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DETERMINING THE PARAMETERS OF A STRATIFIED
PIECEWISE CONSTANT MEDIUM FOR THE

UNKNOWN SHAPE OF AN IMPULSE SOURCE

V. G. Romanov UDC 517.958

Abstract: For a hyperbolic wave equation with some parameter λ, we consider the problem of finding
the piecewise constant wave propagation speed and a series of parameters in the conjugation condition.
Moreover, the shape is assumed unknown of the impulse point source that excites the oscillation process.
We prove that, under certain assumptions on the structure of the medium, its sought parameters are
determined uniquely from the displacements of points of the boundary given for two different values
of λ. We give an algorithm for solving the problem.
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§ 1. Introduction and the Main Results
Suppose that y0, y1, y2, . . . , yk, . . . , 0 = y0 < y1 < y2 < · · · < yk < . . . , is an ordered finite or infinite

sequence of points of the half-axis {y ≥ 0} which divides the latter into finitely or infinitely many intervals
(yk−1, yk), while {ck, k = 1, 2, . . . } and {ak, k = 1, 2, . . . } are two sequences of positive numbers. Suppose
that (ck, ak) �= (ck+1, ak+1) for all k = 1, 2, . . . . We assume also that the point at infinity is the unique
limit point in the case of an infinite sequence {yk}. In the domain G = R+ × R, R+ = {y ∈ R | y > 0},
consider the wave propagation process described by the differential equation

utt − c2kuyy + λ2c2ku = 0, (y, t) ∈ (yk−1, yk)× R, k = 1, 2, . . . , (1.1)

the initial and boundary conditions
u|t<0 ≡ 0, uy|y=0 = 0, (1.2)

the conjugation conditions

u|y=yk+0 = u|y=yk−0, ak+1uy|y=yk+0 = akuy|y=yk−0, k = 1, 2, . . . , (1.3)

and the condition of excitation of waves by a point impulse source concentrated at some y∗ ∈ (y0, y1):
u|y=y∗+0 = u|y=y∗−0, uy|y=y∗+0 − uy|y=y∗−0 = f(t) (f(t) ≡ 0, t < 0). (1.4)

Here u = u(λ, y, t) and λ is some parameter of the problem. This parameter arises usually in the wave
propagation problems in stratified media after application of the Fourier transform to the wave equation
in all spatial variables other than y.
For the given ck, ak, and f(t) problem (1.1)–(1.4) is well-posed and determines the function u(λ, y, t)

with compact support for every finite t. In applications, of interest is the problem of finding the structure
of the medium (in our case the constants yk, ck, and ak, k = 1, 2, . . . ) from the displacements of the
points of the medium which are measured on the boundary of the domain

u|y=0 = F (λ, t), t ∈ (0, T ), (1.5)
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for a finite time interval and different values of λ. Actually, we speak of constructing the two piecewise
constant functions c = c(y) and a = a(y) that coincide with the respective numbers ck and ak on
their constancy intervals (yk−1, yk). Since the speed of propagation is finite, having information of the
form (1.5), we can try to determine these functions only on some finite interval whose length depends on T
and is monotone increasing with the growth of T . In the case when the wave propagation speed c = c(y)
is a continuous function of y (in this case we do not need the conjugation equations), a similar problem
for a known function f(t) was considered in a series of articles (for example, see [1–6]) and in the case
similar to (1.1)–(1.5) but with some more complicated equations that describe propagation of waves in
an elastic stratified plate, in [7]. In these articles a series of uniqueness and stability theorems were
established for the corresponding inverse problems.
Here we consider the problem of finding yk, ck, and ak, k = 1, 2, . . . , from information (1.5) on

an unknown function f(t). Of course, in this case we should make some assumptions about the structure
of f(t) (we return to this issue below). Note that in the case of a continuously nonhomogeneous stratified
medium a similar statement of the problem appeared first in M. L. Gerver’s monograph [8]. However,
the differential equation of string oscillations had no parameter λ (this equation corresponds to the case
of the normal incidence of an acoustic or elastic wave onto the boundary of the half-space, while (1.1)
describes a more general case of oblique incidence). This circumstance became an obstacle for obtaining
a uniqueness theorem and an algorithm for solution of the inverse problem suitable for applications. Some
results connected with stability of a solution to the inverse problem and the method for its solution in
the statement with parameter λ were obtained in the author’s article [9]. In this paper, we establish
a uniqueness theorem for (1.1)–(1.5) and construct an algorithm for effective solution of the problem.
Moreover, as in [9], we use (1.5) given for two different values of λ.
We make some transformations of the initial problem in order to make it more convenient for com-

putations. First of all, introduce the new variable z and the sequence of points zk, k = 1, 2, . . . , by the
formula

z =

{ y
c1
, y ∈ (y0, y1), z1 = y1

c1
,

zk +
y−yk
ck+1
, y ∈ (yk, yk+1), zk+1 = zk + yk+1−ykck+1

, k = 1, 2, . . . .
(1.6)

Additionally, we denote z0 = 0 and z
∗ = y∗/c1. It is obvious that z∗ ∈ (z0, z1). The physical meaning

of the new variable is the traveling time of a signal along the straight line from y0 to y. Let y = y(z)
be the inverse of the function defined by (1.6). Introduce the new function v(λ, z, t) = u(λ, y(z), t). This
function is a solution to the problem

vtt − vzz + λ2c2kv = 0, (z, t) ∈ (zk−1, zk)× R, k = 1, 2, . . . , (1.7)

v|t<0 ≡ 0, vz|z=0 = 0, (1.8)

v|z=zk+0 = v|z=zk−0, vz|z=zk+0 = dk,k+1vz|z=zk−0, k = 1, 2, . . . , (1.9)

v|z=z∗+0 = v|z=z∗−0, vz|z=z∗+0 − vz|z=z∗−0 = g(t), g(t) = c1f(t), (1.10)

in which dk,k+1 = ck+1ak/(ckak+1) characterizes the value of the jump of the normal derivative of v on
the boundary z = zk which is the interface between the kth layer, zk−1 < z < zk, and the (k + 1)th
layer. Note that the coefficient dk,k+1 can equal 1 even under the above condition (ck, ak) �= (ck+1, ak+1).
In this case it is necessary that ck �= ck+1. To demonstrate by way of contradiction; assuming that
ck = ck+1, from the condition dk,k+1 = 1 we find that ak = ak+1 and hence (ck, ak) = (ck+1, ak+1). This
contradicts the initial assumption. Thus, it is possible that the function v remains continuous upon the
passage through the boundary z = zk together with its normal derivative, the wave propagation speed
has a finite jump but on this boundary. As we see from (1.7), in this situation the second derivative vzz
has a finite jump; therefore, z = zk is the boundary of weak discontinuity of v.
We can write the information of the solution to (1.7)–(1.10) used for solution of the inverse problem as

v|z=0 = F (λ, t), t ∈ (0, T ). (1.11)
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Below, studying the inverse problem, we suppose that g(t) has the structure

g(t) = bδ(t) + ĝ(t)θ0(t), (1.12)

where b �= 0, θ0(t) is the Heaviside function: θ0(t) = 1 for t ≥ 0 and θ0(t) = 0 for t < 0, and ĝ(t) ∈
C1[0, T − z∗), T > 0.
Theorem 1.1. Suppose that (1.12) holds with b �= 0 and ĝ(t) ∈ C1[0, T −z∗). Assume that T > 0 is

chosen so that F (λ, t) �≡ 0 for t ∈ (0, T ). Then the prescription of F (λ, t) on t ∈ (0, T ) for two values λ1
and λ2 such that λ

2
1 �= λ22 uniquely determines b, z∗, and the set of numbers zk, ck, ck+1, and dk,k+1

corresponding to those values of k for which zk < (T + z
∗)/2. Moreover, ĝ(t) is determined uniquely for

all t ∈ [0, T − z∗).
This theorem is proven in § 3 and provides a constructive algorithm for finding all parameters of

the medium. The algorithm is based on construction of a special function v∗(λ, z, t) that contains all
discontinuities of the solution v to problem (1.7)–(1.10) as well as the discontinuities of its first and
second derivatives with respect to the variable t. This function is a collection of traveling waves excited
by the point source at (z∗, 0) and multiply by reflected in the boundaries z = zk, k = 0, 1, 2, . . . . It is
defined by the formula

v∗(λ, z, t) = θ0(t)
∑
s≥1
[αi(z)θ0(t+ χiz − τi)

+βi(λ, z)θ1(t+ χiz − τi) + γi(λ, z)θ2(t+ χiz − τi)], (1.13)

where i = (i1, i2, . . . , is) is the multi-index describing the “history” of the traveling wave and comprising
the numbers of the boundaries on which this wave was reflected or refracted, the parameter χi charac-
terizes the direction of its propagation and takes the values +1 or −1 depending on the values of the
multi-index, τi is some number defined by a recurrent formula, and θk(t) = t

kθ0(t)/k!, k = 1, 2. The
system of notation connected with the function v∗(λ, z, t) and the construction of the latter are described
in detail in § 2. Moreover, the function v∗ is constructed so that the difference v − v∗ = w be a smooth
function. Namely, we have the following theorem:

Theorem 1.2. Suppose that (1.12) holds with b �= 0 and ĝ(t) ∈ C1[0, T − z∗). Then the function
w(λ, z, t) = v(λ, z, t) − v∗(λ, z, t) is continuous in D(T ) = {(z, t) | z ≥ 0, 0 ≤ t < T − z} together with
wt and wtt, while w(λ, z, t) ≡ 0 for t ≤ |z − z∗|.
This theorem is proven in § 4. It follows from this theorem that F (λ, t) is the trace of the sum of

the two functions v∗ and w for z = 0; moreover, the trace of the second function is twice continuously
differentiable with respect to t, while the trace of the first is just a piecewise smooth quadratic function
containing the finite discontinuities of the function itself and its first and second derivatives. On the one
hand, these discontinuities coincide with the corresponding discontinuities of F (λ, t) and consequently
are known. On the other hand, the discontinuities of v∗(λ, 0, t) are expressed in terms of the parameters
of the medium. With these two facts in mind, we can determine the sought parameters, tracing the
values of discontinuities of F (λ1, t) and F (λ2, t) and their first two derivatives.

Remark 1. Theorem 1.1 claims that from the given (1.5) we can find some finitely many parameters
z1, . . . , zn, c1, . . . , cn+1, d1,2, . . . , dn,n+1 that characterize the stratified medium. Naturally, in this case we
easily find the initial boundaries of the layers y1, . . . , yn and the speed inside them. However, a1, . . . , an
cannot be reconstructed uniquely. It was clear from the very beginning, since the conjugation conditions
are determined uniquely only by ak/ak+1, k = 1, . . . , n. Obviously, all these relations are determined by
c1, . . . , cn+1 and d1,2, . . . , dn,n+1.

Remark 2. We can replace the above assumption about the structure of the source with a more
general assumption. Namely, we can suppose that (1.12) is valid with its left-hand side replaced with
the derivative of g(t) of some integer order k ≥ 0. In this case differentiation of all relations (1.7)–(1.11)
with respect to the variable t of order k reduces the problem to the one under consideration.
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§ 2. Construction of v∗
Under the conditions of Theorem 1.1, we have the representation ĝ(t) = g0 + g1t + o(t) in which

g0 = ĝ(0) and g1 = ĝ
′(0). In this connection, consider the question of construction of the discontinuous

component v∗ of the solution to (1.7)–(1.10) which also contains the discontinuities of its first and second
derivatives with respect to t, putting

g(t) = bδ(t) + g0θ0(t) + g1θ1(t) + ḡ(t)θ1(t) (2.1)

in (1.10). Here ḡ(t) = o(t) as t→ 0. The way of construction of this function is well known (for example,
see [10]). The sought function consists of the collection of traveling waves propagating along the charac-
teristics of the differential equation and excited by the source singularities (such as δ(t), θ0(t), and θ1(t))
localized at (z∗, 0). These waves, propagating on the z, t-plane, meet the discontinuity boundaries z = zk
of the medium parameters which leads to the appearance of reflected and refracted traveling waves whose
computation agrees with the boundary condition and the conjugation conditions. We observe an intri-
cate picture of the waves multiply reflected and refracted from boundaries. To describe it, we need to
introduce an appropriate system of notation.
Consider the function v∗ defined above by (1.13). We now explain in detail the meaning of each

summand of this formula and the symbols involved. We start with the multi-index i = (i1, i2, . . . , is).
By definition, its components are the indices of boundaries, i.e., nonnegative integers. For s = 1 this
multi-index becomes the usual index and takes only two values 0 or 1. With the index i = 0 we associate
the wave propagating from the source to the left towards the boundary z = z0 = 0, and with the index
i = 1 we associate the wave traveling from the source to the right towards the boundary z = z1. For
s = 2 the multi-index i is equal to (i1, i2), where i1 can take only the values 0 or 1 and the index i2 cannot
coincide with i1 and differs from i1 by one (if this is admissible, i.e., does not lead to the appearance
of negative values). Thus, for s = 2 three possible values of the multi-index are: i = (0, 1), i = (1, 0),
and i = (1, 2). The first of them is associated with the wave reflected from the boundary z = z0 and
traveling towards the boundary z = z1, the second, with the wave reflected from the boundary z = z1
and traveling towards the boundary z = z0, and third, with the wave refracted on the boundary z = z1
and traveling towards the boundary z = z2. The further definition is done by the recurrent scheme: the
multi-index i = (i1, i2, . . . , is) consists of a multi-index i

′ = (i1, i2, . . . , is−1) and a nonnegative number is
that differs from the index is−1 by one. This multi-index is associated with the wave that propagates
first from the source towards the boundary z = zi1 then, after refraction or reflection on this boundary,
towards the boundary z = zi2 , and so on. By definition, this wave is defined only for z ∈ [zk−1, zk], where
k = max(is−1, is). Thus, αji = β

j
i = γ

j
i ≡ 0 outside [zk−1, zk].

We now turn to explanation of the symbols χi and τi. If i = 0 then χi = 1 and τi = z
∗; if i = 1

then we put χi = −1 and τi = −z∗. Then the characteristics of the differential equation t+ χiz − τi = 0
corresponding to these values of χi and τi pass through (z

∗, 0) and correspond to the waves propagating
from the source to the left or to the right. Now, for two-component multi-indices we put

χi =

⎧⎨
⎩
−1, i = (0, 1),
+1, i = (1, 0),

−1, i = (1, 2),
τi =

⎧⎨
⎩
z∗, i = (0, 1),

2z1 − z∗, i = (1, 0),
−z∗, i = (1, 2).

In the case when the number of components is greater than two we put

χi =

{ −1, is = is−1 + 1,
+1, is = is−1 − 1, τi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τi1,...,is−1 , is = is−1 + 1 = is−2 + 2,
τi1,...,is−1 , is = is−1 − 1 = is−2 − 2,
τi1,...,is−1 − 2zis−1 , is = is−1 + 1 = is−2,
τi1,...,is−1 + 2zis−1 , is = is−1 − 1 = is−2.

These definitions of χi and τi guarantee continuity of the polygonal line starting at the source and com-
posed of the segments of characteristics of positive or negative slope. Each segment of the characteristic
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t + χiz − τi = 0 lying in the strip z ∈ (zk−1, zk), where k = max(is−1, is), supports a discontinuity of
a solution to (1.7)–(1.10). The expression αi(z)θ0(t+χiz− τi) describes a finite jump of a solution upon
the passage through the corresponding characteristic, while the expressions βi(λ, z)θ1(t + χiz − τi) and
γi(λ, z)θ2(t+χiz− τi) describe the respective finite jumps of the first and second derivatives of a solution
in the variable t. To obtain formulas for calculation of the coefficients αi(z), βi(λ, z), and γi(λ, z), we
have to insert v = v∗ + w in (1.7) and equate to zero the coefficients of δ(t+ χiz − τi), θ0(t+ χiz − τi),
and θ1(t+χiz− τi). Eventually, we obtain the following differential equations for αi(z), βi(λ, z), γi(λ, z),
and w(λ, z, t):

α′i = 0, −2β′iχi − α′′i + λ2c2kαi = 0, −2γ′iχi − β′′i + λ2c2kβi = 0, (2.2)

wtt − wzz + λ2c2kw = ϕk, (z, t) ∈ (zk−1, zk)× R, k = 1, 2, . . . . (2.3)

In these equalities the symbol ′ stands for differentiation with respect to the variable z, the number k
agrees with the multi-index i = (i1, . . . , is) as follows: k = max(is−1, is) if s > 1 and k = 1 if s = 1. The
function ϕk is calculated by the formula

ϕk(λ, z, t) =
∑
s≥1

[
γ′′i − λ2c2kγi

]
θ2(t+ χiz − τi) (z, t) ∈ (zk−1, zk)× R, k = 1, 2, . . . , (2.4)

in which summation is carried out only over these multi-indices satisfying either (is−1, is) = (k− 1, k) or
(is−1, is) = (k, k − 1). Note that, in the domain D(T ) where (2.3) will be considered, the function ϕk
comprises only finitely many summands different from zero, since θ2(t+ χiz − τi) = 0 if t+ χiz − τi < 0.
Hence, for χi = 1 in the sum defining ϕk we have to consider only those summands for which τi < T
and for χi = −1 we take only those summands for which τi + 2zk−1 < T . Equations (2.2) can be easily
integrated. If i = 0 or i = 1 then the corresponding solutions have the form

αi(z) = αi(z
∗), βi(λ, z) = βi(z∗) +

χiαi

2
λ2c21(z − z∗),

γi(z, λ) = γi(λ, z
∗) +

χi

2
λ2c21βi(z

∗)(z − z∗) + αi
8
λ4c41(z − z∗)2.

(2.5)

In the general case i = (i1, . . . , is), s ≥ 2, the solutions to (2.2) are calculated by the formulas
αi(z) = αi(zis−1), βi(λ, z) = βi(λ, zis−1) +

χiαi

2
λ2c2k(z − zis−1),

γi(z, λ) = γi(λ, zis−1) +
χi

2
λ2c2kβi(λ, zis−1)(z − zis−1) +

αi

8
λ4c4k(z − zis−1)2,

(2.6)

in which k = max(is−1, is). The constants in these formulas (for a fixed λ) are found from (1.8)–(1.10).
Substituting v∗ + w for v in (1.10) and equating the coefficients of the same singularities, we find the
following relations for determining αi, βi(z

∗), and γi(λ, z∗) as well as the conjugation conditions for w
at z = z∗:

α1 − α0 = 0, α1 + α0 = −b,
β1(z

∗)− β0(z∗) = 0, β1(z∗) + β0(z∗) = −g0,
γ1(λ, z

∗)− γ0(λ, z∗) = 0, γ1(λ, z∗) + γ0(λ, z∗) + 1
2
λ2c21
(
α1 + α0

)
= −g1, (2.7)

w|z=z∗+0 = w|z=z∗−0, wz|z=z∗+0 − wz|z=z∗−0 = h(λ, t). (2.8)

Here h(λ, t) is defined by the formula

h(λ, t) = ḡ(t)θ1(t) +
1

2
λ2c21(β0(z

∗) + β1(z∗))θ2(t). (2.9)

From (2.7) we find that

α1 = α0 = − b
2
, β1(z

∗) = β0(z∗) = −g0
2
, γ1(λ, z

∗) = γ0(λ, z∗) = −g1
2
+
b

4
λ2c21. (2.10)
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Similarly, substituting v∗+w for v in (1.8) and equating the coefficients of the same singularities, we
find the following recurrent relations for determining αi, βi(λ, z0), and γi(λ, z0) for those values of the
multi-indices i = (i1, . . . , is) in which the last two indices are already defined by the equalities is−1 = 0
and is = 1:

αi1,...,is = αi1,...,is−1 , βi1,...,is(λ, z0) = βi1,...,is−1(λ, z0),

γi1,...,is(λ, z0) = γi1,...,is−1(λ, z0).
(2.11)

Moreover, we find the initial conditions for w and its boundary condition for z = 0. They have the form

w|t<0 ≡ 0, wz|z=0 = 0. (2.12)

Acting similarly, from (1.9) we find the recurrent relations for determining αi, βi(λ, zis−1), and
γi(λ, zis−1) for all multi-indices i = (i1, . . . , is). First, consider the case that differs from the general case
presented below. It corresponds to the multi-indices with only two components. This case is connected
with the waves starting from the source (z∗, 0) refracted and reflected on the boundary z = z1. Here the
incident wave corresponds to the value i = 1, the reflected wave, to the multi-index i = (1, 0), and the
refracted wave, to the multi-index i = (1, 2). The corresponding relations have the form

α1,2 = α1 + α1,0, β1,2(λ, z1) = β1(λ, z1) + β1,0(λ, z1),

γ1,2(λ, z1) = γ1(λ, z1) + γ1,0(λ, z1), −α1,2 = d1,2(−α1 + α1,0),
−β1,2(λ, z1) = d1,2(−β1(λ, z1) + β1,0(λ, z1)), (2.13)

−γ1,2(λ, z1)− 1
2
λ2c22α1,2 = d1,2

[
−γ1(λ, z1) + γ1,0(λ, z1)− 1

2
λ2c21(α1 − α1,0)

]
.

Hence, we find that

α1,0 = η1,2α1, β1,0(λ, z1) = η1,2β1(λ, z1),

γ1,0(λ, z1) = η1,2γ1(λ, z1) +
λ2

4

(
1− η21,2

)(
c21 − c22

)
α1,

α1,2 = (1 + η1,2)α1, β1,2(λ, z1) = (1 + η1,2)β1(λ, z1),

γ1,2(λ, z1) = (1 + η1,2)γ1(λ, z1) +
λ2

4

(
1− η21,2

)(
c21 − c22

)
α1.

(2.14)

In these formulas η1,2 =
d1,2−1
d1,2+1

. The number η1,2 is called the reflection index for the boundary z = z1;

and the number 1 + η1,2 is called the transmission index. It is obvious that η1,2 ∈ (−1, 1).
In the general case the wave can come to the boundary z = zk either from the left, like in the above

case, or from the right travelling from the layer (zk, zk+1). If the two but last values of the multi-index
i = (i1 . . . , is) are equal to is−2 = k− 1 and is−1 = k and the last equals is = k− 1 then this multi-index
describes the wave reflected from the boundary z = zk into the layer (zk−1, zk); if is = k + 1 then this
is the wave transmitted to the layer (zk, zk+1). Moreover, the formulas for calculation of αi, βi(λ, zis−1),
and γi(λ, zis−1) are quite similar to (2.14) and have the form

αi1,...,is = ηk,k+1αi1,...,is−1 , βi1,...,is(λ, zis−1) = ηk,k+1βi1,...,is−1(λ, zis−1),

γi1,...,is(λ, zis−1) = ηk,k+1γi1,...,is−1(λ, zis−1)

+
λ2

4

(
1− η2k,k+1

)(
c2k − c2k+1

)
αi1,...,is−1 , if is−2 = k − 1, is−1 = k, is = k − 1, (2.15)

αi1,...,is = (1 + ηk,k+1)αi1,...,is−1 , βi1,...,is(λ, zis−1) = (1 + ηk,k+1)βi1,...,is−1(λ, zis−1),

γi1,...,is(λ, zis−1) = (1 + ηk,k+1)γi1,...,is−1(λ, zis−1)

+
λ2

4

(
1− η2k,k+1

)(
c2k − c2k+1

)
αi1,...,is−1 , if is−2 = k − 1, is−1 = k, is = k + 1. (2.16)
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In these formulas ηk,k+1 =
dk,k+1−1
dk,k+1+1

is the reflection index for the boundary z = zk (towards the

layer (zk−1, zk)).
If two but last values of the multi-index i = (i1 . . . , is) are equal to is−2 = k+1 and is−1 = k then the

multi-index describes the wave reflected from the boundary z = zk if is = k+1 and the wave transmitted
to the layer (zk−1, zk) if is = k − 1. To use the available formulas, it suffices to rewrite the conjugation
conditions interchanging the layers k and k + 1; namely,

v|z=zk−0 = v|z=zk+0, vz|z=zk−0 = dk+1,kvz|z=zk+0, k = 1, 2, . . . . (2.17)

Here dk+1,k = 1/dk,k+1. In this case the formulas for calculation of αi, βi(λ, zis−1), and γi(λ, zis−1) take
the form

αi1,...,is = ηk+1,kαi1,...,is−1 , βi1,...,is(λ, zis−1) = ηk+1,kβi1,...,is−1(λ, zis−1),

γi1,...,is(λ, zis−1) = ηk+1,kγi1,...,is−1(λ, zis−1)

+
λ2

4

(
1− η2k+1,k

)(
c2k+1 − c2k

)
αi1,...,is−1 if is−2 = k + 1, is−1 = k, is = k + 1, (2.18)

αi1,...,is = (1 + ηk+1,k)αi1,...,is−1 , βi1,...,is(λ, zis−1) = (1 + ηk+1,k)βi1,...,is−1(λ, zis−1),

γi1,...,is(λ, zis−1) = (1 + ηk+1,k)γi1,...,is−1(λ, zis−1)

+
λ2

4

(
1− η2k+1,k

)(
c2k+1 − c2k

)
αi1,...,is−1 if is−2 = k + 1, is−1 = k, is = k − 1. (2.19)

The numbers ηk+1,k in these formulas are defined by the equalities

ηk+1,k =
dk+1,k − 1
dk+1,k + 1

= −ηk,k+1.

Equalities (1.9) determine the conjugation conditions for w at z = zk. They have the form

w|z=zk+0 = w|z=zk−0, wz|z=zk+0 = dk,k+1wz|z=zk−0 + hk(λ, t), k = 1, 2, . . . . (2.20)

Here hk(λ, t) is calculated by the formula

hk(λ, t) =
λ2

2

∑
s≥1

(
c2k − c2k+1

)
(1− χiηk,k+1)(1− dk,k+1)χiβi(λ, zk)θ2(t+ χizk − τi) (2.21)

in which k = is.
Thus, we have described all formulas necessary for calculation of the summands generating v∗(λ, z, t).

Summing over the multi-indices all traveling waves whose supports have nonempty intersection with
D(T ) = {(z, t) | z ≥ 0, 0 ≤ t < T − z}, we construct the function v∗ that accumulates all discontinuities
of the solution to (1.7)–(1.10) lying in D(T ).

§ 3. Proof of Theorem 1.1 and an Algorithm
for Computing the Medium Parameters

Consider the trace of v∗(λ, z, t) for z = 0. Put v∗(λ, 0, t) = F ∗(λ, t). It follows from the construction
of v∗(λ, z, t) that F ∗(λ, t) is a piecewise quadratic function of t and is defined by the equality

F ∗(λ, t) = θ0(t)
∑
s≥1
[αiθ0(t− τi) + βi(λ, 0)θ1(t− τi) + γi(λ, 0)θ2(t− τi)], (3.1)
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in which summation is carried out over all multi-indices i = (i1, . . . , is) such that either is = 0 or
(is−1, is) = (0, 1). By Theorem 1.2, F (λ, t) − F ∗(λ, t) = v(λ, 0, t) − v∗(λ, 0, t) = w(λ, 0, t) ∈ C2(0, T ).
Therefore, F (λ, t) and F ∗(λ, t) have discontinuities at the same points of (0, T ) and the values of these
discontinuities as well as their first and second derivatives coincide. Since F (λ, t) is known, the points at
which F ∗(λ, t) and its first two derivatives are discontinuous as well as the values of these discontinuities.
It follows from (3.1) that F ∗(λ, t) = 0 for t < z∗. Therefore, if F ∗(λ, t) �≡ 0, t ∈ (0, T ), then z∗ ∈ (0, T ).
Formulas (3.1), (2.5), (2.6), (2.10), and (2.11) lead to the equalities

F ∗(λ, z∗ + 0) = 2α0 = −b = F (λ, z∗ + 0),
F ∗t (λ, z

∗ + 0) = 2β0(λ, 0) = −g0 − λ2c21α0z∗ = Ft(λ, z∗ + 0), (3.2)

F ∗tt(λ, z
∗ + 0) = 2γ0(λ, 0) = −g1 + 1

2
λ2c21b− λ2c21β0(z∗)z∗ +

1

4
λ4c41α0(z

∗)2 = Ftt(λ, z∗ + 0).

The first of these equalities means that F (λ, t) has a nonzero jump at t = z∗ and therefore determines
z∗ = sup{t∗ ∈ (0, T ) | F (λ, t) ≡ 0, t ∈ (0, t∗)}, and also the value b. The second equality considered for
λ = λ1 and λ = λ2 determines g0 = g(+0) and c1 (recall that λ

2
1 �= λ22), and the third equality enables us

to calculate g1 = g
′(+0).

Thus, the speed in the first layer becomes known, while the boundary z = z1 remains unknown.
Find a necessary and sufficient condition under which we can determine it. As we see from (3.1), the
discontinuity of F (λ, t) next to the point t = z∗ is possible only in result of the waves reflected once from
the boundary z = z1. These waves correspond to the multi-indices i = (1, 0) and i = (1, 0, 1). Show
that either F ∗(λ, t) or the second derivative F ∗tt(λ, t) of F ∗(λ, t) is discontinuous at t = τ1,0 = 2z1 − z∗.
From (2.5), (2.6), (2.10), (2.11), and (2.14) we obtain the equalities

[F ∗]t=τ1,0 = 2α1,0 = 2η1,2α1 = −bη1,2 = [F ]t=τ1,0 ,

[F ∗t ]t=τ1,0 = 2β1,0(λ, 0) = 2η1,2
(
β1(λ, z1)− 1

2
λ2c21α1z1

)

= 2η1,2

(
β1(z

∗)− 1
2
λ2c21α1(2z1 − z∗)

)
= [Ft]t=τ1,0 ,

[F ∗tt]t=τ1,0 = 2γ1,0(λ, 0)

= 2η1,2

(
γ1(λ, z1)− 1

2
λ2c21β1(λ, z1)z1 +

1

8
λ4c41α1z

2
1

)
+
λ2

2

(
1− η21,2

)(
c21 − c22

)
α1

= 2η1,2

(
γ1(λ, z

∗)− 1
2
λ2c21β1(z

∗)(2z1 − z∗) + 1
8
λ4c41α1(2z1 − z∗)2

)

+
λ2

2

(
1− η21,2

)(
c21 − c22

)
α1 = [Ftt]t=τ1,0 . (3.3)

Here [·]t=t0 denotes the value of the jump of the function in the brackets upon the passage through
t = t0. Formulas (3.3) demonstrate that we have the following alternative: either η1,2 �= 0 and F ∗ is
discontinuous at t = τ1,0 or η1,2 = 0, implying that F

∗ and F ∗t are continuous at t = τ1,0 and F ∗tt has finite
discontinuity at this point. The latter follows from the fact that η1,2 = 0 only if d1,2 = 1; and in this case,
as noticed above, c1 �= c2. Thus, a necessary and sufficient condition for determining t = τ1,0 from the
given function F (λ, t) is that the function itself or its second derivative Ftt has discontinuity on (z

∗, T ).
On the other hand, if the number of discontinuity points is greater than one then, obviously, the value
t = τ1,0 corresponds to the nearest point of z

∗, i.e., τ1,0 = sup{t∗ ∈ (z∗, T ) | F (λ, t) ∈ C2(z∗, t∗)}. That
is the value τ1,0 which determines the boundary of the first layer z1 = (τ1,0 + z

∗)/2. Moreover, the first
equality in (3.3) determines η1,2 and hence d1,2. Then the first summand in the third equality having the
factor η1,2 becomes known and, since at least one of the values λ1 and λ2 is nonzero, the functions F (λ1, t)
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and F (λ2, t) uniquely determine the speed c2 in the layer (z1, z2). The next question is about finding the
next boundary z = z2, the speed in the layer (z2, z3), and the value d2,3, and so on.
Consider the general case: assume that the boundary z = zn−1 and the numbers cn and dn−1,n,

n ≥ 2, are already available. We have to answer the following question: Can we find the next boundary
z = zn from the data of the problem? If the answer to this question is positive then we need to give the
formulas for computation of zn and the parameters cn+1 and dn,n+1. Introduce the function F

∗
n(λ, t) by

the equality

F ∗n(λ, t) = θ0(t)
∑
s≥1
[αiθ0(t− τi) + βi(λ, 0)θ1(t− τi) + γi(λ, 0)θ2(t− τi)], (3.4)

where summation is carried out over all multi-indices i = (i1, . . . , is) such that ik ≤ n − 1, k = 1, . . . , s,
and either is = 0 or (is−1, is) = (0, 1) and τi < T . The function F ∗n(λ, t) contains the part of F ∗(λ, t)
that corresponds to the waves multiply reflected and refracted inside the first n − 1 layers. Since all
parameters of these layers are available by the above assumption, the summands of this function can be
calculated by the formulas in § 2 and thus F ∗n(λ, t) is known.
Introduce the difference F (λ, t)−F ∗n(λ, t). In terms of this function, the above question is settled as

follows: if the difference F (λ, t) − F ∗n(λ, t) is a function of the class C2(0, T ) then the boundary z = zn
cannot be found, since the data of the inverse problem contain no information about the waves reflected
from this boundary. If this difference on (0, T ) contains discontinuities of either the function itself or its
second derivative then the boundary zn and the parameters cn+1 and dn,n+1 are determined uniquely.
Indeed, consider the wave corresponding to the multi-index i = (1, 2, . . . , n − 1, n, n + 1, . . . , 1, 0). It is
obvious that this is the earliest wave of those reflected from the boundary z = zn that attains the axes
z = 0. Let τi be the corresponding traveling time of the signal from the source to the boundary z = zn
and then from this boundary to the axis z = 0. Then the following hold:

[F ∗ − F ∗n ]t=τi = 2αi = 2κnα1 = −bκn = [F − F ∗n ]t=τi ,

[(F ∗ − F ∗n)t]t=τi = 2βi(λ, 0) = 2κn
(
β1(z

∗)− 1
2
λ2νnα1

)
= [(F − F ∗n)t]t=τi ,

[(F ∗ − F ∗n)tt]t=τi = 2γ1,0(λ, 0)

= 2κn

(
γ1(λ, z

∗)− 1
2
λ2β1(z

∗)νn +
1

8
λ4α1ν

2
n +
1

2
λ2α1pn

)
+
1

2
λ2α1qn = [(F − F ∗n)tt]t=τi . (3.5)

Here

κn = ηn,n+1

n−1∏
k=1

(
1− η2k,k+1

)
, νn = c

2
1(2z1 − z∗) + 2

n∑
k=2

c2k(zk − zk−1),

pn =
n−1∑
k=2

(c2k − c2k+1)(1− ηk,k+1), qn =
( n∑
k=2

(
c2k+1 − c2k

)
(1− ηk,k+1)

) n−1∏
k=1

(
1− η2k,k+1

)
. (3.6)

Formulas (3.5) demonstrate that we have the alternative: either κn �= 0 and then (F ∗ − F ∗n) is dis-
continuous at t = τi or κn = 0, implying that (F

∗ − F ∗n) and (F ∗ − F ∗n)∗t are continuous at this point
and ηn,n+1 = 0 and dn,n+1 = 1. In the latter case (F

∗ − F ∗n)∗tt has finite discontinuity at t = τi,
i = (1, 2, . . . , n − 1, n, n + 1, . . . , 1, 0). Thus, a necessary and sufficient condition for the point to be
determined from F − F ∗n is that either this function or its second derivative (F − F ∗n)tt on (0, T ) has
discontinuity. If there is discontinuity then τi = sup{t∗ ∈ (0, T ) | F (λ, t) ∈ C2(0, t∗)} and the bound-
ary z = zn is found by the formula zn = (τi + z

∗)/2. Otherwise the interval (0, T ) of observation of
F (λ, t) turns out to be insufficient for determination of this boundary. Once the boundary z = zn is
found, the first equality in (3.5) determines the value κn and hence ηn,n+1 and dn,n+1. Then the first
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summand of the third equality with κn becomes known. Therefore, the functions F (λ1, t)−F ∗n(λ1, t) and
F (λ2, t)− F ∗n(λ2, t) uniquely determine qn and consequently cn+1 in the layer (zn, zn+1).
Note that, in order to find cn+1, it suffices to know F (λ, t) only for one λ �= 0. Recall that there is

only a sole place in the proof of the theorem where we used the assumption that F (λ, t) is known for two
values λ; namely, at the initial step of finding the numbers g0 and c1. Therefore, if in the initial statement
of the problem we assume that the speed c1 in the first layer is known then all other parameters which
determine the medium structure on (0, (T + z∗)/2) are determined uniquely from the function F (λ, t) for
a single fixed λ �= 0.
To complete the proof of Theorem 1.1, we are left with establishing that ĝ(t) is found uniquely from

the given information on t ∈ [0, T − z∗). Fix λ = λ1 (below we drop the index 1 for convenience) and
consider D′(T ) = {(z, t) | 0 < z < z∗, z∗ − z < t ≤ T − z}. In this domain v satisfies the differential
equation (1.7), the Cauchy conditions at z = 0

v|z=0 = F (λ, t), t ∈ (0, T ), vz|z=0 = 0, (3.7)

and the following condition on the characteristic t = z:

v|t=z = α0, z ∈ (0, z∗). (3.8)

These data uniquely determine v(λ, z, t) in the whole domain D′(T ) and consequently the limit values
of this function and its derivative with respect to z at z = z∗ − 0, i.e., v(λ, z∗ − 0, t) and vz(λ, z∗ − 0, t)
for t ∈ (0, T − z∗). Thereby the conjugation conditions (1.10) determine v(λ, z∗ + 0, t). Now, consider
D′′(T ) = {(z, t) | z∗ < z < (T + z∗)/2, z − z∗ < t ≤ T − z}. The function v = v(λ, z∗ + 0, t) is given on
the boundary of this domain defined by the equality z = z∗. Moreover, v is given on the characteristic
boundary t = z − z∗ of D′(T ) by the equalities

v|t=z−z∗+0 =
{
α1, z ∈ (z∗, z1),
α1,2,...,k−1,k, z ∈ (zk−1, zk), k = 2, 3, . . . . (3.9)

It is well known that v(λ, z, t), a solution to (1.7), is determined uniquely in D′′(T ) by these data and
the conjugation conditions (1.9). Consequently, we can uniquely determine the limit values of its normal
derivative for z = z∗, i.e., vz(λ, z∗ + 0, t) for all t ∈ (0, T − z∗). Consequently, the left and right limit
values of the normal derivatives of v at z = z∗ become known and the sought function ĝ(t) is found for
all t ∈ (0, T − z∗) from the second equality of (1.10).

§ 4. Proof of Theorem 1.2
Constructing v∗(λ, z, t) in § 2 we also obtained a differential equation in the function w(λ, z, t), the

boundary and initial conditions, and the conjugation conditions at z∗ and the discontinuities points
z = zk of the medium parameters. They are determined by the equalities

wtt − wzz + λ2c2kw = ϕk(λ, z, t), (z, t) ∈ (zk−1, zk)× R, k = 1, 2, . . . , (4.1)

w|t<0 ≡ 0, wz|z=0 = 0, (4.2)

w|z=z∗+0 = w|z=z∗−0, wz|z=z∗+0 − wz|z=z∗−0 = h(λ, t), (4.3)

w|z=zk+0 = w|z=zk−0, wz|z=zk+0 = dk,k+1wz|z=zk−0 + hk(λ, t), k = 1, 2, . . . , (4.4)

in which h(λ, t), hk(λ, t), and ϕk(λ, z, t) are continuously differentiable functions of t. Moreover, ϕk(λ, z, t)
are piecewise polynomial in z.
The theory of (4.1)–(4.4) is well known. Consider a solution to this problem in D(T ) = {(z, t) |

z ≥ 0, 0 ≤ t < T − z}. The continuous conjugation conditions for the solution at the points z∗ and zk
and the continuity properties of h(λ, t), hk(λ, t), and ϕk(λ, z, t) in t guarantee that the functions w
and wt belong to the class C(D(T )). Since we can differentiate all relations of (4.1)–(4.4) with respect to
the variable t and the functions ht(λ, t), (hk)t(λ, t), and (ϕk)t(λ, z, t) remain continuous; hence, wt also
possesses a similar property, i.e., belongs to the class C(D(T )) together with its derivative wtt. Obviously,
a solution to (4.1)–(4.4) satisfies the equality w(λ, z, t) ≡ 0 for t ≤ |z − z∗|. Thereby Theorem 1.2
is established.

1083



References
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