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THE ISOMETRY GROUPS OF RIEMANNIAN ORBIFOLDS

A. V. Bagaev and N. I. Zhukova UDC 514.77

Abstract: We prove that the isometry group I(N ) of an arbitrary Riemannian orbifold N , endowed
with the compact-open topology, is a Lie group acting smoothly and properly on N . Moreover, I(N )
admits a unique smooth structure that makes it into a Lie group. We show in particular that the
isometry group of each compact Riemannian orbifold with a negative definite Ricci tensor is finite, thus
generalizing the well-known Bochner’s theorem for Riemannian manifolds.
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Introduction

Satake introduced orbifolds in [1] as a generalization of the concept of a manifold. They arise naturally
in the various areas of mathematics and theoretical physics [2]. The orbifolds appear in foliation theory
as the spaces of leaves of foliations locally stable in the sense of Reeb [3]. Orbifolds are used in string
theory [4] as the spaces of string propagation. In [5] a theory is developed of deformation quantization
on the symplectic orbispaces which include symplectic orbifolds.
In the first article [6] on the Riemannian geometry of orbifolds, Satake proved the Gauss–Bonnet

theorem for orbifolds. The famous results of Thurston on the classification of 3-dimensional manifolds
rest on the classification of 2-dimensional compact Riemannian orbifolds of constant curvature [7]. The
structure of Riemannian orbifolds with Ricci curvature bounded below was studied by Borzellino [8, 9],
also by Borzellino and Zhu [10]. In this article we prove the following theorems:

Theorem 1. The isometry group I(N ) of an n-dimensional Riemannian orbifold N endowed with
the compact-open topology is a Lie group of dimension at most n(n+1)/2. The action of I(N ) on N is
smooth and proper, and the equality dimI(N ) = n(n+ 1)/2 holds if and only if N is isometric to one
of the following n-dimensional Riemannian manifolds of constant curvature: (a) the Euclidean space En;
(b) the sphere Sn; (c) the projective space RPn; (d) the simply-connected hyperbolic space Hn.

Theorem 2. The isometry group of a Riemannian orbifold admits a unique smooth structure that
makes it into a Lie group.

Theorem 3. If N is a compact Riemannian orbifold with nonpositive definite Ricci tensor and the
Ricci tensor is negative definite at some point of N then the isometry group of N is finite.

In the case that N is a manifold, Theorem 1 covers the classical theorem of Myers and Steenrod [11].
Theorem 3 generalizes the well-known theorem of Bochner [12] for Riemannian manifolds. Theorem 2
implies that the topology on the isometry Lie group I(N ) of a Riemannian orbifold N , which we
introduced in [13], coincides with the compact-open topology.
We indicate the specific character of the isometry groups of good Riemannian orbifolds (Section 6).

We illustrate the content of the article with examples.

1. The Category of Orbifolds

Throughout this article we understand by smoothness the smoothness of class C∞. Given some
smooth map of manifolds f :M1 →M2, denote by f∗ and f∗ the differential and codifferential of f .
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Recall the definition of a smooth orbifold [6, 14]. Let N be a connected Hausdorff topological space
with a countable base, let U be an open subset of N , and let n be a fixed natural number. A chart on
N is a triple (Ω,Γ, p) consisting of a connected open subset Ω of the n-dimensional arithmetic space Rn,
a finite group Γ of diffeomorphisms of Ω, and the composition p : Ω → U ⊂ N of the quotient map
r : Ω → Ω/Γ with a homeomorphism q : Ω/Γ → U of the quotient space Ω/Γ onto U . The subset U is
called a coordinate neighborhood of (Ω,Γ, p). Note that, unlike Satake [6], we do not require the dimension
of the fixed-point set Fix Γ of Γ to be smaller than n− 1.
Let U and U ′ be coordinate neighborhoods of charts (Ω,Γ, p) and (Ω′,Γ′, p′), with U ⊂ U ′. An

embedding φ : Ω → Ω′ such that p′ ◦ φ = p is called an injection of the chart (Ω,Γ, p) into the chart
(Ω′,Γ′, p′) corresponding to the inclusion U ⊂ U ′. It is known [15] that each injection φ induces a (unique)
monomorphism of groups ψ : Γ→ Γ′ for which φ◦γ = ψ(γ)◦φ for all γ ∈ Γ, and if φ is a diffeomorphism
then ψ is an isomorphism between the groups Γ and Γ′.
Two charts (Ω1,Γ1, p1) and (Ω2,Γ2, p2) with coordinate neighborhoods U1 and U2 are called compat-

ible if in the case U1∩U2 �= ∅ for each point x ∈ U1∩U2 there exist: (a) a chart (Ω,Γ, p) with coordinate
neighborhood U such that x ∈ U ⊂ U1 ∩ U2; (b) injections of charts φ1 : Ω → Ω1 and φ2 : Ω → Ω2
corresponding to inclusions U ⊂ U1 and U ⊂ U2.
A set A = {(Ωi,Γi, pi) | i ∈ J} of charts is called an atlas if the family {Ui := pi(Ωi) | i ∈ J}

is an open covering of N and each pair of charts in A is compatible. An atlas A is called maximal
if A coincides with every atlas that includes it. A maximal atlas is called the structure of a smooth
n-dimensional orbifold on N . A pair (N ,A ), where A is a maximal atlas on N , is called a smooth n-
dimensional orbifold. Note that each atlas is included in a unique maximal atlas, and thus defines the
structure of a smooth orbifold.
Henceforth we assume all orbifolds N smooth and denote by A = {(Ωi,Γi, pi) | i ∈ J} the maximal

atlas of N . The injection φij of a chart (Ωi,Γi, pi) into a chart (Ωj ,Γj , pj) corresponding to the inclusion
of coordinate neighborhoods Ui ⊂ Uj is called an injection of charts and is denoted by φij : Ωi → Ωj ,
i, j ∈ J .
For charts (Ω,Γ, p) and (Ω′,Γ′, p′) in A with coordinate neighborhoods containing x ∈ N the

isotropy subgroups Γy and Γ
′
z of y ∈ p−1(x) and z ∈ p′−1(x) are respectively isomorphic. Therefore, to

each point x of N there corresponds a unique (up to a group isomorphism) abstract group Γy called the
orbifold group of x. A point x is called regular if its orbifold group is trivial. Singular we call a point that
is not regular. It is known, see [16] for instance, that the set Δn of all regular points of an n-dimensional
orbifold N with the induced topology is a connected open n-dimensional manifold dense in N . For each
point x ∈ N there exists [6] a chart (Ω,Γ, p) ∈ A such that Ω is an n-dimensional arithmetic space Rn,
p(0) = x with 0 = (0, . . . , 0) ∈ Rn, and Γ is a finite group of orthogonal transformations of Rn. Such
a chart (Rn,Γ, p) is called a linearized chart at x.
A continuous map f : N → N ′ of an orbifold (N ,A ) into an orbifold (N ′,A ′) is called [15] smooth

if for each point x ∈ N there exist: (a) a chart (Ω,Γ, p) ∈ A with coordinate neighborhood U 	 x;
(b) a chart (Ω′,Γ′, p′) ∈ A ′ with coordinate neighborhood U ′ such that f(U) ⊂ U ′; (c) a smooth map
f̃ : Ω→ Ω′ of Ω into Ω′ such that p′ ◦ f̃ = f |U ◦p. In this case the smooth map f̃ is called a local lift of f .
The category of orbifolds is the category whose morphisms are given by the smooth maps of orb-

ifolds and the composition of morphisms is the composition of smooth maps. We denote this category
by Orb. The category of smooth manifolds with smooth maps of manifolds as morphisms is a full
subcategory of Orb.
Call some action Φ : G×N → N of some Lie group G on some orbifold N smooth if Φ is a smooth

map of the product orbifold G×N into N . An orbifold (N ,A ) is called [6, 14] oriented if for all i ∈ J
the manifolds Ωi are oriented so that each transformation γ ∈ Γi as well as each injection φij : Ωi → Ωj ,
i, j ∈ J , preserves orientation.
The following example shows that, in contrast to manifolds and 2-dimensional orbifolds, for n ≥ 3

the underlying topological spaces of n-dimensional orbifolds need not in general be locally Euclidean.

Example 1. Define the action of the generator f : Rn → Rn of the group Γ = 〈f | f2〉 ∼= Z2 by the
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equality f(x) := −x ∀x ∈ Rn, where n ≥ 3. The quotient space N := Rn/Γ is a smooth n-dimensional
orbifold with the unique singular point a := p(0), where 0 is the origin, and p : Rn → Rn/Γ is the
quotient map. Note that the topological space N is contractible. Check that the point a has no neigh-
borhood homeomorphic to Rn or Rn+, including a proof for R

n and omitting the analogous proof for Rn+.
Suppose to the contrary that there exist some neighborhood U of a and a homeomorphism χ : Rn → U
onto U . Without loss of generality, we may assume that χ(0) = a. Then the restriction χ|Rn\{0} :
R
n\{0} → U\{a} is also a homeomorphism; consequently, the topological spaces U\{a} and Rn\{0}
have isomorphic fundamental groups. Since U\{a} is homeomorphic to the direct product of the line R1
and the (n−1)-dimensional projective space RPn−1, it follows that π1(U\{a}) ∼= Z2, while π1(Rn\{0}) ∼= 0
for n ≥ 3. This contradiction shows that the underlying topological space of N is not locally Euclidean.

2. Fiber Bundles over Orbifolds

Recall that an antihomomorphism of some group Γ into some group G is a map b : Γ→ G such that
b(γ1γ2) = b(γ2)b(γ1) for all γ1, γ2 ∈ Γ. If b is also injective then b is called an antimonomorphism.
Let F be a smooth manifold and let H be a Lie group. Following [14], we say that a fiber bundle

with standard fiber F and structure group H is defined over some orbifold (N ,A ) if
(1) for each chart (Ωi,Γi, pi) ∈ A there are given:
(a) a fiber bundle Pi with projection πi : Pi → Ωi, standard fiber F , and structure group H;
(b) an antimonomorphism bi : Γi → AutPi of Γi into the automorphism group AutPi of the fiber
bundle such that γ−1 ◦ πi = πi ◦ bi(γ) ∀γ ∈ Γi;

(2) for each injection of charts φij : Ωi → Ωj , i, j ∈ J , an isomorphism φ̄ij : Pj |φij(Ωi) → Pi of fiber

bundles is defined, where Pj |φij(Ωi) is the restriction of Pj to φij(Ωi)), satisfying the following conditions:
(a) bi(γ) ◦ φ̄ij = φ̄ij ◦ bj(ψij(γ)) for all γ ∈ Γi, where ψij : Γi → Γj is a monomorphism of groups
induced by φij ;

(b) if Ui ⊂ Uj ⊂ Uk with the corresponding injections of charts φij and φjk then φjk ◦ φij = φ̄ij ◦ φ̄jk.
Denote by ξ = {Pi, bi, φ̄ij}i,j∈J the fiber bundle over N described above.
A fiber bundle over an orbifold can be defined starting from an arbitrary atlas; see [6]. For each orb-

ifold N there exists some atlas B = {(Ωβ ,Γβ , pβ) | β ∈ B} with contractible coordinate neighborhoods
of all charts. For such an atlas the fiber bundles Pβ are trivial; i.e, Pβ = Ωβ ×F and πβ : Pβ → Ωβ is the
canonical projection onto the first factor. If for each i ∈ J the fiber bundle Pi is a principal H-bundle
then call ξ = {Pi, bi, φ̄ij}i,j∈J a principal bundle over N with structure group H.

Let ξ = {Pi, bi, φ̄ij}i,j∈J be a fiber bundle with standard fiber F and structure group H over some
orbifold N . For each chart (Ωi,Γi, pi) ∈ A the antimonomorphism bi determines the smooth left action
Φi : Γi × Pi → Pi : (γ, z) �→ bi(γ

−1)(z) of Γi on Pi. Since Γi is a finite group, the quotient space
P i := Pi/Γi is a smooth orbifold of dimension dimN + dimF , and the equality π̄i ◦ p̄i = pi ◦ πi
holds, where p̄i : Pi → Pi/Γi is the quotient map, and π̄i : P i → Ui takes the orbit of z ∈ Pi into
pi(πi(z)) ∈ Ui = pi(Ωi). Denote by P the disjoint union

⊔
i∈J P i. Define on P the equivalence relation ρ:

Say that two points z̄i ∈ P i and z̄j ∈ P j are ρ-equivalent if: (a) π̄i(z̄i) = π̄j(z̄j) = x ∈ Ui ∩ Uj ; (b) there
exist two points zi ∈ (p̄i)−1(z̄i) and zj ∈ (p̄j)−1(z̄j) and a chart (Ωk,Γk, pk) ∈ A with coordinate
neighborhood Uk such that x ∈ Uk ⊂ Ui ∩ Uj and zj = (φ̄kj)−1 ◦ φ̄ki(zi). In [16] we showed that the
relation ρ is indeed an equivalence, the quotient spaceP = P/ρ is naturally equipped with the structure
of a smooth orbifold, and the projections πi : Pi → Ωi define a smooth map π :P → N of orbifolds.
Therefore, given a fiber bundle with standard fiber F and structure group H over some orbifold N ,

a smooth orbifold P of dimension dimN + dimF and a smooth map of orbifolds π : P → N are
naturally defined. The orbifold P is called the total space; and the map π :P → N , the projection.
Suppose that ξ = {Pi, bi, φ̄ij}i,j∈J is a principal bundle over N with structure group H. Show that

a smooth right action of the Lie group H is defined on the total spaceP. For each i ∈ J the smooth right
action Υi : Pi×H → Pi with (z, h) �→ z ·h, where z ∈ Pi and h ∈ H, ofH is defined on the total space Pi of
the principal H-bundle πi : Pi → Ωi. Since bi(γ) for γ ∈ Γi is an automorphism of the principal bundle Pi,
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it follows that bi(γ)(z · h) = (bi(γ)(z)) · h; consequently, the map Υi : P i ×H → P i : (z̄, h) �→ p̄i(z · h),
where z̄ ∈ P i, z ∈ p̄−1i (z̄), and h ∈ H, defines a smooth right action of H on P i = Pi/Γi. Denote by

q : P → P/ρ = P the natural projection. The composition qi := q ◦ j : P i → P of the inclusion
j : P i ↪→ P with q is a homeomorphism onto the image. Take z′ ∈ P, x = π(z′) and some chart
(Ωi,Γi, pi) ∈ A with coordinate neighborhood Ui 	 x. The formula Υ(z′, h) := qi ◦ p̄i(z · h), where
z ∈ (qi ◦ p̄i)−1(z′) and h ∈ H, defines a smooth right action Υ : P × H → P of H on P. The orbit
space P/H of the action Υ is the orbifold N . The following diagram is commutative:

Pi ×H (p̄i, idH)−−−−−→ P i ×H (qi, idH)−−−−−→ P ×H
⏐
⏐
�Υi

⏐
⏐
�Υi

⏐
⏐
�Υ

Pi
p̄i−−−→ P i

qi−−−→ P
⏐
⏐
�πi

⏐
⏐
�π̄i

⏐
⏐
�π

Ωi
pi−−−→ Ui ↪→ N .

According to [14], a smooth section of a fiber bundle ξ = {Pi, bi, φ̄ij}i,j∈J with standard fiber F and
structure groupH over some orbifold (N ,A ) is defined as a family {si}i∈J of smooth sections si : Ωi → Pi
of the fiber bundles Pi if the following are satisfied: (a) bi(γ) ◦ si ◦ γ = si for all γ ∈ Γi, i ∈ J ; (b)
φ̄ij ◦ sj ◦ φij = si for each injection of charts φij : Ωi → Ωj , i, j ∈ J . Note that a family {si}i∈J
determines a smooth map s : N →P of orbifolds satisfying the equality π ◦ s = idN .
Let (N ,A ) be an n-dimensional orbifold. Denote by πi : TΩi → Ωi the tangent bundle of Ωi. Given

γ ∈ Γi, define a map bi(γ) : TΩi → TΩi by the equality bi(γ)(Xx) := (γ
−1)∗x(Xx), where Xx ∈ TxΩi

is a tangent vector at some point x ∈ Ωi. For each injection of charts φij : Ωi → Ωj , i, j ∈ J , define
a map φ̄ij : TΩj |φij(Ωi) → TΩi by the formula φ̄ij(Xφij(x)) := (φij)

−1∗x (Xφij(x)) for Xφij(x) ∈ Tφij(x)Ωj and
x ∈ Ωi. Therefore, we have defined the fiber bundle with standard fiber a vector space isomorphic to
R
n and structure group G = GL(n,R), which is called the tangent bundle to the orbifold N . The total
space TN of this bundle is a smooth 2n-dimensional orbifold.
Similarly, the cotangent bundle and the tensor bundle of type (p, q) over an orbifold are defined in

[6, 14]. A smooth section of the tensor bundle of type (p, q) is called a tensor field of type (p, q) on the
orbifold. In particular, a smooth vector field on an orbifold (N ,A ) is a smooth section of the tangent
bundle of N ; i.e., a family {Xi}i∈J of Γi-invariant vector fields Xi on Ωi such that for each injection of
charts φij : Ωi → Ωj , i, j ∈ J , the equality (φij)∗(Xi) = Xj holds.

Γ = 〈α, β | α2, βm〉 ∼= Z2 ⊕ Zm Σ is the set of singular points of N

Fig. 1. A 3-Dimensional Noncompact Orbifold.

We say that a symmetric bilinear form t = {ti}i∈J on an orbifold N is negative (or nonpositive)
definite at x ∈ N if there is some chart (Ωi,Γi, pi) ∈ A with coordinate neighborhood Ui 	 x such that
the form ti is negative (nonpositive) definite at x

′ ∈ p−1i (x). Conditions (a) and (b) in the definition
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of a section imply that this definition is independent of the choice of a chart (Ωi,Γi, pi), the coordinate
neighborhood Ui 	 x, and a point x′ ∈ p−1i (x). We say also that a symmetric bilinear form t is negative
(nonpositive) definite on N if t possesses this property at each x ∈ N . Similarly we define the vanishing
of an arbitrary tensor at a point and on the orbifold.

Example 2. Consider the action on the Euclidean space E3 of the finite group Γ generated by two
isometries α and β, where α is the reflection in the plane Oxy and β is the rotation about the axis Oz
through 2π/m for m ∈ N and m ≥ 2. Then Γ = 〈α, β | α2, βm〉 ∼= Z2 ⊕ Zm. The orbit space N := E3/Γ
is a 3-dimensional orbifold (see Fig. 1). Denote by p the quotient map E3 → E3/Γ.
In order to construct the tangent bundle of N , use the atlas consisting of the single chart (Ω,Γ, p),

where Ω = E3 and both the group Γ and the map p are defined above.
Consider the tangent bundle π̄ : P = TE3 → E3 of E3. The contractibility of E3 implies that

TE3 = E3 × E3 and π̄ is identified with the projection TE3 = E3 × E3 → E3 onto the first factor.
Define an antimonomorphism b : Γ → Aut(TE3) by the formula b(γ) := (γ−1, (γ−1)∗), where

(γ−1, (γ−1)∗)(x, v) := (γ−1(x), (γ−1)∗(v)) for all γ ∈ Γ, x ∈ E3, and v ∈ TxE
3 = E3 and (γ−1)∗ is

the differential of the diffeomorphism γ−1 at x. The equality γ−1 ◦ π̄ = π̄ ◦ b(γ) holds for all γ ∈ Γ.
The map

Φ : Γ× E3 × E3 → E3 × E3 : (γ, (x, v)) �→ b(γ−1)(x, v) = (γ(x), γ∗(v))

determines a smooth left action of Γ on TE3. The orbit space

TN := TE3/Γ = {Γ · (x, v) | (x, v) ∈ TE3 = E3 × E3}
of this action is the total space of the tangent bundle of N ; and so it is a smooth 6-dimensional orbifold,
and π : TN → N : Γ · (x, v) �→ p(x) is the projection of the tangent bundle onto N .
The fiber π−1(y) of the tangent bundle over some point y ∈ N is equal to

π−1(y) = {Γ · (x, v) | p(x) = y, v ∈ TxE3};
consequently, it is homeomorphic to the 3-dimensional orbifold E3/Γx, where Γx is the stationary subgroup
of Γ at x ∈ p−1(y). This implies that for each singular point y ∈ N the fiber π−1(y) is not a vector space,
and for each regular point z ∈ N the group Γx, with x ∈ p−1(z), is trivial, and so the fiber π−1(z) = E3
is naturally equipped with the structure of the 3-dimensional vector space.
Take some smooth Γ-invariant vector field X on E3; i.e., γ∗(Xx) = Xγ(x) for each x ∈ E3 and γ ∈ Γ.

One example of a nonzero Γ-invariant vector field is Y : E3 → TE3 = E3 × E3 : x �→ Yx = (x, x). The
map s = s(X) : N → TN = TE3/Γ : z �→ Γ · (Xx), where x ∈ p−1(z), is well-defined and it is a smooth
section of the tangent bundle π : TN → N ; i.e., it is a smooth vector field on N . All smooth vector
fields on N arise in this way.

3. Riemannian Orbifolds

We assume all Riemannian metrics positive definite.
In accord with [6, 14], we call a Riemannian metric g on some orbifold (N ,A ) a family {gi}i∈J of

Γi-invariant Riemannian metrics gi on the manifolds Ωi such that each injection of charts φij : Ωi → Ωj ,
i, j ∈ J , is an isometry of the Riemannian manifolds (Ωi, gi) and (Ωj , gj). It is known that each smooth
orbifold admits a Riemannian metric.
Let (N , g) be an n-dimensional Riemannian orbifold, and let O(n,R) be the group of orthogonal

matrices. Denote by πi : Ri → Ωi the bundle of orthonormal frames over the Riemannian manifold
(Ωi, gi), which is a principal O(n,R)-bundle, regarding an orthonormal frame z ∈ Ri at x ∈ Ωi as a linear
isomorphism z : Rn → TxΩi of vector spaces R

n and TxΩi. Define an antimonomorphism bi of the
group Γi into the automorphism group of the fiber bundle Ri by the equality bi(γ)(z) := (γ−1)∗x ◦ z,
where z ∈ Ri is an orthonormal frame at x ∈ Ωi. Given an injection φij : Ωi → Ωj , i, j ∈ J , define φ̄ij
by the formula φ̄ij(z) := (φ

−1
ij )∗φij(x) ◦ z, where z is some orthonormal frame at φij(x) ∈ φij(Ωi) ⊂ Ωj .
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Since the Riemannian metrics in the family g = {gi}i∈J are compatible, it follows that (φij)∗gj = gi,

and hence φ̄ij is an isomorphism of the fiber bundles Ri and Rj |φij(Ωi). The so-defined family ξ =
{Ri, bi, φ̄ij}i,j∈J determines a principal bundle with structure group O(n,R) which is called in [6, 14] the
bundle of orthonormal frames over the Riemannian orbifold (N , g).

For each chart (Ωi,Γi, pi) the smooth left action Φi : Γi ×Ri → Ri with (γ, z) �→ bi(γ
−1)(z) of the

group Γi on the manifold Ri is defined. If the automorphism bi(γ), γ ∈ Γi, fixes some point z ∈ Ri then
(γ)∗x is an identity map of the tangent space TxΩi at the point x = πi(z). Hence, as the topological
space Ωi is connected and the O(n,R)-structure of Ri over the manifold Ωi is a G-structure of first order,
the isometry γ is equal to the identity map idΩi . Thus, the group Γi acts freely on Ri. Consequently,
the quotient space Ri/Γi is a smooth manifold, and the quotient map p̄i : Ri → Ri/Γi is a regular
covering with the deck transformation group isomorphic to Γi. Thus, the total space R of the bundle of
orthonormal frames over (N , g) is a smooth manifold of dimension n(n+ 1)/2.

In accordance with what we recalled in Section 2, there is a smooth right action of the Lie group
O(n,R) on R whose orbit space is the orbifold N . The connected components of the orbits of this
action determine a smooth foliation F of R of codimension n. If the orbifold N is orientable then the
manifold R has two diffeomorphic connected components R+ and R−. In this case we denote by R
one of those components. In the case of a nonorientable orbifold N the total space of the bundle R
is connected.

4. A Lie Group Structure on the Isometry Group of a Riemannian Orbifold

Let (N , g) be a Riemannian orbifold. An automorphism f : N → N ′ of the orbifold (N ,A ) is
an isometry if for each point x ∈ N and each pair (Ωi,Γi, pi) and (Ωj ,Γj , pj) of charts of the maximal
atlas A with coordinate neighborhoods Ui and Uj such that x ∈ Ui and f(Ui) = Uj there exists a local
lift fij : Ωi → Ωj that is an isometry of the Riemannian manifolds (Ωi, gi) and (Ωj , gj). The definition of
the Riemannian metric g on N implies that this definition in correct; i.e., it is independent of the choice
of charts at x and f(x) and of the choice of a local lift.

Throughout this article we denote by I(N ) the isometry group of the Riemannian orbifold (N , g).
Recall that the compact-open topology on some group H of homeomorphisms of some topological space X
is the topology with subbasis composed of the sets of the formW (V, V ′) := {f ∈ H | f(V ) ⊂ V ′}, where V
is compact and V ′ is an open subset of X.
An absolute parallelism of an n-dimensional manifold M is a tuple of n smooth vector fields on M

that are linearly independent at each point of M .

Let G be a group of automorphisms of an orbifold N which admits the structure of a Lie group. The
group G is called a Lie group of transformations of N if the map Φ : G×N → N with (f, x) �→ f(x)
is a smooth map of the product orbifold G×N into N . If the map Π = (Φ, idN ) : G×N → N ×N
with (f, x) �→ (f(x), x) is proper, which means that the preimage Π−1(K) of each compact subset K in
N ×N is compact; then we will say that the action Φ of G on N is proper.

Proof of Theorem 1. Let π : R → N be the bundle of orthonormal frames over an n-dimensional
orbifold (N , g), and let o(n,R) be the Lie algebra of the Lie group O(n,R). Define the two 1-forms θ
and ω on the manifold R with values in Rn and o(n,R) respectively as follows: Take z′ ∈ R, x := π(z′),
Xz′ ∈ Tz′R, and some chart (Ωi,Γi, pi) ∈ A with coordinate neighborhood Ui 	 x. Denote by ωi the
form of the Riemannian connection and by θi, the canonical form [17] on the bundle of orthonormal
frames πi : Ri → Ωi. Take the maps p̄i : Ri → Ri/Γi = Ri and qi : Ri → R defined in Section 2, which
are respectively a regular covering and a diffeomorphism onto the image. Put θz′(Xz′) := (θi)z(Xz) and
ωz′(Xz′) := (ωi)z(Xz), where z ∈ (qi ◦ p̄i)−1(z′) and Xz ∈ TzRi is some tangent vector satisfying the
equality (qi◦p̄i)∗z(Xz) = Xz′ . Since for all γ ∈ Γi the automorphism bi(γ) of the fiber bundleRi preserves
ωi and θi, and for each injection of charts φij : Ωi → Ωj , i, j ∈ J , we have the equalities (φ̄ij)∗ωi = ωj
and (φ̄ij)

∗θi = θj , it follows that the forms θ and ω are well-defined. Fix some Euclidean scalar products
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d0 and d1 on the vector spaces R
n and o(n,R) respectively; then, the formula

d(X,Y ) := d0(θ(X), θ(Y )) + d1(ω(X), ω(Y )),

where X and Y are smooth vector fields on the manifold R, defines a Riemannian metric on R.
Each isometry f ∈ I(N ) induces an isometry f̂ of the Riemannian manifold (R, d) as follows. Take

z′ ∈ R and x := π(z′). Since f is an automorphism of N , it follows that for x ∈ N there exist
charts (Ωi,Γi, pi) and (Ωj ,Γj , pj) in A with such coordinate neighborhoods Ui and Uj that x ∈ Ui and
f(Ui) = Uj . Since according to the definition of f its local lift fij : Ωi → Ωj is an isometry of the
Riemannian manifolds (Ωi, gi) and (Ωj , gj), the diffeomorphism f̂ij : Ri → Rj : z �→ (fij)∗ ◦ z, z ∈ Ri,

is an isomorphism of fiber bundles satisfying the equalities (f̂ij)
∗ωj = ωi and (f̂ij)

∗θj = θi. It is easy to

verify that the formula f̂(z′) := qj ◦ p̄j ◦ f̂ij(z), where z ∈ (qi ◦ p̄i)−1(z′), determines a diffeomorphism
f̂ : R → R of the manifold R onto itself possessing the properties

f̂∗θ = θ, f̂∗ω = ω, π ◦ f̂ = f ◦ π. (1)

The first two equalities in (1) imply that f̂∗d = d; i.e., f̂ is an isometry of the Riemannian manifold
(R, d). By the Myers–Steenrod theorem [11, 17] the isometry group I(R) of the Riemannian manifold
(R, d) endowed with the compact-open topology is a Lie group of transformations. Note that the isometry

f̂ ∈ I(R) is induced by the isometry f ∈ I(N ) if and only if f̂ satisfies the equalities in (1). Owing to
that, the set K of all such isometries f̂ is a closed subset of I(R); consequently, K admits the structure

of a Lie group that makes it into a closed Lie subgroup of the Lie group I(R). Since π ◦ f̂ = f ◦ π, the
equality f̂ = idR yields f = idN . This defines the group isomorphism σ : I(N ) → K : f �→ f̂ . The
bijection σ induces on I(N ) the structure of a smooth manifold. Since σ is a group isomorphism, with
respect to the induced smooth structure I(N ) is a Lie group.

The action Ψ̂ : K × R → R : (h, z) �→ h(z) of the Lie group K on R is smooth because it is
a restriction of a smooth action of the Lie group I(R) on R. Define a map Ψ : I(N ) ×N → N by

the rule Ψ(f, x) := f(x) for all f ∈ I(N ) and x ∈ N . Then the smoothness of π, σ, Ψ̂ and the equality

π ◦ Ψ̂ = Ψ ◦ (σ × π) imply the smoothness of Ψ.
Every closed subgroup of the isometry Lie group of a Riemannian manifold acts properly [18]; thus,

the action Ψ̂ of K on R is proper. Since π : R → N = R/O(n,R) is the quotient map onto the orbit

space of the compact group O(n,R), it is proper by Theorem 3.1 of Chapter I in [19]. Since π and Ψ̂ are

proper continuous maps, the equality π ◦ Ψ̂ = Ψ ◦ (σ× π) implies that Ψ is also proper; i.e., the action Ψ
of the group I(N ) on N is proper.
Take orthonormal bases {em | m = 1, . . . , n} and {Ekl | 1 ≤ k ≤ l ≤ n} in the Euclidean spaces

(Rn, d0) and (o(n,R), d1) respectively. Since ω is a smooth form on the manifold R, the correspondence
M : z �→Mz := kerωz, z ∈ R, determines a smooth distributionM on R. It is transversal to the smooth
distribution V tangent to the orbits of O(n,R), and Mz ⊕Vz = TzR for z ∈ R. Note that Vz = ker θz,
and the restrictions θ|Mz : Mz → Rn and ω|Vz : Vz → o(n,R) are vector space isomorphisms. The
smooth vector fields {Z(m), Z(kl) | m = 1, . . . , n, 1 ≤ k ≤ l ≤ n}, where (Z(m))z := (θz|Mz)−1(em)
and (Z(kl))z := (ωz|Vz)−1(Ekl) for z ∈ R, determine a basis of the tangent vector space TzR at each
point z of R. This means that the family {Z(m), Z(kl)} defines an absolute parallelism on R. Since each
isometry h in K preserves the forms θ and ω, it follows that h also preserves the absolute parallelism
{Z(m), Z(kl)}. Note that the automorphism group A(R) of the absolute parallelism of R is a closed Lie
subgroup of the isometry Lie group I(R) of the Riemannian manifold (R, d). It is known that the group
A(R) acts on R freely and that dimA(R) ≤ dimR = n(n + 1)/2. Thus, the dimension of the closed
Lie subgroup K of the Lie group A(R) satisfies the inequality dimK ≤ n(n + 1)/2, which implies that
dimI(N ) = dimK ≤ n(n + 1)/2. Therefore, the action of the Lie group K on R is proper and free;

consequently, each orbit Ψ̂(K, z), z ∈ R, is a closed embedded submanifold of R diffeomorphic to K, and

the orbit Ψ̂(R, z) is not connected in general. Hence, in the case where dim I(N ) = dimK = n(n+1)/2 =
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dimR, each orbit Ψ̂(K, z), z ∈ R, of K is open in R. Because R is connected, the orbit Ψ̂(K, z) coincides
with R; i.e., the group K acts on R transitively. Consequently, the group I(N ) acts transitively on N ,
which is only possible in the case that N is a manifold. It is known [17, Remark 10, Theorem 1] that for
an n-dimensional Riemannian manifold (N , g) the equality dimI(N ) = n(n+1)/2 is attained if and only
if (N , g) is isometric to one of the following n-dimensional Riemannian manifolds of constant curvature:
(a) En; (b) Sn; (c) RPn; (d) Hn, where Sn and RPn are considered with some positive constant curvature.
In order to verify that the topology τ of the Lie group I(N ) coincides with the compact-open

topology τ co, we will use the following assertion:

Lemma 1. LetN be a Riemannian orbifold with metric g, and let Δn be the manifold of its regular
points with the induced metric g|Δn . Let I(Δn) be the isometry Lie group of the Riemannian manifold
(Δn, g|Δn) with the compact-open topology and let I(N ) be the isometry group of (N , g). Then there
is a map ν : I(N )→ I(Δn) : f �→ f |Δn inducing an isomorphism of the algebraic group I(N ) onto the
closed Lie subgroup im ν of I(Δn).

Proof. Since each isometry f ∈ I(N ) is an automorphism ofN ; therefore, f necessarily takes each
regular point into a regular point: f(Δn) = Δn. Consequently, there is a map ν : I(N )→ I(Δn) : f �→
f |Δn . The Riemannian metric g naturally induces the Riemannian metric g|Δn on the manifold Δn of
regular points. By the Myers–Steenrod theorem the isometry group I(Δn) of the Riemannian manifold
(Δn, g|Δn) endowed with the compact-open topology is a Lie group. Show that the image im ν is a closed
subgroup of I(Δn).
Take a sequence {hn} of isometries in im ν converging to h ∈ I(Δn). Then there exists some sequence

{fn} ⊂ I(N ) such that fn|Δn = hn. Pick some point x ∈ Δn; then y := h(x) ∈ Δn. There exists some
coordinate neighborhood V of y in the manifold Δn whose closure V is compact in N . Without loss of
generality we may assume that fn(x) = hn(x) ∈ V for all n ∈ N. It was shown above that the action
Ψ : I(N )×N → N is proper; thus, the sequence {fn} belongs to the compact subset pr1 ◦Ψ−1(V ) of
I(N ), where pr1 : I(N )×N → I(N ) is the projection to the first factor. Consequently, the sequence
{fn} includes a converging subsequence {fnk}. Suppose that fnk → f as k → ∞. On the other hand,
fnk |Δn → h. Because Δn is Hausdorff, the limit of the sequence {fnk(y)} is unique for all y ∈ Δn. Hence,
f(y) = h(y); i.e., f |Δn = h ∈ im ν. Therefore, im ν is a closed Lie subgroup in the isometry Lie group
I(Δn), and so Lemma 1 is proved.

The group isomorphism ν−1|im ν : im ν → I(N ) defines on I(N ) some topology τ0 and the structure
of a smooth manifold, with respect to which I(N ) is a Lie group. Since the topology on the Lie group
I(Δn) is compact-open, we have the subbasis of τ

0 consisting of the sets of the form

W (V, V ′) := {f ∈ I(N ) | f(V ) ⊂ V ′},
where V is compact and V ′ is an open subset of Δn. Since Δn is an open subset of N , we obtain the
inclusion τ0 ⊂ τ co, where τ co is the compact-open topology on I(N ). The Lie group (I(N ), τ) acts onN
smoothly and, hence, continuously. By Theorem 2 in [20] the topology of each group of homeomorphisms
of a Hausdorff locally compact topological space X acting continuously on X contains all subsets open
in the compact-open topology. This implies that τ co ⊂ τ . Therefore, τ0 ⊂ τ . Thus, the identity map
idI(N ) : (I(N ), τ) → (I(N ), τ0) is a continuous isomorphism of Lie groups. It is known that each
continuous homomorphism of Lie groups is an analytic map. Consequently, idI(N ) is an analytic map.
According to [21, p. 21] each bijective (smooth) homomorphism of Lie groups is an isomorphism of Lie
groups; thus, idI(N ) is an isomorphism of Lie groups and τ

0 = τ . Hence, the inclusions τ0 ⊂ τ co ⊂ τ

yield τ0 = τ co = τ . �
Corollary 1. If a Riemannian orbifold is compact then so is its isometry group.

Proof. As mentioned in the proof of Theorem 1, the map π : R → N is proper. As the preimage of
the compact topological spaceN under the proper map π, the manifoldR is compact. Since the isometry
group I(R) of the compact Riemannian manifold (R, d) is compact [17, Chapter VI, Theorem 3.4], its
closed subgroup K, as well as the group I(N ) isomorphic to the latter, is compact too. �
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5. Uniqueness of the Lie Group Structure

Proposition 1. Let G be an algebraic group, letM be a Riemannian manifold, and let I(M ) be the
isometry group ofM endowed with the compact-open topology. If there exists a group isomorphism of G
onto a closed subgroup of I(M ) then G admits a unique smooth structure that makes it into a Lie group.

Proof. Consider the compact-open topology τ co on the isometry group I(M ) of a Riemannian
manifold M . By the Myers–Steenrod theorem the topological space (I(M ), τ co) possesses the structure
of a smooth manifold with respect to which I(M ) is a Lie group. It is known that each closed subgroup G
of I(M ) with the induced topology is a Lie group. Suppose that there exist another topology τ on G and
the structure of a smooth manifold on the topological space (G, τ) with respect to which G is a Lie group.
In order to distinguish this Lie group from the previous, denote it by G1. Since the topological space
(G, τ) of the manifold G1 is locally compact and G acts on M effectively by the Montgomery–Zippin
theorem [22, pp. 208, 212], also see [17, Chapter I, Theorem 4.6], on (G, τ) there is the structure of
a Lie group G2 of transformations. Since at most one structure of a Lie group may exist on a second
countable locally Euclidean topological group, G1 = G2. Therefore, G1 acts smoothly, thus continuously,
onM . By Theorem 2 in [20] the topology τ of the Lie group G1 contains all subsets that are open in the
compact-open topology. Hence, τ co ⊂ τ , and so the identity map idG : (G, τ) → (G, τ co) is continuous.
Since idG is a continuous Lie group isomorphism, as in the proof of Theorem 1 we deduce that idG is
a Lie group isomorphism, and G = G1. �
Corollary 2. The isometry group I(M ) of a Riemannian manifold M admits a unique Lie group

structure, and the topology on the Lie group I(M ) coincides with the compact-open topology.

Corollary 3. If a Lie group G acts effectively, smoothly, and properly on some manifold M then
the algebraic group G admits no other Lie group structure.

Proof. It is known that for each smooth proper action Φ : G ×M → M of a Lie group G on
some manifold M there exists a Riemannian metric on M with respect to which each transformation

Φh := Φ(h, ·), h ∈ G, is an isometry. Since Φ is an effective action, the isometry group G̃ := {Φh | h ∈ G}
is isomorphic to G. Since Φ is a proper action, it follows that the subgroup G̃ is closed in the isometry
Lie group I(M ) of M endowed with the compact-open topology.

Therefore, G is isomorphic to a closed subgroup G̃ of the isometry Lie group I(M ) of M ; thus,
Proposition 1 implies the required claim. �
Corollary 4. If G is a compact Lie group then the algebraic group G admits no other Lie group

structure.

Proof. The left action Φ : G × G → G : (h1, h2) �→ h1h2 of the Lie group G on G is smooth and
effective. Because G is compact, the action Φ is proper; thus, the claim follows from Corollary 3. �
Proof of Theorem 2. Take some Riemannian orbifoldN with metric g. By Lemma 1 there exists

an isomorphism of the isometry group I(N ) of the Riemannian orbifold N onto a closed subgroup of
the isometry Lie group I(Δn) of the Riemannian manifold (Δn, g|Δn) endowed with the compact-open
topology. Thus, the claim of Theorem 2 follows from Proposition 1. �

6. Coverings of Orbifolds

A smooth map of orbifolds κ : N ′ → N is called a covering [7] if for each point x ∈ N there is
a chart (Ω,Γ, p) with coordinate neighborhood U 	 x such that for each connected component U ′ of
κ−1(U) there exists a homeomorphism q′ : Ω/Γ′ → U ′ such that κ|U ′ ◦ p′ = p, where Γ′ is some subgroup
of the group Γ, and p′ : Ω → U ′ is the composition of q′ with the quotient map Ω → Ω/Γ′. The chart
(Ω,Γ, p) in this definition is said to be regularly covered.
Recall that a deck transformation of a covering κ : N ′ → N is an automorphism f : N ′ → N ′ of

the covering orbifold N ′ such that κ ◦ f = κ. The set G(κ) of all deck transformations of the covering
κ : N ′ → N forms a group. The covering κ : N ′ → N is called regular if N = N ′/G(κ). In the case
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that G(κ) is isomorphic to Z2 we call the regular covering κ : N ′ → N two-sheeted. An orbifold N is
good if there exists some regular covering κ : N ′ → N , where N ′ is a smooth manifold.
Take some covering κ : N ′ → N of an orbifold (N ,A ) by an orbifold (N ′,A ′) and some tensor t

of type (p, q) on N . Recall that if A = {(Ωi,Γi, pi) | i ∈ J} is the maximal atlas of N then the
definition of t implies that for each i ∈ J a tensor ti of type (p, q) is defined on Ωi. The tensor t induces
some tensor t′ of type (p, q) on N ′ as follows: Pick a point x′ of N ′. Then for the point x := κ(x′) there
is some regularly covered chart (Ωi,Γi, pi) ∈ A with coordinate neighborhood Ui 	 x. Denote by U ′ the
connected component of κ−1(Ui) containing x′. By the definition of a covering there exist a subgroup Γ′
of Γi and a homeomorphism q′ : Ωi/Γ′ → U ′ such that κ|U ′ ◦p′ = p, where p′ : Ωi → U ′ is the composition
of q′ with the quotient map Ωi → Ωi/Γ′.
Note that (Ωi,Γ

′, p′) ∈ A ′ is a chart with coordinate neighborhood U ′. Since Γ′ ⊂ Γi it follows that ti
is a Γ′-invariant tensor of type (p, q) of the manifold Ωi, which we denote by tx′ . Consequently, for each
point x′ ∈ N ′ there are a chart (Ωi,Γ′, p′) ∈ A ′ with coordinate neighborhood U ′ 	 x′ and a tensor tx′
of type (p, q) on Ωi. Because the tensors in t = {ti}i∈J are compatible, the family of tensors {tx′}x′∈N ′

correctly defines a tensor t′ of type (p, q) on the orbifold N ′.
Therefore, we have proved the following statement:

Lemma 2. Given some covering κ : N ′ → N of an orbifold N , each tensor t of type (p, q) on N
naturally induces a tensor t′ of type (p, q) on N ′.

Proposition 2. Let κ : N ′ → N be a regular covering of a Riemannian orbifold N by an orbifold
N ′ with the deck transformation group Γ. Then: (a) the orbifold N ′ is equipped with an induced Rie-
mannian metric with respect to which Γ is a subgroup of the isometry group I(N ′); (b) the group I(N )
is isomorphic to the quotient group N(Γ)/Γ of the normalizer N(Γ) of Γ in the isometry group I(N ′).

Proof. The first claim follows from Lemma 2. Define a group homomorphism χ : N(Γ)→ I(N ) :
f ′ �→ f by the equality f(x) := κ ◦ f ′(y) for y ∈ κ−1(x) and x ∈ N . The definitions of the deck
transformation group Γ and the homomorphism χ imply that kerχ coincides with Γ. Note that for each
isometry f ∈ I(N ) there exists some isometry f ′ ∈ I(N ′) covering f ; i.e., κ ◦ f ′ = f ◦ κ. The covering
isometry f ′ takes each orbit of the action of Γ into another orbit, f ′(Γ(x)) = Γ(f ′(x)), x ∈ N ′. This
implies that f ′Γf ′−1 = Γ; i.e., f ′ ∈ N(Γ). Hence, χ is surjective. Since Γ is a closed discrete subgroup of
I(N ′), the normalizer N(Γ) is a closed subgroup of I(N ′). Consequently, N(Γ) is a closed Lie subgroup
of the Lie group I(N ′). Therefore, I(N ) is isomorphic to the quotient Lie group N(Γ)/Γ. �

Proposition 3. Each nonorientable orbifold N possesses some regular two-sheeted covering κ :
N ′ → N by an orientable orbifold N ′. In addition, if N is a Riemannian orbifold then a Riemannian
metric is induced on N ′ with respect to which the deck transformation group Γ ∼= Z2 is a group of
isometries, and the isometry group I(N ) of the Riemannian orbifold N is isomorphic to the quotient
group N(Γ)/Γ of the normalizer N(Γ) of Γ in the isometry group I(N ′) of the orientable Riemannian
orbifold N ′.

Proof. LetN be a nonorientable orbifold, let g be a Riemannian metric onN , and let π : R → N
be the bundle of orthonormal frames over the Riemannian orbifold (N , g). As mentioned above, the
manifold R carries a smooth right action Υ : R × O(n,R)→ R of the orthogonal group O(n,R) whose

orbit space R/O(n,R) coincides with N . The restriction Υ̃ := Υ|R×SO(n,R) : R × SO(n,R) → R is
a smooth action of the special orthogonal group SO(n,R) on R. All stationary subgroups of this action
are finite. Its orbit spaceN ′ := R/SO(n,R) naturally possesses the structure of a smooth n-dimensional

orbifold with respect to which the map κ : N ′ → N , taking each orbit Υ̃(z, SO(n,R)), z ∈ R, into the
orbit Υ(z,O(n,R)), is a regular covering with the deck transformation group Γ ∼= Z2. Since R admits

an absolute parallelism, R is orientable. Since each transformation Υ̃( · , h), h ∈ SO(n,R), preserves the
orientation on R, the orbifold N ′ := R/SO(n,R) is orientable.

The second claim follows from Proposition 2. �
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7. An Analog of Bochner’s Theorem

Integration on orbifolds. Let α = {αi}i∈J be an exterior form on an orbifold (N ,A ), where
A = {(Ωi,Γi, pi) | i ∈ J} is the maximal atlas. The closure of the set of those points of N where α does
not vanish is called the support of α and is denoted by suppα.
Let N be an oriented n-dimensional orbifold, and let α be an exterior n-form with compact support.

If suppα lies inside the coordinate neighborhood Ui of some chart (Ωi,Γi, pi) ∈ A then by definition∫
Ui
α := 1

|Γi|
∫
Ωi
αi, where |Γi| is the order of Γi. In general the compactness of suppα yields the existence

of a finite covering W = {Wk}k=1,...,m of the support α by charts in the atlas A with the coordinate
neighborhoods Wk and a finite partition of unity subordinate to W ; i.e., a family {fk}k=1,...,m of smooth
functions on N such that: (a) 0 ≤ fk(x) ≤ 1 for all x ∈ N and k ∈ {1, . . . ,m}; (b) supp fk ⊂Wk for all
k ∈ {1, . . . ,m}; (c) ∑mk=1 fk(x) = 1 for all x ∈ suppα. The integral of an exterior n-form with compact
support α over the orbifold N is defined by the equality

∫

N

α :=

m∑

k=1

∫

Wk

fk α. (2)

The number
∫

N
α determined by (2) is independent of the choice of a covering W and the subordinate

partition of unity. Thus, the integral is well-defined. If N is compact, the support of each form α is
compact. Consequently, the integral over an oriented n-dimensional compact orbifold N is defined for
each exterior n-form α.
Let α = {αi}i∈J be the volume form of an oriented n-dimensional compact Riemannian orbifold

(N , g) determined by the metric tensor g and let X = {Xi}i∈J be a smooth vector field on N . Then
the family divX = {divXi}i∈J , where divXi is the divergence of a vector field Xi on the Riemannian
manifold (Ωi, gi), is a smooth function on N . The Stokes’s Formula [6, 14] for the orbifold N implies
the equality ∫

N

(divX)α = 0. (3)

Recall [17] that a smooth vector field Y on some n-dimensional Riemannian manifold (M , g) is
called a Killing field (or an infinitesimal isometry) if the Lie derivative LY g of the metric tensor g with
respect to Y is identically zero. The Ricci tensor S on (M , g) is the tensor field of type (0, 2) defined
by the equality

Sx(X,Y ) :=

n∑

l=1

Rx(Vl, Y, Vl, X)

for all X,Y ∈ TxM and all x ∈M , where Rx is the Riemann curvature tensor, and {Vl}l=1,...,n is some
orthonormal frame at x.
A vector field X = {Xi}i∈J on some Riemannian orbifold (N , g) is called a Killing field if Xi is

a Killing field on the Riemannian manifold (Ωi, gi) for each i ∈ J . Take the Ricci tensor Si on the
Riemannian manifold (Ωi, gi). The definition of the Riemannian metric g = {gi}i∈J implies that the
family S = {Si}i∈J of tensors is a tensor of type (0, 2) on the orbifold N . The tensor S is called the
Ricci tensor of (N , g).

Proof of Theorem 3. Suppose that the orbifold N is oriented. Take some Killing field X =
{Xi}i∈J on the compact Riemannian orbifold (N , g). Then the equality

div(AXiXi) = −Si(Xi, Xi)− trace(AXiAXi),
where AXi is the Kobayashi operator, AXiAXi is the composition of AXi with AXi , and Si is the Ricci
tensor of the Riemannian manifold (Ωi, gi) [17, Chapter VI, Proposition 5.1], yields

∫

N

div(AXX)α = −
∫

N

(S(X,X) + trace(AXAX))α. (4)
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Since the operator AXi is skew-symmetric on the Riemannian manifold (Ωi, gi) [17, Chapter VI, Propo-
sition 3.2], it follows that trace(AXiAXi) ≤ 0. By the hypothesis of Theorem 3 the Ricci tensor S is
nonpositive definite, and so Si(Xi, Xi) ≤ 0. Consequently, the function S(X,X) + trace(AXAX) =
{Si(Xi, Xi) + trace(AXiAXi)}i∈J is nonpositive on N . By (3), the left-hand side of (4) is identi-
cally zero. Hence, the inequalities Si(Xi, Xi) ≤ 0 and trace(AXiAXi) ≤ 0 yield Si(Xi, Xi) = 0 and
trace(AXiAXi) = 0 for all i ∈ J .
Denote by ∇ the Levi-Civita connection on the Riemannian manifold (Δn, g|Δn). Note that the

restriction X̃ := X|Δn of the vector field X is a smooth vector field on the manifold Δn. Since the torsion
tensor T of the connection ∇ is equal to zero, the derivatives of arbitrary vector fields Y and Z on Δn
satisfy [17, Chapter VI, Proposition 2.5] the equality AY Z = −∇ZY . The equality trace(AXiAXi) = 0
implies that AXi = 0, and consequently, AX̃ = 0. Therefore, ∇X̃ = 0; i.e., the vector field X̃ is absolutely
parallel on Δn.

By the hypothesis of Theorem 3 there is a point x ∈ N at which the Ricci tensor S is negative definite.
Hence, by the smoothness of S there is some neighborhood U of x in N on which S is negative definite.
Since Δn is dense in N , there is some point y ∈ U ∩Δn. The vanishing of S(X,X) = {Si(Xi, Xi)}i∈J
at y ∈ Δn and the negative definiteness of S at y imply that the vector field X̃ vanishes at y. Since X
is a parallel Killing vector field on Δn, by the connectedness of Δn the vanishing of X̃ at y implies

the vanishing of X̃ on Δn. Hence, for each chart (Ωi,Γi, pi) ∈ A and its coordinate neighborhood Ui,
because the vector field Xi on the manifold Ωi is continuous, the vanishing of Xi on the dense subset
p−1i (Ui∩Δn) of Ωi implies the vanishing of Xi everywhere on Ωi. Consequently, every Killing vector field
on an arbitrary oriented Riemannian orbifold (N , g) is identically zero.

Since all Killing vector fields on (N , g) are identically zero, the Lie algebra of the Lie group I(N ) is
equal to zero. Thus, the group I(N ) is at most countable. By Proposition 1 the group I(N ) is compact,
and so it must be finite.

Suppose now that the Riemannian orbifold N is nonorientable. By Proposition 3 there exists some
two-sheeted covering κ : N ′ → N of the orbifold N by an orientable orbifold N ′. Assume that N ′ is
oriented. Since N is compact; therefore, its two-sheeted covering orbifold N ′ is compact too. According
to the proof of Lemma 2 the Riemannian metric is induced onN ′ so that the Ricci tensor S′ is nonpositive
definite on N ′, and at x′ ∈ κ−1(x) the Ricci tensor S′ is negative definite. We proved above that the
isometry group I(N ′) of the oriented compact Riemannian orbifold N ′ is finite. By Proposition 3 the
group I(N ) is isomorphic to the quotient group N(Γ)/Γ, where N(Γ) ⊂ I(N ′). Thus, the group I(N )
is also finite. �
Remark 1. Since the Ricci tensor of a one-dimensional Riemannian manifold is identically zero, the

Riemannian orbifolds satisfying Theorem 3 have dimension n ≥ 2.
Corollary 5. The isometry group of every compact Riemannian orbifold with a negative definite

Ricci tensor is finite.

Remark 2. In the case that the Riemannian orbifold is a Riemannian manifold the claim of Corol-
lary 3 coincides with Bochner’s theorem [12]; also see [17, Chapter VI, Corollary 5.4].

A Riemannian orbifold (N , g) is called [7] hyperbolic if for each i ∈ J the Riemannian manifold
(Ωi, gi) has constant negative curvature k.

It is known that for each n-dimensional Riemannian manifold of constant curvature k we have the
formula Sab = k(n− 1)gab, a, b = 1, . . . , n, where gab and Sab are the components of the metric tensor g
and the Ricci tensor S in a local coordinate system. This equality implies that for k = const < 0 the
Ricci tensor is negative definite. Thus, if N is some hyperbolic orbifold, the Ricci tensor S = {Si}i∈J of
the Riemannian orbifold N is negative definite. Therefore, Corollary 5 implies the following assertion:

Corollary 6. The isometry group of every compact hyperbolic orbifold is finite.
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8. Examples

Example 3. Let N = E3/Γ be the 3-dimensional orbifold of Example 2. Since Γ is a group of
isometries of the Euclidean space E3, it follows that N is a flat Riemannian orbifold. By Proposition 2
the isometry group I(N ) is isomorphic to the quotient group N(Γ)/Γ. The normalizer N(Γ) := {f ∈
I(E3) | f ◦ Γ = Γ ◦ f} consists of the isometries of E3 of the form A =

(
A′ 0
0 a33

)

, where A′ ∈ O(2,R)
and a33 ∈ {−1, 1}. Since I(N ) ∼= O(2,R)/G, where G ∼= Zm is the subgroup of O(2,R) generated by
the rotation of the plane Oxy through angle 2π/m, it follows that the Lie groups I(N ) and O(2,R) are
isomorphic.

Example 4. Consider the hyperbolic plane H2 realized as the upper half-plane with the coordinates

{x, y} and the metric ds2 = dx2+dy2

y2
, where y > 0. Choose positive integers qi for i = 1, 2, 3 so that

∑3
i=1

1
qi
< 1. It is known [23] that for such qi there exists a geodesic triangle T in H

2 with angles π/qi.

The group Γ of the isometries of H2 generated by the reflections in the geodesics bounding T is a discrete
group of isometries, and T is its fundamental domain. The quotient space N (qi) := H2/Γ is a 2-
dimensional compact hyperbolic orbifold which can be identified with T . The interior points of T are the
regular points of N , and the points on the boundary ∂T are singular. The orbifold group of the vertex
Ai ∈ T is isomorphic to the dihedral group of order qi, and the orbifold groups of the points on the edges
(excluding the vertices) are isomorphic to the reflection group Z2.
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1

1

2

3

2

3

x

y

0

� �

�

q q

q

N1
A A
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1
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3
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x

y

� �
�q q

q

0

N2

(a) (b)

Fig. 2. Compact Hyperbolic Orbifolds.

Case 1. Consider N1 := N (q1, q2, q3), where qi are pairwise distinct, as in Fig. 2(a).

Case 2. Consider N2 := N (q1, q2, q3), where q1 = q2 �= q3, as in Fig. 2(b).
Since each isometry preserves angles between vectors, in case 1 the isometry group I(N1) of the

hyperbolic orbifold N1 is trivial, and in case 2 the unique nontrivial isometry of N2 is the restriction to
N2 of the global isometry f : H2 → H2 : (x, y) �→ (−x, y) for all (x, y) ∈ H2. Therefore, the group I(N2)
is isomorphic to Z2, which agrees with Corollary 6.

The next example shows that the isometry group of a flat compact Riemannian orbifold can be finite.

Example 5. Take S1 = {z ∈ C | |z| = 1} and the group Γ generated by the isometries γ1, γ2, γ3 of the
flat torus T 3 = S1 × S1 × S1 ⊂ C3 defined by the equalities γ1(z1, z2, z3) := (z1, z̄2,−z̄3), γ2(z1, z2, z3) :=
(−z̄1, z2, z̄3), γ3(z1, z2, z3) := (z̄1,−z̄2, z3), zi ∈ S1, i = 1, 2, 3, where z̄ denotes the complex conjugate
of z ∈ C. Clearly, γ2m = idT 3 , m = 1, 2, 3, and Γ ∼= Z2 × Z2 × Z2. The isometry γm leaves invariant
the set Q(m) consisting of four circles; in particular, Q(1) := {S1 × {±1} × {±1}}. The quotient map
π : T 3 → T 3/Γ takes the circles of the family Q(m) into one circle. The quotient space N := T 3/Γ is

a 3-dimensional flat compact orbifold homeomorphic to the 3-dimensional sphere S3, and the set Σ of
singular points is the disjoint union of three linked circles known as the “Borromean rings” [7].

By Proposition 2 the isometry group I(N ) is isomorphic to the quotient group N(Γ)/Γ of the
normalizer N(Γ) of Γ in the isometry group I(T 3) of the torus T 3. It is not difficult to check that N(Γ)
is a finite subgroup of I(T 3). Thus, the isometry group I(N ) ∼= N(Γ)/Γ is finite.
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