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ARITHMETICAL D-DEGREES

S. Yu. Podzorov UDC 510.5

Abstract: Description is given of the isomorphism types of the principal ideals of the join semilattice
of m-degrees which are generated by arithmetical sets. A result by Lachlan of 1972 on computably
enumerable m-degrees is extended to the arbitrary levels of the arithmetical hierarchy. As a corollary,
a characterization is given of the local isomorphism types of the Rogers semilattices of numberings
of finite families, and the nontrivial Rogers semilattices of numberings which can be computed at the
different levels of the arithmetical hierarchy are proved to be nonisomorphic provided that the difference
between levels is more than 1.
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In 1972, Lachlan [1] described the semilattices that are isomorphic to the principal ideals of the join
semilattice of computably enumerable m-degrees. As shown later in [2], a semilattice satisfies Lach-
lan’s description if and only if it is a distributive join semilattice with top and bottom which has Σ03-
representation. By these results, the following is true: A join semilattice is isomorphic to a principal
ideal of the semilattice of computably enumerable m-degrees if and only if it is a bounded distributive
semilattice admitting Σ03-representation.
The main result of this paper is a generalization of the last statement which allows us to extend it

to arithmetical m-degrees. It is proved that for every natural number n, a join semilattice is isomor-
phic to a principal ideal of the semilattice of m-degrees of Σ0n+1-sets if and only if this semilattice is

bounded distributive and admits Σ0n+3-representation. Moreover, all principal ideals of the join semilat-

tice of m-degrees, generated by Δ0n+2-sets appear to be bounded distributive semilattices having Σ
0
n+3-

representation. What is more, to every bounded semilattice with Σ0n+3-representation, there is either

a coimmune or computable Σ0n+1-set generating an isomorphic principal ideal of the join semilattice of
m-degrees. The last statement strengthens a result of [3]; together with the results of [4], it allows us
to expand the class of semilattices which are principal ideals or segments in the Roger semilattices of
arithmetical numberings. This implies, in particular, a strengthening of the results on the difference of
the isomorphism types of the Roger semilattices of the arithmetical numberings of the various levels of
the arithmetical hierarchies presented in [5, 6].

§ 1. Principal Ideals of the Semilattice of Arithmetical m-Degrees
All basic concepts of computation theory can be found in [7]; those of lattice theory can be found

in [8]; and those of enumeration theory, in [9]. We assume the reader familiar with them. In the
introduction of [9], we can also find some useful facts on distributive semilattices.
To denote the value of a numbering ν at x, we traditionally write νx instead of ν(x), thus omitting

parentheses. Given a partial function f , by δf we denote the domain of f and by ρf , the range of f .
Given a quasiordered set A = 〈A,≤〉, the associated partially ordered set will be denoted by

˜A = 〈˜A,≤〉 (thus employing the same notation for the quasiorder and the associated partial order);
we denote the coset ˜A containing x ∈ A by [x]A (or simply by [x] if A is clear from the context).
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A quasiordered set A is called a prelattice (join presemilattice or meet presemilattice), if ˜A is a lattice
(join semilattice or meet semilattice). A prelattice (join presemilattice) is called distributive if the as-
sociated lattice (join semilattice) is distributive. In what follows, we simply call these join semilattices
(join presemilattices) semilattices (presemilattices), since we will not consider any meet semilattices.
Given a prelattice (presemilattice) A , write A = 〈A,≤;u, v〉 (A = 〈A,≤;u〉) in the case that u and v
are binary operations on A representing the join and meet on ˜A (i.e., [u(x, y)] = sup{[x], [y]} and
[v(x, y)] = inf{[x], [y]} for all x, y ∈ A).
If L is a semilattice with bottom and top then we denote these by ⊥L and by �L respectively.

Let L = 〈L,≤L ;∨L 〉 be a semilattice with ground set L, let ν be a numbering of L, and let n ∈ N.
We say that ν is a Σ0n-representation of a semilattice L if the following hold:

(1) the binary relation “νx ≤L νy” on N belongs to the class Σ0n of the arithmetical hierarchy;

(2) there is a computable function u : N2 → N such that νu(x, y) = νx ∨L νy for all x, y ∈ N.
We say that ν is an n-Lachlan representation of a semilattice L , if there exists a sequence {Di =

〈Di,≤i〉}i∈N of finite distributive prelattices with the following properties:
(1) D0 ⊆ D1 ⊆ . . . is a strongly commutable sequence of finite subsets of the set of natural numbers

such that
⋃

i∈NDi = N;
(2) 0, 1 ∈ Di for all i and 0 ≤i x ≤i 1 for all x ∈ Di;
(3) for x, y ∈ Di, x ≤i y implies x ≤i+1 y; the naturally defined maps from ˜Di to ˜Di+1 preserve joins;
(4) the ternary relation “x ≤i y” belongs to the class Π0n+2 of the arithmetical hierarchy;
(5) there are sequences

{

ui : D
2
i → Di

}

i∈N uniformly computable in i and
{

vi : D
2
i → Di

}

i∈N such
that Di = 〈Di,≤i;ui, vi〉;
(6) νx ≤L νy ⇔ (∃i ∈ N)(x, y ∈ Di&x ≤i y) for all x, y ∈ N.
It follows from the definitions that an n-Lachlan representation is a Σ0n+3-representation. It is easy

to show that if a semilattice L has an n-Lachlan representation for some n ∈ N, then L has the bottom

⊥L = ν0 and the top �L = ν1 and is distributive since L is isomorphic to the direct limit lim−→i∈N ˜Di.
In [2], the following is proved:

If L is a distributive semilattice with top and bottom possessing a Σ0n+3-representation ν for some
n ∈ N then there exists an n-Lachlan representation μ of L such that ν ≤ μ.
For n = 0, this statement is the content of Theorem 1 of [2]. Remark 1 of [2] noticed that the result

remains valid for an arbitrary n ∈ N; only one small change to be made in the proof.
When considering m-degrees, we ignore the m-degrees of ∅ and N thus assuming that in the semi-

lattice Lm = 〈Lm,≤Lm
;∨Lm〉 of all m-degrees, there is a bottom ⊥Lm consisting of computable

sets. For every U ⊆ N different from ∅ and N, we denote by degm(U) the m-degree of U ; and by
Lm
U =

〈

LmU ,≤Lm
U ;∨Lm

U

〉

, the principal ideal in Lm generated by degm(U).

If X ⊆ N and ε is an equivalence on N then [X]ε denotes {y ∈ N : (∃x ∈ X)(〈x, y〉 ∈ ε)}. If X and ε
are computably enumerable then so is [X]ε. We say that ε agrees with X if X = [X]ε.

Following [1], we introduce the Ψ-operator. Given U ⊆ N and a computably enumerable X ⊆ N, put:
(1) if X∩U �= ∅ and X �⊆ U then Ψ(U | X) = degm(f−1(U)), where f is a computable total function

such that ρf = X (it should be clear that Ψ(U | X) does not depend on the choice of f);
(2) if X ∩ U = ∅ or X ⊆ U then Ψ(U | X) = ⊥Lm .

Without any proof we mention the following basic properties of the Ψ-operator:

(1) for a ∈ Lm, a ≤Lm
degm(U)⇔ there is a computably enumerable set X such that a = Ψ(U | X);

(2) Ψ(U | X1 ∪X2) = Ψ(U | X1) ∨Lm
Ψ(U | X2);

(3) if U1 =
∗ U2 and X1 =∗ X2 then Ψ(U1 | X1) = Ψ(U2 | X2) (hereinafter, =∗ stands for equality

modulo finite sets);

(4) if a computably enumerable equivalence ε agrees with U then Ψ(U | X) = Ψ(U | [X]ε);
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(5) if X2 ∩ U �= ∅ and X2 �⊆ U then Ψ(U | X1) ≤Lm
Ψ(U | X2) if and only if there is a computable

partial function θ such that X1 ⊆ δθ, θ(X1) ⊆ X2, and (∀x ∈ X1)(x ∈ U ↔ θ(x) ∈ U).
Let E denote the lattice of all computably enumerable sets and let E ∗ denote the factor lattice

of E modulo finite sets. It is easy from Properties (1)–(3) of the Ψ-operator that for every fixed set
U �= ∅,N the map λXΨ(U | X) is an epimorphism from E ∗ (considered as a join semilattice) onto the
semilattice Lm

U .
Let {θi}i∈N be a universal computable sequence of all unary computable partial functions. Given

i ∈ N, let Wi denote the computably enumerable set with index i (that is, Wi = δθi) and let {W ti }t,i∈N
be a double strongly computable sequence of finite sets such that W 0i ⊆ W 1i ⊆ . . . and Wi =

⋃

t∈NW
t
i

for all i ∈ N.
Theorem 1. Let n ∈ N and let U ⊆ N be an arbitrary Δ0n+2-set different from ∅ and N. Then Lm

U

is a distributive join semilattice with top and bottom having Σ0n+3-representation.

Proof. Existence of the bottom ⊥Lm
U
= ⊥Lm and the top �Lm

U
= degm(U) in Lm

U is obvious. Dis-
tributivity ofLm

U is immediate from the distributivity ofL
m which is a well-known fact in computability

theory.
Let νx = Ψ(U |Wx) for all x ∈ N. Then by Property (1) of the Ψ-operator, ν is a numbering of the

set LmU . Suppose that m ∈ U and k ∈ N \ U . By (3), νy = Ψ(U |Wy ∪ {m, k}) for all y ∈ N. By (5)

νx ≤Lm
U νy ⇔ (∃i ∈ N)(Wx ⊆ δθi& θi(Wx)

⊆Wy ∪ {m, k}&(∀z ∈Wx)(x ∈ U ↔ θi(x) ∈ U)).
Using the Tarski–Kuratowski algorithm, we infer that the relation “νx ≤Lm

U νy” belongs to the class Σ0n+3.
Finally, there is a computable function u such that Wu(x,y) =Wx ∪Wy for all x, y ∈ N; by (2) νu(x, y) =
νx ∨Lm

U νy for all x, y ∈ N. Therefore, ν is a Σ0n+3-representation of Lm
U . �

The following also holds:

Theorem 2. Let n ∈ N and let L be a distributive join semilattice with bottom and top having
Σ0n+3-representation. Then there exists a coimmune computable Σ

0
n+1-set U such that L ∼= Lm

U .

A proof of this theorem is given in the next section.
From Theorems 1 and 2 a characterization is immediate of the isomorphism types of the principal

ideals of the semilattice of m-degrees generated by arithmetical sets.

Corollary 1. Given n ∈ N and a semilattice L , the following are equivalent:
(1) L is a distributive join semilattice with bottom and top having Σ0n+3-representation;
(2) L is isomorphic to a principal ideal of the semilattice of m-degrees which is generated either by

a coimmune or computable Σ0n+1-set;
(3) L is isomorphic to a principal ideal of the semilattice of m-degrees which is generated either by

a coimmune or computable Π0n+1-set;
(4) L is isomorphic to a principal ideal of the semilattice of m-degrees which is generated by

a Δ0n+2-set.

Proof. The implications (4) ⇒ (1) ⇒ (2) are due to Theorems 1 and 2. The implication (2) ⇒ (4)
follows from the inclusion Σ0n+1 ⊆ Δ0n+2. Finally, (2) ⇔ (3) is justified by the fact that the map sending
each subset of N to its complement defines an automorphism of Lm. �

§ 2. Proof of Theorem 2
Let n ∈ N and let ν′ be a Σ0n+3-representation of a distributive semilattice L = 〈L,≤L ;∨L 〉 with

bottom and top. According to a statement mentioned in the previous section and proved in [2], there is
a numbering ν ≥ ν ′ of L that is an n-Lachlan representation of L .
Theorem 1 from [3] is equivalent to the following:
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Each semilattice having 0-Lachlan representation is isomorphic to the semilattice Lm
U for a com-

putable or hypersimple set U .

Thus, for n = 0 we may assume Theorem 2 to be proved. In what follows, we suppose that n > 0.
We fix a sequence {Di = 〈Di,≤i〉}i∈N of finite distributive presemilattices which possesses all six

properties from the definition of an n-Lachlan representation.
We employ the technique of working with towers which was invented by Lachlan in [1] and further

developed by other people in [10, 11]. However, frames and towers will be built not for the sequence of
presemilattices {Di}i∈N itself as it was done in the above-mentioned papers, but for the approximating
spectra of the sequence as it was performed in the paper [12] by Yu. L. Ershov. In other words, we will
make a “mixture” of the Lachlan and Ershov techniques, borrowing the essential parts of both of them.
(Ershov did work not with towers but with equivalent representations.) We give necessary definitions.
A spectrum is a finite sequence of binary relations S =

〈≤S0 , . . . ,≤Sk
〉

with the following properties

(1) for every i ≤ k, the relation ≤Si is a quasiorder on Di such that DSi =
〈

Di,≤Si
〉

is a finite
distributive prelattice with the bottom 0 and the top 1.
(2) for arbitrary i < k and x, y ∈ Di, x ≤Si y implies x ≤Si+1 y; moreover, the naturally defined map

from ˜DSi to
˜DSi+1 preserves joins.

The number k in the above definition is called the length of S. The length of S is denoted by lh(S).
We say that a spectrum S is a beginning of a spectrum S′ and we write S � S′ provided that lh(S) ≤
lh(S′) and ≤Si coincides with ≤S

′
i for any i ≤ lh(S). If S is a spectrum and m ≤ lh(S) then we denote

the unique spectrum S′ of length m for which S′ � S by S � m.
A spectrum S is called good provided that for every i ≤ k, the relation ≤Si coincides with ≤i. For

every number k, there is exactly one good spectrum of length k; we denote this spectrum by Sk.
Let S be an arbitrary spectrum of length k and let A ⊆ Di for i ≤ k. We say that A is an atom of

spectrum S of level i if inf{[x] : x ∈ A} �≤Si sup{[x] : x �∈ A} in ˜DSi . In other words, the atoms of level i
are exactly the principal upper order cones in DSi which are generated by the elements different from [0]
and which are join irreducible.
We observe the following two properties of atoms (as before, here S denotes an arbitrary spectrum

of length k; the proofs of all properties can be found in [1, 10, 11]):

(1) for i ≤ k, the lattice ˜DSi is isomorphic to a sublattice of the powerset lattice of the set of atoms
ofS of level i; the corresponding isomorphism is defined by [x]DSi

�→ {A is an atom ofS of level i : x ∈ A};
(2) for every i < k and every atom A of S of level i+1, there is a unique set {A1, . . . , Am} consisting

of the atoms of S of level i none of which includes another one such that A ∩Di = A1 ∪ · · · ∪Am.
For k ∈ N, a tree of height k is a finite tree where every maximal branch has length k+1 (we assume

a tree to grow “downward”). In other words, a tree of height k is a finite poset M = 〈M,≤M 〉 with top
such that for every a ∈ M the set {x ∈ M : a ≤M x} is totally ordered, and its every maximal totally
ordered subposet has k + 1 elements. The top of M is called a root of this tree and is denoted by rM .
For an element a ∈M , the level of a is the length of a maximal chain in the set of elements below a. The
level of a is denoted by hM (a). It is easy to see that the height of a tree is the same as the level of its root;
moreover, if M is a tree of height k then for all a ∈M we have hM (a) = k + 1− |{x ∈M : a ≤M x}|.
A frame of height k is an arbitrary triple F = 〈S,M , c〉 such that
(1) S is a spectrum of length k;
(2) M = 〈M,≤M 〉 is a tree of height k;
(3) c is a map from M into P(Dk) such that, for all a ∈ M , the set c(a) is an atom of S of

level hM (a);
(4) if for an element a ∈ M of a nonzero level Sc(a) denotes the set of successors of a (that is, the

set of all elements of level hM (a)− 1 which are below a) then c(a) ∩DhM (a)−1 =
⋃{c(b) : b ∈ Sc(a)}.

We say that frames 〈S,M , c〉 and 〈S′,M ′, c′〉 are isomorphic if S = S′ and there is an isomorphism
f of M onto M ′ such that c = c′ ◦ f . In what follows, we identify isomorphic frames.
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If F = 〈S,M , c〉 is a frame then S is called the spectrum of F and c(rM ) is called an atom of F .
It follows from the second property of atoms that if S is a spectrum of length k and A is an atom of S
of level k then there exists a unique frame of height k with this particular spectrum and this particular
atom (modulo an isomorphism; we will not to emphasize the latter anymore).

Let F1 = 〈S1,M1, c1〉 and F2 = 〈S2,M2, c2〉 be frames, let a ∈ M1, b ∈ M2, and k = hM1(a) =
hM2(b), and let S1 � k = S2 � k. Using the second property of atoms and induction on k, it is easy to
show that the following are equivalent:

(1) c1(a) ⊆ c2(b);
(2) there exists a level preserving monotone map f from {x ∈M1 : x ≤M1 a} into {x ∈M2 : x ≤M2 b}

such that c1(x) ⊆ c2(f(x)) for any x ≤M1 a.

We denote the set of all maps f possessing all properties of (2) by Φ(F1,F2, a, b).
A tower of height k is a quadruple T = 〈S,M , c, ϕ〉 such that
(1) 〈S,M , c〉 is a frame of height k;
(2) ϕ is a map assigning to each element ofM a nonempty finite subset of the set of natural numbers;

(3) if a and Sc(a) denote the same as in (4) in the definition of frame then ϕ(a) =
⋃{ϕ(b) : b ∈ Sc(a)}

and ϕ(b1) ∩ ϕ(b2) = ∅ for all different b1, b2 ∈ Sc(a).
Given a tower T = 〈S,M , c, ϕ〉, the frame 〈S,M , c〉 is called the frame of the tower and ϕ(rM ) is

called its base; we denote the latter by base(T ). It should be clear that given a frame and a finite subset
of N large enough, we can build a tower on this frame taking the given finite set as a base.

Suppose that T1 = 〈S1,M1, c1, ϕ1〉 and T2 = 〈S2,M2, c2, ϕ2〉 are towers with frames F1 and F2
respectively. Let a ∈M1 and b ∈M2 be elements of the same level k, let S1 � k = S2 � k, c1(a) ⊆ c2(b),
and let f ∈ Φ(F1,F2, a, b). We define a map ϕ as follows: Given y ∈M2, put ϕ(y) = ϕ2(y) ∪

⋃{ϕ1(x) :
x ≤M1 a, f(x) ≤M2 y}. It is easy to check that T = 〈S2,M2, c2, ϕ〉 is a tower whose frame coincides
with the frame of T2, whose base equals the union of the base of T2 and ϕ1(a), and the following hold:

(1) for every x ∈ M1 of level ≤ k, either x �≤M1 a and ϕ1(x) ∩ base(T ) = ∅ or x ≤M1 a and
ϕ1(x) ⊆ ϕ(f(x));
(2) ϕ2(y) ⊆ ϕ(y) for all y ∈M2.
We say that the tower T is obtained by modifying T2 using T1 and f . The number k is called the

level of modification. In what follows, if we use a step-by-step construction, and a tower is modified at
some step; then, abusing terminology, we will often refer to the initial and resulting towers as to the same
one. This will not lead us to any confusion.

We now describe the process of building towers. Before each step of our construction, finitely many
towers will be built with bases subsets of a certain initial segment of the poset of natural numbers. This
segment consists of the numbers that have appeared in the bases of the towers already built, and the
numbers 0 and 1. The numbers belonging to this segment are called used and the remaining are called
nonused. Each time when we build a new tower, a rather larger initial segment of nonused numbers will
be used as the base of the tower. The numbers 0 and 1 are assumed to be used even before we start our
construction; that is, before we build the very first tower. Along the way of building new towers, we will
also modify and destroy some old towers.

We recall that we consider all frames to within isomorphism. In particular, for each number k, there
is only finitely many different frames of height k. Given a frame F , let T F ,t

1 , . . . ,T F ,t
s(F ,t) be all towers

with the frame F already existing before step t and listed in the course of their building. We assume
that the set of all pairs of the form 〈F ,m〉, where F is a frame and m is a number, is effectively ordered
by ω (the first infinite cardinal). We may also assume that if m1 < m2 then 〈F ,m1〉 < 〈F ,m2〉 for all
frames F . Let l be a computable function of big span; i.e., a computable surjection from N onto N such
that the preimage of every number is infinite. We describe step t of the construction.

Step t. This step consists of the two stages:
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Stage I. For i = l(t) we check whether there are towers T = T F ,t
m1 = 〈S1,M1, c1, ϕ1〉 and S =

T G ,t
m2 = 〈S2,M2, c2, ϕ2〉 with frames F , G respectively, and elements a ∈M1, b ∈M2 such that
(1) both towers have height at least i;
(2) S1 � i = S2 � i;
(3) hM1(a) = hM2(b) = i;
(4) c1(a) ⊆ c2(b);
(5) S was built before T , and 〈G ,m2〉 < 〈F ,m1〉;
(6) ϕ2(b) ∩W ti = ∅ and ϕ1(a) ∩W ti �= ∅.
If there are no tower and no element with required properties then we pass to the next stage.

Otherwise, we choose the oldest S , and for this S we (effectively) choose a tower T , elements a, b, and
a function f ∈ Φ(F ,G , a, b). We modify S using T and f , destroy T , and pass to the next stage.

Stage II. We find a frame F and an integer m > 0 with 〈F ,m〉 least possible such that the number
of the already existing towers with frame F is less than m, and we build a new tower with frame F
taking as a base a large enough initial segment of nonused numbers. Then we pass to the next step.

Description of the construction is finished. It is clear that the construction is effective. We will
investigate its properties.
Each built tower either is destroyed at some point or is never destroyed but modified at some steps.

In the latter case we call a tower permanent. Every permanent tower can be modified only finitely many
times. Indeed, if for a tower T = 〈S,M , c, ϕ〉, the number of elements a belonging to M and such that
ϕ(a)∩W thM (a)

�= ∅ does not decrease when t increases, it increases each time when the tower is modified.
We say that a permanent tower is final at step t, if it exists and is not modified at steps ≥ t.
Lemma 1. For each frame F the following is true: limt→∞ s(F , t) = ∞, and, for every m > 0,

T F ,t
m is the same final tower at almost all steps t.

Proof. It suffices to show that for every frame F and every m > 0, the towers T F ,t
m exist and

coincide at almost all steps t.
Suppose not. Let 〈F ,m〉 be a least pair for which the statement fails. Let t0 be a step large enough

so that for all 〈F ′,m′〉 < 〈F ,m〉 with m′ > 0 the towers T F ′,t
m′ exist, coincide, and are final at all steps

t ≥ t0. If before some step t ≥ t0 the tower T F ,t
m is not defined then s(F , t) = m− 1, and it follows from

the description of Stages I and II that none of the towers with frame F will be destroyed and a tower
with frame F will be built at step t, so that the value of T F ,t

m is defined for all t > t0. By the choice of
the pair 〈F ,m〉 of step t0 and by the description of Stage I, the tower T F ,t0+1

m is not destroyed; thus, it
becomes final after some finitely many modifications. �

Given a frame F and m ∈ N, we denote the tower T F ,t
m (in its final variant) which is the same for

all t large enough by T F
m . For x > 1, the following is true: x appears in the base of some tower at some

step and a few steps, it either disappears from all bases or appears in the base of a final tower. The
first part of the statement is obvious, as at Stage II of each step, a tower is built. After a number has
appeared in the base of a tower, once it disappears, it will never appear there again. Finally, if a number
x is in the base of one tower before some step t and it is also in the base of another tower after step t then
the second tower was built before the first. It follows that the number of these “transitions” is bounded
for each x.
Each final tower equals T F

m for some frame F and some integer m > 0. We denote the set of all
numbers that do not appear in the bases of the final towers by D. It is clear that D is computably
enumerable and 0, 1 ∈ D. Since n > 0; given x �∈ D, we can compute the frame F with oracle 0(n) and
the number m such that x ∈ base(T F

m ) effectively.
Let F = 〈S,M , c〉 be a frame of height k and let A = c(rM ) be an atom of F . We say that F

is a dense frame, if there are infinitely many final towers T = 〈S′,M ′, c′, ϕ′〉 of height ≥ k such that
S � S′ and A = c′(a) and ϕ′(a) ∩Wk �= ∅ hold for some element a ∈ M ′ of level k. We say that this
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frame is saturated if for all final towers T = 〈S′,M ′, c′, ϕ′〉 with S � S′ and all a ∈ M ′ of level k such
that A ⊆ c′(a) one has ϕ′(a) ∩Wk �= ∅.
Lemma 2. A frame is dense if and only if it is saturated.

Proof. Sufficiency is obvious. Indeed, for each frame, there are infinitely many towers built on it
so that density is immediate from saturation.
We prove necessity. Suppose thatF = 〈S,M , c〉 is a dense frame of height k. LetT = 〈S′,M ′, c′, ϕ′〉

be a final tower such that S � S′ and a ∈M ′ is an element of level k for which c(rM ) = A ⊆ c′(a). We
have T = T G

m for some frame G and somem > 0. Let t0 be large enough so that for all 〈G ′,m′〉 ≤ 〈G ,m〉,
one has T G ′,t0

m′ = T G ′
m′ , and all these towers have become final by step t0. By density, there are a frame

G ′′ and m′′ > 0 such that 〈G ′′,m′′〉 > 〈G ,m〉, and for the final tower T G ′′
m′′ = 〈S′′,M ′′, c′′, ϕ′′〉 built after

T G
m , there is an element b ∈M ′′ of level k such that S � S′′, c′′(b) = A, and ϕ′′(b)∩Wk �= ∅. Let t1 ≥ t0
be large enough so that the tower T G ′′,t1

m′′ = T G ′′
m′′ has become final by step t1 and ϕ

′′(b) ∩W t1k �= ∅.
Finally, let t ≥ t1 be such that k = l(t). By the choice of t, none of the towers T G ′,t

m′ for 〈G ′,m′〉 ≤ 〈G ,m〉
will be modified at Stage I of this step; therefore, ϕ′(a) ∩W tk �= ∅. �
We consider a series of equivalences and sets. Let i be an arbitrary natural number, let S be

a spectrum of length i, and let d ∈ Di. Put
ε ={〈x, y〉 : x, y ∈ D} ∪ {〈x, y〉 : x, y ∈ base(T ) for some final tower T },
εi ={〈x, y〉 : x, y ∈ D ∨ x = y} ∪ {〈x, y〉 : there are a final tower 〈S′,M , c, ϕ〉

of height ≥ i and an element a ∈M of level i such that x, y ∈ ϕ(a)},
R
S,0
d,i =

⋃

{x : there is a final tower 〈S,M , c, ϕ〉 such that d ∈ c(rM ) and x ∈ ϕ(rM )},
R
S,1
d,i =D ∪

⋃

{x : there are a final tower 〈S′,M , c, ϕ〉 of height > i and
an element a ∈M of level i such that S � S′, d ∈ c(a), and x ∈ ϕ(a)}.

It is clear that εi ⊆ ε for all i ∈ N. We notice also that those sets and equivalences are computable with
oracle 0(n) uniformly in all parameters.

Lemma 3. Given i ∈ N, a spectrum S of length i, and d ∈ Di, the relation εi as well as the sets
R
S,0
d,i and R

S,1
d,i is computably enumerable.

Proof. Let F1i be the set of all saturated frames of height ≤ i and let F2i be the set of all frames
of height ≤ i which are not dense. By Lemma 2, any frame of height ≤ i appears in exactly one of
those sets.
For a frame F = 〈S′,M ′, c′〉 ∈ F2i of height k ≤ i, there is a final tower TF = 〈S′,M ′, c′, ϕ′〉 built

on this frame such that ϕ′(rM ′)∩Wk = ∅. Let t0 be large enough so that by step t0, the towers TF have
been already built for all F ∈ F2i . Let t1 ≥ t0 be such that by step t1 all towers built by step t0 became
destroyed or final.
We say that for a tower T = 〈S′′,M ′′, c′′, ϕ′′〉 and for t ∈ N, the condition C(T , t) holds, if for

every k ≤ i, a ∈ M ′′ of level k, and a frame F with spectrum S′′ � k and atom c′′(a), we have
F ∈ F1i ⇒ ϕ′′(a)∩W tk �= ∅. It follows from the definition of saturation that this condition is satisfied for
all final towers and all t large enough.
Let Dt denote the set of numbers appeared in D by step t. We consider the following sets:

εti ={〈x, y〉 : x, y ∈ Dt ∨ x = y} ∪ {〈x, y〉 : by step t, there are
a tower 〈S′,M , c, ϕ〉 of height ≥ i and an element a ∈M of level i
such that x, y ∈ ϕ(a) and for all towers T built before, one has C(T , t)},

R
S,0,t
d,i =

⋃

{x : by step t there is a tower 〈S,M , c, ϕ〉 such that d ∈ c(rM ), x ∈ ϕ(rM )
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and for all towers T , built before, one has C(T , t)},
R
S,1,t
d,i =Dt ∪

⋃

{x : by step t there are a tower 〈S′,M , c, ϕ〉 of height > i
and an element a ∈M of level i such that S � S′, d ∈ c(a),
x ∈ ϕ(a) and for all towers T , built before one has C(T , t)}.

It is clear that the sets introduced are computable uniformly in t. Since the condition C holds for
all final towers and all t large enough, for all x, y ∈ N we have

〈x, y〉 ∈ εi ⇔ 〈x, y〉 ∈ εti for almost all t,
x ∈ RS,0d,i ⇔ x ∈ RS,0,td,i for almost all t,

x ∈ RS,1d,i ⇔ x ∈ RS,1,td,i for almost all t.

To complete the proof, it suffices to show that εti ⊆ εt+1i , RS,0,td,i ⊆ RS,0,t+1d,i , and RS,1,td,i ⊆ RS,1,t+1d,i for all
t ≥ t1.
Let t ≥ t1 and 〈x, y〉 ∈ εti. If x, y ∈ Dt or x = y then 〈x, y〉 ∈ εt+1i . Otherwise, before step t, there

are a tower T = 〈S′,M , c, ϕ〉 of height ≥ i and an element a ∈ M of level i such that x, y ∈ ϕ(a),
and C(T ′, t) holds for all towers T ′ built before T . If at step t the tower T is not destroyed then
〈x, y〉 ∈ εt+1i . Suppose that T is destroyed at this step. Then there is modification of some tower
S = 〈S′′,M ′, c′, ϕ′〉 built before T . Let k be the level of this modification and let b′ ∈ M ′, a′ ∈ M be
such that S is modified using f ∈ Φ(F ,G , a′, b′), where F and G are frames of the towers T and S
respectively. Let H be the frame of height k built on the spectrum S ′′ � k and atom ϕ′(b′). The frame
H cannot belong to F1i , as condition C holds for S . The frame H also cannot belong to F2i by the
choice of t1, since otherwise the tower TH built before S would be modified instead of S . The only
possibility remains: k > i, that is, our modification is of level greater than i. But then either a ≤M a

′
and x, y ∈ ϕ′(f(a)) or a �≤M a

′ and x, y ∈ Dt+1. In both cases 〈x, y〉 ∈ εt+1i .
The implications x ∈ RS,0,td,i ⇒ x ∈ RS,0,t+1d,i and x ∈ RS,1,td,i ⇒ x ∈ RS,1,t+1d,i can be proved in the same

vein for all x ∈ N and t ≥ t1. As in the previous case, the main idea is as follows: If x has appeared in
R
S,0,t
d,i or RS,1,td,i because it has appeared in the base of a tower then at step t this tower can be destroyed

only as a result of modification of a level greater than i. �
We pass now to the definition of a coimmune set U belonging to the class Σ0n+1. We need the following

Lemma 4. There is a sequence {VS : S is a spectrum} of subsets of N enumerable uniformly in S
with oracle 0(n) such that
(1) VS is an initial segment of N for all S;
(2) S � S′ implies VS ⊆ VS′ ;
(3) the spectrum S is good ⇒ VS is finite;
(4) the spectrum S is bad ⇒ VS′ = N for almost all S′ � S.
Proof. For every i ∈ N and P ⊆ D2i , let R(P, i) denote the condition (∀〈x, y〉 ∈ P )(x ≤i y) and let

Q(P, i) denote the condition (∀〈x, y〉 �∈ P )(x �≤i y). Then R is a Π0n+2-condition and Q is a Σ0n+2-condition
on P and i.
Since R ∈ Π0n+2, there is a 0(n)-computable function h(P, i, t) such that h(P, i, 0) ≤ h(P, i, 1) ≤ . . .

and limt→∞ h(P, i, t) = ∞ ⇔ R(P, i). Since Q ∈ Σ0n+2, there is a Σ0n+1-predicate T such that for all
i ∈ N and P ⊆ D2i the set {t : T (P, i, t)} is an initial segment of natural numbers equal to N if and only
if Q(P, i) fails.
Let S =

〈≤S0 , . . . ,≤Sk
〉

be a spectrum of length k. We put

VS =
{

t : (∃i ≤ k)T (≤Si , i, t
)} ∪ {t : (∃i ≤ k)(h(≤Si , i, t

) ≤ k)}.
It is easy to check that all required properties are satisfied. �
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We fix a 0(n)-computable function p(S, t) such that p(S, 0) ≤ p(S, 1) ≤ . . . and VS = {x : ∃t(x <
p(S, t))}. For each frame F = 〈S,M , c〉, we put p(F , t) to be equal to p(S, t). As in § 1, let {θi}i∈N be
a universal computable sequence of all partial computable functions. We describe a process of numbering
of U . Its distinctive feature is as follows: The base of any final tower either does not contain numbers
from U at all or is enumerated in U completely at some step. In the process, some towers will be marked
by [F ], where F is a frame. Some marks will be left out of our consideration; those marks will never
appear again.

Step 0. We enumerate in U all numbers from D but zero. We pass to the next step.

Step t+ 1. This step consists of the two stages:

Stage I. We enumerate in U all numbers from the base
(

T F
m

)

for all pairs 〈F ,m〉 such that F is

a frame of height ≤ t and m < p(F , t). Then for any i ≤ t, if W ti does not contain a number that was
already enumerated in U and does contain a number from the base of a final tower of height > i, then we
enumerate in U all numbers from the base of this tower. After that, we delete all marks from the towers
whose bases were enumerated in U . Finally, we choose a least pair 〈F ,m〉 such that the tower T F

m was
not marked yet and its base was not enumerated in U . We enumerate the base

(

T F
m

)

in U and pass to
the next stage.

Stage II. We find a frame F with the value of the pair 〈F , p(F , t)〉 least possible such that the
mark [F ] does not appeared yet and was not deleted yet. Let m be a least number such that the
base of T F

m was not enumerated in U and i is the height of F . We check whether there are numbers
x ∈ base(T F

m

) ∩ δθi such that θi(x) does not belong to the base of a tower with the frame F . If there
are no such numbers then we exclude [F ] from our consideration and pass to the next step. Otherwise,
we choose such a number x. If θi(x) = 0 then we enumerate the base of T F

m in U , exclude the mark
[F ] from our consideration and pass to the next step. If θi(x) was already enumerated in U then we
mark T F

m with [F ] and pass to the next step. If θi(x) �= 0 was not enumerated in U yet then this means
that θi(x) is in the base of some final tower T G

k . If the tower T G
k has no mark then we enumerate the

base
(

T G
k

)

in U , mark the tower T F
m by [F ], and pass to the next step. Finally, if T G

k already has
a different mark then we have the two cases:

(1) if 〈F , p(F , t)〉 < 〈G , p(G , t)〉 then we mark T F
m by [F ], delete all marks from the tower T G

k ,
enumerate its base in U , and pass to the next step;
(2) if 〈F , p(F , t)〉 > 〈G , p(G , t)〉 then we mark T G

k by [F ], enumerate the base of T F
m in U , and

pass to the next step.

The description of our construction is now complete. It is clear that the construction is effective with
oracle 0(n); therefore, U ⊆ Σ0n+1.
Before each step, each mark is assigned to at most one tower. For each frame F , before each step,

at most one tower with this frame is marked; moreover, one of its marks should be [F ]. A tower can
be marked only if its base was not enumerated in U yet; once it was enumerated, all marks are deleted
from that tower. What is more, according to the last actions of the first stage, sooner or later either each
tower will get a mark or the base of this tower will be enumerated in U . This means that for every frame
either the bases of all towers with this frame are enumerated in U or there is a unique tower for which
this is not so.
By construction, D \ {0} ⊆ U and either the base of every final tower is contained in U or it fails to

contain numbers from U at all. Thus the equivalence ε and all equivalences εi for i ∈ N agree with U∪{0}.
We say that a spectrum S is quasigood if VS is finite. It is easy to see that the quasigood spectra

form an initial segment in the tree of all spectra, and the only infinite branch of this segment consists of
good spectra. It is not hard to notice that, due to Stage I, the bases of all towers whose spectrum is not
quasigood appear in U .

Given i ∈ N, a spectrum S of length i, and d ∈ Di, put RSd,i = RS,0d,i ∪RS,1d,i . The set RS,0d,i may contain
only finitely many elements not belonging to U , so that Ψ

(

U | RS,0d,i
)

= ⊥Lm . It is not hard to notice
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that
[

R
S,1
d,i

]

εi+1
= RS1d,i+1 ∪ · · · ∪RSkd,i+1, where S1, . . . ,Sk are all spectra of length i+ 1 which extend S.

Since εi+1 is an enumerable equivalence agreeing with U ∪ {0}, we have

Ψ
(

U | RSd,i
)

= Ψ
(

U | RS,0d,i
) ∨Lm

Ψ
(

U | RS,1d,i
)

= ⊥Lm ∨Lm

Ψ
(

U ∪ {0} | [RS,0d,i
]

εi+1

)

= Ψ
(

U | RS1d,i+1 ∪ · · · ∪RSkd,i+1
)

= Ψ
(

U | RS1d,i+1
) ∨Lm · · · ∨Lm

Ψ
(

U | RSkd,i+1
)

.

Iterating this transformation finitely many times, we see that Ψ
(

U | RSd,i
)

= Ψ
(

U | RS1d,i+m
)∨Lm · · · ∨Lm

Ψ
(

U | RSld,i+m
)

, where m is an arbitrary natural number and S1, . . . ,Sl are all spectra of length i +m

which extend S.

If a spectrum S is not quasigood then RSd,i ⊆ U ∪ {0} and Ψ
(

U | RSd,i
)

= ⊥Lm . Since almost
all spectra extending a bad spectrum are not quasigood, we infer from the previous two equalities that
Ψ
(

U | RSd,i
)

= ⊥Lm for every bad spectrum S.

Finally, if S = Si is a good spectrum, then among all spectra of length i + 1 extending S, one

spectrum is equal to Si+1 and all of the remaining are bad, so that Ψ
(

U | RSid,i
)

= Ψ
(

U | RSi+1d,i+1

)

.

We define a map λ from L to Lm
U by λ(x) = Ψ

(

U | RSid,i
)

, where x ∈ L, d ∈ N are such that
x = ν(d) and i is chosen with the property d ∈ Di. This map is correctly defined, presenting a semilattice
homomorphism. Indeed, it was shown above that Ψ

(

U | RSid,i
)

does not depend on the choice of i. If

ν(d1) = ν(d2) then we may choose i so that d1 ≡i d2; thus each atom of level i in every good spectrum
contains d1 if and only if it contains d2 and R

Si

d1,i
= RS

i

d2,i
. We see that the value of λ(x) does not depend

on the choice of d with x = ν(d). Finally, if x1 ∨L x2 = x3, x1 = ν(d1), x2 = ν(d2), x3 = ν(d3),

and d1, d2, d3 ∈ Di; then, in the lattice ˜Di, the element [d3] is the join of [d1] and [d2], each atom of
level i in every good spectrum contains d3 if and only if it contains d1 or d2, R

Si

d3,i
= RS

i

d1,i
∪ RSid2,i and

λ(x3) = λ(x1) ∨Lm
λ(x2).

Lemma 5. λ is an embedding.

Proof. We show first that for every frame F with quasigood spectrum the mark [F ] either is left
out from our consideration or becomes permanent (i.e., it is assigned to some tower and never deleted
from that tower) at some step.

It is clear that the spectrum of F is quasigood if and only if p(F ) = limt→∞ p(F , t) <∞. We prove
our statement by induction on 〈F , p(F )〉.
LetF be a frame with a quasigood spectrum of height i, let F = {F ′ : p(F ) <∞, and 〈F ′, p(F ′)〉 <

〈F , p(F )〉}. Suppose that for all F ′ ∈ F our claim about marks is true. Let t0 be large enough
so that by step t0 + 1, all marks [F ′] for F ′ ∈ F either were excluded from consideration or have
become permanent. Let t1 ≥ t0 be large enough so that p(F ′) = p(F ′, t1) for all F ′ ∈ F ∪ {F} and
〈F ′, p(F ′, t1)〉 > 〈F , p(F )〉 for all F ′ �∈ F∪{F}. Let i′ be equal to the maximal height of a frame from
F ∪ {F}. Let t2 ≥ t1 be such that either j < i′, or Wj ∩ U = ∅, or W t2j contains the elements already
enumerated in U by step t2 + 1.

Suppose that our statement about [F ] is false. Then this mark is never left out from consideration
and there exist infinitely many numbers t ≥ t2 such that after Stage I of step t + 1 this mark is not
assigned to any tower. Let t3 be one of these t’s. From the description of Stage II and our choice of t1, it
follows that at step t3 + 1 this mark is either left out of consideration (which is impossible) or assigned
to one of the towers T G

m for some G ∈ F ∪ {F}. Let t > t3 be such that at step t+ 1 this mark is again
deleted. By the choice of t2, this cannot happen at the first stage of step t + 1. However, this cannot
happen either at Stage II of this step; since, otherwise, the mark [G ] would come into play for G ∈ F,
which is impossible by the choice of t0.

We now pass to the proof of the main claim of our lemma. We should show that for all a, b ∈ N,
if ν(a) �≤L ν(b) then λ(ν(a)) �≤Lm λ(ν(b)). Suppose that the assumption is true while the conclusion is
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not. Let i be such that a, b ∈ Di. Since λ(ν(a)) = Ψ
(

U | RSia,i
)

and λ(ν(b)) = Ψ
(

U | RSib,i
)

, either there is

j such that δθj = R
Si

a,i, ρθj = R
Si

b,i , and x ∈ U ⇔ θj(x) ∈ U for all x ∈ δθj , or RS
i

b,i ⊆ U , or RS
i

b,i ∩ U = ∅.
The inclusion RS

i

b,i ⊆ U is impossible since 0 ∈ D ⊆ RS
i

b,i and 0 �∈ U . The equality RS
i

b,i ∩ U = ∅
is impossible either, since 1 ∈ D \ {0} ⊆ RSib,i ∩ U . We consider the remaining case. Since every partial
computable function has infinitely many numbers, we may assume that j ≥ i. Since λ(ν(a)) �≤Lm λ(ν(b)),
there is a frame F of height j with spectrum Sj such that a belongs and b does not belong to the atom

of this frame. The base of every tower with frame F contains numbers from RS
i

a,i and does not contain

numbers from RS
i

b,i , so that the mark [F ] can be excluded from our consideration only in the case when

in the base of a final tower with frame F , there is x ∈ U such that θi(x) = 0. However, this is impossible;
thus, this mark appears at some step and never disappears. But then for some x one of the elements of
{x, θi(x)} will be enumerated in U at this step and the other will appear in the base of a tower on which
a permanent mark will be put, and will never be enumerated in U ; a contradiction. �

Lemma 6. λ is an isomorphism from L onto Lm
U .

Proof. Since λ is an embedding, it suffices to show that every element from Lm
U belongs to the

image of λ.
Let u ∈ LmU . Then u = Ψ(U |Wi) for some i ∈ N. Let F1, . . . ,Fk be all dense frames with spectrum

Si and let A1, . . . , Ak be their atoms. Let d be an element of Di belonging to all atoms A1, . . . , Ak and
not belonging to any other atom of the spectrum Si of level i. Such an element exists by Lemma 2 since
for every atom A of level i of Si such that A ⊇ Am for some m ∈ [1, k], the frame built on this atom
with spectrum Si is saturated, whence A ∈ {A1, . . . , Ak}.
We show that

[

RS
i

1,i ∩Wi
]

εi
∪D =∗ RSid,i . Let x ∈ RS

i

d,i . Then either x ∈ D or x ∈ ϕ(a) for some final
tower T = 〈S ,M , c, ϕ〉 and some a ∈ M of level i such that Si � S and d ∈ ϕ(a). The latter means
that the atom ϕ(a) belongs to {A1, . . . , Ak}. Hence the frame with spectrum Si built on the atom ϕ(a)
is saturated and ϕ(a) contains an element y belonging to Wi. The atom ϕ(a) also contains 1, whence

y ∈ RSi1,i ∩Wi. The fact that x, y ∈ ϕ(a) means that 〈x, y〉 ∈ εi. Therefore, x ∈
[

RS
i

1,i ∩Wi
]

εi
.

Conversely, suppose that x ∈ [RSi1,i ∩Wi
]

εi
∪ D. If x ∈ D then x ∈ RSid,i . If x �∈ D then there are

a final tower T = 〈S ,M , c, ϕ〉 with Si � S and an element a ∈ M of level i such that x ∈ ϕ(a) and
ϕ(a) ∩Wi �= ∅. If ϕ(a) ∈ {A1, . . . , Ak} then d ∈ ϕ(a) and x ∈ RSid,i . If d �∈ ϕ(a) then the frame with
spectrum Si built on ϕ(a) is not dense and there are only finitely many possibilities for x.

We have Ψ
(

U | RSid,i
)

= Ψ
(

U | [RSi1,i ∩Wi
]

εi
∪ D) = Ψ(U ∪ {0} | [RSi1,i ∩Wi

]

εi

) ∨Lm
Ψ(U | D) =

Ψ
(

U ∪ {0} | RSi1,i ∩ Wi
) ∨Lm ⊥Lm = Ψ

(

U | RSi1,i ∩ Wi
)

. Let X be the union of all Y such that Y

equals either RS,01,m for a spectrum S of length m < i or R
S
1,i for a bad spectrum of length i. For all Y

composing X, Ψ(U | Y ) = ⊥Lm , whence Ψ(U | X) = ⊥Lm . We derive from N = X ∪RSi1,i that

u = Ψ(U |Wi) = Ψ
(

U | (X ∩Wi) ∪
(

RS
i

1,i ∩Wi
))

= ⊥Lm ∨Lm

Ψ
(

U | RSi1,i ∩Wi
)

= Ψ
(

U | RSid,i
)

= λ(ν(d)). �

To complete the proof of the theorem, it remains to asserting that U is computable or coimmune.
It is, indeed, the case since every infinite computably enumerable set contains elements from U . Indeed,
if Wi is infinite then it contains either nonzero elements from D, or numbers from the bases of the final
towers of height > i, or infinitely many numbers belonging to the bases of the final towers of height ≤ i.
In the first case, Wi ∩ U �= ∅ since D ⊆ U ∪ {0}; in the second case, Wi ∩ U �= ∅ because of Stage I of
enumerating U ; and in the third case, Wi ∩ U �= ∅ since only finitely many final towers of height ≤ i do
not contain in their bases the numbers not from U .
Theorem 2 is now proved.
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§ 3. Applications to Enumeration Theory
The results of the previous sections allow us to solve a series of open problems and to strengthen

some results in enumeration theory.
Let n ∈ N, let F be a nonempty family of sets belonging to the class Σ0n+1 of the arithmetical

hierarchy, and let ν be a numbering of F . Then ν is called Σ0n+1-computable if the set of the pairs
{〈x, y〉 : x ∈ νy} belongs to Σ0n+1. The Σ0n+1-computable numberings form an ideal in the semilattice of
all numberings of F . This ideal is called the Rogers semilattice of F and is denoted by R0n+1(F ).

For n = 0, the notion of Σ0n+1-computable numbering coincides with the classical definition of com-
putable numbering. Study of these numberings was carried out since the end of the sixties of the twentieth
century. Many papers on this topic has appeared; among those, we should mention the monograph [9].
For n > 0, the research on Σ0n+1-computable numberings has started in the second half of the last decade
of the twentieth century. Among all papers devoted to those numberings, we can mention [3–6, 13, 14] as
well as a number of other papers which did not appear in the bibliography list of the current paper.
One of the main objectives of enumeration theory in studying the arithmetical numberings (that is,

Σ0n+1-computable for some n) is the study of the algebraic properties of the Rogers semilattices; namely,
the description of their isomorphism types in general as well as the description of the isomorphism types
of the principal ideals and intervals of these semilattices (the so-called local description), the description of
the elements possessing certain properties (minimal, irreducible, accessible elements, etc.). Some results
have been already obtained in this direction; see the papers cited above.
To strengthen some of those results and to obtain new ones, we extend the operator Ψ to numberings

(in the same way as it was done in [3, 4, 11, 12, 14] and in different terms in some other papers). Let ν be
a numbering of an arbitrary set S and let X be a nonempty computably enumerable set. We let Ψ(ν | X)
to be equal to the coset of the set of numberings of ν(X) containing the numbering ν ◦ f , where f is
a computable total function with range X. It is not hard to check that this definition does not depend
on the choice of f and for this notation the properties analogous to those of the Ψ-operator for sets hold.
Namely:

(1) for an arbitrary numbering μ, μ ≤ ν ⇔ there is a computably enumerable set X such that
[μ] = Ψ(ν | X);
(2) Ψ(ν | X1 ∪X2) = Ψ(ν | X1) ∨Ψ(ν | X2);
(3) Ψ(ν | X1) ≤ Ψ(ν | X2) if and only if ν(X1) ⊆ ν(X2) and there is a partial computable function θ

such that X1 ⊆ δθ, θ(X1) ⊆ X2, and (∀x ∈ X1)(νx = νθ(x)).
Lemma 7. Let a, b ∈ R0n+1(F ) for some n,F and a ≤ b. Then the interval [a, b] in R0n+1(F ) is

a bounded distributive semilattice having Σ0n+3-representation.

Proof. Boundedness (that is, the existence of some bottom and top) is obvious. Distributivity
follows from the distributivity of R0n+1(F ).
Let ν be a numbering such that b = [ν]. We have a = Ψ(ν | X) for some computably enumerable

set X. Let δ be a numbering such that δe = Ψ(ν | X ∪We). From the properties of the Ψ-operator,
it is clear that δ is a numbering of the interval [a, b] and for every computable function u such that
Wu(d,e) = Wd ∪We we have δu(d, e) = δd ∨ δe. To prove that δ is a Σ0n+3-representation, it remains
to show that the relation “δd ≤ δe” belongs to the class Σ0n+3 of the arithmetical hierarchy. Note that
δd ≤ δe ⇔ (∃i ∈ N)(X ∪ Wd ⊆ δθi& θi(X ∪ Wd) ⊆ We&(∀z ∈ Wd)(νz = νθi(z)). Since ν is Σ0n+1-
computable, the relation “νz1 = νz2” belongs to Π

0
n+2, and the Tarski–Kuratowski algorithm applies to

give the desired conclusion. �
Corollary 2. If the semilattice R0n+1(F ) has a bottom then each of its principal ideals is a bounded

distributive lattice having Σ0n+3-representation.

Corollary 3. IfF is a nonempty finite family of Σ0n+1-sets then any principal ideal of the semilattice
R0n+1(F ) is a bounded distributive lattice having Σ

0
n+3-representation.
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We say that a semilattice is trivial if it has only one element. It is clear that if a family F of
Σ0n+1-sets is one-element then R0n+1(F ) is trivial. For n > 0, this sufficient condition is also necessary: it
is known that if n > 0 and a family F having more than one element has a Σ0n+1-computable numbering,
then R0n+1(F ) is infinite [4, 14]. For n = 0, the situation is more complicated. For finite F ⊆ E , the
semilattice R01(F ) is trivial if and only if all elements of F are not subsets of each other. Moreover, the
examples are known of an infinite F containing a pair of sets, one subset of the other, and for which
R01(F ) is trivial.
The local isomorphism type of a semilattice is the collection of the isomorphism types of all principal

ideals of this semilattice. We say that two semilattices are locally isomorphic if their local isomorphism
types are the same. If semilattices are isomorphic then they are also locally isomorphic; the converse is
obviously false.

Description of local isomorphism types of the semilattices R01(F ) for finite F is a well-known fact in
enumeration theory. There are only two of these types. One of those consists of a single trivial semilattice
and it appears for the trivial R01(F ); that is, when F does not contain a pair of sets such that one of
them is a subset of the other. If F does contain a pair of this sort then the principal ideals of R01(F ) are
exactly the Lachlan semilattices; that is, the semilattices that have 0-Lachlan representation; in other
words, all bounded distributive semilattices having Σ03-representation.

Below, we will generalize this result for an arbitrary n.

Lemma 8. For every n ∈ N, there is a bounded distributive semilattice having Σ0n+1-representation
but no Σ0n-representation.

Proof. In [15], it is claimed (with a reference to a paper of Feiner) that there is a Boolean algebra
having Σ01-representation but no computable representation. This algebra cannot have a computable
representation either as a join semilattice, since in the same book it is proved that a Boolean algebra is
computable as an algebra if and only if it is computable as a poset. Therefore, for n = 0, our lemma is
proved. Relativizing the claim of the lemma to 0(n), we get its validity for an arbitrary n. �

Lemma 9. Let R0n+2(F ) be a nontrivial semilattice and let L be an arbitrary bounded distributive

semilattice having Σ0n+3-representation. Then there is an ideal in R0n+2(F ) isomorphic to
(1) L if F is finite;

(2) L without a bottom if F is infinite.

Proof. In [4], the following result is proved:

If R0n+2(F ) is a nontrivial semilattice and a set U is 0
(n+1)-computable and immune, then there is

an ideal in R0n+2(F ) isomorphic to Lm
U in case F is finite and to Lm

U without a bottom in case F is
infinite.

Let R0n+2(F ) be a nontrivial semilattice and let L be a bounded distributive semilattice having

Σ0n+3-representation. By Corollary 1, there is an immune or computable Π
0
n+1-set U such that L ∼= Lm

U .
If U is computable then L is trivial and the claim of the lemma is obvious. If U is immune then it
suffices to notice that all sets from Π0n+1 are 0

(n+1)-computable and to refer to the result cited above. �

Corollary 4. If R0n+2(F ) is a nontrivial semilattice and L is an arbitrary bounded distributive

semilattice having Σ0n+3-representation, then there is an ideal in R0n+2(F ) isomorphic to L .

Proof. If F is finite then we refer to Lemma 9. If F is infinite then we can consider instead of L
the semilattice L with a new bottom added and use Lemma 9 again. �

Theorem 3. Let F be a finite collection of Σ0n+2-sets. Then one of the following three cases occurs:

(1) F is one-element and R0n+2(F ) is trivial;
(2) F is not one-element, any of its elements does not contain any other element as a subset, and all

principal ideals inR0n+2(F ) are exactly the bounded distributive semilattices having Σ
0
n+3-representation;
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(3) F contains a pair of different sets, one of which is a subset of the other, and all principal ideals
in R0n+2(F ) are exactly the bounded distributive semilattices having Σ

0
n+4-representation.

Proof. If F is one-element then we are in the first case.
Let F contain more than one element and let F do not contain a pair of different sets, one of which

is a subset of the other. By Lemma 9, any bounded distributive semilattice having Σ0n+3-representation is

isomorphic to a principal ideal of R0n+2(F ). We show that there is no other ideal. Let b be an arbitrary
element of R0n+2(F ) and let a be a bottom of this semilattice The ideal generated by b is the interval
[a, b]. We proceed in the same way as in Lemma 7: we introduce ν, X, δ, etc. The only thing to be
verified is that the relation “νz1 = νz2” belongs to the class Π

0
n+2 of the arithmetical hierarchy.

Since all elements of F are pairwise noncomparable with respect to inclusion, there is a finite
collection S of finite sets such that, for every F ∈ F , there is S ∈ S with S ⊆ F ; and, conversely, for
every S ∈ S there is a unique F ∈ F with S ⊆ F . Hence,

νz1 = νz2 ⇔ (∀S1, S2 ∈ S )(S1 ⊆ νz1&S2 ⊆ νz2 → S1 = S2).
Applying the Tarski–Kuratowski algorithm to the right-hand side, we immediately get the desired con-
clusion.
We consider the last case. Let F1, F2 ∈ F be such that F1 ⊂ F2. By Corollary 3, each principal

ideal in R0n+2(F ) is a bounded distributive semilattice having Σ
0
n+4-representation. We have to show

that the converse is also true; that is, each bounded distributive semilattice having Σ0n+4-representation
is isomorphic to a principal ideal in U . Let L be a semilattice of this kind. By Corollary 1, there is
U ∈ Σ0n+2 such that L ∼= Lm

U . Let ν be a decidable numbering of F and let μ be a numbering of

{F1, F2} such that μx = F2 ⇔ x ∈ U . It is easy to see that ν ⊕ μ is a Σ0n+2-computable numbering of F
and the principal ideal in R0n+2(F ) generated by [ν ⊕ μ] is isomorphic to Lm

U . �

Thus all local isomorphism types are described of the semilatticesR0n+1(F ) for finiteF . As Lemma 8
and Theorem 3 show, there are three of these types for n > 0.
Moreover, Theorem 3 implies that, for all n ∈ N, there are finite collections F and G such that

the semilattices R0n+1(F ) and R0n+2(G ) are nontrivial and locally isomorphic. If the “level difference”
is more than 1; then, as the following theorem shows, the situation is totally different for all rather than
only finite collections.

Theorem 4. Let n,m ∈ N be such that n+2 ≤ m. If for some collectionsF and G their semilattices
R0n+1(F ) and R0m+1(G ) are locally isomorphic then the latter are trivial.

Proof. By Lemma 8, there is a bounded distributive semilattice having Σ0n+4-representation and

not having Σ0n+3-representation. Let R0m+1(G ) be nontrivial. By Corollary 4, there is a principal ideal
in R0m+1(G ) which is isomorphic to L . However, by Lemma 7 the semilattice R0n+1(F ) cannot contain
ideals isomorphic to L , since any ideal with bottom is an interval. Thus, if the semilattices are locally
isomorphic then R0m+1(G ) is trivial; whence R0n+1(F ) is also trivial. �

Corollary 5. If n + 2 ≤ m and the semilattices R0n+1(F ) and R0m+1(G ) are both nontrivial then
they are not isomorphic.

It is proved in [5] that for all F and m ≥ n + 4 there is G such that R0n+1(F ) and R0m+1(G ) are
not isomorphic. Then it was proved in [6] that if m ≥ n+ 3 then R0n+1(F ) and R0m+1(G ) are either not
isomorphic or trivial. Corollary 5 gives a stronger result: comparing with [6], the “level difference” is
reduced from 3 to 2.
The question remains open whether this “level difference” can be further reduced from 2 to 1; that is,

whether the nontrivial semilattices R0n+1(F ) and R0n+2(G ) should be nonisomorphic. It is only known
that for finite collections and for n = 0, this question has a positive answer. As it was noticed after
Theorem 3, even if all these semilattices are not isomorphic, this is impossible to justify on investigating
only their local isomorphism types.
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