
Siberian Mathematical Journal, Vol. 51, No. 3, pp. 479–490, 2010
Original Russian Text Copyright c© 2010 Maksimova L. L.

JOINT CONSISTENCY IN EXTENSIONS OF THE MINIMAL LOGIC

L. L. Maksimova UDC 510.64

Abstract: Analogs of Robinson’s theorem on joint consistency are found which are equivalent to the
weak interpolation property (WIP) in extensions of Johansson’s minimal logic J. Although all proposi-
tional superintuitionistic logics possess this property, there are J-logics without WIP. It is proved that
the problem of the validity of WIP in J-logics can be reduced to the same problem over the logic Gl
obtained from J by adding the tertium non datur. Some algebraic criteria for validity of WIP over J
and Gl are found.
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In [1] A. Robinson proved a theorem on joint consistency for the classical predicate logic. The theorem
says that, for every two consistent theories of different languages, if their intersection is complete in the
common language then the union of these theories is consistent. Various analogs of this theorem were
later investigated also for other logics (see [2]).

Robinson’s theorem turned out equivalent to an interpolation theorem by W. Craig [3] for the classical
first order logic. Craig’s theorem became a source of many studies on the interpolation problem in classical
and nonclassical theories [2, 4]. At present, interpolation is considered as a standard property of logics
alongside consistency, completeness, etc. For the intuitionistic predicate logic and for Johansson’s minimal
logic, the interpolation problem was proved by K. Schütte [5]. A semantic proof of the interpolation
theorem in the intuitionistic predicate logic was found by D. Gabbay [6]. In the same book interrelations
between interpolation and joint consistency in intuitionistic theories were dealt with.

In this article we consider a weak variant of the interpolation property in the minimal logic and
its extensions. The minimal logic introduced by I. Johansson [7] has the same positive fragment as the
intuitionistic logic but the minimal logic has no special axioms for the absurdity constant. Unlike of
the classical and intuitionistic logics, the minimal logic admits the nontrivial theories that contain some
proposition together with its negation. Some semantic interpretation of the minimal logic was proposed
in [8], where completeness theorems were proved for this logic and a few of its extensions.

The original definition of interpolation admits different analogs, equivalent in the classical logic
but inequivalent in other logics. It is proved in [6] that the full version of Robinson’s joint consistency
theorem fails in the intuitionistic predicate logic. However, a slightly weaker variant RCP′′ of this theorem
is valid, and the Craig interpolation property (CIP) is equivalent to this variant of Robinson’s theorem
in all extensions of the intuitionistic predicate logic.

This paper addresses WIP that was introduced in [9]. We prove that in all extensions of the minimal
logic, WIP is equivalent to a weak version WRP of the Robinson property. It is demonstrated in [9] that all
propositional superintuitionistic logics possess WIP but this cannot be extended to all superintuitionistic
predicate logics. Since only finitely many superintuitionistic logics have CIP [10], WIP and WRP are
not equivalent to CIP and RCP′′ over the intuitionistic logic. Especially they are not equivalent over
the minimal logic J. Here we introduce one more analog of the Robinson property, JCP, and prove
its equivalence to WIP and WRP. We note that WIP is nontrivial in the propositional extensions of
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the minimal logic: both families of J-Logics with WIP and without WIP have the cardinality of the
continuum.

In Sections 4–6 the joint consistency property is reduced to some properties of varieties of J-algebras.
In Section 5 an algebraic equivalent of WIP is found; more exactly, a weak amalgamation property
is introduced and its equivalence to WIP is proved. In Section 6 an easier algebraic criterion of weak
amalgamability is found. In addition, it is proved that the WIP problem in J-logics can be reduced to the
extensions of a logic Gl which are obtained from J by adding the tertium non datur. In Section 7 a useful
classification of logics over Gl is found, and some logics with CIP and logics without WIP are listed.

1. Joint Consistency and Interpolation

If p is a list of nonlogical symbols then by A(p) we denote the formula whose all nonlogical symbols
are in p, and by F (p), the set of all these formulas.

Let L be a logic, with �L the consequence relation of L. Let p, q, and r be disjoint lists of nonlog-
ical symbols, while A(p,q) and B(p, r) are formulas. The Craig interpolation property (CIP) and the
deductive interpolation property (IPD) are defined as follows:

CIP: If �L A(p,q) → B(p, r) then there is a formula C(p) such that �L A(p,q) → C(p) and
�L C(p) → B(p, r).

IPD: If A(p,q) �L B(p, r) then there is a formula C(p) such that A(p,q) �L C(p) and C(p) �L

B(p, r).
In [9] the weak interpolation property was introduced:
WIP: If A(p,q), B(p, r) �L ⊥ then there is a formula A′(p) such that A(p,q) �L A′(p) and

A′(p), B(p, r) �L ⊥.
In the classical logic these properties are equivalent. In all normal modal logics we have

CIP ⇒ IPD ⇒ WIP .

The reverse arrows are in general not valid. CIP and IPD are equivalent in the intuitionistic logic and
its extensions.

In the classical predicate logic CIP is equivalent to the following joint consistency property by Robin-
son:

RCP: Let T1 and T2 be two consistent L-theories in the languages L1 and L2 respectively. If T1∩T2

is a complete L-theory in the common language L1 ∩ L2 then T1 ∪ T2 is L-consistent.
The same equivalence holds in all classical modal logics [4]. Here by an L-theory we mean a set of

formulas which contains all theorems of the logic L and is closed under the modus ponens. A theory is
said to be consistent if it does not contain the absurdity constant ⊥. An L-theory T in the language L
is called complete in L if either A ∈ T or ¬A ∈ T for every formula A ∈ L , where ¬A = A → ⊥.

It is proved in [9] that in the classical modal logics RCP is equivalent to the following property:
RCP′: Let T1 and T2 be two L-theories in the languages L1 and L2 respectively. Put L0 = L1 ∩L2

and Ti0 = Ti ∩ L0. If the theory T10 ∪ T20 in the common language L0 is L-consistent then T1 ∪ T2 is
also L-consistent.

2. J-Logics and Joint Consistency

Investigation of the interpolation property and joint consistency in the intuitionistic logic was carried
out by D. Gabbay [6]. He proved that in the extensions of the intuitionistic predicate logic CIP is
equivalent to a weaker version RCP′′ of the Robinson property, and the general form of Robinson’s
theorem fails in the intuitionistic first order logic. The notion of an intuitionistic theory was defined as
a pair (T, F ), with T a set of “true” formulas and F a set of “false” formulas. So the general Robinson
property needed to keep all true and all false formulas of both theories but it was not always possible.
RCP′′ required an additional condition F1 ⊆ F2, in particular, F1 must be in the common language.
By analogy with RCP′, in [9] a weaker version WRP of the Robinson property was defined, where each
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theory was identified with its set of “true” formulas like the theories in the classical logic. These theories
were called open. It was proved that, in the case of superintuitionistic logics, WRP is equivalent to WIP
and is much weaker than CIP. Moreover, all propositional superintuitionistic logics possess WIP.

In the present paper we consider extensions of Johansson’s minimal logic. An axiomatization of
the minimal logic JQ has as its postulates all axiom schemes of the intuitionistic predicate logic not
containing the absurdity constant.

Let L be any extension of the minimal logic by new axiom schemes. If Γ is a set of formulas and A is
a formula then we write Γ �L A, whenever A is deducible from Γ∪L by the modus ponens: A,A → B/ B.
Then the deduction lemma holds.

Lemma 2.1. Γ, A �L B ⇐⇒ Γ �L A → B.

We define an open L-theory of the language L as a set T of formulas of this language closed under
deducibility �L. Then an open L-theory T is the same as the theory (T,∅) in the sense of Gabbay [6].
A set T ⊆ L is called complete in L if either A ∈ T or ¬A ∈ T for every formula A ∈ L . A set T
is called L-consistent if T ��L ⊥. It is easy to see that any L-consistent set which is complete in L is
an open L-theory. The following lemma proved by Lindenbaum for the classical logic holds for every
J-logic L.

Lemma 2.2. Each L-consistent open L-theory can be extended to a complete L-consistent open
L-theory.

Proof. Note that if a set of formulas T is L-consistent then either T ∪ {A} or T ∪ {¬A} is also
L-consistent for every formula A. Indeed, if both sets T ∪ {A} and T ∪ {¬A} are inconsistent then by
the deduction theorem T �L A → ⊥ and T �L (A → ⊥) → ⊥; hence, T �L ⊥.

Thus the statement easily follows from Zorn’s lemma since each union of a chain of L-consistent sets
is L-consistent too. �

We define the two variants of the Robinson property for open theories as the joint consistency
property (JCP) and the weak Robinson property (WRP).

JCP: Let T1 and T2 be two L-consistent open L-theories of the languages L1 and L2 respectively.
If T1 ∩ T2 is a complete L-theory in the common language L1 ∩ L2 then T1 ∪ T2 is L-consistent.

WRP: Let T1 and T2 be two open L-theories of the languages L1 and L2 respectively. Put L0 =
L1∩L2 and Ti0 = Ti∩L0. If T10∪T20 is L-consistent in the common language then T1∪T2 is L-consistent.

For open L-theories in extensions of J the equivalence of WIP and WRP holds, and JCP and WRP
are equivalent as well.

The following theorem is an analog of the theorem by D. Gabbay for superintuitionistic logics [6,
Theorem 8.32].

Theorem 2.3. WIP and WRP are equivalent for each (predicate or propositional) extension L of
the minimal logic.

Proof. Assume that L has WIP and prove WRP. Let T1 and T2 be two open L-theories of the
languages L1 and L2 respectively. Put L0 = L1 ∩ L2 and Ti0 = Ti ∩ L0. Suppose that T1 ∪ T2 is
L-inconsistent. Then there are formulas A ∈ T1 and B ∈ T2 such that A,B �L ⊥. By WIP there
exists a formula C in the common language L0 such that A �L C and C,B �L ⊥. Then T1 �L C and
T2 �L C → ⊥, and so T10 ∪ T20 is L-inconsistent.

Conversely, assume that L have WRP. Let A and B be arbitrary formulas of the languages L1 and
L2 and A,B �L ⊥. Denote by T1 an open theory of the language L1 with the only axiom A; and by T2,
an open theory of the language L2 with the axiom B. Then T1 ∪T2 is L-inconsistent. By WRP Ti1 ∪Ti2

is L-inconsistent in the common language L0 = L1 ∩ L2, where Ti0 = Ti ∩ L0; i.e., T10 ∪ T20 �L ⊥.
Therefore there is a formula C in the common language L0 such that C ∈ T10 and C, T20 �L ⊥. By the
definition of Ti and Ti0, A �L C and C,B �L ⊥. �
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Corollary 2.4. If a (predicate or propositional) extension of the minimal logic has CIP then it
has WRP.

Proof. By the deduction theorem it is clear that CIP implies WIP. So the statement is immediate
from Theorem 2.3. �

Theorem 2.5. WRP and JCP are equivalent for every extension of J.

Proof. Assume that L has WRP. Let two L-consistent open L-theories T1 and T2 of the languages
L1 and L2 be given, where T0 = T1 ∩T2 is a complete L-theory in the common language L0 = L1 ∩L2.
It is clear that T0 is L-consistent. We show that Ti0 = Ti ∩ L0 = T0 for i = 1, 2. Indeed, it is evident
that T0 ⊆ Ti0. Suppose that C ∈ Ti0, C �∈ T0. Since T0 is complete, we obtain ¬C ∈ T0 ⊆ Ti, and Ti is
inconsistent contrary to the condition.

Thus, T10 = T20 = T0. Hence, T10 ∪ T20 = T0 is consistent. By WRP T1 ∪ T2 is consistent, and JCP
is proved.

Conversely, let L have JCP and prove WRP. Let T1 and T2 be two open L-theories of the languages
L1 and L2. Put L0 = L1 ∩L2 and Ti0 = Ti ∩L0. Assume that T10 ∪T20 is L-consistent in the common
language. We will prove that T1 ∪ T2 is L-consistent.

By Lemma 2.2 T10∪T20 can be extended to a complete L-consistent open theory T0 of the language L0.
Put T ′

1 = {A ∈ L1 | T1 ∪ T0 �L A} and prove that T ′
1 ∩ L0 = T0. Indeed, take C ∈ T ′

1 ∩ L0.
Then T1 ∪ T0 �L C and by the deduction theorem T1 � A → C for some formula A ∈ T0. Therefore
(A → C) ∈ T10 ⊆ T0, C ∈ T0, and so the equality is proved.

By analogy T ′
2 ∩ L0 = T0, where T ′

2 = {A ∈ L2 | T2 ∪ T0 �L A}. Since T0 ��L ⊥ and ⊥ ∈ L0, the
theories T ′

1 and T ′
2 are consistent. Moreover, their intersection T0 is complete. By JCP the set T ′

1 ∪ T ′
2 is

L-consistent, and so the subset T1 ∪ T2 of it is L-consistent. �
We note that the results of this section concern consistent theories. Remember that in J-logics, unlike

superintuitionistic logics, the inconsistency of a theory does not imply its triviality, and the consistent
theories constitute not a great part of nontrivial theories.

3. Propositional J-Logics

In this section we consider propositional J-logics.
In [10] a full description of superintuitionistic logics with CIP was found. There are only finitely

many these logics. All positive logics with the interpolation property are described in [11], where there
was also started the study of this property in extensions of Johansson’s minimal logic.

The language of J contains the symbols &,∨,→,⊥,� as primitives; the negation is defined as the
abbreviation ¬A = A → ⊥; (A ↔ B) = (A → B)&(B → A). The set of all formulas is denoted by For.
A formula is said to be positive if it contains no occurrences of ⊥. The logic J can be given by the calculus
that has the same axiom schemes as the positive intuitionistic calculus Int+ and the modus ponens as
the only inference rule. By a J-logic we mean any set of formulas containing all axioms of J and closed
under substitution and the modus ponens. Put

Int = J+(⊥ → p), Cl = Int+(p ∨ ¬p), Neg = J+⊥.

A logic is nontrivial if it differs from the set of all formulas For. A J-logic is called superintuitionistic
if it contains the intuitionistic logic Int, and negative if it extends Neg; L is said to be paraconsistent if
L contains neither Int nor Neg. We can prove that a logic is negative if and only if L is not contained
in Cl. Given a J-logic L, by E(L) we denote the family of all J-logics containing L.

It is proved in [9] that all propositional superintuitionistic logics possess WIP. Obviously, all negative
logics also have this property.

Theorem 3.1. For every J-logic L the following are equivalent:
(1) L has WIP,
(2) L ∩ L1 has WIP for every negative logic L1,
(3) L ∩Neg has WIP.
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Proof. 1 ⇒ 2: Let L have WIP, L1 � ⊥, and

L ∩ L1 � A(p,q) → (B(p, r) → ⊥).

Then

L � A(p,q) → (B(p, r) → ⊥).

Since L has WIP, there exists a formula C(p) such that

L � A(p,q) → C(p) and L � C(p) → (B(p, r) → ⊥).

From the former condition, it follows that

L ∩ L1 � A(p,q) → C(p) ∨ ⊥.

The latter condition implies

L � C(p) ∨ ⊥ → (B(p, r) → ⊥).

Moreover,

L1 � C(p) ∨ ⊥ → (B(p, r) → ⊥).

Therefore,

L ∩ L1 � C(p) ∨ ⊥ → (B(p, r) → ⊥).

Thus, C(p) ∨ ⊥ is an interpolant of the given formula in L ∩ L1.
2 ⇒ 3: Obvious.
3 ⇒ 1: Let L ∩Neg have WIP and

L � A(p,q) → (B(p, r) → ⊥).

Then

L ∩Neg � A(p,q) → (B(p, r) → ⊥).

There is an interpolant C(p) of this formula in L ∩Neg. Clearly, C(p) is an interpolant in L too. �

Corollary 3.2. Every propositional J-logic containing J+(⊥ ∨ (⊥ → p)) possesses WIP.

Proof. Every logic containing J+(⊥∨ (⊥ → p)) can be represented as an intersection of a negative
and a superintuitionistic logic. As we already noted, all superintuitionistic logics have WIP. Hence the
statement follows from Theorem 3.1. �

Corollary 3.2 cannot be extended to the class of all J-logics. The picture changes when we consider
extensions of the logic

Gl = J+(p ∨ (p → ⊥)) = J+(p ∨ ¬p).
It it proved in [12] that this logic has CIP. In the last section of this paper it is shown that not all
extensions of Gl have WIP. Theorem 6.3 says that the weak interpolation problem in J-logics can be
reduced to the same problem in the extensions of Gl.

Let us consider the logic Gl in more detail. The well-known Glivenko theorem says that a formula of
the form ¬A is valid in Int if and only if it is a tautology of the classical logic Cl. We note that there is
an analogous correspondence between J-logics and extensions of Gl. The proposition below follows from
[13, Proposition 6.1.3].

Proposition 3.3. L+ (p ∨ ¬p) � ¬A ⇐⇒ L � ¬A for every J-logic L and any formula A.
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4. Algebraic Semantics

The algebraic semantics for extensions of the minimal logic is built using the so-called J-algebras;
i.e., the algebras A = 〈A; &,∨,→,⊥,�〉 satisfying the conditions:

〈A; &,∨,→,⊥,�〉 is a lattice with respect to & and ∨ with a greatest element �,

z ≤ x → y ⇐⇒ z&x ≤ y,

⊥ is an arbitrary element of A.

A J-algebra is called a Heyting algebra or a pseudoboolean algebra if ⊥ is the least element of A, and
a negative algebra if ⊥ is the greatest element of A. The one-element J-algebra E is said to be degenerate;
it is the unique J-algebra that is a negative algebra and a Heyting algebra at the same time.

A J-algebra A is said to be nondegenerate if it contains at least two elements; A is well-connected,
or strongly compact, if x ∨ y = � ⇔ (x = � or y = �) for all x, y ∈ A. An element Ω of A is said to be
the second greatest element, or an opremum, of A, if it is the greatest among the elements of A different
from �. By B0 we denote the two-element boolean algebra.

Recall that a nondegenerate algebra A is said to be subdirectly irreducible if A cannot be represented
as a subdirect product of factors different from A. An algebra A is finitely indecomposable if A cannot
be represented as a subdirect product of finitely many factors different from A.

It is proved in [14] that there is a one-to-one correspondence between the congruences on an implica-
tive lattice and the filters of this lattice. The same is true for J-algebras. The congruence

x∼∇y � (x → y)&(y → x) ∈ ∇

is associated with a filter ∇. We put A/∇ � A/∼∇. If Θ is a congruence then ∇(Θ) � {x | xΘ�} is
a filter, and ∼∇(Θ) equals Θ.

A filter ∇ is said to be prime if ∇ cannot be represented as an intersection of finitely many filters
different from ∇. The following lemmas known for Heyting algebras (see, for example, [10]) are easily
extended to J-algebras.

Lemma 4.1. For every J-algebra A

(a) A is finitely indecomposable if and only if the unit filter ∇ = {�} is prime, i.e. A is well-
connected;

(b) A is subdirectly irreducible if and only if A has an opremum.

Lemma 4.2. For every J-algebra A and every filter ∇ of A the following are equivalent:

(a) ∇ is a prime filter,

(b) A/∇ is finitely indecomposable.

The proof of the following lemma is similar to that of the corresponding lemma for Heyting algebras
in [15].

Lemma 4.3. Let Φ be a filter in a J-algebra A not containing an element b. Then there exist
a subdirectly irreducible C with an opremum Ω and a homomorphism f : A → C such that f(x) = �
for all x ∈ Φ and f(b) = Ω. In particular, if a ≤ b does not hold in A, then there exist a subdirectly
irreducible C with an opremum Ω and a homomorphism f : A → C such that f(a) = � and f(b) = Ω.

Recall a construction from [12]. If A = 〈A; &,∨,→,⊥,�〉 is a negative algebra and B = 〈B; &,∨,→,
⊥,�〉 is a Heyting algebra then we define the new J-algebra A ↑ B as follows: the universe of the new
algebra is C = A∪B′, where B′ is isomorphic to B, A∩B′ = {⊥A} = {⊥B′}, and C is partially ordered
by the relation

x ≤C y ⇔ [(x ∈ A and y ∈ B′), or (x, y ∈ A and x ≤A y), or (x, y ∈ B′ and x ≤B′ y)].

As a consequence, ⊥C = ⊥A = ⊥B′ , �C = �B′ .
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Thus A and B can be considered as intervals of the partially ordered set C. It follows from the
definition that A and B are sublattices of C, and the operation → satisfies the conditions

x →C y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�, if x ≤C y,

x →A y, if x, y ∈ A, x �≤Ay,

x →B′ y, if x, y ∈ B′,
y, if x ∈ B′, y ∈ A− {�A}.

In particular, every negative algebra A is representable as A ↑ E and a Heyting algebra B as E ↑ B.
A J-algebra is called well-composed if it is of the form A ↑ B for some suitable negative algebra A and
a Heyting algebra B.

From the definition we easily obtain

Lemma 4.4. 1. The algebra B is a subalgebra of C = A ↑ B.
2. The algebra A is a homomorphic image of A ↑ B under the homomorphism f(z) = z&⊥.
3. A is a subalgebra of C if and only if B is a degenerate algebra.

A special part in this paper belongs to well-composed algebras of the form A ↑ B0, where B0 is the
two-element boolean algebra. Given a negative algebra A we define

AΛ = A ↑ B0.

Evidently, all J-algebras AΛ are subdirectly irreducible and have ⊥ as their oprema.

Lemma 4.5. Let A and B be negative algebras, and let C be a J-algebra.
1. A mapping α : AΛ → BΛ is a monomorphism if and only if its restriction αl to A is a monomor-

phism of A to B.
2. For every homomorphism h : AΛ → C just one of the conditions holds:
(a) h(⊥) = �C, the algebra C is negative and the restriction hl of h to A is a homomorphism of A

to C;
(b) h(⊥) �= �C and h is an isomorphism of AΛ to C.
3. If C is not a negative algebra then there exists a homomorphism of C onto a suitable algebra of

the form CΛ
1 .

Proof. 1. This is immediate from the definition.
2. If h(⊥) = �C then ⊥C = h(⊥) = �C. Let h(⊥) �= �C. Then for all x, y ∈ A, x �≤ y, we have

h(x) → h(y) = h(x → y) ≤ h(⊥) < �C, and so h(x) �≤ h(y).
3. Follows from Lemma 4.3. �
It is well known that the family of J-algebras is a variety and there is a one-to-one correspondence

between the logics containing J and the varieties of J-algebras. If A is a formula and A is an algebra
then we say that the formula A is valid in A and write A |= A if the identity A = � holds in A. Write
A |= L instead of (∀A ∈ L)(A |= A).

To each logic L ∈ E(J) there corresponds the variety of J-algebras

V (L) = {A | A |= L}.
Each logic is characterized by the variety V (L). If V (L) is generated by an algebra A then we sometimes
write L = LA.

If L ∈ E(Int) then V (L) is some variety of Heyting algebras, and if L ∈ E(Neg) then V (L) is some
variety of negative algebras.

Given L1 ∈ E(Neg) and L2 ∈ E(Int), denote by L1 ↑ L2 the logic that is characterized by all algebras
of the form A ↑ B, where A |= L1, B |= L2. By L1 ⇑ L2 we denote the logic that is characterized by
the class of algebras of the form A ↑ B, where A is a finitely indecomposable algebra in V (L1) and
B ∈ V (L2).

As an example we consider the logic Gl = J+(p ∨ ¬p).
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Proposition 4.6. The logic Gl = J+(p∨¬p) coincides with Neg ↑ Cl and is generated by the class
{AΛ | A is a negative algebra}.

Proof. Note that in any algebra of the form A ↑ B, where B is a boolean algebra, the formula p∨¬p
is valid. Therefore, Neg ↑ Cl ⊇ Gl. On the other hand, if the formula (p ∨ ¬p) is valid in a subdirectly
irreducible J-algebra, then by Lemma 4.1 this algebra either is negative itself or is of the form AΛ for
a suitable negative algebra A. Hence the opposite inclusion holds. Moreover, each negative algebra A
is a homomorphic image of the algebra AΛ; consequently, the logic is generated by the above-mentioned
class of algebras. �

In [12, Corollary 3.5(2)] we found an axiomatization for the logics of the form L ↑ Cl and L ⇑ Cl,
where L is a negative logic. The following was proved there:

Proposition 4.7. For every negative logic L
L ↑ Cl = Gl+{(⊥ → A) | A ∈ L},
L ⇑ Cl = Gl+{(⊥ → A) | A ∈ L}+ ((⊥ → p ∨ q) → (⊥ → p) ∨ (⊥ → q)).

By analogy with Proposition 4.6 it is not difficult to show that the logic L ↑ Cl is generated by the
class AΛ, where A ∈ V (L), and the logic L ⇑ Cl by a class AΛ, where A is a finitely indecomposable
algebra in V (L).

5. Weak Amalgamation

In this section an algebraic equivalent of WIP will be found.
Recall [11] that a J-logic possesses CIP if and only if the variety V (L) has the amalgamation property

(AP). In the case of J-algebras AP is equivalent to the superamalgamation property (SAP). We recall
the necessary definitions.

Let V be a class of algebras invariant under isomorphisms. The class V is amalgamable if V satisfies
the following condition AP for all algebras A, B, and C in V .

AP: If A is a common subalgebra of B and C then there exist D in V and monomorphisms δ : B → D
and ε : C → D such that δ(x) = ε(x) for all x ∈ A.

A triple (D, δ, ε) is called an amalgam for A,B, and C.
Say that a class V has the superamalgamation property (SAP) if for all algebras A, B, and C in V

the condition AP is satisfied and, moreover, in D the following hold:

δ(x) ≤ ε(y) ⇐⇒ (∃z ∈ A)(x ≤ z and z ≤ y), δ(x) ≥ ε(y) ⇐⇒ (∃z ∈ A)(x ≥ z and z ≥ y).

We find an algebraic equivalent of WIP. We define the weak amalgamation property for a class V of
J-algebras.

WAPJ: For all A,B,C ∈ V and monomorphisms β : A → B and γ : A → C there exist an algebra D
in V and homomorphisms δ : B → D and ε : C → D such that δβ(x) = εγ(x) for all x ∈ A, where
⊥ �= � in D, whenever ⊥ �= � in A.

A variety of J-algebras is said to be weakly amalgamable if it has WAPJ.
Note that this definition differs from the definition of weak amalgamation, WAP, considered in [16].

WAP is a particular case of WAPJ.
We note that if a class V is closed under isomorphisms then WAPJ is equivalent to the following

condition:
For all B,C ∈ V with a common subalgebra A, there exist D in V and homomorphisms δ : B → D

and ε : C → D such that δ(x) = ε(x) for all x ∈ A, where ⊥ �= � in D, whenever ⊥ �= � in A.
We prove that for the varieties of J-algebras WIP is equivalent to WAPJ. To prove this, we apply

the methods of [4, 10]. Representation of algebras by generators and defining relations [17] is used.
If x is a set of variables then we denote by F (x) the set of all formulas built by using the variables

of x.
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Let an algebra A be given, which is generated by a set X. With any element a ∈ X a variable pa is
associated. Put x = {pa | a ∈ X}. Define the canonical valuation v0(pa) = a. On the set F (x) we define
the relation

A =A B ⇐⇒ A |= v0(A) = v0(B).

Then =A is a congruence on F (x), and there exists a monomorphism ϕ0 between F (x)/ =A and A such
that ϕ0(A/=A) = v0(A) for any A ∈ F (x). Given A,B ∈ F (x), we denote

D+(A, X) = {A(x) | A |= v0(A(x)) = �}.
If X equals A then we put

D+(A) = D+(A, X).

If B |= D+(A)[v] for some algebra B and valuation v then the mapping h(a) = v(pa) is a homomor-
phism of A to B.

Given a class K, the class of finitely generated algebras of K is denoted by FG(K). We prove the
following

Theorem 5.1. Let L be a J-logic. Then the following are equivalent:
(1) L has WIP,
(2) V (L) has WAPJ,
(3) FG(V (L)) has WAPJ.

Proof. 1 ⇒ 2: Let A,B,C ∈ V (L) and let A be a common subalgebra of B and C. Put
x = {pa | a ∈ A}, y = {pa | a ∈ B −A}, and z = {pa | a ∈ C −A}. On the set F (x,y, z) define the
relation

AΘB ⇐⇒ D+(B), D+(C) �L (A ↔ B).

Then Θ is a congruence on F (x,y, z). Put

D = F (x,y, z)/Θ

and
g(b) = pb/Θ for b ∈ B, h(c) = pc/Θ for c ∈ B.

Then g and h are homomorphisms from B and C respectively to D, where g(a) = h(a) for all a ∈ A.
Suppose that ⊥ = � in D. Then D+(B), D+(C) �L ⊥. It follows that there are finite subsets

Γ ⊆ D+(B) and Δ ⊆ D+(C) such that Γ,Δ �L ⊥. Denote by B(x,y) the conjunction of all formulas
in Γ, and by C(x, z) the conjunction of all formulas in Δ. Then

B(x,y), C(x, z) �L ⊥.

It follows from WIP that there exists a formula A(x) such that

B(x,y) �L A(x) and A(x), C(x, z) �L ⊥.

Using the valuation v(pb) = b for b ∈ B, we infer that B |= Γ(x,y)[v], and so A |= A(x)[v]. Put
v′(pc) = c for c ∈ C. Then v(pa) = v′(pa) for a ∈ A. Hence, C |= A(x)[v′]. Further, C |= D+(C)[v′].
Therefore, C |= C(x, z)[v′] and C |= ⊥, and so ⊥ = � in C and A.

2 ⇒ 3: Obvious.
3 ⇒ 1: Assume that FG(V (L)) has WAPJ. We prove that L has WIP.
Let B(x,y), C(x, z) �L ⊥. It is clear that the lists x, y, and z can be taken finite. We denote

Γ(x) = {A(x) | B(x,y) �L A(x)}
and show that Γ(x), C(x, z) �L ⊥.
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Assume the contrary. On F (x, z) define the relation

tΘt′ ⇐⇒ Γ(x), C(x, z) �L (t ↔ t′).

Then Θ is a congruence and C = F (x, z)/Θ ∈ FG(V (L)), where C �|= ⊥ = �.
On F (x,y) define the relation

tΦt′ ⇐⇒ B(x,y) �L (t ↔ t′).

Put B1 = F (x,y)/Φ, and let A1 be a subalgebra of B1 generated by x/Φ. Note that for all formulas
t, t′ ∈ F (x) such that (t, t′) ∈ Φ, (t ↔ t′) ∈ Γ(x) and so tΘt′. It follows that there exists a homomorphism
of A1 onto a subalgebra A of C generated by x/Θ. Since the variety of J-algebras has the congruence
extension property (CEP), this homomorphism can be extended to a homomorphism f of the whole
algebra B1 onto B = f(B1). Moreover, f(A1) = A and f(x/Φ) = x/Θ for all x ∈ x.

Since A is a subalgebra of both B and C, all algebras are finitely generated and ⊥ �= � in C, we
see by WAPJ that there exist a finitely generated algebra D ∈ FG(V (L)) and two homomorphisms
g : B → D and h : C → D such that g(a) = h(a) for all a ∈ A. Moreover, ⊥ �= � in A, and so the same
holds in D.

We define the valuation v′ in D: v′(u) = g(f(u/Φ)) for u ∈ x ∪ y and v′(u) = h(u/Θ) for u ∈ x ∪ z.
The definition is correct since g(f(x/Φ)) = h(x/Θ) for x ∈ x.
By the definition of B we obtain D |= B(x,y)[v′], and by the definition of C we have D |= C(x, z)[v′].

At last, D �|= ⊥ = �. This contradicts the condition B(x,y), C(x, z) �L ⊥. The theorem is proved. �
For modal logics, an algebraic equivalent of WIP was found in [9].

6. Criteria for WIP

We find an easier criterion for the validity of WIP in J-logics. Moreover, we show that the consider-
ation of WIP in J-logics can be reduced to the study of extensions of the logic Gl = J+(p ∨ ¬p).

Remember the denotation from Section 4: given a negative algebra A, put

AΛ = (A ↑ B0),

where B0 is the two-element boolean algebra. Given a J-logic L, we define the class

Λ(L) = {AΛ | A is a negative algebra and AΛ ∈ V (L)}.
It is easily seen that the following holds:

Lemma 6.1. The class Λ(L) is empty if and only if L is a negative logic.

Proof. If L is not negative then ⊥ �= � in some algebra A ∈ V (L). Then B0 is a subalgebra of A
and belongs to Λ(L). The converse is obvious. �

Theorem 6.2. Let L be a J-logic. Then L has WIP if and only if Λ(L) is empty or amalgamable.

Proof. ⇒: Let L have WIP. Then V (L) has WAPJ by Theorem 3.1. Suppose that Λ(L) is
nonempty. Assume that the algebras AΛ, BΛ and CΛ belong to Λ(L) and β : AΛ → BΛ, γ : AΛ → CΛ

are monomorphisms. By WAPJ there exist D in V (L) and homomorphisms δ : BΛ → D and ε : CΛ → D
such that δβ = εγ and ⊥ �= � in D. We can consider the algebra D to be subdirectly irreducible with an
opremum ⊥. Then D is of the form DΛ

1 and belongs to Λ(L). If x, y ∈ BΛ and x �≤ u then x → y ≤ ⊥,
δ(x) → δ(y) = δ(x → y) ≤ ⊥ < �, and δ(x) �≤ δ(y). Hence δ is a monomorphism. By analogy, ε is
a monomorphism.

⇐: If Λ(L) is empty then L is negative by Lemma 6.1 and so L has WIP.
Assume that Λ(L) is nonempty and amalgamable. We prove that V (L) has WAPJ.
Suppose that we are given A,B,C ∈ V (L) and monomorphisms β : A → B and γ : A → C, where

⊥ �= � inA. Then there exists a filter∇ inAmaximal among the filters not containing ⊥. We can extend
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β(∇) to a filter Φ in B maximal among the filters of B not containing �. Then Φ∩ β(A) = β(∇) and ⊥
is an opremum of B/Φ. Analogously, we can extend γ(∇) to a filter Ψ in C maximal among the filters
of C not containing �. Then Ψ ∩ γ(A) = γ(∇) and ⊥ is an opremum of C/Ψ. Therefore A1 = A/∇,
B1 = B/Φ, and C1 = C/Ψ are subdirectly irreducible and belong to Λ(L); there are monomorphisms
β1 : A1 → B1 and γ1 : A1 → C1 such that β(x)/Φ = β1(x/∇) and γ(x)/Ψ = γ1(x/∇) for x ∈ A.

By the amalgamability of Λ(L) there exist D ∈ Λ(L) and monomorphisms δ : B1 → D, ε : C1 → D
such that δβ1 = εγ1. Then δ′(y) = δ(y/Φ) and ε′(z) = ε(z/Ψ) are the required homomorphisms from B
and C to D. �

As a consequence, the problem of validity of WIP in J-logics can be reduced to considering the
extensions of the logic Gl = J+(p ∨ (p → ⊥)).

Theorem 6.3. A J-logic L has WIP if and only if L+Gl has WIP.

Proof. Note that Λ(L + Gl) = Λ(L). Indeed, it is evident that Λ(L + Gl) ⊆ Λ(L). On the other
hand, if A ∈ Λ(L) then A |= (p ∨ (p → ⊥)), and so A ∈ Λ(L + Gl). Thus the statement follows from
Theorem 6.2. �

7. Logics with CIP over Gl

Theorem 6.3 reduces consideration of WIP in J-logics to studying extensions of Gl. Moreover,
Theorem 6.2 indicates the role of classes Λ(L) in this investigation. The following proposition shows that
these classes split the family of Gl-logics into intervals. It gives a useful classification of logics over Gl
which supplies a classification of J-logics given in [18].

Proposition 7.1. Let a J-logic L0 be generated by the class Λ(L0). Then L0 contains Gl and for
all L ∈ E(Gl) the equivalence holds:

Λ(L) = Λ(L0) ⇐⇒ Neg∩L0 ⊆ L ⊆ L0.

Proof. It is clear that the formula p ∨ (p → ⊥) is valid in all algebras of Λ(L0), and so Gl is
contained in L0. We prove the equivalence.

⇒: Let Λ(L) = Λ(L0). Then Λ(L0) ⊆ V (L) and V (L0) ⊆ V (L). Hence, L ⊆ L0. Prove that
Neg∩L0 ⊆ L.

It is well known that every variety is generated by its subdirectly irreducible algebras. By Lemma 4.1
any subdirectly irreducible algebra in V (Gl) is either negative or of the form AΛ for a suitable negative
algebra A. All negative algebras of V (L) belong to V (L0 ∩Neg). All algebras of the form AΛ belong to
Λ(L) = Λ(L0), and so they also belong to V (L0∩Neg). Therefore V (L) ⊆ V (L0∩Neg) and L0∩Neg ⊆ L.

⇐: Let L0 ∩ Neg ⊆ L ⊆ L0. Then Λ(L0 ∩ Neg) ⊇ Λ(L) ⊇ Λ(L0). We note that L0 ∩ Neg can be
axiomatized by the formulas {⊥ ∨ A | A ∈ L0}. As a consequence, any subdirectly irreducible algebra
of V (L0 ∩ Neg), which is not negative, belongs to Λ(L0). Thus Λ(L0 ∩ Neg) ⊆ Λ(L0). It follows that
Λ(L) = Λ(L0). �

We now consider the extensions of Gl of a special kind. An axiomatization for these logics of the
forms L ↑ Cl and L ⇑ Cl, where L is a negative logic, is given in Proposition 4.7. The logic Gl = Neg ↑ Cl
is characterized by all algebras of the form AΛ, where A is a negative algebra (see Proposition 4.6). By
Theorems 5.1 and 5.2 of [12], we immediately have

Proposition 7.2. For every negative logic L the following are equivalent:
(a) L ↑ Cl has CIP;
(b) L ⇑ Cl has CIP;
(c) L has CIP.

In [11, Theorem 5.5] all negative logics with CIP are found:

Neg, NC = Neg+(p → q) ∨ (q → p), NE = Neg+p ∨ (p → q), For = Neg+p.

It is proved that CIP in a negative logic L is equivalent to the amalgamability of the variety V (L)
and the amalgamability of the class of finitely indecomposable algebras of V (L). From Theorem 6.2 we
immediately obtain
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Proposition 7.3. Let L be one of the following Gl-logics: Cl, (NE ↑ Cl), (NC ↑ Cl), (Neg ↑ Cl),
(NE ⇑ Cl), (NC ⇑ Cl), and (Neg ⇑ Cl). Then L has CIP, and the classes V (L) and Λ(L) are amalgamable.

On the contrary, if a negative logic L does not possess CIP then the variety V (L) and the class of
finitely indecomposable algebras of V (L) are nonamalgamable. Therefore, the classes Λ(L ↑ Cl) and
Λ(L ⇑ Cl) are nonamalgamable, and the logics L ↑ Cl and L ⇑ Cl do not possess WIP. So we obtain

Proposition 7.4. Let L be a negative logic. Then the following are equivalent:
(1) (L ↑ Cl) has WIP;
(2) (L ⇑ Cl) has WIP;
(3) (L ↑ Cl) has CIP;
(4) (L ⇑ Cl) has CIP;
(5) L has CIP;
(6) L is in the list Neg, NC, NE, and For.

As a consequence, WIP is nontrivial in the propositional extensions of the minimal logic. Note that
both sets of J-logics with WIP and of J-logics without WIP have the cardinality of the continuum. The
former set contains all superintuitionistic logics; i.e., a family of the cardinality of the continuum. The
latter set, by Proposition 7.4, is at least of the same cardinality as the set of negative logics different
from Neg, NC, NE, and For, and the set of negative logics also has the cardinality of the continuum.

It is clear that not all the extensions of Gl can be presented as (L ↑ Cl) or (L ⇑ Cl). For example,
there is no such representation for the logic Neg∩(NE ⇑ Cl). If L is a negative logic without CIP then
the logic L ∩ (NE ⇑ Cl) has WIP by Theorem 3.1 but we can prove that it does not possess CIP.
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