoint approximations. Some such computa-
tional schemes could rely on aspects of the distribution of (R,S) for the
special case of a =1, for which we have formula (2.8).

We also point out that a multidimensional version of Proposition 1 may
be exhibited and proved, see Section 6.1. These results also imply approxi-
mate normality of the posterior distribution of functions of random means
when the prior is kept fixed and the number of observations grows, as also
explained in Section 6.2.

3. Stochastic Equation Characterisations

The second basic tool used to reach results for the random mean θ is
a representation as a solution to a certain stochastic equation. Such sto-
chastic equations can be derived from the following representation of the
Dirichlet process (see Sethuraman and Tiwari, 1982; Sethuraman, 1994).
Let

P =
∞∑

j=1

γjδ(ξj ), (3.1)
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where the ξj s are independent from P0 and independent of the weights,
which are constructed in terms of a sequence {Bj } of independent Beta(1, a)

variables as follows: γ1 =B1, γ2 = (1−B1)B2, γ3 = (1−B1)(1−B2)B3, and so
on. Then P is a.s. a Dir(aP0) process.

Among the consequences of (3.1) we have the following distribu-
tional equation. Similar versions have appeared earlier in the literature,
cf. Guglielmi (1998), Epifani (1999), Hjort (2000, 2003), Guglielmi and
Tweedie (2001), Ishwaran and Zarepour (2002), but we include it for easy
reference and since we will use similar techniques to reach other results
later. We use ‘=d ’ to mean equality in distribution.

PROPOSITION 2. If Y =g(ξ) is such that E log(1+|Y |) is finite, then θ =∫
g dP satisfies the stochastic equation

θ =d BY + (1−B)θ, where B ∼Beta(1, a), (3.2)

and where on the right hand side B, Y and θ are independent.

Proof. The infinite series representation (3.1) allows θ a
∑∞

j=1 γjYj rep-
resentation, the random sum being a.s. convergent exactly under condition
(2.3). This leads to

θ =B1Y1+(1−B1)B2Y2 + (1−B1)(1−B2)B3Y3 +· · ·
=B1Y1+(1−B1){B2Y2 + (1−B2)B3Y3

+ (1−B2)(1−B3)B4Y4 +· · · },
which can be written B1Y1 + (1−B1)θ

′ with θ ′ =d θ .
Such stochastic or distributional equations imply identities involving

characteristic functions or Laplace transforms. Specifically, for g nonneg-
ative, write L0 and L for the Laplace transforms of, respectively, Y and θ .
Then conditioning first on (B,Y ) in (3.2), and then taking the mean value
w.r.t. Y , leads to

L(u)=
∫ 1

0
L0(ub)L(u(1−b))βa(b)db,

where βa(b) is the Beta(1, a) density. Similarly an identity might be put up
using convolution, involving the density f for θ in terms of the density
f0 for Y . These identities determine in principle L for given L0 and f for
given f0, although the exact solution might be hard to come by.

The stochastic equation (3.2) is used in the bounded case by Guglielmi
(1998) to derive an expression for the generalised Stieltjes transform of θ .
Furthermore, related work has led to simulation strategies for θ by exploit-
ing Markov chains of the form θi =BiYi + (1−Bi)θi−1 for i �2, with Bi and
Yi independently drawn from respectively the Beta(1, a) and Q0 = P0g

−1.
The Markov chain has the required equilibrium distribution. Guglielmi and
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Tweedie (2001) and Guglielmi et al. (2002) work with such chains, follow-
ing up earlier work by Feigin and Tweedie (1989).

An equivalent stochastic equation for θ , which will be employed several
times in the following, can be obtained by multiplying both sides of equa-
tion (3.2) by an independent Gamma random variable with shape param-
eter a + 1. By exploiting independence properties of the Beta distribution
one finds

θGa+1 =d G1Y +Gaθ, (3.3)

where θ is independent of Ga+1 on the left hand side and G1, Ga, θ and Y

are independent on the right hand side, with Gs denoting a Gamma ran-
dom variable with parameter (s,1).

There is some literature on similarly-structured stochastic equations,
but in contexts very different from the present. See Gjessing and Paulsen
(1997), Dufresne (1998) and references therein for an integro-differential
equation approach and for a list of similar equations with exact solutions.

As a simple example, consider the case Y ∼Beta(c,1−c), with 0<c<1.
Then (3.3) becomes θGa+1 =d Gc +Gaθ , where all the random variables on
the left and the right hand side are independent. As a direct consequence
of Theorem 2 in Dufresne (1998), this equation admits the simple solution
θ ∼Beta(a +1/2, a +1/2) when c=1/2; see Remark (7) in Section 2.

The stochastic equation (3.2) can be shown to establish, for any given
a, a one-to-one correspondence between the law of a random Dirich-
let mean and the distribution Q0: for any choice of Q0, for which the
mean E log(1+|Y |) is finite, the corresponding random mean θ is uniquely
determined by (3.2) and, conversely, any random variable distributed as a
Dirichlet mean uniquely determines through (3.2) the corresponding distri-
bution Q0 =P0g

−1. Furthermore the stochastic equation (3.3) yields a char-
acterisation, via generalised Stieltjes transforms, of Q0 in terms of θ .

PROPOSITION 3. Let P ∼Dir(aP0) and θ =∫ g dP, where g is a real mea-
surable function. For any fixed a > 0, there is a one-to-one correspondence
between the class Q={Q0 =P0g

−1 :
∫

log(1+|y|)dQ0(y)<∞} and the class
L={L(θ) : θ exists finite a.s.}, where L(θ) denotes the law of θ . Such a cor-
respondence is given by the distributional equation (3.2) and by the trans-
forms (2.5) and

E
(

1
1− itY

)

=E
(

1
1− itθ

)a+1/
E
(

1
1− itθ

)a

for t ∈R, (3.4)

where Y =g(ξ)∼Q0.

Proof. If we fix Q0, then equation (3.2) uniquely defines the law of θ by
Lemma 3.3 in Sethuraman (1994), whenever θ exists and is finite, i.e. when-
ever Q0 ∈Q. Conversely, let us fix the law of θ . Suppose that both Y ∼Q0 ∈
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Q and Y ′ ∼ Q′
0 ∈ Q satisfy equation (3.2) and therefore equation (3.3). It

follows that

G1Y +Gaθ =d G1Y
′ +Gaθ. (3.5)

By computing the characteristic functions of both sides of equation (3.5)
and noticing that E exp(itGaθ) 
= 0, by (2.5), one can show that equation
(3.5) implies G1Y =d G1Y

′, which in turn implies Y =d Y ′.
Relation (3.4) can be derived by computing the characteristic function

of the left and the right hand side of equation (3.3).
The existence of a one-to-one correspondence is proved in Lijoi and

Regazzini (2001) via a completely different route, making use of complex
theory arguments. Relation (3.4) appears to be new, as well as the fact
that the stochastic equation (3.2) determines a bijection between random
Dirichlet means and the corresponding distribution Q0. See also Cifarelli
and Regazzini (1993, Section 7).

Another application of the stochastic equation (3.2) gives a descrip-
tion of θ in terms of its moments. Expressions for moments and suffi-
cient conditions for their existence are obtained in Regazzini (1998) and
Epifani (1999) in terms of complete Bell exponential polynomials. The
proofs of such elaborated expressions are rather technical; they are based
on the theory of special functions (Regazzini, 1998) and on approximating
the Dirichlet process by Bernshteı̆n polynomials (Epifani, 1999). See also
Cifarelli and Melilli (2000, Remark 2.1).

Here we shall derive, as a straightforward consequence of (3.2), a simple
recursive formula for direct moments Eθp and centralised moments E(θ −
θ0)

p. As a further consequence of the stochastic equations (3.2) and (3.3),
we shall also give new necessary and sufficient conditions for existence of
such moments.

PROPOSITION 4. Let P ∼Dir(aP0) and θ =∫ g dP where g is a measurable
function such that E log(1+|g(ξ)|) is finite. Then, for any positive integer p,

the following three conditions are equivalent: (1) E|θ |p < ∞; (2) E|g(ξ)|p <

∞; and (3) E(
∫ |g|dP)p < ∞. Furthermore, under any of the above condi-

tions, we have

E(θ −x)p =a(p −1)!
p−1∑

j=0

1
j !(a + j)[p−j ]

E(Y −x)p−j E(θ −x)j , (3.6)

where x is an arbitrary real number and y [p] =y(y +1) · · · (y +p −1).
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Proof. Let us first prove expression (3.6) assuming that E|θ |p < ∞ and
E|Y |p <∞, where Y =g(ξ). From (3.2),

(θ −x)p =d

p∑

j=0

(
p

j

)

{B(Y −x)}p−j (1−B)j (θ −x)j

for any x, implying

E(θ −x)p = 1
1−E(1−B)p

p−1∑

j=0

(
p

j

)

EBp−j (1−B)j E(Y −x)p−j E(θ −x)j .

Formula (3.6) then follows by using the formula EBp−j (1 − B)j = a(p −
j)!�(a + j)/�(1+a +p) for the Beta(1, a) variable B.

Let us consider now the equivalence of the three conditions. Clearly, (3)
implies (1). Let us show that (1) implies (2). As a consequence of stochastic
equation (3.3), condition (1) implies that E|θGa+1|p and therefore E|G1Y +
Gaθ |p are finite. By independence of G1Y and Gaθ , this implies (see, for
example, Lemma 3 of Section V.6 in Feller, 1966) that E|G1Y |p <∞, which
in turn implies E|Y |p <∞.

We conclude the proof by showing that (3) is a consequence of (2). We
prove it by induction. It is easy to check, using the Sethuraman–Tiwari
representation, that the results hold for n = 1. Suppose now that it
is true for an arbitrary n, that is, suppose that E|Y |n < ∞ implies
E(θ+)n <∞, where θ+ =∫ |g|dP , and let us prove it for n+1. If E|Y |n+1 <

∞ then E|Y |n <∞ which then implies, by hypothesis, E(θ+)n <∞. Consider
now, for a positive integer k, the function tk(x) = |x|I {|x| � k} + kI {|x| >
k}. Clearly, 0 � tk(x) � k and tk(x) ↑ |x|. Moreover, let θk = ∫

tk(g)dP and
notice that, by monotone convergence, θk ↑θ+ a.s.. As θk and Yk = tk(Y ) are
bounded random variables, they admit moments of any order and we can
therefore apply the recursive formula (3.6) obtaining

E(θk)
n+1 =a n!

n∑

j=0

1
j !(a + j)[n+1−j ]

E(Yk)
n+1−j E(θk)

j .

By the theorem on monotone convergence one then finds

E(θ+)n+1 =a n!
n∑

j=0

1
j !(a + j)[n+1−j ]

E(|Y |)n+1−j E(θ+)j ,

the expression on the right being finite, as E|Y |n+1 and E(θ+)n are finite.
Formula (3.6) gives an easily implementable recursive computational

scheme for finding even higher order centralised moments for θ . These may
e.g. be used to obtain numerical approximations to its density; for one
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such idea, see Section 6.3. For Proposition 4 it is also worth noticing the
equivalence of condition (1) with the apparently stronger condition (3); this
equivalence is by no means true for general random probability measures.

4. Results for Symmetric, Unimodal, and Stable Distributions

In this section we shall apply the two representations above, when P0

belongs to suitable general classes of interest, to infer aspects of the dis-
tribution of the consequent random Dirichlet mean. Some of these results
might also be helpful in situations where the statistician needs to elicit the
prior measure P0.

4.1. SYMMETRIC AND UNIMODAL DISTRIBUTIONS

As a direct consequence of Proposition 3 and of the stochastic equation
(3.2) we may obtain a simple proof of the following result which characte-
rises the class of symmetric random means. A different proof, based on
a contour integral expression of the characteristic function of θ derived
through multiple hypergeometric functions, can be found in Lijoi and
Regazzini (2001).

PROPOSITION 5. Suppose θ exists and is finite. Then θ is symmetric if and
only if Q0 is symmetric.

Proof. Suppose that the law of θ is symmetric, i.e. θ =d −θ . One has
θ =d BY + (1 −B)θ and −θ =d B(−Y )+ (1 −B)(−θ) and by the symmetry
of θ follows θ =d B(−Y ) + (1 − B)θ which then implies, by Proposition 3,
that Y =d (−Y ). An analogous argument shows the converse.

A partially analogous result can be obtained using representation (2.2)
if one considers symmetric and unimodal distribution. We shall say that
a distribution function F is unimodal with vertex x0 if there exists a real
number x0 such that F(x) is convex for x <x0 and concave for x >x0. This
means that F is absolutely continuous, except possibly at x0, and that its
density is monotone in the intervals {x <x0} and {x >x0}.
PROPOSITION 6. Suppose that the distribution of Y = g(ξ) is symmetric
and unimodal with vertex c and such that E log(1 +|Y |)<∞. Then the dis-
tribution of θ = ∫ g dP is symmetric and unimodal with the same vertex.

Proof. We can assume without loss of generality that c = 0, as
∫
(g −

c)dP = θ − c. Consider the approximation θm = ∑m
j=1 βjYj to θ , as in

(2.2), and let us first prove that θm is symmetric and unimodal with ver-
tex 0 (denoted by S-U). Clearly, βjYj |βj is S-U. The same is true for∑m

j=1 βjYj | (β1, . . . , βm), as a sum of independent S-U random variables is
S-U; see, for example, Theorem 4.5.5 in Lukacs (1970). But this holds also
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unconditionally, i.e. for θm, since it is easy to check that if the conditional
distribution of T |V is a.s. S-U then T is also S-U. The limit θ is symmetric
by Proposition 5, or, alternatively, by noticing that since θm and −θm con-
verge, respectively, to θ and −θ and θm =d −θm, then necessarily θ =d −θ .
Finally, θ is also unimodal, being a limit of unimodal random variables;
for a proof of this see Theorem 4.5.4 in Lukacs (1970).

The converse to Proposition 6 is not true: a counterexample is given by
the case Y ∼Beta(1/2,1/2) and θ ∼Beta(a+1/2, a+1/2) considered in Sec-
tion 2’s Remark (7).

4.2. STABLE DISTRIBUTIONS

Proposition 7 below gives a characterisation for the family of random
means obtained starting from stable distributions. It essentially says that if
Y =g(ξ)∼Q0 has a stable law, then θ =∫ g dP is a scale mixture of Y . Sev-
eral characterisations of the mixing distribution are also given.

Recall that a general nondegenerate stable law Stab(µ,σ,p, γ ) has char-
acteristic function given by

φ(t,µ, σ,p, γ )= exp{iµt −|σ t |p(1+ iγK(p, t))}, (4.1)

where

K(p, t)= (sign t) tan( 1
2pπ) if p 
=1, 0<p �2,

while being equal to (2/π)(sign t) log |t | if p = 1, and σ > 0, µ ∈ R,
and −1 � γ � 1. We shall denote by � the class of all stable laws
Stab(µ,σ,p, γ ) and by �− the subclass of � obtained by excluding the
case {p =1, γ 
=0}.

For the following proposition, let T = (
∑∞

j=1 γ
p

j )1/p, for the given pos-
itive p, in terms of the Sethuraman–Tiwari representation (3.1). It is also
the limit in distribution of Tm = (

∑m
j=1 β

p

j )1/p, in terms of our representa-
tion (2.1) (see Hjort and Ongaro, 2005). One may show that the distribu-
tion of T is uniquely determined by the stochastic equation

T p =d Bp + (1−B)pT p, (4.2)

where B ∼ Beta(1, a) is independent of T . Another characterisation of the
distribution of T p via Laplace transforms is given in Hjort and Ongaro
(2005), where the asymptotic behaviour of T as a tends to infinity is also
established.

PROPOSITION 7. Let Q0 ∈ �−. This is equivalent to assuming that if
Y,Y1, . . . , Yn are i.i.d. random variables from Q0, then there exist 0 <p � 2
and µ∈R such that one of the following two equivalent conditions hold:
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(a)
∑n

i=1 Yi ∼n1/pY +µ(n−n1/p) for n�1;
(b) a1(Y1 −µ)+a2(Y2 −µ)∼ (a

p

1 +a
p

2 )1/p(Y −µ) for a1, a2 �0.

Then θ = ∫ g dP, where P ∼Dir(aP0), has distribution given by

θ =d µ+ (Y −µ)T ,

where Y ∼Q0 is independent of T .

Proof. It is immediate to see that if Q0 ∈ �− then (b) is satisfied. Fur-
thermore (b) implies (a). The fact that (a) implies Q0 ∈ �− follows from
general theory of stable laws (see e.g. Hoffmann-Jorgensen, 1994). Let us
next work with the characteristic function of θm =∑m

j=1 βjYj . By condition-
ing on the βj s, we have

E exp(itθm)=E φ(t,µ,Tmσ,p, γ ),

which implies θm − µ =d (Y − µ)Tm, where Y ∼ P0 is independent of Tm =
(
∑m

j=1 β
p

j )1/p. The required result follows from convergence of θm to θ and
of Tm to T .

Special examples of the above result are the Cauchy and the normal
distributions corresponding, respectively, to the cases p = 1 (and γ = 0)
and p = 2. In particular, for the Cauchy distribution one has Tm = T = 1,
which gives the known result θ is also a Cauchy, first discovered by Yamato
(1984).

A further representation of θ can be given for a mixture of Cauchy dis-
tributions: if Y is a scaled mixture of Cauchys, then so is θ , and the mixing
distribution for θ can be written as a random mean from a Dirichlet pro-
cess with parameter proportional to the distribution mixing the Cauchy.

PROPOSITION 8. Let X ∼ R be a nonnegative random variable and let
Q0 = P0g

−1 be an R-mixture of scaled Cauchys, i.e. Q0 is the law of XZ,

where Z ∼Cauchy is independent of X. Then γ =∫ g dP, with P ∼Dir(aP0),

is distributed as γ =d Zθ, where Z is independent of the nonnegative ran-
dom variable θ. Furthermore θ =d

∫
x dP, where P ∼ Dir(aR), and is there-

fore uniquely determined by the stochastic equation

θ =d BX + (1−B)θ, where B ∼Beta(1, a)

with X,B and θ independent.

Proof. Consider γm = ∑m
j=1 βjεj , where εj is from the Cauchy mix-

ture Q0, that is, εj |σj is Cauchy (σj ) where σj is drawn from R. Hence
E exp(iuεj )=E exp(−|u|σj ) and

E[exp(iuβjεj ) |β]=E[exp(−|u|βjσj ) |β].
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It follows that E exp(iuγm)=E exp(−|u|θm) where θm is our usual approxima-
tion to θ . This implies that E exp(−|u|θm) converges to E exp(−|u|θ), which
can be proven to be the characteristic function of Zθ .

5. Mixtures of Dirichlet Means and Means of Dirichlet Mixtures

This section first gives characterisations and representations of random
Dirichlet means θ = ∫

g dP when the base measure P0 is a finite mixture.
This leads in particular to an exact representation of the posterior distri-
bution of θ , to new exact simulation recipes, and to a new proof of the
Sethuraman–Tiwari representation of a random mean. Then we go on to
reach results for random means from mixtures of Dirichlet process priors.

5.1. RANDOM MEANS WHEN P0 IS A MIXTURE

Our first result is as follows.

PROPOSITION 9. Suppose P ∼ Dir(aP0), where P0 has a mixture repre-
sentation of the form

∑k
i=1 piP0,i . If g is a measurable function such that

E log{1+|g(ξ)|} is finite, then θ = ∫ g dP admits the decomposition

θ =d

k∑

i=1

Diθi (5.1)

in which D = (D1, . . . ,Dk) is Dirichlet (ap1, . . . , apk) and independent of
θ1, . . . , θk. These are independent among themselves and θi = ∫

g dPi, where
Pi ∼Dir(apiP0,i).

Proof. We first mention that a constructive proof may be given based
on the approximation θm to θ . The following proof is somewhat simpler,
checking directly that the given decomposition of θ has the correct Stieltjes
transform, i.e. that it satisfies relation (2.5). Notice also that existence of
the θis follows from the finiteness assumption on E log{1+|g(ξ)|}.

By conditioning on
∑k

i=1 Diθi we have

E exp

{

it

(

Ga

k∑

i=1

Diθi

)}

=E

(
1

1− it
∑k

i=1 Diθi

)a

.

Well known independence properties of the Dirichlet distribution yield the
distributional equation Ga

(∑k
i=1 Diθi

)
=d

∑k
i=1 Gapi

θi , where on the left
hand side Ga is independent of the sum and all the random variables vari-
ables on the right hand side are independent. Consequently, the left hand
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side of the above equation is equal to

E exp

(

it

k∑

i=1

Gapi
θi

)

= exp

[

−a

k∑

i=1

pi

∫
log{1− itg(x)}dP0,i(x)

]

,

completing the proof.
Proposition 9 has a number of interesting consequences.
(1) Consider the simple case where P0,i = P0 and pi = 1/k. This gives a

representation of θ as a symmetric Dirichlet mixture of i.i.d. copies of a
random mean from a Dirichlet process with total mass a/k. This allows one
to extend knowledge about the distribution of θ from a Dir(cP0) to the dis-
tribution of θ from Dir(kcP0), for any integer k.

For example, when a is an integer one has θ =∑a
i=1 Diθi where D is

from the flat Dirichlet(1, . . . ,1) and the θis are from a Dirichlet process
with total mass 1. As the density of such random means is known, see
(2.7), this permits exact simulation from θ . Simulation schemes of this type
are related to the one described after expression (2.8).

As a special case, let P0 correspond to the density of ξ = exp(C)/{1 +
exp(C)}, where C is a Cauchy distributed random variable, and let a = 1.
Then θ has a uniform distribution on (0,1) (Diaconis and Kemperman,
1996). Thus when P ∼Dir(aP0), θ can be represented as

∑a
i=1 Diθi , where

θ1, . . . , θa are i.i.d. and uniform, and (D1, . . . ,Da) is a flat Dirichlet. With
some efforts one finds the density for a =2, for example;

d2(t)=−2[(1− t) log(1− t)+ t log t)] for t ∈ (0,1).

(2) Next note that if we take the limit for k →∞ in (5.1) with P0,i =P0

and pi = 1/k, we actually obtain the Sethuraman–Tiwari sum representa-
tion θ =∑∞

j=1 γjg(ξj ). That this is true rests on two arguments. The first is
that P ∼Dir(εP0) with a small ε is close to a point mass at a random point
ξ ∼P0, so that θi =

∫
g dPi in (5.1) is close to g(ξi), when pi =1/k is small.

The second is that the symmetric Dirichlet distribution with parameters
(a/k, . . . , a/k) converges in distribution to the collection of random weights
in the Sethuraman–Tiwari representation (3.1), after a re-ordering of the
weights according to their sizes; this is related to material presented in Bill-
ingsley (1999, Section 4) and is more formally proved in Ongaro (2005).

(3) Consider partitioning the sample space into separate regions
A1, . . . ,Ak such that P0(Ai)> 0 and let P0,i(A)=P0(A∩Ai)/P0(Ai) be the
normalised restriction of P0 to Ai . We thus obtain a decomposition of θ

in terms of independent random means from Dirichlet processes defined on
different regions. If the A1, . . . ,Ak division is into many small cells, cen-
tred at say x1, . . . , xk, and g does not vary much over any of these, then
θ ≈∑k

i=1 Dig(xi), where (D1, . . . ,Dk) is a Dirichlet vector with parameters
(aP0(A1), . . . , aP0(Ak)).
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For another example, by taking �+ = {x : g(x)� 0} and �− its comple-
ment, one has

θ =d Bθ+ − (1−B)θ−,

where B = Beta(aP0(�
+), a(1 − P0(�

+)), θ+ = ∫
�+ g+ dP + and θ− =∫

�− g− dP −. Here g+ and g− denote the positive and negative part of g,
so that g =g+ −g−, and P + and P − are Dirichlet processes with parameters
aP0/P0(�

+) and aP0/P0(�
−) on �+ and �−. This allows studying properties

of a general random mean from properties of random means of positive func-
tions, extending in particular the known examples of distributions of random
means; in fact the list of examples provided in Cifarelli and Melilli (2000) of
distributions for random means all deal only with positive functions.

(4) Consider next the general case where the P0,i are neither identical
nor defined on different regions. Let us first take the simple case where
P0 =pP ′

0 + (1−p)δ(x), with x a fixed point belonging to the sample space.
Then θ admits the simple representation

θ =d g(x)+B{θ ′ −g(x)},
where B ∼ Beta(ap, a(1 − p)) is independent of θ ′ = ∫

g dP ′, with P ′ ∼
Dir(apP ′

0). For example, if P ′
0 =Beta(1/2,1/2), g(x)=0 and p=1−1/(2a),

with a > 1/2, we obtain θ =d Beta(a − 1/2, a + 1/2), with an analogous
result holding for g(x)=1.

More substantially, the above mixture model can be used to construct
nonparametric priors centred at a multi-modal distribution. For example,
consider the bimodal distribution P0 = pP0,1 + (1 − p)P0,2, where P0,i =
Cauchy(µi, σ

2). Then a direct application of Propositions 7 and 9 gives

θ =d Bµ1 + (1−B)µ2 +Y,

where Y =d Cauchy(0, σ 2) is independent of B. As a second example, con-
sider a mixture P0 =∑k

i=1 piP0,i of normals, with P0,i = N(µi, σ
2). Then,

again appealing to Propositions 7 and 9, one finds the representation

θ =d

k∑

i=1

Di(µi +TiσZi)=d

k∑

i=1

Diµi +σZ

(
k∑

i=1

D2
i T

2
i

)1/2

in terms of independent standard normals Z1, . . . ,Zk,Z. Here (D1, . . . ,

Dk) is a Dirichlet (ap1, . . . , apk), independent of T1, . . . , Tk, also indepen-
dent among themselves, with Ti ∼ W(api), say; here W(b) is the distribu-
tion of T (b) = (

∑∞
j=1 γ 2

j )1/2, where the random weights γj are as in (3.1),
in terms of a sequence of Beta(1, b) variables.

(5) As a final and statistically important illustration of the use of Propo-
sition 9, consider the posterior distribution of θ , given a random sample of
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observations X1, . . . ,Xn. This is a random mean from a Dirichlet process
with strength parameter a + n and probability measure given by the mix-
ture wnP0 + (1−wn)Pn, where Pn =n−1∑n

i=1 δ(Xi) is the empirical distribu-
tion and wn = a/(a +n). The random mean from a Dirichlet process with
parameter nPn is θPn

=∑n
i=1 Dig(Xi) where the Dis are drawn from a sym-

metric Dirichlet (1, . . . ,1); an explicit (though still cumbersome) expression
for the density dn(θ) of such a random mean can be found, see Cifarelli
and Melilli (2000, Example 3.1). By applying the above proposition it fol-
lows that the posterior random mean θ(n) can be decomposed as

θ(n) =d Bθ + (1−B)θPn
, (5.2)

where B ∼ Beta(a, n), θ and θPn
are independent. This is a useful descrip-

tion of θ(n), in terms of available information for the prior random
mean θ , and gives also an exact and easy to implement simulation recipe.
The exact posterior density may be written

d(θ |data)=
∫ ∫

dn

(
θ −bt

1−b

)

β(b;a, n+a)g0(t)db dt,

where β(b;a, n+a) is the Beta density and g0(t) is the prior density for θ .

5.2. MIXTURES OF DIRICHLET PRIORS

Our theory can also be fruitfully applied to reach results for and make
inference in nonparametric hierarchical models. In particular mixtures of
Dirichlet process priors (MDPs) have received considerable attention in the
literature (see, for example, West et al., 1994; Escobar and West, 1998;
MacEachern, 1998). We give two types of illustrations.

Assume first that σ has a prior π(σ) and that P for given σ is a
Dirichlet process with parameter aN(0, σ 2), and consider the random mean
θ = ∫

x dP for this particular MDP. Using Proposition 7 we see that θ |σ
may be represented as σT Z, where Z is standard normal and T is the limit
of Tm = (

∑m
j=1 β2

j )
1/2. The marginal distribution of θ is accordingly that of

UZ, another random scaling of the standard normal, where U =σT , with
σ ∼π(·), independent of T .

A similar MDP example is when µ has a prior π0(µ) and P |µ is a
Dirichlet aN(µ,σ 2

1 ), for some fixed σ1. Then examination of earlier argu-
ments shows that θ |µ can be represented as µ + T N(0, σ 2

1 ). The uncon-
ditional distribution of θ , which in typical MDP applications would mean
the inferred prior distribution of the mean parameter, is then obtained by
integrating out µ w.r.t. π0. If the prior for µ is a normal (0, σ 2

0 ), for exam-
ple, then (θ |T )∼N(0, σ 2

0 +T 2σ 2
1 ). In particular, if µ in this construction is

given a flat (improper) prior, then θ = ∫ x dP has a flat prior too.
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Our second type of illustration corresponds to the more typical use
of MDPs in Bayesian analysis, where the model framework is as follows.
At level 1 there is a Dirichlet process P ∼ Dir(aP0). Conditionally on P ,
at level 2, parameters α1, . . . , αn are drawn i.i.d. from P . These are not
observed. At level 3 we have the observed data = (X1, . . . ,Xn), which con-
ditionally on P and the αis are independent, with Xi having distribution
say F(xi |αi). There are more general versions of this framework, perhaps
with the parameters αi being vectors, and perhaps with a further prior on
parameters inside P0, cf. references mentioned above.

For such hierarchical models, the posterior distribution of P is a mix-
ture of Dirichlet processes (Antoniak, 1974). More specifically, it can be
represented by mixing the posterior Dirichlet distribution of P given the
sample A = {α1, . . . , αn} with the distribution Hn(· |data) of A |data. In
symbols,

P (n) = (P |data)∼
∫

Dir

(

aP0 +
n∑

i=1

δ(αi)

)

dHn(α1, . . . , αn |data).

If the conditional distribution F(· |αi) of Xi |αi admits a density
f (· |αi) then Hn(A |data) has density proportional to

∏n
i=1 f (Xi |αi) with

respect to the marginal distribution of A. Efficient algorithms for simulat-
ing from Hn(A |data) have been developed, cf. Escobar (1994), MacEachern
(1994, 1998), Escobar and West (1995), and Ishwaran and James (2001).

Consider now the posterior random mean θ(n) = ∫
g dP (n). Then, as

(θ(n) |A) =d (θ |A), the discussion leading to (5.2) gives the representation
Bθ + (1−B)

∑n
i=1 Dig(αi) for θ(n) given the latent A parameters, again with

B ∼Beta(a, n) independent of a flat Dirichlet(1, . . . ,1) for (D1, . . . ,Dn). If
we then average with respect to the distribution of A |data, we obtain the
representation

θ(n) =d Bθ + (1−B)

n∑

i=1

Dig(Zi), (5.3)

where (Z1, . . . ,Zn) ∼ Hn(A |data) is independent of all the other random
quantities. It follows that also in this more general hierarchical model we
are able to perform exact simulation for the posterior mean θ(n) whenever
simulation procedures are available for the prior random mean θ .

From (5.3) we also find the Bayes estimate under quadratic loss, namely

θ̂ =E(θ |data)=wnθ0 + (1−wn)
1
n

n∑

i=1

E{g(αi) |data}

with θ0 the prior mean of θ . Explicit formulae may be put up for the con-
ditional mean of g(αi) here, for some typical models, but these would be
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cumbersome and computationally demanding. They would typically involve
sums over all possible clusters patterns formed by the α1, . . . , αn sample. It
is therefore easiest to compute E{g(αi) |data}, along with other quantities
of interest, by simulation of A vectors conditionally on the data. The pos-
terior variance may also be found along such lines. Such schemes lead to
more accurate inference than when using Markov chain simulation meth-
ods for the full (P,A).

In applications of the MDP apparatus statisticians sometimes use flat
noninformative priors on some parameters, which as we have seen above
may lead to an implied improper prior for θ . It then follows from (5.3)
that also the posterior is improper, with probability one, for all sample
sizes, rendering Bayes analysis meaningless. This is not easily detected by
the McMC algorithms.

6. Bernshteı̆n–von Mises Theorems and Other Developments

Here we briefly outline some further themes that can be worked with using
the machinery we have developed in this paper. These include extensions to
the multidimensional case, nonparametric Bernshteı̆n–von Mises theorems,
and a general approximation algorithm for the densities of random means.

6.1. THE MULTIDIMENSIONAL CASE

Diaconis and Kemperman (1996) mentioned specifically that there seems
to be no results in the literature on the joint distribution of several ran-
dom means. This would be needed for determining the distribution of a
random variance, for example. The methods developed in this paper lend
themselves nicely also to the multidimensional framework. The following
can be proved along the lines of results arrived at above.

Let g1, . . . , gk be nonnegative functions on the sample space � with
finite integrals

∫
log(1 + gi)dP0. Then the joint distribution of the vector

of k Dirichlet means θi =
∫

gi dP is determined by the following transform,
which we may term ‘the simultaneous Stieltjes transform of order a’, as fol-
lows:

E exp
{
−a log

(
1+

k∑

i=1

uiθi

)}
= exp

[
−a

∫
log
{

1+
k∑

i=1

uigi(ξ)
}
dP0(ξ)

]
.

Similar results have appeared in Lijoi and Regazzini (2001), Kerov and
Tsilevich (2001), and Regazzini et al. (2002). We point out that the two
quantities appearing here are identical to the joint Laplace transform
E exp(−∑k

i=1 uiRi), where Ri = Gaθi with Ga a Gamma variable with
parameters (a,1), independent of the θis, cf. (2.4). We may also view these



EXACT INFERENCE FOR RANDOM DIRICHLET MEANS 249

Ris as integrals of functions w.r.t. a Gamma process. The distribution of
(θ1, . . . , θk) is determined by the above transform, and can also be charac-
terised via the simultaneous Laplace transform of (R1, . . . ,Rk,Ga), which
becomes

E exp
(
−

k∑

i=1

uiRi −vGa

)
= exp

[
−a

∫
log
{

1+
k∑

i=1

uigi(ξ)+v
}

dP0(ξ)
]
.

One may also prove a vector version of the distributional equation (3.2),
cf. Hjort (2000).

6.2. NONPARAMETRIC BERNSHTEĬN–VON MISES THEOREMS

For classical parametric inference there are various results commonly
referred to as Bernshteı̆n–von Mises theorems about connections and com-
parisons with maximum likelihood and Bayes estimators (see e.g. LeCam
and Yang, 1990, Ch. 7). To explain the nature of these, consider a paramet-
ric model indexed by θ and with maximum likelihood estimator θ̂ml, and
for which a classic result is that

√
n(θ̂ml − θ) tends to Np(0, J (θ)−1), where

J is the information matrix and p the dimension of the parameter vector.
The accompanying Bernshteı̆n–von Mises theorem is that if θ̂B is the Bayes
estimator, for any given prior, then the posterior distribution of

√
n(θ − θ̂B)

also tends to the N(0, J (θ)−1), under mild regularity conditions. This also
leads to the approximation

θ |data ≈d Np(θ̂ml, J (θ̂ml)
−1/n) with probability 1, (6.1)

which indicates that Bayesian schemes for large n will lead to inference
equivalent to that of maximum likelihood.

Such results can not be taken for granted in Bayesian nonparametrics,
as there are many examples to the contrary; see comments in e.g. Hjort
(2003). It is comforting, then, to see that results similar to (6.1) will be
guaranteed for most parameters θ = θ(P ), when the P is given the non-
parametric Dirichlet process prior. To demonstrate this, we start with a
multivariate version of Proposition 1 of Section 2. We observe that the vec-
tors studied in Section 6.1 are jointly infinitely divisible, due to the form of
the joint Laplace transforms given there. Let θ0 be the vector of means and
�(P0) the covariance matrix of g1(ξ), . . . , gk(ξ), where ξ ∼P0. The result is
then that as a goes to infinity,

a1/2(θ − θ0)→d Nk(0,�(P0)). (6.2)

This is close to implying limiting normality of the posterior distribution
of smooth functions of θ , as the prior is kept fixed and the sample size n
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grows, the key being that the posterior distribution of a Dirichlet process
is still a Dirichlet process with parameter (a +n)P̂n, where the centre dis-
tribution is

P̂n =wnP0 + (1−wn)Pn, where wn =a/(a +n)

and Pn is the empirical distribution of the data points xi . Result (6.2) can
not be applied immediately, since P̂n changes with n. Assume that the data
points in reality have emerged from a distribution Ptrue. Then the event that
Pn (and hence P̂n) converge to this Ptrue is 1, by the Glivenko–Cantelli the-
orem. Modifications of previous arguments now show that

(n+a)1/2{θ(P )− θ̂n} |data →d Nk(0,�(Ptrue)) a.s., (6.3)

where θ̂n =θ(P̂n)=wnθ0 + (1−wn)ḡn, writing ḡn =n−1∑n
i=1 g(xi), and �(Q)

is defined as the variance matrix of the gj (ξ) when ξ ∼Q.
Result (6.3) may be formally proved by first demonstrating a generalisa-

tion of (6.2), valid for Dirichlet process centre parameters that may change
with a as a increases. Let θa =∫ g dPa, where Pa ∼Dir(a,P0,a), and assume
that P0,a →P0 as a →∞, in the specific sense that

∫
g dP0,a → ∫

g dP0 and
�(P0,a)→�(P0). Then

a1/2
(

θa −
∫

g dP0,a

)

→d Nk(0,�(P0)) as a →∞.

From (6.3) we also find the following relevant approximation, which is even
more in line with the Bernshteı̆n–von Mises result (6.1):

(n+a)1/2�(P̂n)
−1/2{θ(P )− θ̂n} |data →d Nk(0, I ) a.s.

For a simple illustration, let k =1 and g(x)=x. Then

(n+a)1/2
(∫

x dP − θ̂n

)/
σ̂n

∣
∣
∣data →d N(0,1) a.s.,

where

σ̂ 2
n =σ 2(P̂n)=

∫
{x − θ̂n}2 dP̂n

=wn{σ 2
0 + (θ̂n − θ0)

2}+ (1−wn){s2
n + (θ̂n − x̄n)

2}
in terms of sample mean x̄n and sample standard deviation sn. Here σ̂n is
first-order equivalent to sn for large n, but the above provides a more accu-
rate approximation. Similar results are reached via the delta method for
smooth functions of mean parameters. Consider for example the random
standard deviation σ(P ). Then we find

σ(P ) |data ≈d N(̂σn, v
2
n/(n+a)) a.s.
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with v2
n = σ̂ 2

n (1/2 + 1/4 κ̂n), and where κ̂n = ∫ {(x − θ̂n)/σ̂n}4 dP̂n − 3 is the
nonparametric Bayes estimator of the kurtosis. A less refined approxima-
tion, also in the Bernshteı̆n–von Mises spirit, is that σ(P ) |data is approxi-
mately a normal (sn, s

2
n(1/2+1/4κn/n)), with κn being the sample kurtosis.

The above results have been given under the a fixed and n growing sce-
nario. They are also valid when a is allowed to grow with n, slowly enough
for a/

√
n to go to zero. In the more extreme case of a = cn, a case reflect-

ing a more persistent belief in the prior, the results above need to be mod-
ified with P∞ = cP0 + (1− c)Ptrue replacing Ptrue. The results presented here
may also be derived via general empirical process theory, see Hjort (1991),
but have been demonstrated here in a simpler fashion, using the theory and
infinite divisibility representations of Section 6.1.

6.3. APPROXIMATING THE DENSITY OF A RANDOM DIRICHLET MEAN

To explain the following method, assume for simplicity of presentation that
P0 is confined to the unit interval. Our task is to approximate the density
f of θ = ∫ 1

0 x dP . To this end, consider

fm(t)=f0(t)cm(b)−1 exp(b1t +b2t
2 +· · ·+bmtm) on [0,1],

where f0 is a suitably chosen start approximation (which could be f0(t)=1)
and cm(b) = ∫ 1

0 f0(t) exp(b1t + · · · + bmtm)dt the necessary integration con-
stant. The idea is to select the coefficients b1, . . . , bm so as to give optimal
approximation quality of fm to the real f . We do this by minimising the
Kullback–Leibler distance

∫
f log(f/fm)dt , which is seen to be the same

as maximising the function Am(b) =∑m
j=1 bjξj − log cm(b) with respect to

b = (b1, . . . , bm), where ξj = ∫ t jf (t)dt is the real j th moment of θ . These
moments can easily be found numerically via (3.6), say for j up to m=100.
The maximisation task is also rather easily done using optimisation algo-
rithms available in software packages like Splus, helped here by the fact
that Am(b) is concave in b.

There is also a closely related sister method that uses b1(t − x)+ b2(t −
x)2 +· · · instead of b1t + b2t

2 +· · · above, where x is any fixed value cho-
sen for the convenience of the situation, like the point of symmetry in a
case where P0 is symmetric. The algorithm then needs the ξj (x)=E(θ −x)j

quantities that are found via Proposition 4.
We have tried out this method in some situations and found it to

work very well, even with f0 = 1. The approximation quality improves,
for smaller m, when a better start approximation f0 is used, for exam-
ple a nonparametric estimator of the real density based on simulations
from f . We lack however precise results about the quality of the resulting
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approximation. Results reached in e.g. Barron and Sheu (1991) have some
relevance, but are typically derived under too restrictive conditions.
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