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LEVI QUASIVARIETIES t) 
A. I. Budk in  UDC 512.54.01 

Given a group-theoretic property s we say that a group G possesses the property L(s if the nor- 
real closure (x) G of every element x of G possesses the property s The property L(s is called 
a Levi property and was introduced in [1] under the influence of Levi's article [2] in which Levi gave 
a classification of groups with abelian normal closures of the form (z) c. Observe that Levi prop- 
erties are closely connected with the notion of Engel group. As regards nilpotent groups and their 
generalizations, these properties were studied rather thoroughly, for instance, in [1,3, 4]. Study of 
Levi properties should be considered as a step towards studying the structure of groups covered by a 
system of normal subgroups. 

It  is natural to pass from Levi properties to Levi classes. Given a class A4 of groups, we denote 
by L(.A4) the class of all groups G in which the normal closure (z) a of an arbitrary element x in G 
belongs to .A4. The class L(A4) is said to be the Levi class of .A4. It is shown in [5] that if A4 is 
a variety of groups then L(.A4) is a variety too. It is also well known [6] that if .A4 is the class of 
nilpotent groups of step < 2 without elements of order 2 and order 5, then L(A4) C A/'4, where .h/'c is 
the variety of nilpotent groups of nilpotency class < c. 

In the present article we demonstrate that if A4 is a quasivariety of groups then L(A4) is a qua- 
sivariety of groups as well. We find a condition whose fulfillment in the quasivariety .A4 implies the 
inclusion L(.A4) _C A/'a. In particular, it turns out that if .A4 is a minimal nonabelian quasivariety of 
nilpotent groups (for example, the quasivariety generated by a free nilpotent group of class 2) which 
has no groups of order 2 and order 5, then L(.A4) C_ .hf3. 

We recall that a group is called a 3-Engel group if the identity 

(Vz)(Vy)([x,y,y,y] = 1) 

holds in it. 
We need the following test for the membership of a finitely related group G in the quasivariety 

q/C. This membership test is a particular instance of Theorem 3 in [7] and reads: a t~nitely related 
group G belongs to the quasivariety q~ ff and only if, for every nonidentity element g E G, there 
exists a homomorphism ~o from G into some group of IC such that r r 1. 

T h e o r e m  1. H.h,4 is a quasivariety of groups then L(.M) is a quasivariety of groups as well. 
PROOF. It is clear that, together with each group, L(A4) contains all subgroups of the group. 

In view of Mal'tsev's theorem [8], it suffices to prove that the dass L(.~4) is closed under filtered 
products. 

Suppose that Gi E L(.,~,4) (i E I),  79 is a filter over I, G = l L e t  Gi[79 is the filtered product of 
the groups Gi with respect to the filter 79, f79 e G, and f79 ~ 1. Let Ai = (f(i)) Gi be the normal 
closure of the element f ( i )  in Gi and A = ~ieI  Ai[79. Consider the mapping qo : (f79)0 ~ A defined 
as follows: 

qo((fkx 79)ax ~ . . .  (fk, 79)a,/~) ._. h79, 

where h(i) = (fkl(i))91(i)...(fk'(i))u'(i). It is easy to see that qo is an isomorphism of the group 
(f79)a onto the group qo((fD)v). Therefore, (f79)a E All, which completes the proof of the theorem. 
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Henceforth we use the following commutator identities which are valid in every group: 

[=y, ~1 = Ix, ~]y[y, ~1 = [~,zl[~,~,yl[y,z], (i) 

L e m m a  I.  

[~,yz] = [~,z][~,y] z = [=, z] [~, y] [x, y, z], (2) 

[X,y--I,z]Y[y,z--I,z]z[Z,X--I,y] z-"  1, (3) 

['0, U -1] = IV, U, U-I]-I  [V, it] -1, (4) 

[v, u, u- ' ]  = Iv, u, ~, ~-11-1{v,  ~, u ] - l ,  (5) 

[u-x,,,] = [~, ~1[~, ~, ~-x] .  (6) 

Let G be a 3-Engel group without elements of  order 2 and order 5, x l , z z , z 3  E G, 
c ( i , j , s , t )  = [zi, z i ,  zs ,  zt], zl = [z3,z2,[zS, Zl]], z2 = [zs, zu,[zu, zl]], and zs = [zs, z l ,[zz ,zx]].  Then 
the following relations hold: 

c(3, 1,3,2) = c(3, 1,2,3)z7 I, 
c(2,1,3,2) = e(2, 1,2,3)z~ q, 
c(3,2, 1, 1) = c(2, 1,1, 3)-Xc(3, 1, 1,2)z3 2, 
c(3,2, 1,3) = c(2, 1,3,3)-'c(3, 1,2,3), 
c(3,2,3, I) = c(2, 1, 3, 3)-Ic(3, 1,2,3)Zl, 
c(3,2, 1, I) = c(2, 1, 1,3)-'c(3, 1, 1,2)z 2, 
c(1,3,1,2) = c(3,1,1,2) -I ,  
c(1,3,2, 1) ---- c(3, 1, 1, 2)-1z~ -1, 
c(1,3,2,2) = c(3,1,2,2) -I ,  
c(1,3,2,3) = c(3, 1,2,3) -I ,  
c(3,2,2, 1) = c(2, 1,2, 3) -Ic(3, 1,2, 2)z], 
c(3,2, 1,2) = c(2, 1,2,3)-1c(3, 1,2,2)z2, 
c(2, 1, 3, 1) = c(2, 1, 1, 3)z~ "1. 
PROOF. We will not carry out the proof of this lemma in detail. We only note that 

c(3,1,1,2), c(3,1,2,2), c(3,1,2,3), c(2,1,1,3), (7) 

c(2,1,2,3),  c(2,1,3,3),  Zl, z2, z3 (8) 

are all basis commutators of weight 4 in three variables. The sought relations are obtained by a stan- 
dard method, used in Hall's collection process (see, for instance, [9]), by means of (1)-(6). Two 
circumstances should be taken into account: (a) since by [6] every 2-generated 3-Engel group without 
elements of order 2 is nilpotent of class < 3, the values of all commutators in two variables in the 
group O are equal to 1; (b) again by [6] every 3-Engel group without elements of order 2 and order 5 
is nilpotent of class _< 4; hence, so is G. 

Lemma 2. Let G be a 3-Engel group without elements of order 2 and order 5, Zl ,Z2,z3  E G, 
c( i , j , s , t )  = [zi, z l ,  z , , z t ] ,  zl = [z3, z2,[zs, zl]], z2 = [zs, x2,[z2, Xl]], and zs = [zs, z l , [zZ,  Zl]]. Then 
the following relations hold: 

c(3,1,1,2)3c(2,1,1,3)-1z3 3 -" i, 

c(3, 1, 2, 2)3c(2,1, 2, 3)-2z~ - 1, 

c(3, I, 2, 3)4c(2, 1, 3, 3)-2 = i, 

c(2, i, I, 3)Sc(3, 1, 1,2)-1z~ -s-  i, 

c(2, I, 3, 3)3c(3, 1, 2, 3)-2z{'I = i, 

c(2, I, 2, 3)4c(3, 1, 2, 2)-2z~ "4- I, 

(9) 
(1o) 
(11) 
(12) 
(13) 
(14) 
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c(2, 1, 1,3)-2c(3, 1, 1, 2)-2 = 1, 

c(2, 1,3, 3)- 'c(3,  1,2, 3)-2z,  = 1, 

c(2,1,2,3)-2c(3,1,2,2)-1z2 = 1. 

PROOF. Let k, m,  and n be arbitrary integers. Express the element 

(15) 

(lO) 
(17) 

k m R [X3, X3X2 Xl , k m n k m n :g3X2 X l , ~ 3 X  2 Xl ]  

in terms of the elements (7) and (8). Using the fact that  by [6] every 2-generated 3-Engel group 
without dements  of order 2 is nilpotent of class < 3 and that every 3-Engd group without elements 
of order 2 and order 5 is nilpotent of class < 4 and involving Lemma 1, we infer that  

k m n  k m n  k m n  
1 [X3, X3X 2 X 1) --  X3~ 2 X l , X 3 X  2 X l ]  

= (c(3,1,1, 2) c(2,1,1, 9., 27c(2,1,  2, 
x (c(3, 1,2, 3)4c(2, 1, 3, 3)-2) ~m". (18) 

Putting k = 0 in (18), we deduce that the relation 

--1 3 n2m (c(3,1,1,2)Sc(2,1,1,3) za) (c(3,1 ,2 ,2)Sc(2,1 ,2 ,3)-2z3)am2= 1 

holds for arbitrary integers m and n. By setting in this equality, first, n = 1 and m = 1, and next 
n = 1 and m = 2 and recalling that G contains no elements of order 2, we easily arrive at (9) and (10). 

Now, (18) implies the equality 

(c(3,1,2,3)4c(2,1,3,3)-2) kmn = 1, 

whence we infer (11). 
Equalities (12)-(14) are derived likewise from the relations 

k m n x3X2 Xl ,X3X 2 X l ] )  1 - - - - [ Z 2 , x 3 x  2 z l ,  k m n k m n 

and equalities (15)-(17), from the relations 

k m n  k m n  k m n  
1 = [Xl,Xsx 2 Xl,XsX 2 Xl ,X3X 2 Xl]. 

The lemma is proven. 

T h e o r e m  2. Let K be a set of nilpotent groups of c/ass 2 without elements of order 2 and order 5. 
Suppose that, in each group of K ,  the centrMizer of every nonidentity element not belonging to the 
center of the group is an abelian subgroup. I f .V( = qK then L(./V() C_ A/'s. 

PROOF. It is well known [10] that if every 3-generated subgroup of a given group is nilpotent of 
class <_ 3 then the group itself is also nilpotent of class < 3. Therefore, it suffices to demonstrate that  
every 3-generated group G in L(.Ad) belongs to .Afa. 

Thus, take G = gr(a, b, c). According to [11], G is 3-Engd. By setting xl = a, x2 = b, and :ca = c, 
from (11), (13), and (16) we easily deduce that 

c(3,1,2,3)2--c(2,1,3,3), zi--c(3,1,2,3) 4. 

Hence, 
[c, b, It, all = It, a, b, (19) 
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Choose the following elements in (c)G: 

x = [c, a,  b], y = [c, a], z = [c, b], ~. 

It follows from (19) that 
[z ,y]  = [x,c]  4, [ = 4 y ]  = 1, [=~,z]  = 1. (20)  

Suppose that [z, y] ~ 1. Since (c) a e 54, the membership test implies existence of a homomor- 
phism ~o : (c) ~ ~ A, with A a suitable group in K, for which ~p([z,y]) ~ 1. However, ~(y) and 
~(z) belong to the centralizer of the element r Hence, [~o(y), ~o(z)] = 1 by the hypothesis of the 
theorem. This contradiction means that [z, y] = 1. We have thus shown that 

[c, b, [c,a]] = 1. (21) 

By setting x3 = b, z2 = a, and Xl = c, in a similar way we infer that [b, a, [b, c]] = 1; i.e., 

[~, b, [b,~l] = 1. (22)  

�9 By setting x3 = a, x2 = b, and xl = c, by analogy to (20) we obtain [a, b, [a, c]] = 1; i.e., 

[c, a, [b, a]] = 1. (23) 

Again assuming that x3 = c, x2 = b, and Xl = a, from the system of (9)-(17) and (21)-(23) we 
now easily deduce that c(i,j, k, l) = 1 for all values c(i,j ,  k, l) of the commutators involved in this 
system. This means that G = gr(a, b, c) is a nilpotent group of class < 3. The theorem is proven. 

Consider groups with the following presentation in the variety .hf2: 

Hps = gr(x,y II [=,ylP - =P' - yP' - 1), s e N, 

gp = gr(z ,y  II [x, y F  - 1). 
Let F2(A/'2) be a free nilpotent group of class 2 and rank 2. These~groups have the following property 
[7]: the collection 

qHps, qHp, ,qH22, qF2(N'2), p # 2, p is a prime number, (24) 

exhausts the full list of quasivarieties of nilpotent groups all whose proper subquasivarieties contain 
only abdian groups. Since the groups in this list satisfy the conditions of Theorem 2, we come to the 
following 

Corol lary.  If 54 is one of the quasivarieties (24) then L(54) C_ ./q'3. 
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