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exist universal X-functions in hereditarily finite admissible sets over them.
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This article continues [1] where we had introduced the concept of a ¥-bounded algebraic system and
obtained a necessary and sufficient condition for the existence of universal X-functions in a hereditarily
finite admissible set over a Y-bounded system. In this article we prove that Ershov algebras, Boolean
algebras, and abelian p-groups are Y-bounded systems, and universal X-functions exist over them.

As regards the terminology and notation, we follow [2] for admissible sets, [3] for Ershov algebras,
and [4-6] for groups. Recall the definition of a X-bounded algebraic system and some results of [1]
needed below.

DEFINITION 1. Given a locally finite and locally constructivizable algebraic system 9 of signature o
and a finite subset My, suppose the following;:
1. The concept of a base is defined for every finite subset X C M. The predicate

‘Béwo (X,Y) = “the finite sequence Y € M <% is a base for X”

is a A-predicate of signature o1(Mp) in (HF(9M), My). Given two bases Y? and Y! for X, X C (Y®),
e = 0,1 and either %é/lo(sp YO Y1) or ‘Bé/lo (spY1,Y?) is true. A sequence Y is called a base whenever
BMo(Y) = B0 (spY,Y) is true.

2. For every base Y a number xM°(Y) is defined which is called the characteristic of Y, such
that xM°(Y) is a ¥-function of signature o1(Mp) in (HF(9M), My). The set of all characteristics ZMo is
a computable subset of w. There exists a A-predicate Cor0(z, Y, n) of signature o1(Mp) such that

2z € (Y) & (HF(M), My) = 3n(n #0 & Cor™o(z,Y,n)).

The number n is called the coordinate of z with respect to Y. If two elements are distinct then so are
their coordinates.

3. Given two bases Y of the same characteristic y and finite subsystems 9 O (Y¢), ¢ < 2, there
exist a base Y2 and a subsystem 9t? O (Y?) satisfying the following:

(1) x = x(Y?);

(2) there exists an embedding ¢ : MM — M? such that ¢ | (My) = id and ¢°Y® = Y2, where the
embedding ¢¢ : HF(901°) — HF(91?) naturally extends ¢j.

In particular, every two bases of the same characteristic are of the same length.

4. For every partial function f : HF(9t) — HF(9) defined by a X-formula with parameters in My,
if u € HF(9) and w € df then there exists a base Y for spu such that sp f(u) C (Y).
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Then 91 is called a X-bounded algebraic system with respect to My. If for every finite subset Mg
there exists a finite subset M O My such that 9 is ¥-bounded with respect to M{) then 9 is called
a X-bounded algebraic system.

Denote the set of all parameter-free 3-formulas of signature o1 (Mp) by S(HF(91), My), the set of all
functions in (HF(90t), M) defined by the formulas in 3 (HF(9), My) by FX(HF(9), My), and the set of
all unary functions in FX(HF(9%), M) by §Mo.

Theorem A [1, Corollary 4]. If an algebraic system 9 is ¥.-bounded with respect to a finite subset
Mo of M then there exists a universal Y-function UMo(z,y) € FX(HF(IM), M) for the family FM0 such
that every f € Mo satisfies \yUMo(n,y) = f(y) for some n.

Theorem B [1, Theorem 2]. Given a X-bounded algebraic system 9, in HF(90) there exists a uni-
versal Y-function with parameter A if and only if for every finite subset C' with respect to which I
is ¥-bounded there is a finite subset C' such that for every finite subset X and every base Y)? there
exists a base Y)‘?* for which <Y)?> C <Y§‘*>, where X* = C'U X.

1. Ershov Algebras

Here we prove the Y-boundedness of every Ershov algebra 2 and the existence of universal functions
in HF ().

We consider Ershov algebras in the signature op = (U,N,\,0) and Boolean algebras in the signature
o1 = (U,N,\,0,1). Let us give some notation. Given a Ershov algebra 2, take a finite subset Ag of 2.
A sequence (z1,...,xy) is called disjunctive in 2 whenever x; # 0 for 1 <4 < n are such that z; and z;
are disjoint for all i < 7 < n. The expression z = z; U --- Uz, means that z = z; U--- U x, and the
sequence (z1,...,x,) is disjunctive. Put

At(A) = {a € A | a is an atom in 2A}.

Givena € A, puta = {zr € A |z <a}and a’ = {x € A | zNa = 0}. Given S C A denote by (S) = (),
the subalgebra in 2l generated by the set S U Ag. Refer to a € 2 as a finite element whenever it is the
union of finitely many atoms, and denote their number by |a|; otherwise call a an infinite element.

Theorem 1. Every Ershov algebra 2 is a ¥-bounded algebraic system with respect to every finite
subset Ag C A.

PROOF. Since every Ershov algebra 2 is locally constructivizable (see [7]) and locally finite, in order
to prove the theorem it suffices to verify that conditions 1-4 in Definition 1 are fulfilled.

Enumerate the atoms Aj = {ai,...,as} of (Ag). For definiteness assume that ai, ..., a. are infinite,
for 1 < e < s, while ae41,...,as are finite, and put a = a1 U---Uas and b = aeqrq U --- Uag. If the
subalgebra (Ag)" is finite then denote by a4, its greatest element; otherwise assume that a,q = 0.

1. A disjunctive sequence Y = (y1, ..., y,) in A is called a base for a subset X whenever the subalgebra
generated by X UbU a1 in (2, Ag) coincides with (Y), and there exist numbers po = 0,p1, ..., Psss
such that

@i = Yp; +1 Y UYp 4p;s

where p; = p;_1+p; for 1 <i < s+6 with 6 = 0,1. If (Ay)~* is finite then § = 1 and g = ps1; otherwise,
6 =0and ps <gq.

It is easy to see that the relation “Y is a base for X” is a binary A-predicate.

2. Define the characteristic of a base Y = (y1,...,y,). Put

X(Y) = <p17 <oy Ps+6, O[>,
where o = ¢ — Psys-
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It is easy to verify that the set of all characteristics

= - { pl?"'apeapeJrl?'"ap8+(5aa> |pl € w, by = |CL]'|, [(6 =0&ac W)
Ve=1& a=0& pst1 = las+1])], pi >0, 1<i<e, e<j<s, §d=0,1}
is computable.
Given z € (Y), z # 0, there exists a unique sequence (my,...,my) of numbers such that m; < my
for 1 <j<l<k,and
Z2=Ym YUY,

Refer to the number n = [mq,...,my| as the coordinate of z with respect to Y. Assume that the zero
element has coordinate 0.
3. The fulfilment of this condition follows from the next lemma.

Lemma 1. In a Ershov algebra 2 take two bases Y¢ of the same characteristic

X = <p17 -«+yPeyDey - - - 7p8+57a>a

and finite subalgebras A° O (Y¢) for ¢ < 2. Then there exist a base Y? of the same characteristic x,
a finite subalgebra A? O (Y?), and embeddings ° : A° — A% such that ¢ | Ag = id and ©°Y*® = Y2,

The proof is given for § = 0. The case § = 1 is checked similarly. Suppose that the atoms of 2° are

27 2oy Ypetls - s YUps
and they satisfy
Y; = Z%_l—i-l Uy th L (1)
where j =1,...,pe, Ps +1,...,4q, andz‘E:iNE‘E Tt 56:0 taew tp —tpe,tf1<r

Forevery j € {1,...,pe}U{ps+1,...,q} put B = max{t?,t}} and then put § = max{ro—fg,rl—%tg}.
It is easy to see that there exists a base Y? = <y1, e ,ype,ypeﬂ, e ,yﬁs,ygsﬂ, ces ,yC21> such that

(a) the element yj is either infinite or contains at least 8; atoms;

(b) ai = y%iflJrl U---u y%i—l‘f’pi for 1 <i<e¢

(c) there exists a disjunctive sequence (di, ..., dg) such that d; ﬂyjz =0foralliand jwithl1 <i<g
and 1 < j <q.

Then for j € {1,...,p.}U{ps+1,...,q} and € < 2 there is a disjunctive sequence c5 , ¢

AR SR S
of @JQ satisfying

2 €
Yj = th 1+1U"'UC£§_1+t;' (2)

Also, for each € < 2 there exists a disjunctive sequence &

WlthtZ<Z§7” and 1 <j <gq.
Denote by 2? the subalgebra of 2 generated by these sequences and the set {Ypet1s-- - yp, ). Tt is
easy to verify that there exist embeddings ¢° : A — 2A? such that

Fep1r , C= such that ¢; N yj2 =0 for all 7 and j

O 2 = ey 1SS <%, 075 =y, Pe < i < P
By (b), (1), and (2) this implies that
o (Ag) =id, Y =Y2
The proof of the lemma, as well as condition 3, is complete. [J

In order to verify condition 4 we establish the following lemma.
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Lemma 2. Take finite subalgebras B C C C D, with B # C, of a Ershov algebra 2|, and an infinite
element b € B of . If b is an atom of B, but not an atom of C, then there exists an embedding
@ : D — A such that p [ B =id and oC € D.

PROOF. Take b = (¢1 L ca) U c3, where ¢; and co are atoms of C, and c3 is an element of C, which is
possibly equal to zero. Write
Ce=dilU---Ud;, , =12, n.>1, (3)
where d¢ are atoms of D. Assume for definiteness that dj is an infinite element of 2. Then there exist
x1, y1, and xll for 1 < ¢ < nj such that

d%:xll_lyl, xlzx%l_l---l_lx,lh, x2 = (c1 \ x1) U co. (4)

For some w?, 1 <i < n9, we have
Ty =il Ux? . (5)

n2

Then there exists an embedding ¢ : D — 2 such that
od; =25, e=1,2, 1<i<n.,, @r=zforallze D, zN(ciUc2)=0. (6)

By (3)—(6), we have gc. = x., ¢(c1 Uca) = ¢1 Uca, and @cg = c3; thus, pb = b. Since 1 ¢ D, it follows
that pc; ¢ D. O

Lemma 3. Take a finite subalgebra D C 2 and cy,co € D such that ¢y N cy = 0, where cg is
an infinite element. Then there exists an embedding ¢ : D — 2 such that ¢c; is an infinite element,
we1 ¢ D, o(c1 Uca) = ¢y Ucs, and px = x for every x € DN (¢ U c)™t.

Proor. Write ¢; = dﬁ .-y dﬁli, 1 =1, 2, where dé» are atoms of D for 1 < j < n;. We may assume
that d% is an infinite element. Then there exist x1,...,Tp,, Tn,+1 in A such that d% =z1U- Uy, Uy, 11.
Assume for definiteness that z; is an infinite element. Define the embedding ¢ : D — 2 by putting

pdj = x5, @di =c1, @(d3) =d3Uan, 4,
gz =z for all z such that N (¢c; U a2 U d%) = 0.

Hence,
e =x1 U Uxp,, (e Ue) =c1 Uea.

Consequently, ¢c; is infinite, and pc; ¢ D. O
Lemma 4. Take two subalgebras C' C D and some elements c. < b fore = 0,1, and b = cgllcy of D.
If ¢y is an atom of C' and D' is an infinite algebra then there exist embeddings . : D — 2 such that
po(b) = ¢1(b), ¢olco) & 1(C), wx = for every z € b* N D.

PrOOF. Write ¢ = dj U---Ud;_, where d; are atoms of D for 1 < i < n.. Take a disjunctive

sequence {z%,z | 1 < n., € = 0,1} of elements of D+, and put ° = 2§ U---Uzf,_. Define the embeddings
e + D — 2 by putting
pex =z forallz ebtND,
po(di) =7, po(di) =z1Uz  o(dy) = 1,
¥1 (d(l)) = x(l) U 2, ©1 (d(])) = IL‘?, P1 (d;) = l’;
where 1 <1 <ng,2<k<n;,2<j<ng,and 1 <s<ny. Then

)

wolco) =2°, wolcr) =a' Uz, @i(co) =2"Uz, ¢i(c) =2

0

Therefore, 2° is an atom of ¢o(C), while z¥ LI 2 is an atom of 1 (C). Consequently, wo(co) & ©1(C). O

The fulfilment of condition 4 follows from the next lemma.
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Lemma 5. Take an algebra 2 and the function f : HF () — HF(2A) whose graph is determined by
some Y-formula ®(x,y, Ag). Then for all elements u = »(X) € HF(), » € HF(w), and bases Y of sp X
we have

ifuedf then spf(u) C (V).

PROOF. Assume on the contrary that

fu)=7(2) =v, spZ Z(Y), (7)
where 7 € HF(w) and Z is a sequence of elements of 2.
Take
B=(Y), C=(spYUspZ). (8)

Denote by D a finite subalgebra such that
CCD, HF(D)E ®(u,v,Ap).

Take the atoms by, ..., b, of B and consider all possible cases.

1. For some ¢ the element b; is infinite and is not an atom of C.

Then by Lemma 2 there exists an embedding ¢ : D — 2 such that ¢ | B =id and ¢C' € D. Take
the natural extension ¢f : HF(D) — HF(2) of ¢. Then Lemma 6 yields

fu) = f(H(w) = f((eX)) = (¢2), spwZ L C.

This contradicts (7) and (8).

2. For some 7 the element b; is finite and is not an atom of C'. Assume for definiteness that 7 = 1.

Here a few subcases are possible:

(a) by < a for some a € (Ay).

We may assume that a is an atom of (Ap). Since b; is not an atom of A, by the definition of Y the
element ¢ is infinite. Thus, b1 < a, and for some ¢ the element b; < a is infinite. By Lemma 3 there exists
an embedding ¢ : D — 2 such that ¢ [ (Ag) = id and ¢b; is infinite. Then (7) and (8) imply that

f((pX)) = 1(9Z), spypZ L pB.

The subalgebras ¢ B C oC' C @D and the element @b satisfy the condition of case 1. Thus, sppZ C ¢C,
and we arrive at a contradiction.

(b) b1 £ a for every a € (Ap).

Then by € (Ag)* and (Ap)* is an infinite subalgebra. Suppose that there exists ¢ such that b; is
infinite and b; € (4p)*. Then by Lemma 3 there exists an embedding ¢ : D — A such that ¢ | (Ag) = id,
by is infinite, and @b is not an atom of ¢C'. Hence, as in case 2(a), we arrive at a contradiction.

Consequently, every atom of B lying in (Ag)* is finite. Since by € (Ag)*, this implies that B+ is
an infinite subalgebra. We may assume that so is D*. Indeed, suppose that D= is finite and take the
atoms dy,...,d, of D, where dy,...,d. are all atoms of B+. Since D™ is finite, there exists 1 < i < e
such that d; is infinite. Suppose that d; is infinite. Then there exist x and y with dy = x Uy. Suppose
that z is infinite, and denote by Dy the subalgebra generated by B,y,ds,...,d.. Define an embedding
w: D — Dy by putting

o B=id, @di=y, @di=d;, 2<i<e.

Since x € Dy, it follows that Dy is an infinite algebra.

Suppose that by = ¢o U ¢q, where ¢g is an atom of C'. Lemma 4 implies that there exist embeddings
©o,p1 D — A such that ¢g [ B = ¢ [ B and ¢o(cp) ¢ ¢1(C). Lemma 6 implies that f(»(po(X))) =
f((p1(X))), and so sp po(Z) = sp1(Z). Hence, po(C) C ¢1(C), which is a contradiction.

3. Cases 1 and 2 fail to hold.
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Then b; is an atom of C for every 1 < ¢ < m. Consequently, C' = B & Cy for some subalgebra Cj.
It follows from (7) that Cy # 0. By the definition of Y the algebra (Ag)™ is infinite. Assume that the
following holds.

(B) There exists an infinite element ¢ € Cj.

We may assume that ¢ is an atom of Cp. Then there exists an embedding ¢ : D — 2 such that
¢ | B=1id and ¢c < ¢, and so ¢c ¢ C. Hence, as in case 1, we arrive at a contradiction.

Thus, all atoms of C are finite. Consider the following possible cases one by one.

(C) There exists an infinite element b; € (Ag)~.

Take an atom ¢ of Cy. By Lemma 3 there exists an embedding ¢ : D — 2 such that ¢ [ (4p) = id,
and an infinite element pc with ¢c ¢ pB. Then for the subalgebra ¢ B C ¢C' and the element @c case (B)
holds, which is impossible.

(D) The subalgebra C* is infinite.

Take an atom ¢ of Cy and write ¢ = dqy Ul --- U d,,, where d; are atoms of D for 1 < i < n. In C+
choose x such that x = x1 U - - Uz, for some x;. Then there exists an embedding ¢ : D — 2 such that
¢ | B=1id and ¢c ¢ C, which is impossible.

Therefore, all possible cases lead to contradictions. The proof of the lemma is complete. [

Therefore, we have verified conditions 1-4 of Definition 1 for all algebras 2 and sets Ay. The proof
of the theorem is complete. [

Corollary 1. Fach Boolean algebra B is a >-bounded algebraic system with respect to each finite
subset By C B.

Indeed, every Boolean algebra can be regarded as an enrichment of a Ershov algebra by the symbol
of the constant 1.
Theorems 1 and A, as well as Corollary 1, imply

Corollary 2. Given a Ershov or Boolean algebra 2, for every finite subset Aq there exists a universal
Y-function UA0(z,y) € FY(HF (), Ag) for the family 40 of functions such that every f € F40 satisfies
MyUA(n,y) = f(y) for some n.

Corollary 3. Given a Ershov algebra 2, in HF () there exists a universal ¥.-function for the family
of all unary ¥-functions.

PrOOF. Put A = @ and define A = {ai,...,ac, Get1,-..,as} using Agp as in the beginning of the
proof of Theorem 1. Put
1_ 1 1 1 1
AO — {a1,...7ae,a6+1,... 7ae+a€+17...’a(s+1)+1,...’a(s+1)+as+l}7
where a,{i IRTREE ,a,1€ ta,, aT€ all atoms under ay. It is easy to see that every finite subset X and bases Y)?O

and Y)?*, where X* = A% U X, satisfy <Y)‘?°> - <Y)?*>. Then Theorem B, where we must replace C' and
C! by Ag and A}, yields the claim. O

Similarly we can prove

Corollary 4. Given a Boolean algebra B, in HF(B) there exists a universal ¥-function for the
family of all unary X-functions.

2. Abelian p-Groups

In this section we prove the ¥-boundedness of every abelian p-group G and the existence of universal
Y-functions in HF(G).

Recall the necessary terminology and results of the theory of abelian p-groups. Take an abelian
p-group G and a subgroup Gy C G. The order of Gy is the cardinality of Gy denoted by |Go|. The period
per(G) is the smallest number p™ such that p™G = 0; if this number fails to exist then per(G) = w,
and we say that G is an unbounded group. The period of the subgroup () is called the order of z and
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denoted by |z|. The height of x € G, denoted by hg(x), is max{p™ | x € p"G}; if this n fails to exist
then hg(z) = oco.

Take a finite set A4g C G. Given X C G denote by (X) the subgroup generated by X in the group
(G, Ap), and by (X), in G. Put G[p"] = {z | p"z = 0} and denote the cyclic group of order p" by
Cpn, and the quasicyclic group by Cpe. Denote by G the direct sum of « copies of the group G. The
dimension of G is the dimension of the vector space G[p|. A group G is called divisible whenever given
x € G there exists y such that x = py. If G contains no divisible subgroups distinct from zero then it is
called reduced.

Theorem C. Fach abelian group G is a direct sum, G = R ® D, of a reduced subgroup R and
a divisible subgroup D.

Theorem D (the first Priifer theorem). Each abelian p-group of finite period decomposes into
a direct sum of cyclic subgroups.

Theorem E (Priifer—Kulikov). If a servant subgroup A of an abelian group G has finite period then
it appears in G as a direct summand.

Theorem F. All decompositions of an abelian p-group as direct sums of cyclic groups are isomorphic.

The proof of Proposition 27.1 in [5, p. 139] implies

Proposition A. Suppose that the period of an abelian p-group C is equal to p"™. Take ¢ € C with
lc| = p™ and a subgroup B C C such that BN (c) = 0. Then there exists a subgroup E O B such that
C=E®®/ (o).

Proposition B [6, p. 83]. If a countable reduced abelian p-group G is unbounded then G has a direct
summand that is an unbounded direct sum of cyclic groups.

Theorem 2. Suppose that an abelian p-group G satisfies at least one of the following:

(1) the reduced part R of G is unbounded;

(2) the divisible part D includes a subgroup Cis;

(3) there exists a subgroup Gy C G isomorphic to Cy., where p® is the period of G, and a € w,
a>0.

Then G is a %-bounded algebraic system with respect to every finite subset Ag.

In order to prove the theorem we will need the following lemma and proposition.

Lemma 6. Take the same group G as in Theorem 2, and a finite subgroup B C G. Then for every
number p" < per(G) there exists ¢ € G of order p" such that BN (c¢) = 0.

PrOOF. It is easy to verify that there exists a countable subgroup H, with B C H C G, satisfying
the hypotheses of Theorem 2. If H satisfies condition 1 then Proposition B implies that H has a direct
summand Hy which is a direct sum of cyclic groups of unbounded orders. Suppose that H satisfies
condition 2. Then Theorem C yields H = Ho @ Hi, where Hy = Cje. However, if condition 3 is fulfilled
then Theorem F yields H = Hp @ Hi, where Hy = Cj. In all these cases we can choose the required
element ¢ in Hy. O

The next proposition generalizes Proposition 6 of [7].

Proposition 1. Take the same group G as in Theorem 2, finite abelian p-groups B and C with
B C C and per(C) < per(G), and an embedding ¢ : B — G. Then ¢ extends to an embedding
¥ : C — G if and only if every b € B satisfies

heo(b) < ha(b'), where b =1b'. 9)

PROOF. Necessity is obvious.
Sufficiency can be proved by induction on the number of elements in C'. Suppose that the period
of C is equal to p™ and take ¢ € C with |¢| = p™. Suppose that (¢) N B = 0. Then by Proposition A there
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exists a subgroup E C C such that C = (¢) @ E and E O B. By induction there exists an embedding
o : E — G with g | B = ¢. By Lemma 6 there exists an element ¢’ such that (¢) N E' = 0 and
|| = p™, where E' = ¢y E. It is obvious that we can extend 1 to 1) : C — G by putting ¢c = ¢/. Thus,
we may assume that (¢) N B # 0.

For every element c of order p” denote by k. the smallest number satisfying p*ec € B. Take cq € C[p"]
with the smallest value of k.,. Put ¢ = cp and k = k.

Suppose that

pre =bo (10)

and show that there exists ¢’ such that p¥c’ = b)), where by = b}, and for every s < k we have p°c’ ¢ B'.

Since the subgroup (c) is servant in C, it follows that he(bg) = k. Thus, G contains g with p*go = b}
Take the minimal number s satisfying p®go € B’. If s = k then ¢ = gg is the required element. Suppose
that s < k. By Lemma 6 there exists g; € G such that |g1| = p* and (g1)NGo = 0, where Gy = gr(B’, go).
Put ¢ = go + g1. Then p*c’ = b),. Verify that p°c’ ¢ B’ for every s < k. Indeed, assume on the contrary
that p°c’ € B’ for some s < k. Then p®gy + p°g1 = V' € B’. Hence, 0 # p°g1 € Go; this is a contradiction.

Put H = gr(B,c) and H' = gr(B’,¢'). The defining relations of H are pFc = b and relations between
the elements of B. The defining relations of H’ are the same. Therefore, there exists an isomorphism
f:H— H with f | B= .

By Theorem E there exists a subgroup E C C such that

C=()DE. (11)

Take the projection Ey = prg(B) of B onto the second coordinate of the decomposition in (11). Given
e € Ey, there are b € B and s € w such that

b=rpiac+e, (a,p)=1. (12)
Verify that
hc(e) < ha(e), (13)
where ¢’ = fe. Suppose that ho(e) = r and check that either e € B or

r<s. (14)

If s > k then (10) and (12) imply that e € B. Suppose that s < k and check the validity of (14). Assume
on the contrary that r > s. There exists e; € F with e = p"e;. By (12) this yields b = p*(ac + p"®ey).
Since (o, p) = 1 it follows that ¢; = ac+ p" ey is of order p”, and k., < k. This contradicts the choice
of ¢. Thus, (14) holds.

Since f : H — H' is an isomorphism, we have

bV =piad + €. (15)
Verify that
hg(e') > r. (16)

If e € B then (16) follows from the hypotheses of the proposition and the definition of f. Suppose that
e ¢ B. Then (14) holds. Taking (12) into account, we have h¢o(e) = hg(b) = r. Consequently, ha(b') > r.
By (15) this yields hg(e') > min{hg(V'),s} > r; i.e., we have established (13).

The embedding ¢g = f | Ep of Ey into G and the subgroups Ey C E satisfy condition (9) in the
proposition. By induction there exists an embedding g : E — G such that ¥g [ Fy = ¢g. Verify that

PvoEN () =0. (17)
Assume on the contrary that there exists e € E, e # 0, such that
Yoe = p°c. (18)
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We may assume that |e| = p and s > k. Indeed, if s < k then (18) implies that 1op"*"le = p"~1c.
Since k < n — 1, this implies that we can take p"*~!e as e. Therefore, |¢| = p and s > k. Show that
we can assume that e € Fy. Indeed, suppose that e ¢ Ey, ho(e) = hg(e) = m, and p™e; = e for some
e1 € E. The subgroup (e1) is servant in F; thus, by Theorem E there exists a subgroup F; C E such
that F = (61) ® E1.

Since e ¢ Ey, it follows that pr(,)B = 0. By (11) we have C = (¢) ® (e1) ® E1 and B C (c) @ Ey.
By Lemma 6, in order to prove the proposition it suffices to embed the subgroup (¢) @ E; into G. This
is possible by induction. Thus, assume that e € Ey. From (18) it follows that

Yoe = poe = fe =p°c’ = p*"by, (19)
The definition of the isomorphism f : H — H' yields
f°Fbo = @p* b = p* . (20)
From (19) and (20) we deduce that
e = p*Fu,.

Hence, e € (¢) N E, which is impossible. Thus, (17) holds. Therefore, the embeddings f : (¢) — (¢/) and
Yo : E — G extend to an embedding ¢ : C' — G, as required.

The proof of the proposition is complete. [

PROOF OF THEOREM 2. It is proved in [7] that every abelian p-group G is locally constructivizable.
Since G is locally finite, in order to prove the theorem it suffices to verify conditions 1-4 of Definition 1.

1. Take a finite subset X C G. By Theorem D the subgroup (X) decomposes into a direct sum of
cyclic groups (X) = (y1) & - - ® (yq). Call the sequence Y = (yi,...,y,) a base for X. By Theorem F all
bases for X are of the same length. It is easy to verify that Bo(X,Y) is a A-predicate in (HF(G), Ap).

2. For every base Y and every z € (Y) there exists a unique sequence (ny,...,n,) of numbers with
n; < |y;| such that z = njy1 + - + ngyg. Then n = [ny,...,ny] + 1 is called the coordinate of z with
respect to Y. It is easy to verify that Cor(z,Y,n) is a A-predicate in (HF(G), Ao).

Suppose that Y = (y1,...,y,) satisfies |y;| = p™ and Cor(a;, Y, n;), where

A= (Aog) = (a1) - @ (ac)
is some fixed decomposition. Then the sequence x(Y) = (p"*,...,p™4,ny,...,n.) is called the charac-
teristic of Y. It is easy to verify that y = x(Y") is a binary ¥-predicate in (HF(G), Ay).
The computability of the set of all characteristics follows from the next lemma. Suppose that |a;| = p'
forl1<i<e.
Lemma 7. The sequence of numbers

&= <pT1,...,p?q,n1,...,ne>,

where ¢ > e, n; = [si1,...,8ig| + 1, sij = p't;j, and (t;j,p) = 1 for 1 < i < eand1l < j < g, is
a characteristic if and only if for all 0 < a; < p% the following hold:

(a) max{m; | 1 < j < q} < per(G);

(b) 0 <rj; <mj and max{m; —r;; | 1 < j <gq}=1;

(c) ?:1 [ 3051 aisij = 0(mod p™i)| & A7, [/\?Zl(aisij = 0(mod p™))];

(d) min { exp (p, X5 uisiy) | 1< j < q} < ha( X qiai).

PROOF. Necessity. Suppose that a sequence £ is the characteristic of Y. Then by definition

Y)=@)® - ® W) lysl =p™, ai=suyi+-+ sigyq-

Verify (d) for instance. Given = = ) aja;, we have z = ?:1 (>%_1 @isij)y;. Hence,
e
hiyy(z) = min{exp (p, Zaiszj) |1<5< q}.
i=1

It is obvious that hyy(z) < hg(x), whence we obtain (d).
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Sufficiency. Suppose that a sequence ¢ satisfies (a)—(d). Define the group
B e (). l=pm
Denote by A¢ the subgroup generated by

af = 8i1b§ + -+ Siqbg

N 1< <e.

It is easy to verify that (b) and (c) imply that
A= (@)oo (), =t

Then there exists an isomorphism % : A5 — A such that ¢*a; = a;. From (a) and (d) it follows that
per(B) < per(G), and hge(z) < hg(¢tz) for every x € AS.

Then by Proposition 1 there exists an isomorphic embedding 1¢ : B¢ — G which extends ¢¢. Hence,
the sequence Y = <1/15 bﬁ, e ,wgb§> is of characteristic £. The proof of the lemma is complete. [

The fulfilment of condition 3 follows from the next proposition which is also of interest in its own
right.

Proposition 2. Take the same group G as in Theorem 2, finite subgroups A C B* C C* C G, e < 2,
and an isomorphism ¢ of B® with B! satisfying ¢ | A = id. Then there exist isomorphic embeddings
Y® : C° — G such that ¢° | A = id and ¢°z° = ¢! (px°) for all z° € B°, while v°B° ¢ C° U C*.

PRrooOF. Firstly establish

Lemma 8. On assuming the hypotheses of Proposition 2 there exist isomorphic embeddings ¢ :
Bf — @ such that ¢° | A = id, ¥%2° = ¢zt = 22, and he=(2°) < hg(2?) for every element 2° € B,
where z' = @0 and v°B° ¢ C° U C!.

Proor. Making ¢ steps, we will construct finite subgroups Bf* for o < 3 and isomorphisms § :
Bf — B?, where B C B¢, such that for every 2° € BY we have

(19) v; I A=id;

(20) 2° € BY & 2! € BY;

(3 wa? = vjat = 2,

(4%) max{hce(2°) | € < 2} < hg(2?).

STEP 0. Bf =0, ¢§ = id.

Assume that t steps were made.

STEP ¢ + 1. Put D§, | = {& € B° |« € Bf, px € B{}, nf,; = max{hc-(z) | z € Di,,}, Hf,, =
{z € Diyy [ hes(@) =mi ), Efyy = ANHE .

In order to determine v < 2 and bZJrl consider the following possibilities:

L ngiy # nigy-

Then take as vy some number satisfying n/ ; > n;f . If B}, # 0 then take as b/, ; an arbitrary
nonzero a € E/, ;. Otherwise, put b}, ; = « for some z € H/, ,, x # 0.

2. nfyy =gy

If there exists € < 2 such that Ef,; # 0 then put v = e. Otherwise, put v = 0. Choose bzﬂ as in
case 1. Call b/, a (t + 1)-high element. Put n = n/ ; and btlJ:f = ¢ b/, where o~ = ¢.

Now determine b7, ;. If b/ ; = a € A then put b7, | = a. Suppose that b;,, ¢ A and pb/,, = b, € B].
Consequently, hg (bg) > p"*t1, where bg = 1/'b,. Thus, G contains ¢ and z satisfying

B =p"e, |zl=p, halz) =" (21)

(z)n (C°uctu{ctuB?) =0. (22)
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Put b7, = p"c+ 2. By (21) and (22),
PR =, ha(t) =0 By ¢ COUCHUBY.
Put B, = B+ (b) for v < 3. It is easy to verify that there exists an isomorphism ¢§, | : B, — b7, ;
such that ¢, [ Bf =§ and 95, b5, = b7, .
Step t 4+ 1 is complete, and we proceed to the next step.
In order to verify properties 1°-4° at step t + 1, we need

Lemma 9. For all ¢,6 < 2, each step t, and all ¢ € B and d} € B\ BY we have
ha(t) = hes (7)), (23)
where ¢ = 1§ (cf)
The proof goes by induction on ¢. Take ¢f,; € Bf, 4, dfﬂ € B‘s\BfH, and a (t+1)-high element b, ;.

We may assume that c;,; ¢ Bf. Then the definition of Bf, ; implies that ¢, ; = ¢ + mb7,, for some
¢; € Bf and 0 < m < p. Hence,

Cir = ¢ +mbfyy. (24)
By the inductive assumption,
ha(c?) > hes (d24). (25)
The definitions of bz_H and 17, imply that
he (bZH) > hes (dfﬂ)’ (26)
ha (b%Jrl) > heow (b?+1)~ (27)

From (26) and (27) we deduce that
ha (071) > hes (d94q).
By (24) and (27) this yields the validity of (23) for ¢ + 1. The proof of Lemma 9 is complete. [

Let us verify properties 19-4% at step ¢ + 1 on assuming that they hold at step ¢. The validity of 2°
and 3 follows directly from the construction. Let us establish 1°. Take a € Bf ; \ Bf. If a = b}, ; then
Y;,1a = a by the construction of 7, ;. Suppose that a # bZH and show that a € Btw+1- Indeed, suppose
that € # . Then a = ¢~ 7z7 for some z7 € B;/_H, where ©? = . The hypothesis ¢ | A = id of the lemma
yields #7 = a, and so a € B/, ;. Then a = ¢/ +mb/ | for some ¢; € B} and 0 < m < p. By construction
hov (CZ) > howv (meJrl). Hence, hov(a) > hew (bzﬂ), which contradicts bzﬂ # a. Therefore, property 1°
follows.

In order to obtain property 4°, take 2° € Bf ;\ Bf. Then 2° = ¢f +mbZ, , for ¢f € Bf and 0 < m < p.
Therefore,

2% =i +mbj,,. (28)

The definitions of a (¢ 4+ 1)-high element and of ¢§ imply that
hes(x°) < hev (mby ), (29)
hes (mbj) < he (mb?+1), (30)

while Lemma 9 implies that h¢(cf) > he (mby, ). Taking (28) and (30) into account, we obtain

ha(2?) > hov (mb] ).
By (29) this implies that hee(2°) < hg(2?); therefore, 4° holds. The proof of Lemma 8 is complete. [

Resume the proof of Proposition 2. Suppose that the hypotheses of the proposition hold. Then by
Lemma 8 there exist isomorphic embeddings ¢ : B® — G such that ¢ [ A = id, ¥%2° = ¢zl = 22,
and hee(2°) < hg(2?) for every 2° € B, where 2! = 2. By Proposition 1 there exist isomorphic
embeddings f€ : C¢ — G extending ¢, as required.

Proposition 2 is established, and so is condition 3. [
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Corollary 5. Take the same group G as in Theorem 2 and its finite subgroups A C B C C with
B # A. Then there exists an embedding i : C — G such that ¥ | A =id and v B € C.

Indeed, put B* = B and C*° = C, and take ¢ : B — B, ¢ = id. Then all hypotheses of Proposition 2
hold. Thus, there exists an embedding ¥ : C' — G, as required. [

4. Let us establish the last condition. Suppose that the graph of a function f : HF(G) — HF(G) is
determined by a Y-formula ®(x,y, Ag), where Ag C G and u = »(X) with f(u) = 7(Z), X, Z € G=¥.
Put A= (ApUspX) and B = (AUsp Z). Take a finite subgroup C of G such that

HF(C) = &(u,7(Z), Ay), C 2 B.

Suppose that B # A. Then by Corollary 5 there exists an embedding i : C — G such that
Y | A=id and B ¢ C; i.e., spyZ € spZ. Take the natural extension ¢# : HF(C) — HF(C) of v
defined as 17 (5(X)) = 2(¢X), where s € HF(w). Lemma 6 of [1] yields

FW* (X)) = f(e(v X)) = 7(Z).

Since Y X = X, it follows that f(»(¢X)) = 7(Z). Hence, 7(Z) = 7(¢Z); i.e., spZ = spyZ, which is
impossible. Consequently, B = A and sp Z C A.
Therefore, condition 4 is established, and the proof of the theorem is complete. [

Theorems 2 and A imply

Corollary 6. Take the same abelian p-group G as in Theorem 2. Given a finite subset Agy there
exists a universal X-function U4 (x,y) € FX(HF(G), Ag) for the family of unary functions 40 such that
every function f € F40 satisfies \yU°(n,y) = f(y) for some n.

Theorem 3. Take an abelian p-group that is the direct sum of a finite period and a finite-dimensional
divisible group. Then it is ¥-bounded.
PRrOOF. By the first Priifer theorem there exist o, 8,7 € w, a cardinal X\, and subgroups Gy, G1, and
(G5 such that
G=GieG1®Ga® D,

where per(Go) < p®, G1 = Cpu, Go = (g1) ® -+ @ (gs) with |g;| > p* for 1 <i < 8, and D = Cpe for
A>w.

Consider the case a > 0. The proof for case o = 0 is similar but simpler. Take a finite subset Ag C G
containing g1,...,9g. In order to prove the theorem it suffices to establish that G is X-bounded with
respect to Ag. To this end, we must verify conditions 14 of Definition 1.

1. Suppose that Y = (y1,...,yq), with y; = g; for 1 < ¢ < 3, is a base for a finite subset X C G
(with respect to Ap) if there exists a number m satisfying p™ > per((X)) and

H= ((X),Dn) = (y1) ® - & (yg), (31)

with Dy, € D, Dy = Cp, and Jy;| < p® for f4+1 < i <e=q—r, while |y;| =p™ fore+1<j<gq.
This implies that Dy, = (Yey1) @ -+ D (yq)-

Observe that the decomposition (31) always exists since by Theorem E the subgroups Gy and D,
are direct summands of H. It is easy to verify that Bo(X,Y) is a A-predicate in (HF(G), Ao).

Take two bases Y&, € = 0,1, for X. Then there exist two numbers m?® satisfying

H® = ((X), D) = (91) @ - @ (98) ® (Y541) © -~ © (v5), (32)

where m® > per((X)) and Dy, = (y5,,) @+ @ (y5) € D with ¢ = e+~. Suppose that m® < m!'. Then
D, 0 C D,,1; thus, HY C H'. Therefore,

H' = ((X), D) and P> = per((Y?)).
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By (32) this implies that Y! is a base for Y. Therefore, condition 1 holds.
2. Take a base Y = (y1,...,Yq), where y; = g; for 1 < i < B, |y;] = p"™ with m; < « for
f+1<j<e=q—,and |yg| =p" for e+ 1 <k < gq. Then

Y)=w)® - ®Wg)s Dm=(Yet1) @@ (yg)-

Take z € (V). Then there exists a unique sequence k = (k1, ..., k,) of numbers such that
z=kiwyr+ -+ kgYqs

where kg < |y;| for 1 < s < ¢. The index [k] is called the coordinate of z with respect to Y. It is easy to
verify that Cor(Z,Y,n) is a A-predicate in (HF(G), Ao).

Fix some decomposition A = (Ag) = (a1) ®--- ® (a,), with a; = g; for 1 <i < g <r, and take some
numbers n; such that Cor(a;, Y, n;). Then the sequence

X(Y) = <‘y1’7 ) ‘yq‘7n17"' 7n7‘>

is called a characteristic of Y. 1t is easy to verify that y = x(Y) is a binary A-predicate in (HF(G), Ay).
The computability of the set of all characteristics follows from the next lemma. Suppose that p'i = |g;|
and |a;| =pY, where 1 <i<pfand1<j<r.

Lemma 10. A sequence
5 = <pm1’ s 7pmq7n1a .- '7nr>

of numbers, where ¢ > r, n; = [s;1, ..., Sig) + 1, si5 = p"t;j, and (t;;,p) =1 for 1 <j<gand1<i<r,
is a characteristic if and only if for all 0 < q; < pli, 1 <i<r, we have

(a) max{mgi1,...,Me} < @, Mey1 = -+ = mg = m, m > max{my,...,me}, and p™ = |g;| for
1<i < p;

(b) 0 <1y <my and max{m; —r; | 1 < j < q} =1;
(C) 321 [Z;:l QiS5 = O(modpmf)] =3 /\;:1 [/\?Zl(aisij = O(mOdpmj))]7

(d) min { exp (p, Xi_ isig) | B+1<j <e} < hayae, (i idl),
where a) = pry(a;) is the projection of a; onto the subgroup G' = Gy & Gj.

PROOF. Since G’ satisfies the hypotheses of Theorem 2, Lemma 7 implies this lemma. O

Therefore, condition 2 holds.

3. Take two bases Y¢, ¢ = 0, 1, of the same characteristic

X = <p 17"'5pmeapm7"'7pmvnla"'7n'r‘>

and finite subgroups
B® D (Y?®). (33)

By the definition of the base Y of characteristic Y,
Y)=(yi) @@ (y;) = G2® A°® Dy, (34)

where A® = (y%H) ®-® (ys) and Dy, = (y5,1) B -+ @ (yg) C D. By (33) this implies that there exist
subgroups D C D and Bf C B such that Bf is isomorphic to some subgroup of G’ and

B* =Gy ® Bf® D°, (35)

so that, taking (33) into account, we have D° D D,,. Then according to (34) and (35) we may assume
that, up to isomorphism,
A*C By C @ (36)
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Denote by n¢ the coordinate of pr4:(a;) = a). Since Cor(Y?, a;,n;), it follows that n? = n! = nl.
The subgroup G’ satisfies condition 3 of Theorem 2. It is easy to verify that Y = <y2 St Ye > is a base

for the group (G',d},...,al) of characteristic

!/ m m !/ !/
X = (pMet o pMe ng, . ).

Then by Theorem 2 there exist a base Y02 = <y§+1, . ,yz> of characteristic ' and a subgroup Bg C G
such that there exist embeddings

05 B5 — B, 55 =Y5.
Without restricting generality we may assume that D? = D! = an for some n > m. Put

YV?= <gla' . '7gﬁay,%+17"'>ygvyz+l7- . 'ay3>7 B? = Go @Bg @DO’

where ‘yﬂ =phand e+ 1<i<gq. Itis easy to verify that there exist embeddings ¢° : B — B? such
that ¢° [ G2 ® D° =id, °Y® = Y?, and ¢° | BS = ¢, so that ¢ are embeddings, as required.

Therefore, condition 3 holds.

In order to verify condition 4 we need

Lemma 11. Every partial function f : HF(G) — HF(G) defined by a ¥-formula with parameters
Ay satisfies the following condition: given u € 6 f there is a base Y for spu such that sp f(u) C (Y).

PROOF. Suppose that the graph of f is defined by a X-formula ®(z,y, Ap), and take

u=x(X), flu)=7(2), X,Z € G=*, m = per(Ap,sp X,sp Z). (37)
Take a base Y = (y1,...,yq) for sp X with |yg41| =+ = |yq| =™, put
A=(Y), B=(YUspZ2), (38)
and denote by C' a finite subgroup of G such that
BCC, HFQC)E ®(u,7(Z),Ap). (39)
Then some subgroups Aj), By, and Cy isomorphic to G’ = Gy ® Gy and D§, D? C D satisfy
A= Ayo Gy DY, (40)
B=By®Gy® D, (41)
C =Cy®Gy® D, (42)
where D! C;m and D? = C’;n for some n > m. Verify that
A C By C Co. (43)
Take
xz € By. (44)
By (39) this yields x € C. By (42) for some elements ¢y € Cp, g € G2, and d € D? we have
xr=co+g+d. (45)

Since per(B) = p™, it follows that |z| < p™. Consequently, |d| < p™; i.e., d € D'. From (41), (42),
and (44) we deduce that ¢y € By. Then (41) and (45) yield ¢ = d = 0; i.e., x = ¢p € C, and hence
By C Cp. Similarly, Ajj C Boy; i.e., (43) is established.

Up to isomorphism, we may assume that the subgroups A C By C Cj are contained in G, which
satisfies condition 3 of Theorem 2. Suppose that A # By. Then by Corollary 5 there exists an embedding
o : Co — G such that ¢ [ Ay = id and ¢Y9By € Cp. The embedding ¢y extends to an embedding
Y : C — G satistying ¢ | G2 @ D? =id. Then ¢ | A = id and ¥yB ¢ C. By Lemma 6 of [1] from (37)
and (38) we deduce that

flu) = f((¥X)) = 7(42) # 7(Z).
We arrive at a contradiction; i.e., Aj = By. Consequently, A= B andspZ € A= (Y).

The proofs of the lemma and the theorem are complete. [

Theorems 3 and A imply
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Corollary 7. Take the same abelian p-group G as in Theorem 3. Then for every finite subset
Ao 2 {g1,...,9s} there exists a universal $-function U (z,y) € FX(HF(G), Ag) for the family of unary
functions FA° such that every function f € A0 satisfies \yUA*(n,y) = f(y) for some n.

Every abelian p-group G is the direct sum of its reduced and divisible parts. Thus, G satisfies the
hypotheses of either Theorem 2 or Theorem 3. By Theorems 2 and 3 this implies

Corollary 8. Every abelian p-group is a %-bounded algebraic system.

Corollary 9. Take an abelian p-group G. Then in HIF(G) there exists a universal ¥-function for
the family of all unary Y-functions.

PRrROOF. Take a finite subset Ay C G with respect to which G is ¥-bounded, fix a decomposition
(Ag) = (a1)®- - -P(ae), some finite set X, and a base Y)’?O for X with respect to Ag. Put A} = {a1,...,ac}
and X* = A(l) UX.

If G satisfies the hypotheses of Theorem 2 then the subgroups <Y)‘?°> and <Y)?*> are generated by
the same set X*. Therefore, <Y)’?°> = <Y)?*>.

If G satisfies the hypotheses of Theorem 3 then there exists m such that the subgroup H generated
by the set X UA{U D™ satisfies H = (y1)®- -+ & (y,), and Y)‘?O = (y1,...,Yq), where D™ = D[p™] and D
is the divisible part of G. Then Y)?* = Y)? 0 is a base for X U A} with respect to the empty set.

Therefore, in both cases the hypotheses of Theorem B hold. Then that theorem, where we must
replace C' and C! with Ay and A}, yields the claim. O

In closing the author expresses his gratitude to Yu. L. Ershov and S. S. Goncharov whose articles,
advice, and attention were greatly helpful in working on the article.
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