
Siberian Mathematical Journal, Vol. 51, No. 3, pp. 537–551, 2010
Original Russian Text Copyright c© 2010 Khisamiev A. N.
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Abstract: Ershov algebras, Boolean algebras, and abelian p-groups are Σ-bounded systems, and there
exist universal Σ-functions in hereditarily finite admissible sets over them.
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This article continues [1] where we had introduced the concept of a Σ-bounded algebraic system and
obtained a necessary and sufficient condition for the existence of universal Σ-functions in a hereditarily
finite admissible set over a Σ-bounded system. In this article we prove that Ershov algebras, Boolean
algebras, and abelian p-groups are Σ-bounded systems, and universal Σ-functions exist over them.

As regards the terminology and notation, we follow [2] for admissible sets, [3] for Ershov algebras,
and [4–6] for groups. Recall the definition of a Σ-bounded algebraic system and some results of [1]
needed below.

Definition 1. Given a locally finite and locally constructivizable algebraic system M of signature σ0
and a finite subset M0, suppose the following:

1. The concept of a base is defined for every finite subset X ⊆M . The predicate

BM0
0 (X,Y ) � “the finite sequence Y ∈M<ω is a base for X”

is a Δ-predicate of signature σ1(M0) in 〈HF(M),M0〉. Given two bases Y 0 and Y 1 for X, X ⊆ 〈Y ε〉,
ε = 0, 1 and either BM0

0 (spY 0, Y 1) or BM0
0 (spY 1, Y 0) is true. A sequence Y is called a base whenever

BM0(Y ) � BM0
0 (spY, Y ) is true.

2. For every base Y a number χM0(Y ) is defined which is called the characteristic of Y , such
that χM0(Y ) is a Σ-function of signature σ1(M0) in 〈HF(M),M0〉. The set of all characteristics ΞM0 is
a computable subset of ω. There exists a Δ-predicate CorM0(z, Y, n) of signature σ1(M0) such that

z ∈ 〈Y 〉 ⇔ 〈HF(M),M0〉 |= ∃!n(n 	= 0 & CorM0(z, Y, n)).

The number n is called the coordinate of z with respect to Y . If two elements are distinct then so are
their coordinates.

3. Given two bases Y ε of the same characteristic χ and finite subsystems Mε ⊇ 〈Y ε〉, ε < 2, there
exist a base Y 2 and a subsystem M2 ⊇ 〈Y 2〉 satisfying the following:

(1) χ = χ(Y 2);
(2) there exists an embedding ϕε

0 : Mε → M2 such that ϕε � 〈M0〉 = id and ϕεY ε = Y 2, where the
embedding ϕε : HF(Mε) → HF(M2) naturally extends ϕε

0.
In particular, every two bases of the same characteristic are of the same length.
4. For every partial function f : HF(M) → HF(M) defined by a Σ-formula with parameters in M0,

if u ∈ HF(M) and u ∈ δf then there exists a base Y for spu such that sp f(u) ⊆ 〈Y 〉.
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Then M is called a Σ-bounded algebraic system with respect to M0. If for every finite subset M0

there exists a finite subset M ′
0 ⊇ M0 such that M is Σ-bounded with respect to M ′

0 then M is called
a Σ-bounded algebraic system.

Denote the set of all parameter-free Σ-formulas of signature σ1(M0) by Σ(HF(M),M0), the set of all
functions in 〈HF(M),M0〉 defined by the formulas in Σ(HF(M),M0) by FΣ(HF(M),M0), and the set of
all unary functions in FΣ(HF(M),M0) by FM0 .

Theorem A [1, Corollary 4]. If an algebraic system M is Σ-bounded with respect to a finite subset
M0 of M then there exists a universal Σ-function UM0(x, y) ∈ FΣ(HF(M),M0) for the family FM0 such
that every f ∈ FM0 satisfies λyUM0(n, y) = f(y) for some n.

Theorem B [1, Theorem 2]. Given a Σ-bounded algebraic system M, in HF(M) there exists a uni-
versal Σ-function with parameter A if and only if for every finite subset C with respect to which M
is Σ-bounded there is a finite subset C1 such that for every finite subset X and every base Y C

X there
exists a base Y A

X∗ for which
〈
Y C
X

〉 ⊆ 〈
Y A
X∗

〉
, where X∗ = C1 ∪X.

1. Ershov Algebras

Here we prove the Σ-boundedness of every Ershov algebra A and the existence of universal functions
in HF(A).

We consider Ershov algebras in the signature σ0 = 〈∪,∩, \, 0〉 and Boolean algebras in the signature
σ1 = 〈∪,∩, \, 0, 1〉. Let us give some notation. Given a Ershov algebra A, take a finite subset A0 of A.
A sequence 〈x1, . . . , xn〉 is called disjunctive in A whenever xi 	= 0 for 1 ≤ i ≤ n are such that xi and xj
are disjoint for all i < j ≤ n. The expression z = x1 � · · · � xn means that z = x1 ∪ · · · ∪ xn and the
sequence 〈x1, . . . , xn〉 is disjunctive. Put

At(A) = {a ∈ A | a is an atom in A}.

Given a ∈ A, put â = {x ∈ A | x ≤ a} and a⊥ = {x ∈ A | x∩a = 0}. Given S ⊆ A denote by 〈S〉 � 〈S〉A0

the subalgebra in A generated by the set S ∪ A0. Refer to a ∈ A as a finite element whenever it is the
union of finitely many atoms, and denote their number by |a|; otherwise call a an infinite element.

Theorem 1. Every Ershov algebra A is a Σ-bounded algebraic system with respect to every finite
subset A0 ⊆ A.

Proof. Since every Ershov algebra A is locally constructivizable (see [7]) and locally finite, in order
to prove the theorem it suffices to verify that conditions 1–4 in Definition 1 are fulfilled.

Enumerate the atoms A′
0 = {a1, . . . , as} of 〈A0〉. For definiteness assume that a1, . . . , ae are infinite,

for 1 ≤ e ≤ s, while ae+1, . . . , as are finite, and put a = a1 ∪ · · · ∪ as and b = ae+1 ∪ · · · ∪ as. If the
subalgebra 〈A0〉⊥ is finite then denote by as+1 its greatest element; otherwise assume that as+1 = 0.

1. A disjunctive sequence Y = 〈y1, . . . , yq〉 in A is called a base for a subsetX whenever the subalgebra

generated by X ∪ b̂ ∪ âs+1 in 〈A, A0〉 coincides with 〈Y 〉, and there exist numbers p̃0 = 0, p1, . . . , ps+δ

such that

ai = yp̃i−1+1 ∪ · · · ∪ yp̃i−1+pi ,

where p̃i = p̃i−1+ pi for 1 ≤ i ≤ s+ δ with δ = 0, 1. If 〈A0〉⊥ is finite then δ = 1 and q = p̃s+1; otherwise,
δ = 0 and p̃s ≤ q.

It is easy to see that the relation “Y is a base for X” is a binary Δ-predicate.
2. Define the characteristic of a base Y = 〈y1, . . . , yq〉. Put

χ(Y ) � 〈p1, . . . , ps+δ, α〉,

where α = q − p̃s+δ.
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It is easy to verify that the set of all characteristics

ΞA0 = {〈p1, . . . , pe, pe+1, . . . , ps+δ, α〉 | pi ∈ ω, pj = |aj |, [(δ = 0 & α ∈ ω)

∨(δ = 1 & α = 0 & ps+1 = |as+1|)], pi > 0, 1 ≤ i ≤ e, e < j ≤ s, δ = 0, 1}
is computable.

Given z ∈ 〈Y 〉, z 	= 0, there exists a unique sequence 〈m1, . . . ,mk〉 of numbers such that mj < ml

for 1 ≤ j < l ≤ k, and
z = ym1 ∪ · · · ∪ ymk

.

Refer to the number n = [m1, . . . ,mk] as the coordinate of z with respect to Y . Assume that the zero
element has coordinate 0.

3. The fulfilment of this condition follows from the next lemma.

Lemma 1. In a Ershov algebra A take two bases Y ε of the same characteristic

χ = 〈p1, . . . , pe, pe, . . . , ps+δ, α〉,
and finite subalgebras Aε ⊇ 〈Y ε〉 for ε < 2. Then there exist a base Y 2 of the same characteristic χ,
a finite subalgebra A2 ⊇ 〈Y 2〉, and embeddings ϕε : Aε → A2 such that ϕ � A0 = id and ϕεY ε = Y 2.

The proof is given for δ = 0. The case δ = 1 is checked similarly. Suppose that the atoms of Aε are

zε1, . . . , z
ε
rε , yp̃e+1, . . . , yp̃s

and they satisfy
yεj = zε

t̃εj−1+1
∪ · · · ∪ zε

t̃εj−1+tεj
, (1)

where j = 1, . . . , p̃e, p̃s + 1, . . . , q, and t̃εj = t̃εj−1 + tεj , t̃
ε
0 = 0, tεj ∈ ω+, t̃p̃s = t̃p̃e , t̃

ε
q ≤ rε.

For every j ∈ {1, . . . , p̃e}∪{p̃s+1, . . . , q} put βj = max
{
t0j , t

1
j

}
, and then put β = max

{
r0−t̃0q , r1−t̃1q

}
.

It is easy to see that there exists a base Y 2 =
〈
y21, . . . , y

2
p̃e
, yp̃e+1, . . . , yp̃s , y

2
p̃s+1, . . . , y

2
q

〉
such that

(a) the element y2j is either infinite or contains at least βj atoms;

(b) ai = y2p̃i−1+1 ∪ · · · ∪ y2p̃i−1+pi
for 1 ≤ i ≤ e;

(c) there exists a disjunctive sequence 〈d1, . . . , dβ〉 such that di∩y2j = 0 for all i and j with 1 ≤ i ≤ β
and 1 ≤ j ≤ q.

Then for j ∈ {1, . . . , p̃e}∪{p̃s+1, . . . , q} and ε < 2 there is a disjunctive sequence cε
t̃εj−1+1

, . . . , cε
t̃εj−1+tεj

of ŷ2j satisfying

y2j = cε
t̃εj−1+1

∪ · · · ∪ cε
t̃εj−1+tεj

. (2)

Also, for each ε < 2 there exists a disjunctive sequence cε
t̃εq+1

, . . . , cεrε such that ci ∩ y2j = 0 for all i and j

with t̃εq < i ≤ rε and 1 ≤ j ≤ q.

Denote by A2 the subalgebra of A generated by these sequences and the set {yp̃e+1, . . . , yp̃s}. It is
easy to verify that there exist embeddings ϕε : Aε → A2 such that

ϕεzεkε = cεkε , 1 ≤ kε ≤ rε, ϕεyεi = y2i , p̃e < i ≤ p̃s.

By (b), (1), and (2) this implies that

ϕ � 〈A0〉 = id, ϕεY ε = Y 2.

The proof of the lemma, as well as condition 3, is complete. �
In order to verify condition 4 we establish the following lemma.
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Lemma 2. Take finite subalgebras B ⊆ C ⊆ D, with B 	= C, of a Ershov algebra A, and an infinite
element b ∈ B of A. If b is an atom of B, but not an atom of C, then there exists an embedding
ϕ : D → A such that ϕ � B = id and ϕC 	⊆ D.

Proof. Take b = (c1 � c2)� c3, where c1 and c2 are atoms of C, and c3 is an element of C, which is
possibly equal to zero. Write

cε = dε1 � · · · � dεnε
, ε = 1, 2, nε ≥ 1, (3)

where dεi are atoms of D. Assume for definiteness that d11 is an infinite element of A. Then there exist
x1, y1, and x

1
i for 1 ≤ i ≤ n1 such that

d11 = x1 � y1, x1 = x11 � · · · � x1n1
, x2 = (c1 \ x1) � c2. (4)

For some x2i , 1 ≤ i ≤ n2, we have

x2 = x21 � · · · � x2n2
. (5)

Then there exists an embedding ϕ : D → A such that

ϕdεi = xεi , ε = 1, 2, 1 ≤ i ≤ nε, ϕx = x for all x ∈ D, x ∩ (c1 � c2) = 0. (6)

By (3)–(6), we have ϕcε = xε, ϕ(c1 � c2) = c1 � c2, and ϕc3 = c3; thus, ϕb = b. Since x1 /∈ D, it follows
that ϕc1 /∈ D. �

Lemma 3. Take a finite subalgebra D ⊆ A and c1, c2 ∈ D such that c1 ∩ c2 = 0, where c2 is
an infinite element. Then there exists an embedding ϕ : D → A such that ϕc1 is an infinite element,
ϕc1 /∈ D, ϕ(c1 � c2) = c1 � c2, and ϕx = x for every x ∈ D ∩ (c1 � c2)⊥.

Proof. Write ci = di1 � · · · � dini
, i = 1, 2, where dij are atoms of D for 1 ≤ j ≤ ni. We may assume

that d21 is an infinite element. Then there exist x1, . . . , xn1 , xn1+1 in A such that d21 = x1�· · ·�xn1�xn1+1.
Assume for definiteness that x1 is an infinite element. Define the embedding ϕ : D → A by putting

ϕd1j = xj , ϕd21 = c1, ϕ
(
d22
)
= d22 � xn1+1,

ϕx = x for all x such that x ∩ (
c1 ∪ d21 ∪ d22

)
= 0.

Hence,
ϕc1 = x1 � · · · � xn1 , ϕ(c1 � c2) = c1 � c2.

Consequently, ϕc1 is infinite, and ϕc1 /∈ D. �
Lemma 4. Take two subalgebras C ⊆ D and some elements cε < b for ε = 0, 1, and b = c0�c1 of D.

If c0 is an atom of C and D⊥ is an infinite algebra then there exist embeddings ϕε : D → A such that

ϕ0(b) = ϕ1(b), ϕ0(c0) /∈ ϕ1(C), ϕx = x for every x ∈ b⊥ ∩D.
Proof. Write cε = dε1 � · · · � dεnε

, where dεi are atoms of D for 1 ≤ i ≤ nε. Take a disjunctive

sequence {xεi , z | 1 ≤ nε, ε = 0, 1} of elements of D⊥, and put xε = xε1� · · ·�xεnε
. Define the embeddings

ϕε : D → A by putting
ϕεx = x for all x ∈ b⊥ ∩D,

ϕ0

(
d0i
)
= x0i , ϕ0

(
d11
)
= x11 � z, ϕ0

(
d1k
)
= x1k,

ϕ1

(
d01
)
= x01 � z, ϕ1

(
d0j
)
= x0j , ϕ1

(
d1s
)
= x1s,

where 1 ≤ i ≤ n0, 2 ≤ k ≤ n1, 2 ≤ j ≤ n0, and 1 ≤ s ≤ n1. Then

ϕ0(c0) = x0, ϕ0(c1) = x1 � z, ϕ1(c0) = x0 � z, ϕ1(c1) = x1.

Therefore, x0 is an atom of ϕ0(C), while x
0 � z is an atom of ϕ1(C). Consequently, ϕ0(c0) /∈ ϕ1(C). �

The fulfilment of condition 4 follows from the next lemma.
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Lemma 5. Take an algebra A and the function f : HF(A) → HF(A) whose graph is determined by
some Σ-formula Φ(x, y, A0). Then for all elements u = κ(X) ∈ HF(A), κ ∈ HF(ω), and bases Y of spX
we have

if u ∈ δf then sp f(u) ⊆ 〈Y 〉.
Proof. Assume on the contrary that

f(u) = τ(Z) � v, spZ � 〈Y 〉, (7)

where τ ∈ HF(ω) and Z is a sequence of elements of A.
Take

B = 〈Y 〉, C = 〈spY ∪ spZ〉. (8)

Denote by D a finite subalgebra such that

C ⊆ D, HF(D) |= Φ(u, v, A0).

Take the atoms b1, . . . , bm of B and consider all possible cases.
1. For some i the element bi is infinite and is not an atom of C.
Then by Lemma 2 there exists an embedding ϕ : D → A such that ϕ � B = id and ϕC 	⊆ D. Take

the natural extension ϕ� : HF(D) → HF(A) of ϕ. Then Lemma 6 yields

f(u) = f(ϕ�(u)) = f(κ(ϕX)) = τ(ϕZ), spϕZ 	⊆ C.

This contradicts (7) and (8).
2. For some i the element bi is finite and is not an atom of C. Assume for definiteness that i = 1.
Here a few subcases are possible:
(a) b1 ≤ a for some a ∈ 〈A0〉.
We may assume that a is an atom of 〈A0〉. Since b1 is not an atom of A, by the definition of Y the

element a is infinite. Thus, b1 < a, and for some i the element bi < a is infinite. By Lemma 3 there exists
an embedding ϕ : D → A such that ϕ � 〈A0〉 = id and ϕb1 is infinite. Then (7) and (8) imply that

f(κ(ϕX)) = τ(ϕZ), spϕZ 	⊆ ϕB.

The subalgebras ϕB ⊆ ϕC ⊆ ϕD and the element ϕb1 satisfy the condition of case 1. Thus, spϕZ ⊆ ϕC,
and we arrive at a contradiction.

(b) b1 	≤ a for every a ∈ 〈A0〉.
Then b1 ∈ 〈A0〉⊥ and 〈A0〉⊥ is an infinite subalgebra. Suppose that there exists i such that bi is

infinite and bi ∈ 〈A0〉⊥. Then by Lemma 3 there exists an embedding ϕ : D → A such that ϕ � 〈A0〉 = id,
ϕb1 is infinite, and ϕb1 is not an atom of ϕC. Hence, as in case 2(a), we arrive at a contradiction.

Consequently, every atom of B lying in 〈A0〉⊥ is finite. Since b1 ∈ 〈A0〉⊥, this implies that B⊥ is
an infinite subalgebra. We may assume that so is D⊥. Indeed, suppose that D⊥ is finite and take the
atoms d1, . . . , dn of D, where d1, . . . , de are all atoms of B⊥. Since D⊥ is finite, there exists 1 ≤ i ≤ e
such that di is infinite. Suppose that d1 is infinite. Then there exist x and y with d1 = x � y. Suppose
that x is infinite, and denote by D0 the subalgebra generated by B, y, d2, . . . , de. Define an embedding
ϕ : D → D0 by putting

ϕ � B = id, ϕd1 = y, ϕdi = di, 2 ≤ i ≤ e.

Since x ∈ D⊥
0 , it follows that D

⊥
0 is an infinite algebra.

Suppose that b1 = c0 � c1, where c0 is an atom of C. Lemma 4 implies that there exist embeddings
ϕ0, ϕ1 : D → A such that ϕ0 � B = ϕ � B and ϕ0(c0) /∈ ϕ1(C). Lemma 6 implies that f(κ(ϕ0(X))) =
f(κ(ϕ1(X))), and so spϕ0(Z) = spϕ1(Z). Hence, ϕ0(C) ⊆ ϕ1(C), which is a contradiction.

3. Cases 1 and 2 fail to hold.
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Then bi is an atom of C for every 1 ≤ i ≤ m. Consequently, C = B ⊕ C0 for some subalgebra C0.
It follows from (7) that C0 	= 0. By the definition of Y the algebra 〈A0〉⊥ is infinite. Assume that the
following holds.

(B) There exists an infinite element c ∈ C0.
We may assume that c is an atom of C0. Then there exists an embedding ϕ : D → A such that

ϕ � B = id and ϕc < c, and so ϕc /∈ C. Hence, as in case 1, we arrive at a contradiction.
Thus, all atoms of C0 are finite. Consider the following possible cases one by one.
(C) There exists an infinite element bi ∈ 〈A0〉⊥.
Take an atom c of C0. By Lemma 3 there exists an embedding ϕ : D → A such that ϕ � 〈A0〉 = id,

and an infinite element ϕc with ϕc /∈ ϕB. Then for the subalgebra ϕB ⊆ ϕC and the element ϕc case (B)
holds, which is impossible.

(D) The subalgebra C⊥ is infinite.
Take an atom c of C0 and write c = d1 � · · · � dn, where di are atoms of D for 1 ≤ i ≤ n. In C⊥

choose x such that x = x1 � · · · � xn for some xi. Then there exists an embedding ϕ : D → A such that
ϕ � B = id and ϕc /∈ C, which is impossible.

Therefore, all possible cases lead to contradictions. The proof of the lemma is complete. �
Therefore, we have verified conditions 1–4 of Definition 1 for all algebras A and sets A0. The proof

of the theorem is complete. �
Corollary 1. Each Boolean algebra B is a Σ-bounded algebraic system with respect to each finite

subset B0 ⊆ B.

Indeed, every Boolean algebra can be regarded as an enrichment of a Ershov algebra by the symbol
of the constant 1.

Theorems 1 and A, as well as Corollary 1, imply

Corollary 2. Given a Ershov or Boolean algebra A, for every finite subset A0 there exists a universal
Σ-function UA0(x, y) ∈ FΣ(HF(A), A0) for the family FA0 of functions such that every f ∈ FA0 satisfies
λyUA0(n, y) = f(y) for some n.

Corollary 3. Given a Ershov algebra A, in HF(A) there exists a universal Σ-function for the family
of all unary Σ-functions.

Proof. Put A = ∅ and define A′
0 = {a1, . . . , ae, ae+1, . . . , as} using A0 as in the beginning of the

proof of Theorem 1. Put

A1
0 =

{
a1, . . . , ae, a

1
e+1, . . . , a

1
e+αe+1

, . . . , a1(s+1)+1, . . . , a
1
(s+1)+αs+1

}
,

where a1k+1, . . . , a
1
k+αk

are all atoms under ak. It is easy to see that every finite subset X and bases Y A0
X

and Y ∅

X∗ , where X∗ = A1
0 ∪X, satisfy

〈
Y A0
X

〉 ⊆ 〈
Y ∅

X∗
〉
. Then Theorem B, where we must replace C and

C1 by A0 and A1
0, yields the claim. �

Similarly we can prove

Corollary 4. Given a Boolean algebra B, in HF(B) there exists a universal Σ-function for the
family of all unary Σ-functions.

2. Abelian p-Groups

In this section we prove the Σ-boundedness of every abelian p-group G and the existence of universal
Σ-functions in HF(G).

Recall the necessary terminology and results of the theory of abelian p-groups. Take an abelian
p-group G and a subgroup G0 ⊆ G. The order of G0 is the cardinality of G0 denoted by |G0|. The period
per(G) is the smallest number pm such that pmG = 0; if this number fails to exist then per(G) = ω,
and we say that G is an unbounded group. The period of the subgroup (x) is called the order of x and
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denoted by |x|. The height of x ∈ G, denoted by hG(x), is max{pn | x ∈ pnG}; if this n fails to exist
then hG(x) = ∞.

Take a finite set A0 ⊆ G. Given X ⊆ G denote by 〈X〉 the subgroup generated by X in the group
〈G,A0〉, and by (X), in G. Put G[pn] = {x | pnx = 0} and denote the cyclic group of order pn by
Cpn , and the quasicyclic group by Cp∞ . Denote by Gα the direct sum of α copies of the group G. The
dimension of G is the dimension of the vector space G[p]. A group G is called divisible whenever given
x ∈ G there exists y such that x = py. If G contains no divisible subgroups distinct from zero then it is
called reduced.

Theorem C. Each abelian group G is a direct sum, G = R ⊕ D, of a reduced subgroup R and
a divisible subgroup D.

Theorem D (the first Prüfer theorem). Each abelian p-group of finite period decomposes into
a direct sum of cyclic subgroups.

Theorem E (Prüfer–Kulikov). If a servant subgroup A of an abelian group G has finite period then
it appears in G as a direct summand.

Theorem F. All decompositions of an abelian p-group as direct sums of cyclic groups are isomorphic.

The proof of Proposition 27.1 in [5, p. 139] implies

Proposition A. Suppose that the period of an abelian p-group C is equal to pn. Take c ∈ C with
|c| = pn and a subgroup B ⊆ C such that B ∩ (c) = 0. Then there exists a subgroup E ⊇ B such that
C = E ⊕ (c).

Proposition B [6, p. 83]. If a countable reduced abelian p-group G is unbounded then G has a direct
summand that is an unbounded direct sum of cyclic groups.

Theorem 2. Suppose that an abelian p-group G satisfies at least one of the following:
(1) the reduced part R of G is unbounded;
(2) the divisible part D includes a subgroup Cω

p∞ ;
(3) there exists a subgroup G0 ⊆ G isomorphic to Cω

pα , where p
α is the period of G, and α ∈ ω,

α > 0.
Then G is a Σ-bounded algebraic system with respect to every finite subset A0.

In order to prove the theorem we will need the following lemma and proposition.

Lemma 6. Take the same group G as in Theorem 2, and a finite subgroup B ⊆ G. Then for every
number pn ≤ per(G) there exists c ∈ G of order pn such that B ∩ (c) = 0.

Proof. It is easy to verify that there exists a countable subgroup H, with B ⊆ H ⊆ G, satisfying
the hypotheses of Theorem 2. If H satisfies condition 1 then Proposition B implies that H has a direct
summand H0 which is a direct sum of cyclic groups of unbounded orders. Suppose that H satisfies
condition 2. Then Theorem C yields H = H0 ⊕H1, where H0

∼= Cω
p∞ . However, if condition 3 is fulfilled

then Theorem F yields H = H0 ⊕ H1, where H0
∼= Cω

pα . In all these cases we can choose the required
element c in H0. �

The next proposition generalizes Proposition 6 of [7].

Proposition 1. Take the same group G as in Theorem 2, finite abelian p-groups B and C with
B ⊆ C and per(C) ≤ per(G), and an embedding ϕ : B → G. Then ϕ extends to an embedding
ψ : C → G if and only if every b ∈ B satisfies

hC(b) ≤ hG(b
′), where ϕb = b′. (9)

Proof. Necessity is obvious.
Sufficiency can be proved by induction on the number of elements in C. Suppose that the period

of C is equal to pn and take c ∈ C with |c| = pn. Suppose that (c)∩B = 0. Then by Proposition A there
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exists a subgroup E ⊆ C such that C = (c) ⊕ E and E ⊇ B. By induction there exists an embedding
ψ0 : E → G with ψ0 � B = ϕ. By Lemma 6 there exists an element c′ such that (c′) ∩ E′ = 0 and
|c′| = pn, where E′ = ψ0E. It is obvious that we can extend ψ0 to ψ : C → G by putting ψc = c′. Thus,
we may assume that (c) ∩B 	= 0.

For every element c of order pn denote by kc the smallest number satisfying pkcc ∈ B. Take c0 ∈ C[pn]
with the smallest value of kc0 . Put c = c0 and k = kc0 .

Suppose that
pkc = b0 (10)

and show that there exists c′ such that pkc′ = b′0, where ϕb0 = b′0, and for every s < k we have psc′ /∈ B′.
Since the subgroup (c) is servant in C, it follows that hC(b0) = k. Thus, G contains g0 with p

kg0 = b′0.
Take the minimal number s satisfying psg0 ∈ B′. If s = k then c′ = g0 is the required element. Suppose
that s < k. By Lemma 6 there exists g1 ∈ G such that |g1| = pk and (g1)∩G0 = 0, where G0 = gr(B′, g0).
Put c′ = g0 + g1. Then p

kc′ = b′0. Verify that psc′ /∈ B′ for every s < k. Indeed, assume on the contrary
that psc′ ∈ B′ for some s < k. Then psg0 + psg1 = b′ ∈ B′. Hence, 0 	= psg1 ∈ G0; this is a contradiction.

Put H = gr(B, c) and H ′ = gr(B′, c′). The defining relations of H are pkc = b and relations between
the elements of B. The defining relations of H ′ are the same. Therefore, there exists an isomorphism
f : H → H ′ with f � B = ϕ.

By Theorem E there exists a subgroup E ⊆ C such that

C = (c)⊕ E. (11)

Take the projection E0 = prE(B) of B onto the second coordinate of the decomposition in (11). Given
e ∈ E0, there are b ∈ B and s ∈ ω such that

b = psαc+ e, (α, p) = 1. (12)

Verify that
hC(e) ≤ hG(e

′), (13)

where e′ = fe. Suppose that hC(e) = r and check that either e ∈ B or

r < s. (14)

If s ≥ k then (10) and (12) imply that e ∈ B. Suppose that s < k and check the validity of (14). Assume
on the contrary that r ≥ s. There exists e1 ∈ E with e = pre1. By (12) this yields b = ps(αc + pr−se1).
Since (α, p) = 1 it follows that c1 = αc+ pr−se1 is of order pn, and kc1 < k. This contradicts the choice
of c. Thus, (14) holds.

Since f : H → H ′ is an isomorphism, we have

b′ = psαc′ + e′. (15)

Verify that
hG(e

′) ≥ r. (16)

If e ∈ B then (16) follows from the hypotheses of the proposition and the definition of f . Suppose that
e /∈ B. Then (14) holds. Taking (12) into account, we have hC(e) = hG(b) = r. Consequently, hG(b

′) ≥ r.
By (15) this yields hG(e

′) ≥ min{hG(b′), s} ≥ r; i.e., we have established (13).
The embedding ϕ0 = f � E0 of E0 into G and the subgroups E0 ⊆ E satisfy condition (9) in the

proposition. By induction there exists an embedding ψ0 : E → G such that ψ0 � E0 = ϕ0. Verify that

ψ0E ∩ (c′) = 0. (17)

Assume on the contrary that there exists e ∈ E, e 	= 0, such that

ψ0e = psc′. (18)
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We may assume that |e| = p and s ≥ k. Indeed, if s < k then (18) implies that ψ0p
n−s−1e = pn−1c′.

Since k ≤ n − 1, this implies that we can take pn−s−1e as e. Therefore, |e| = p and s ≥ k. Show that
we can assume that e ∈ E0. Indeed, suppose that e /∈ E0, hC(e) = hE(e) = m, and pme1 = e for some
e1 ∈ E. The subgroup (e1) is servant in E; thus, by Theorem E there exists a subgroup E1 ⊆ E such
that E = (e1)⊕ E1.

Since e /∈ E0, it follows that pr(e1)B = 0. By (11) we have C = (c) ⊕ (e1) ⊕ E1 and B ⊆ (c) ⊕ E1.
By Lemma 6, in order to prove the proposition it suffices to embed the subgroup (c)⊕ E1 into G. This
is possible by induction. Thus, assume that e ∈ E0. From (18) it follows that

ψ0e = ϕ0e = fe = psc′ = ps−kb′0. (19)

The definition of the isomorphism f : H → H ′ yields

fps−kb0 = ϕps−kb0 = ps−kb′0. (20)

From (19) and (20) we deduce that

e = ps−kb0.

Hence, e ∈ (c) ∩ E, which is impossible. Thus, (17) holds. Therefore, the embeddings f : (c) → (c′) and
ψ0 : E → G extend to an embedding ψ : C → G, as required.

The proof of the proposition is complete. �
Proof of Theorem 2. It is proved in [7] that every abelian p-group G is locally constructivizable.

Since G is locally finite, in order to prove the theorem it suffices to verify conditions 1–4 of Definition 1.
1. Take a finite subset X ⊆ G. By Theorem D the subgroup 〈X〉 decomposes into a direct sum of

cyclic groups 〈X〉 = (y1)⊕ · · · ⊕ (yq). Call the sequence Y = 〈y1, . . . , yq〉 a base for X. By Theorem F all
bases for X are of the same length. It is easy to verify that B0(X,Y ) is a Δ-predicate in 〈HF(G), A0〉.

2. For every base Y and every z ∈ 〈Y 〉 there exists a unique sequence 〈n1, . . . , nq〉 of numbers with
nj < |yj | such that z = n1y1 + · · · + nqyq. Then n = [n1, . . . , nq] + 1 is called the coordinate of z with
respect to Y . It is easy to verify that Cor(z, Y, n) is a Δ-predicate in 〈HF(G), A0〉.

Suppose that Y = 〈y1, . . . , yq〉 satisfies |yj | = pmj and Cor(ai, Y, ni), where

A� 〈A0〉 = (a1)⊕ · · · ⊕ (ae)

is some fixed decomposition. Then the sequence χ(Y ) = 〈pm1 , . . . , pmq , n1, . . . , ne〉 is called the charac-
teristic of Y . It is easy to verify that χ = χ(Y ) is a binary Σ-predicate in 〈HF(G), A0〉.

The computability of the set of all characteristics follows from the next lemma. Suppose that |ai| = pli

for 1 ≤ i ≤ e.

Lemma 7. The sequence of numbers

ξ =
〈
pm1
1 , . . . , p

mq
q , n1, . . . , ne

〉
,

where q ≥ e, ni = [si1, . . . , siq] + 1, sij = prij tij , and (tij , p) = 1 for 1 ≤ i ≤ e and 1 ≤ j ≤ q, is

a characteristic if and only if for all 0 ≤ αi ≤ pli the following hold:
(a) max{mj | 1 ≤ j ≤ q} ≤ per(G);
(b) 0 ≤ rij ≤ mj and max{mj − rij | 1 ≤ j ≤ q} = li;
(c)

∧q
j=1

[∑e
i=1 αisij ≡ 0(mod pmj )

] ⇔ ∧e
i=1

[∧q
j=1(αisij ≡ 0(mod pmj ))

]
;

(d) min
{
exp

(
p,
∑e

i=1 αisij
) | 1 ≤ j ≤ q

} ≤ hG
(∑e

i=1 αiai
)
.

Proof. Necessity. Suppose that a sequence ξ is the characteristic of Y . Then by definition

〈Y 〉 = (y1)⊕ · · · ⊕ (yq), |yj | = pmj , ai = si1y1 + · · ·+ siqyq.

Verify (d) for instance. Given x =
∑
αiai, we have x =

∑q
j=1

(∑e
i=1 αisij

)
yj . Hence,

h〈Y 〉(x) = min

{
exp

(
p,

e∑

i=1

αisij

)
| 1 ≤ j ≤ q

}
.

It is obvious that h〈Y 〉(x) ≤ hG(x), whence we obtain (d).
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Sufficiency. Suppose that a sequence ξ satisfies (a)–(d). Define the group

Bξ =
(
bξ1
)⊕ · · · ⊕ (

bξq
)
,

∣
∣bξj

∣
∣ = pmj .

Denote by Aξ the subgroup generated by

aξi = si1b
ξ
1 + · · ·+ siqb

ξ
q, 1 ≤ i ≤ e.

It is easy to verify that (b) and (c) imply that

Aξ =
(
aξ1
)⊕ · · · ⊕ (

aξe
)
,

∣
∣aξi

∣
∣ = pli .

Then there exists an isomorphism ϕξ : Aξ → A such that ϕξaξi = ai. From (a) and (d) it follows that

per(B) ≤ per(G), and hBξ(x) ≤ hG(ϕ
ξx) for every x ∈ Aξ.

Then by Proposition 1 there exists an isomorphic embedding ψξ : Bξ → G which extends ϕξ. Hence,

the sequence Y =
〈
ψξbξ1, . . . , ψ

ξbξq
〉
is of characteristic ξ. The proof of the lemma is complete. �

The fulfilment of condition 3 follows from the next proposition which is also of interest in its own
right.

Proposition 2. Take the same group G as in Theorem 2, finite subgroups A ⊆ Bε ⊆ Cε ⊆ G, ε < 2,
and an isomorphism ϕ of B0 with B1 satisfying ϕ � A = id. Then there exist isomorphic embeddings
ψε : Cε → G such that ψε � A = id and ψ0x0 = ψ1(ϕx0) for all x0 ∈ B0, while ψ0B0 	⊆ C0 ∪ C1.

Proof. Firstly establish

Lemma 8. On assuming the hypotheses of Proposition 2 there exist isomorphic embeddings ψε :
Bε → G such that ψε � A = id, ψ0x0 = ψ1x1 � x2, and hCε(xε) ≤ hG(x

2) for every element x0 ∈ B0,
where x1 � ϕx0 and ψ0B0 	⊆ C0 ∪ C1.

Proof. Making t steps, we will construct finite subgroups Bα
t for α < 3 and isomorphisms ψε

t :
Bε

t → B2
t , where B

ε
t ⊆ Bε, such that for every x0 ∈ B0

t we have
(10) ψε

t � A = id;
(20) x0 ∈ B0

t ⇔ x1 ∈ B1
t ;

(30) ψ0
t x

0 = ψ1
t x

1 � x2;
(40) max{hCε(xε) | ε < 2} ≤ hG(x

2).

Step 0. Bα
0 = 0, ψε

0 = id.
Assume that t steps were made.

Step t + 1. Put Dε
t+1 =

{
x ∈ Bε | x 	∈ Bε

t , px ∈ Bε
t

}
, nεt+1 = max{hCε(x) | x ∈ Dε

t+1}, Hε
t+1 ={

x ∈ Dε
t+1 | hcε(x) = nεt+1

}
, Eε

t+1 = A ∩Hε
t+1.

In order to determine γ < 2 and bγt+1 consider the following possibilities:

1. n0t+1 	= n1t+1.

Then take as γ some number satisfying nγt+1 > n1−γ
t+1 . If Eγ

t+1 	= 0 then take as bγt+1 an arbitrary

nonzero a ∈ Eγ
t+1. Otherwise, put bγt+1 = x for some x ∈ Hγ

t+1, x 	= 0.

2. n0t+1 = n1t+1.
If there exists ε < 2 such that Eε

t+1 	= 0 then put γ = ε. Otherwise, put γ = 0. Choose bγt+1 as in

case 1. Call bγt+1 a (t+ 1)-high element. Put n� nγt+1 and b1−γ
t+1 = ϕ−γbγt+1, where ϕ

−0 = ϕ.

Now determine b2t+1. If b
γ
t+1 = a ∈ A then put b2t+1 = a. Suppose that bγt+1 /∈ A and pbγt+1 � bγ ∈ Bγ

t .

Consequently, hG
(
b2γ
) ≥ pn+1, where b2γ = ψγ

t bγ . Thus, G contains c and z satisfying

b2γ = pn+1c, |z| = p, hG(z) ≥ pn, (21)

(z) ∩ (
C0 ∪ C1 ∪ {c} ∪B2

t

)
= 0. (22)
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Put b2t+1 = pnc+ z. By (21) and (22),

pb2t+1 = b2γ , hG
(
b2t+1

) ≥ pn, b2t+1 /∈ C0 ∪ C1 ∪B2
t .

Put Bα
t+1 = Bα

t +
(
bαt+1

)
for α < 3. It is easy to verify that there exists an isomorphism ψε

t+1 : B
ε
t+1 → b2t+1

such that ψε
t+1 � Bε

t = ψε
t and ψε

t+1b
ε
t+1 = b2t+1.

Step t+ 1 is complete, and we proceed to the next step.
In order to verify properties 10–40 at step t+ 1, we need

Lemma 9. For all ε, δ < 2, each step t, and all cεt ∈ Bε
t and dδt ∈ Bδ \Bδ

t we have

hG
(
c2t
) ≥ hCδ

(
dδt
)
, (23)

where c2t � ψε
t

(
cεt
)
.

The proof goes by induction on t. Take cεt+1 ∈ Bε
t+1, d

δ
t+1 ∈ Bδ \Bδ

t+1, and a (t+1)-high element bγt+1.
We may assume that cεt+1 /∈ Bε

t . Then the definition of Bε
t+1 implies that cεt+1 = cεt +mbεt+1 for some

cεt ∈ Bε
t and 0 < m < p. Hence,

c2t+1 = c2t +mb2t+1. (24)

By the inductive assumption,
hG

(
c2t
) ≥ hCδ

(
dδt+1

)
. (25)

The definitions of bγt+1 and ψε
t+1 imply that

hCγ

(
bγt+1

) ≥ hCδ

(
dδt+1

)
, (26)

hG
(
b2t+1

) ≥ hCγ

(
bγt+1

)
. (27)

From (26) and (27) we deduce that

hG
(
b2t+1

) ≥ hCδ

(
dδt+1

)
.

By (24) and (27) this yields the validity of (23) for t+ 1. The proof of Lemma 9 is complete. �
Let us verify properties 10–40 at step t+ 1 on assuming that they hold at step t. The validity of 20

and 30 follows directly from the construction. Let us establish 10. Take a ∈ Bε
t+1 \ Bε

t . If a = bγt+1 then

ψε
t+1a = a by the construction of ψε

t+1. Suppose that a 	= bγt+1 and show that a ∈ Bγ
t+1. Indeed, suppose

that ε 	= γ. Then a = ϕ−γxγ for some xγ ∈ Bγ
t+1, where ϕ

0 = ϕ. The hypothesis ϕ � A = id of the lemma

yields xγ = a, and so a ∈ Bγ
t+1. Then a = cγt +mbγt+1 for some cγt ∈ Bγ

t and 0 < m < p. By construction

hCγ

(
cγt
) ≥ hCγ

(
mbγt+1

)
. Hence, hCγ (a) ≥ hCγ

(
bγt+1

)
, which contradicts bγt+1 	= a. Therefore, property 10

follows.
In order to obtain property 40, take xε ∈ Bε

t+1\Bε
t . Then x

ε = cεt+mb
ε
t+1 for c

ε
t ∈ Bε

t and 0 < m < p.
Therefore,

x2 = c2t +mb2t+1. (28)

The definitions of a (t+ 1)-high element and of ψε
t imply that

hCε(xε) ≤ hCγ

(
mbγt+1

)
, (29)

hCγ

(
mbγt+1

) ≤ hG
(
mb2t+1

)
, (30)

while Lemma 9 implies that hG
(
c2t
) ≥ hCγ

(
mbγt+1

)
. Taking (28) and (30) into account, we obtain

hG(x
2) ≥ hCγ

(
mbγt+1

)
.

By (29) this implies that hCε(xε) ≤ hG(x
2); therefore, 40 holds. The proof of Lemma 8 is complete. �

Resume the proof of Proposition 2. Suppose that the hypotheses of the proposition hold. Then by
Lemma 8 there exist isomorphic embeddings ψε : Bε → G such that ψε � A = id, ψ0x0 = ψ1x1 � x2,
and hCε(xε) ≤ hG(x

2) for every x0 ∈ B0, where x1 � ϕx0. By Proposition 1 there exist isomorphic
embeddings f ε : Cε → G extending ψε, as required.

Proposition 2 is established, and so is condition 3. �
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Corollary 5. Take the same group G as in Theorem 2 and its finite subgroups A ⊆ B ⊆ C with
B 	= A. Then there exists an embedding ψ : C → G such that ψ � A = id and ψB 	⊆ C.

Indeed, put Bε = B and Cε = C, and take ϕ : B → B, ϕ = id. Then all hypotheses of Proposition 2
hold. Thus, there exists an embedding ψ : C → G, as required. �

4. Let us establish the last condition. Suppose that the graph of a function f : HF(G) → HF (G) is
determined by a Σ-formula Φ(x, y, A0), where A0 ⊆ G and u = κ(X) with f(u) = τ(Z), X,Z ∈ G<ω.
Put A = (A0 ∪ spX) and B = (A ∪ spZ). Take a finite subgroup C of G such that

HF(C) |= Φ(u, τ(Z), A0), C ⊇ B.

Suppose that B 	= A. Then by Corollary 5 there exists an embedding ψ : C → G such that
ψ � A = id and ψB 	⊆ C; i.e., spψZ 	⊆ spZ. Take the natural extension ψ# : HF(C) → HF(C) of ψ
defined as ψ#(κ(X)) = κ(ψX), where κ ∈ HF(ω). Lemma 6 of [1] yields

f(ψ#(κ(X))) = f(κ(ψX)) = τ(ψZ).

Since ψX = X, it follows that f(κ(ψX)) = τ(Z). Hence, τ(Z) = τ(ψZ); i.e., spZ = spψZ, which is
impossible. Consequently, B = A and spZ ⊆ A.

Therefore, condition 4 is established, and the proof of the theorem is complete. �
Theorems 2 and A imply

Corollary 6. Take the same abelian p-group G as in Theorem 2. Given a finite subset A0 there
exists a universal Σ-function UA0(x, y) ∈ FΣ(HF(G), A0) for the family of unary functions FA0 such that
every function f ∈ FA0 satisfies λyUA0(n, y) = f(y) for some n.

Theorem 3. Take an abelian p-group that is the direct sum of a finite period and a finite-dimensional
divisible group. Then it is Σ-bounded.

Proof. By the first Prüfer theorem there exist α, β, γ ∈ ω, a cardinal λ, and subgroups G0, G1, and
G2 such that

G = G0 ⊕G1 ⊕G2 ⊕D,

where per(G0) < pα, G1
∼= Cλ

pα , G2 = (g1) ⊕ · · · ⊕ (gβ) with |gi| > pα for 1 ≤ i ≤ β, and D ∼= Cγ
p∞ for

λ ≥ ω.
Consider the case α > 0. The proof for case α = 0 is similar but simpler. Take a finite subset A0 ⊆ G

containing g1, . . . , gβ. In order to prove the theorem it suffices to establish that G is Σ-bounded with
respect to A0. To this end, we must verify conditions 1–4 of Definition 1.

1. Suppose that Y = 〈y1, . . . , yq〉, with yi = gi for 1 ≤ i ≤ β, is a base for a finite subset X ⊆ G
(with respect to A0) if there exists a number m satisfying pm ≥ per(〈X〉) and

H �
(〈X〉, Dm

)
= (y1)⊕ · · · ⊕ (yq), (31)

with Dm ⊆ D, Dm
∼= Cγ

pm , and |yi| ≤ pα for β + 1 ≤ i ≤ e � q − γ, while |yj | = pm for e + 1 ≤ j ≤ q.
This implies that Dm = (ye+1)⊕ · · · ⊕ (yq).

Observe that the decomposition (31) always exists since by Theorem E the subgroups G2 and Dm

are direct summands of H. It is easy to verify that B0(X,Y ) is a Δ-predicate in 〈HF(G), A0〉.
Take two bases Y ε, ε = 0, 1, for X. Then there exist two numbers mε satisfying

Hε = (〈X〉, Dmε) = (g1)⊕ · · · ⊕ (gβ)⊕
(
yεβ+1

)⊕ · · · ⊕ (
yεq
)
, (32)

where mε ≥ per(〈X〉) and Dmε =
(
yεe+1

)⊕ · · · ⊕ (
yεq
) ⊆ D with q = e+ γ. Suppose that m0 < m1. Then

Dm0 ⊆ Dm1 ; thus, H0 ⊆ H1. Therefore,

H1 =
(〈X〉, Dm1

)
and pm

1 ≥ pm
0
= per(〈Y 0〉).

548



By (32) this implies that Y 1 is a base for Y 0. Therefore, condition 1 holds.
2. Take a base Y = 〈y1, . . . , yq〉, where yi = gi for 1 ≤ i ≤ β, |yj | = pmj with mj ≤ α for

β + 1 ≤ j ≤ e = q − γ, and |yk| = pm for e+ 1 ≤ k ≤ q. Then

〈Y 〉 = (y1)⊕ · · · ⊕ (yq), Dm = (ye+1)⊕ · · · ⊕ (yq).

Take z ∈ 〈Y 〉. Then there exists a unique sequence k̄ = 〈k1, . . . , kq〉 of numbers such that

z = k1y1 + · · ·+ kqyq,

where ks ≤ |ys| for 1 ≤ s ≤ q. The index [k̄] is called the coordinate of z with respect to Y . It is easy to
verify that Cor(Z, Y, n) is a Δ-predicate in 〈HF(G), A0〉.

Fix some decomposition A = 〈A0〉 = (a1)⊕ · · · ⊕ (ar), with ai = gi for 1 ≤ i ≤ β ≤ r, and take some
numbers ni such that Cor(ai, Y, ni). Then the sequence

χ(Y ) = 〈|y1|, . . . , |yq|, n1, . . . , nr〉
is called a characteristic of Y . It is easy to verify that χ = χ(Y ) is a binary Δ-predicate in 〈HF(G), A0〉.

The computability of the set of all characteristics follows from the next lemma. Suppose that pli = |gi|
and |aj | = plj , where 1 ≤ i ≤ β and 1 ≤ j ≤ r.

Lemma 10. A sequence
ξ = 〈pm1 , . . . , pmq , n1, . . . , nr〉

of numbers, where q ≥ r, ni = [si1, . . . , siq] + 1, sij = prij tij , and (tij , p) = 1 for 1 ≤ j ≤ q and 1 ≤ i ≤ r,

is a characteristic if and only if for all 0 ≤ αi ≤ pli , 1 ≤ i ≤ r, we have
(a) max{mβ+1, . . . ,me} ≤ α, me+1 = · · · = mq � m, m ≥ max{m1, . . . ,me}, and pmi = |gi| for

1 ≤ i ≤ β;
(b) 0 ≤ rij ≤ mj and max{mj − rij | 1 ≤ j ≤ q} = li;
(c)

∧q
j=1

[∑r
i=1 αisij ≡ 0(mod pmj )

] ⇔ ∧r
i=1

[∧q
j=1(αisij ≡ 0(mod pmj ))

]
,

(d) min
{
exp

(
p,
∑r

i=1 αisij
) | β + 1 ≤ j ≤ e

} ≤ hG0⊕G1

(∑r
i=1 αia

′
i

)
,

where a′i � prH(ai) is the projection of ai onto the subgroup G′ = G0 ⊕G1.

Proof. Since G′ satisfies the hypotheses of Theorem 2, Lemma 7 implies this lemma. �
Therefore, condition 2 holds.

3. Take two bases Y ε, ε = 0, 1, of the same characteristic

χ = 〈pm1 , . . . , pme , pm, . . . , pm, n1, . . . , nr〉
and finite subgroups

Bε ⊇ (Y ε). (33)

By the definition of the base Y ε of characteristic χ,

(Y ε) =
(
yε1
)⊕ · · · ⊕ (

yεq
)
= G2 ⊕Aε ⊕Dm, (34)

where Aε =
(
yεβ+1

)⊕ · · · ⊕ (
yεe
)
and Dm = (yεe+1)⊕ · · · ⊕ (

yεq
) ⊆ D. By (33) this implies that there exist

subgroups Dε ⊆ D and Bε
0 ⊆ Bε such that Bε

0 is isomorphic to some subgroup of G′ and

Bε = G2 ⊕Bε
0 ⊕Dε, (35)

so that, taking (33) into account, we have Dε ⊇ Dm. Then according to (34) and (35) we may assume
that, up to isomorphism,

Aε ⊆ Bε
0 ⊆ G′. (36)
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Denote by nεi the coordinate of prAε(ai) � a′i. Since Cor(Y ε, ai, ni), it follows that n0i = n1i � n′i.
The subgroup G′ satisfies condition 3 of Theorem 2. It is easy to verify that Y ε

0 =
〈
yεβ+1, . . . , y

ε
e

〉
is a base

for the group 〈G′, a′1, . . . , a′r〉 of characteristic
χ′ = 〈pmβ+1 , . . . , pme , n′1, . . . , n

′
r〉.

Then by Theorem 2 there exist a base Y 2
0 =

〈
y2β+1, . . . , y

2
e

〉
of characteristic χ′ and a subgroup B2

0 ⊆ G′
0

such that there exist embeddings
ϕε
0 : B

ε
0 → B2

0 , ϕε
0Y

ε
0 = Y 2

0 .

Without restricting generality we may assume that D0 = D1 ∼= Cγ
pn for some n ≥ m. Put

Y 2 =
〈
g1, . . . , gβ , y

2
β+1, . . . , y

2
e , y

2
e+1, . . . , y

2
q

〉
, B2 = G2 ⊕B2

0 ⊕D0,

where
∣
∣y2i

∣
∣ = pn and e + 1 ≤ i ≤ q. It is easy to verify that there exist embeddings ϕε : Bε → B2 such

that ϕε � G2 ⊕D0 = id, ϕεY ε = Y 2, and ϕε � Bε
0 = ϕε

0, so that ϕε are embeddings, as required.
Therefore, condition 3 holds.
In order to verify condition 4 we need

Lemma 11. Every partial function f : HF(G) → HF(G) defined by a Σ-formula with parameters
A0 satisfies the following condition: given u ∈ δf there is a base Y for spu such that sp f(u) ⊆ 〈Y 〉.

Proof. Suppose that the graph of f is defined by a Σ-formula Φ(x, y, A0), and take

u = κ(X), f(u) = τ(Z), X, Z ∈ G<ω, m = per(A0, spX, spZ). (37)

Take a base Y = 〈y1, . . . , yq〉 for spX with |yβ+1| = · · · = |yq| = pm, put

A = (Y ), B = (Y ∪ spZ), (38)

and denote by C a finite subgroup of G such that

B ⊆ C, HF(C) |= Φ(u, τ(Z), A0). (39)

Then some subgroups A′
0, B0, and C0 isomorphic to G′ = G0 ⊕G1 and D1

0, D
2 ⊆ D satisfy

A = A′
0 ⊕G2 ⊕D1, (40)

B = B0 ⊕G2 ⊕D1, (41)

C = C0 ⊕G2 ⊕D2, (42)

where D1 ∼= Cγ
pm and D2 ∼= Cγ

pn for some n ≥ m. Verify that

A′
0 ⊆ B0 ⊆ C0. (43)

Take
x ∈ B0. (44)

By (39) this yields x ∈ C. By (42) for some elements c0 ∈ C0, g ∈ G2, and d ∈ D2 we have

x = c0 + g + d. (45)

Since per(B) = pm, it follows that |x| ≤ pm. Consequently, |d| ≤ pm; i.e., d ∈ D1. From (41), (42),
and (44) we deduce that c0 ∈ B0. Then (41) and (45) yield g = d = 0; i.e., x = c0 ∈ C, and hence
B0 ⊆ C0. Similarly, A′

0 ⊆ B0; i.e., (43) is established.
Up to isomorphism, we may assume that the subgroups A′

0 ⊆ B0 ⊆ C0 are contained in G′
0, which

satisfies condition 3 of Theorem 2. Suppose that A′
0 	= B0. Then by Corollary 5 there exists an embedding

ψ0 : C0 → G′
0 such that ψ0 � A′

0 = id and ψ0B0 	⊆ C0. The embedding ψ0 extends to an embedding
ψ : C → G satisfying ψ � G2 ⊕D2 = id. Then ψ � A = id and ψB 	⊆ C. By Lemma 6 of [1] from (37)
and (38) we deduce that

f(u) = f(κ(ψX)) = τ(ψZ) 	= τ(Z).

We arrive at a contradiction; i.e., A′
0 = B0. Consequently, A = B and spZ ∈ A = (Y ).

The proofs of the lemma and the theorem are complete. �
Theorems 3 and A imply
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Corollary 7. Take the same abelian p-group G as in Theorem 3. Then for every finite subset
A0 ⊇ {g1, . . . , gβ} there exists a universal Σ-function UA0(x, y) ∈ FΣ(HF(G), A0) for the family of unary

functions FA0 such that every function f ∈ FA0 satisfies λyUA0(n, y) = f(y) for some n.

Every abelian p-group G is the direct sum of its reduced and divisible parts. Thus, G satisfies the
hypotheses of either Theorem 2 or Theorem 3. By Theorems 2 and 3 this implies

Corollary 8. Every abelian p-group is a Σ-bounded algebraic system.

Corollary 9. Take an abelian p-group G. Then in HF(G) there exists a universal Σ-function for
the family of all unary Σ-functions.

Proof. Take a finite subset A0 ⊆ G with respect to which G is Σ-bounded, fix a decomposition
〈A0〉 = (a1)⊕· · ·⊕(ae), some finite setX, and a base Y A0

X for X with respect to A0. Put A
1
0 = {a1, . . . , ae}

and X∗ = A1
0 ∪X.

If G satisfies the hypotheses of Theorem 2 then the subgroups
〈
Y A0
X

〉
and

〈
Y ∅

X∗
〉
are generated by

the same set X∗. Therefore,
〈
Y A0
X

〉
=

〈
Y ∅

X∗
〉
.

If G satisfies the hypotheses of Theorem 3 then there exists m such that the subgroup H generated
by the set X ∪A1

0∪Dm satisfies H = (y1)⊕· · ·⊕ (yq), and Y
A0
X = 〈y1, . . . , yq〉, where Dm = D[pm] and D

is the divisible part of G. Then Y ∅

X∗ � Y A0
X is a base for X ∪A1

0 with respect to the empty set.
Therefore, in both cases the hypotheses of Theorem B hold. Then that theorem, where we must

replace C and C1 with A0 and A1
0, yields the claim. �

In closing the author expresses his gratitude to Yu. L. Ershov and S. S. Goncharov whose articles,
advice, and attention were greatly helpful in working on the article.
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