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ISOMORPHISM AND HAMILTON REPRESENTATION

OF SOME NONHOLONOMIC SYSTEMS

A. V. Borisov and I. S. Mamaev UDC 531.38

Abstract: We consider some questions connected with the Hamiltonian form of the two problems of
nonholonomic mechanics: the Chaplygin ball problem and the Veselova problem. For these problems
we find representations in the form of the generalized Chaplygin systems that can be integrated by the
reducing multiplier method. We give a concrete algebraic form of the Poisson brackets which, together
with an appropriate change of time, enable us to write down the equations of motion of the problems
under study. Some generalization of these problems are considered and new ways of implementation of
nonholonomic constraints are proposed. We list a series of nonholonomic systems possessing an invariant
measure and sufficiently many first integrals for which the question about the Hamiltonian form remains
open even after change of time. We prove a theorem on isomorphism of the dynamics of the Chaplygin
ball and the motion of a body in a fluid in the Clebsch case.
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We start with considering some general results on the method for integration of nonholonomic systems
which is named after S. A. Chaplygin [1] the reducing multiplier method. We modify this method in order
to apply it to a broader class of the so-called generalized Chaplygin systems. In the next sections we
apply these results and explicitly find the Poisson structure as well as isomorphisms with other integrable
Hamiltonian systems.

1. Generalized Chaplygin Systems

Consider a mechanical system, with two degrees of freedom, whose equation of motion can be writ-
ten as

d

dt

(
∂L

∂q̇1

)
− ∂L

∂q1
= q̇2S,

d

dt

(
∂L

∂q̇2

)
− ∂L

∂q2
= −q̇1S,

S = a1(q)q̇1 + a2(q)q̇2 + b(q),

(1)

where L is a function of the coordinates and velocities also called the Lagrangian of the system.

For a special choice of the function S we obtain the usual Chaplygin system (in this event, certainly
b(q) = 0) [1]. As demonstrated by Chaplygin, the form (1) with b(q) = 0 is the form to which the so-called
Chaplygin sledge equations can be reduced; these equations can be integrated by the reducing multiplier
method to be presented below and solution of the Hamilton–Jacobi equation. As was demonstrated in [2],
the Veselova problem is a Chaplygin system as well. Recall that the Veselova problem concerns a rigid
body rotating around a fixed point subject to a nonintegrable constraint requiring that the projection of
the angular velocity to a fixed axis is zero. As we will demonstrate later, the form (1) now with b(q) �= 0
arises also in the problem on a dynamically asymmetric balanced Chaplygin rolling ball [3].

We will call (1) the generalized Chaplygin system (not to be confused with [4] proposing a somewhat
different generalization of Chaplygin systems).
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As demonstrated [1] by Chaplygin, in the case b(q) = 0 the form of the equations is preserved under
the changes of time

N(q) dt = dτ,

if N is independent of the velocities. Let us show that this is also valid for (1).

Denoting differentiation with respect to the new time by q′i =
dqi
dτ , we find that

q̇i = Nq
′
i,

∂L

∂q̇i
=
1

N

∂L

∂q′i
,

∂L

∂qi
=
∂L

∂qi
− 1
N

∂N

∂qi

2∑
k=1

q′k
∂L

∂q′k
,

where L(q, q′) = L(q,Nq′). Inserting this in (1), we obtain

d

dτ

(
∂L

∂q′q

)
− ∂L

∂q1
= q′2S,

d

dτ

(
∂L

∂q′2

)
− ∂L

∂q2
= −q′1S,

S = NS +
1

N

(
∂N

∂q2

∂L

∂q′1
− ∂N

∂q1

∂L

∂q′2

)
.

(2)

For the usual Chaplygin system, it is well known [1] that if there is an invariant measure with density
depending only on the coordinates then we can choose N(q) so that S = 0 and consequently write down
the system with the new time τ in canonical Hamiltonian form. We expand this result to the case of
generalized Chaplygin systems of the form (1) on assuming that the Lagrangian is a quadratic function
of the velocities q̇i (not necessarily homogeneous).

Theorem 1. Suppose that

det

∥∥∥∥ ∂2L

∂q̇i∂q̇j

∥∥∥∥ �= 0
and (1) admits an invariant measure with density depending only on the coordinates. Then there is
a change of time N(q) dt = dτ such that
(1) the function S defined by (2) depends only on the coordinates: S = S(q),
(2) the equations of motion in the new time are written in Hamiltonian form

dqi

dτ
= {qi, H}, dpi

dτ
= {pi, H},

where

pi =
∂L

∂q′i
, H =

2∑
k=1

pkq
′
k − L|q′i→pi ,

and the Poisson bracket is defined by the relations

{qi, pj} = δij , {p1, p2} = S(q), {q1, q2} = 0. (3)

Proof. Carry out the Legendre transform for the initial system (1):

Pi =
∂L

∂q̇i
, H =

∑
i

Piq̇i − L|q̇i→Pi ;

moreover,

q̇i =
∂H

∂Pi
, Ṗ1 = −∂H

∂q1
+
∂H

∂P2
S, Ṗ2 = −∂H

∂q2
− ∂H

∂P1
S,

S = a1(q)q̇1 + a2(q)q̇2 + b(q) = A1(q)P1 +A2(q)P2 +B(q).
(4)
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The Liouville equation for the density of the invariant measure ρ(q) dP1dP2dq1dq2 of (4) leads to the
equality

q̇1

(
1

ρ

∂ρ

∂q1
−A2(q)

)
+ q̇2

(
1

ρ

∂ρ

∂q2
+A1(q)

)
= 0,

and since ρ depends only on the coordinates, each of the expressions in parentheses must vanish:

1

ρ

∂ρ

∂q1
−A2(q) = 0, 1

ρ

∂ρ

∂q2
+A1(q) = 0.

Now, write (2) for S considering that 1N
∂L
∂q′i
= Pi:

S =

(
NA1(q) +

∂N

∂q2

)
P1 +

(
NA2(q)− ∂N

∂q1

)
P2 +B(q).

Thus, if we choose N(q) = ρ(q) then S = B(q), thereby the first assertion of the theorem is proven.
The second assertion is proven by straightforwardly checking the equations and the Jacobi iden-

tity. �
The Hamiltonian systems with (3) arise in description of generalized potential systems (for example,

in description of motion of charged particles in a magnetic field) or systems with gyroscopic forces [5].
In this case the closed 2-form Ω = S(q) dq1 ∧ dq2 is called the 2-form of gyroscopic forces. Locally, it
is representable as a total differential: Ω = dω, ω = W1(q)dq1 +W2(q)dq2; moreover, the equations of
motion (2) can be written as the Lagrange–Euler equations

d

dτ

(
∂LW
∂q′i

)
− ∂LW

∂qi
= 0,

LW = L+W (q, q
′), W (q, q′) =W1(q)q′1 +W2(q)q

′
2,

and the Poisson bracket is reduced to canonical form by means of the new momenta p̃i = pi +Wi(q).
If the manifold M on which the coordinates q1 and q2 are defined is compact then the criterion

for exactness of Ω takes the form
∫

M
Ω = 0. Thus, if

∫
Ω �= 0, i.e., the 2-form is not exact then the

generalized potential W and the corresponding Lagrangian and Hamiltonian have singularities (the so-
called monopole) [6]. In this case sometimes one speaks of impossibility of global representation of the
equations of motion in the (canonical) Hamiltonian form.

2. The Veselova System

The Veselova system describes the motion of a rigid body with a fixed point subject to a nonholonomic
constraint of the form (ω, γ) = 0, where ω and γ are the vector of the angular velocity of the body and
the unit vector of a spatially fixed axis in the coordinate system rigidly connected with the body. Thus,
in the case of the Veselova constraint the projection of the angular velocity to a spatially fixed axis is
zero. This constraint is dual to the Suslov constraint [7] which requires that the projection be zero of the
angular velocity to an axis fixed with respect to the body.
In the moving axes connected with the body, the equations of motion can be written as [8, 9]

Iω̇ = Iω × ω + μγ + γ × ∂U

∂γ
, γ̇ = γ × ω, (5)

where μ is an undetermined multiplier, I = diag(I1, I2, I3) is the momentum tensor, and U(γ) is the
potential energy. The undetermined multiplier μ can be found by differentiation of the constraint:

μ = −
(
Iω × ω + γ × ∂U

∂γ , I
−1γ
)

(γ, I−1γ)
. (6)
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In the general case (5) admits the energy and geometric integral

H =
1

2
(Iω,ω) + U(γ), γ2 = 1, (7)

as well as the invariant measure ρω d
3ωd3γ with the density

ρω =
√
(γ, I−1γ). (8)

For U = 0 we have the additional integral

F = (Iω, Iω)− (Iω, γ)2 = |Iω × γ|2; (9)

consequently, the system is integrable by the Euler–Jacobi theorem [8].

Remark 1. Integral (9) can be generalized if we add the Brun potential [8, 9] and some other
potentials [2, 10]. Also, it can be generalized by addition of a gyrostat [8, 9].

Remark 2. System (5), (6) with the constraint (ω, γ) = 0 was rediscovered in [11] almost ten years
after the publication of [8, 9]. In [11] explicit integration was carried out by means of spheroconical
coordinates.

Remark 3. A generalization of the Veselova constraint (ω, γ) = d �= 0 was considered in [12].
It was reduced to quadratures by the Chaplygin method for integration of the equations of motion of
a dynamically asymmetric ball with a nonzero constant of areas [3].

As was demonstrated in [2], the Veselova system is the Chaplygin system (1) for b(q) = 0 and con-
sequently it can be written in Hamiltonian form after the change of time N dt = dτ with the reducing
multiplier N = ρ−1ω . We will verify this explicitly taking the Euler angles θ, ϕ, and ψ as the local coordi-
nates and then use the so-found canonical Poisson structure of the cotangent bundle of the sphere T ∗S2
for construction of the Poisson bracket with respect to the redundant variables ω and γ. Using this alge-
braization of the Poisson structure, we can establish most naturally an isomorphism with the Neumann
system that describes the motion of a point over a sphere in a quadratic potential (it was established
straightforwardly in [8, 9]). As we will see later, we can straightforwardly translate this analogy onto the
Chaplygin ball and the general Clebsch system (whose particular case is the Neumann system).
The angular velocity ω of the body and the unit vector γ are expressed in terms of the Euler angles

by the formulas
ω = (ψ̇ sin θ sinϕ+ θ̇ cosϕ, ψ̇ sin θ cosϕ− θ̇ sinϕ, ψ̇ cos θ + ϕ̇),

γ = (sin θ sinϕ, sin θ cosϕ, cos θ).
(10)

The equation of constraint has the form

f = (ω, γ) = ψ̇ + cos θϕ̇ = 0. (11)

Eliminate the undetermined Lagrange multiplier from the equations of motion for the angles θ and ϕ
and represent them as the Chaplygin system:

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+
∂U

∂θ
= ϕ̇S,

d

dt

(
∂T

∂ϕ̇

)
− ∂T

∂ϕ
+
∂U

∂ϕ
= −θ̇S,

S =
∂T0

∂ψ̇

∣∣∣∣
ψ̇=− cos θϕ̇

= sin2 θ(θ̇(I2 − I1) sinϕ cosϕ− ϕ̇(I1 cos2 ϕ+ I2 sin2 ϕ+ I3)),
(12)

where U is the potential energy of the body in the exterior field, T0 =
1
2(ω, Iω) is the kinetic energy

without the constraint taken into account, and T is the kinetic energy after elimination of ψ̇ by means
of the constraint

T = T0|ψ̇=− cos θϕ̇ =
1

2
I1(θ̇ cosϕ− ϕ̇ sinϕ sin θ cos θ)2

+
1

2
I2(θ̇ sinϕ+ ϕ̇ cosϕ sin θ cos θ)

2 +
1

2
I3ϕ̇

2 sin4 θ. (13)
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Remark 4. Obtaining (12) bases on simple application of the usual differentiation on consider-
ing (11):

∂T

∂θ̇
=
∂T0

∂θ̇
,

∂T

∂ϕ̇
=
∂T0

∂ϕ̇
− cos θ∂T0

∂ψ̇
,

∂T

∂θ
=
∂T0

∂θ
+ ϕ̇ sin θ

∂T0

∂ψ̇
,

∂T

dϕ
=
∂T0

∂ϕ
.

Theorem 2 [2]. After the change of time N dt = dτ , N = (γ, Iγ)−1/2, the equations of motion of
the Veselova system are representable as the Euler–Lagrange equations

d

dτ

(
∂L

∂θ′

)
− ∂L

∂θ
= 0,

d

dτ

(
∂L

∂ϕ′

)
− ∂L

∂ϕ
= 0, (14)

where L = T − U |θ̇=Nθ′, ϕ̇=Nϕ′ is the Lagrangian representable as

L =
1

2

(γ′ × γ, I(γ′ × γ))
(γ, I−1γ)

− U(γ)

in view of the constraint and change of time.

The proof bases on simply checking that after the change of time the right-hand side S of (14),
calculated by (2), vanishes. �
The canonical Hamiltonian form of the equations of motion (14) can be obtained by the Legendre

transform

pθ =
∂L

∂θ′
, pϕ =

∂L

∂ϕ′
, H = pθθ

′ + pϕϕ′ − L,
dθ

dτ
=
∂H

∂pθ
,

dϕ

dτ
=
∂H

∂pϕ
,

dpθ
dτ
= −∂H

∂θ
,

dpϕ

dτ
= −∂H

∂ϕ
.

(15)

Using the canonical variables (15), after the change of time (ρω
√
det I)−1dt = dτ we can represent

the equations of motion of the Veselova problem in the Hamiltonian form on the (co)algebra e(3) of the
Poisson brackets:

M = ρωI
1/2ω, Γ = ρ−1ω I

−1/2γ,
dM

dτ
=M × ∂H

∂M
+ Γ× ∂H

∂Γ
,

dΓ

dτ
= Γ× ∂H

∂M
,

(16)

H =
1

2
(Γ, IΓ)(M ,M) + Ũ(Γ), (17)

where Ũ(Γ) = U(ρωI
1/2Γ) and respectively

γ2 = Γ2 = 1, (ω, γ) = (M , γ) = 0, ρω = (γ, I
−1γ)1/2 = (Γ, IΓ)−1/2,

{Mi,Mj} = εijkMk, {Mi,Γj} = εijkΓk, {Γi,Γj} = 0.

The Veselova system with a gyrostat. Attachment of a rotor with a constant angular velocity
to the body changes the equations of motion (5) as follows:

Iω̇ = (Iω + k)× ω + μγ + γ × ∂U

∂γ
, γ̇ = γ × ω,

μ = −(γ, I−1γ)−1
(
(Iω + k)× ω + γ × ∂U

∂γ
, I−1γ

)
,

where k is the constant vector of the gyrostatic momentum of the rotor. These equations admit an in-
variant measure (8) as well and Theorem 1 applies; moreover, the corresponding function S has the
form

S = ρω−1 sin θ(k1 sin θ sinϕ+ k2 sin θ cosϕ+ k3 cos θ) =

√
γ21 + γ

2
2

(γ, I−1γ)
(γ, k).
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For the variables (16) we obtain the respective Poisson structure of the form

{Mi,Mj} = εijk
(
Mk − ρ3ω det I(k, I1/2Γ)Γk

)
, {Mi,Γj} = εijkΓk, {Γi,Γj} = 0. (18)

The result on existence of structure (18) is new.

Isomorphism with the Neumann and Braden systems. It is easy to see that for Ũ = 0
at the level H = h the system is isomorphic to the Hamiltonian system on e(3) with the Hamiltonian
H = 1

2(M ,M)− h
(Γ,IΓ) provided that H = 0. This system was indicated by Braden in [13]. Thus, the

symplectic sheet of the structure (M , γ) ∈ R6 on which the real motion occurs is given by the conditions
γ2 = 1 and (M , γ) = 0 which corresponds to the zero constant of areas in the classical Euler–Poisson
equations [6]. Also, observe that the system of (16) and (17) determines some integrable potential system
on the two-dimensional sphere and thereby it defines some geodesic flow.
The inverse change has the form

ω = (Γ, IΓ)1/2I−1/2M , γ = (Γ, IΓ)−1/2I1/2Γ.

Thus, the search of integrable potentials in the Veselova problem reduces to the well-studied problem
of finding integrable cases for the Hamiltonian system on e(3) with Hamiltonian (17). For example, if
U = 0 then the additional integral (9) takes the form

F = (IM ,M)(IΓ,Γ)− (IM ,Γ)2.

(Note that {H,F} = 0 only at the zero constant (M , γ) = 0.)
It was observed in [8, 9] that for U = 0 system (5) is equivalent to the Neumann problem. As we see,

here this representation is not connected immediately with the natural reduction of the Veselova problem
to Hamiltonian form (16), (17) on e(3). It turns out that the isomorphism with the Neumann system is
due to existence of a transformation not preserving the Poisson bracket but reducing the vector field to
the required form on the level surface H = const.
Indeed, consider the Hamiltonian system on e(3) under the condition (M , γ) = 0 defined by the

Hamiltonian

H = α
1

2
M2(Γ, IΓ) + β

1

2
((M , IM)(Γ, IΓ)− (M , IΓ)2). (19)

Clearly, both summands are the first integrals of the system. The following simple lemma is valid:

Lemma 1. At a fixed level M
2(Γ,IΓ)
det I = c the vector field generated by the Hamiltonian (19) is

isomorphic to the vector field of the Kirchhoff equations in the Clebsch case at the zero constant of areas
(L, s) = 0 which are representable as

ṡ = k(αs× L+ βs× IL), L̇ = k(αcs× Is+ β(L× IL− c(det I)s× I−1s)), k = −
√
det I. (20)

Proof. Carry out the change of variables

L = I−1/2M , s = (Γ, IΓ)−1/2I1/2Γ,

which preserves the relations s2 = Γ2 = 1, (M ,Γ) = (s,L) = 0. By linearity, we can consider the cases
α = 1, β = 0 and α = 0, β = 1 separately. In the first case, writing down the equations of motion in the
new variables, we find that

ṡ = −
√
det I

(
s× L+ (s,L)(s× I

−1s)
(s, I−1s)

)
, L̇ = −

√
det I

(IL,L)

det I(s, I−1s)
s× Is.

Hence, using the relations (s,L) = 0 and (IL,L)
(s,I−1s) =M

2(Γ, IΓ) = cdet I, we arrive at the sought result.

The case α = 0 and β = 1 is considered similarly. �
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If we assume c to be a constant parameter then the vector field (20) is generated on e(3) by the
Hamiltonian of the form

H = kα

(
1

2
M2 +

c

2
(Γ, IΓ)

)
+ kβ

(
1

2
(M , IM)− c

2
det I(Γ, IΓ)

)
.

For α = 1 and β = 0 this is the Hamiltonian of the Neumann case, while for α = 0 and β = 1 this
is the Hamiltonian of the Brun problem; for arbitrary α and β it corresponds to the general Clebsch
case in the Kirchhoff equations [6, 14]. Using (16), (17), we easily obtain the following theorem for the
Veselova system:

Theorem 3 [8, 9]. The vector field of the Veselova problem (for U = 0) at a fixed levelH = h = const
of the energy integral after the change of time is isomorphic to the vector field of the Neumann problem.

Remark 5. The multidimensional analog of the Veselova problem was considered in [2, 15]. In [15]
an invariant measure and some first integrals were found. Integrability of the multidimensional analog
was established in [2] by means of special invariant relations under some additional constraints on the
momentum tensor. Moreover, isomorphism with the multidimensional Neumann problem is also used.

3. The Chaplygin Ball

Consider the problem on a balanced dynamically asymmetric ball rolling over a horizontal absolutely
rough plane (i.e., the motion without sliding) in an axially symmetric potential force field. The equations
of motion in the coordinate system connected with the principal axes of the ball are representable as [3]

Ṁ =M × ω + γ × ∂U

∂γ
, γ̇ = γ × ω,

M = Iω +Dγ × (ω × γ) = IQω, D = mR2,

(21)

where ω is the angular velocity of the ball, γ is the unit vertical vector in the moving axes, I =
diag(I1, I2, I3) is momentum tensor of the ball with respect to its center, m and R are the mass and
the radius of the ball, and U = U(γ) is the potential of the exterior axially symmetric field. The vec-
tor M has the sense of the kinetic momentum of the ball with respect to the contact point and the
tensor IQ is representable as

IQ = J−Dγ ⊗ γ, J = I+D.

Equations (5) (for an arbitrary potential) possess the energy integral, the geometric integral, and the
integral of areas:

H =
1

2
(M ,ω) + U(γ), (γ, γ) = 1, (M , γ) = c = const; (22)

they also admit the invariant measure ρμ d
3Md3γ with the density

ρμ = (det IQ)
−1/2 = [detJ(1−D(γ,J−1γ))]−1/2 (23)

indicated by S. A. Chaplygin [3].
In the absence of the exterior field (U = 0) system (5) possesses the additional integral

F = (M ,M) (24)

and so it is integrable by the Euler–Jacobi theorem [3]. In [3] system (5) was integrated in terms of
hyperelliptic functions.

Remark 6. Integral (24) admits generalization to the case of the Brun field U(γ) = k
2 (γ, Iγ) [16] and

to the case of the gyrostat [5]. The other integrable potentials (for the zero constant of areas (M , γ) = 0)
can be found by means of the representation for the system on the algebra e(3) indicated below.
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Comments. Observe that, developing the general reducing multiplier method [1], Chaplygin himself
did not use it for solving the rolling ball problem. The reader can find a discussion of possible obstacles
for application of the reducing multiplier method in this case in [16]. On the other hand, already in [3]
Chaplygin actually posed the question about the Hamiltonian form of the equations of a rolling ball.
A more rigorous statement of the question about the Hamiltonian form (or Hamiltonization) of the
Chaplygin ball was given by Kozlov [14] and Duistermaat [17, 18]. In [19] the authors demonstrated
numerically that without change of time the equations of the Chaplygin rolling ball have no Hamiltonian
form; the reason is the difference of the circulation periods on two-dimensional invariant resonance tori.
We supplemented this negative result of [19] by the “positive” result of [20] on the Hamilton property

of the Chaplygin ball after the corresponding change of time and also presented the explicit form of the
nonlinear degenerate Poisson structure and the Hamilton function. Unfortunately, the authors of the
remarkable survey [18] could not verify explicitly our result, perhaps, in view of some publisher’s misprints
in [20]. Here we repeat again the result of [20] and also, using it, indicate an interesting isomorphism of
the Chaplygin ball with the Clebsch case of the Kirchhoff equations. The existence of this isomorphism
was conjectured in [9], but no explicit form was indicated in publications. This is closely connected with
the above-indicated isomorphism between the Veselova and Neumann systems.
As demonstrated in [20], for an arbitrary potential, after the change of time and variables

ρμ dt = dτ, L = ρμM (25)

the equations of motion (5) take the Hamiltonian form

dMk

dτ
= {H,Mk}, dγk

dτ
= {H, γk}

with the nonlinear Poisson bracket

{Li, Lj} = εijk(Lk − (L, γ)Dρ2μJiJjγk), {Li, γj} = εijkγk, {γi, γj} = 0, (26)

where the Hamiltonian is the energy (6) which can be written as

H =
detJ

2
((1−D(γ,J−1γ))(L,J−1L) +D(J−1L, γ)2) + U(γ). (27)

It is easy to show [20] that for (L, γ) = 0 and U(γ) = 0 the Hamiltonian (27) determines the phase flow
conjugate to the flow of the integrable Braden problem [13]. This substantiates once again the conclusion
of [12] that the Chaplygin and Veselova problems determine transversal flows on the same invariant pairs.
We show now that the problem on the Chaplygin rolling ball is the generalized Chaplygin system (1)

and bracket (26) can be obtained by the reducing multiplier method (see Theorem 1).
As in the Veselova problem, we use the local coordinates: the Euler angles θ, ϕ, and ψ and the Carte-

sian coordinates x and y of the center of the cylinder. In the moving coordinate system connected with
the principal axes of the ball, the angular velocity vector and the normal to the plane have the form (10).
The equations of constraints, expressing the condition of absence of sliding at the contact point, are

representable as

fx = ẋ−Rθ̇ sinψ +Rϕ̇ sin θ cosψ = 0, fy = ẏ +Rθ̇ cosψ +Rϕ̇ sin θ sinψ = 0. (28)

The equations of motion with undetermined Lagrange multipliers have the form

d

dt

(
∂T0

∂ẋ

)
= λx,

d

dt

(
∂T0

∂ẏ

)
= λy,

d

dt

(
∂T0

∂ψ̇

)
= 0,

d

dt

(
∂T0

∂θ̇

)
− ∂T0

∂θ
= λx

∂fx

∂θ̇
+ λy

∂fy

∂θ̇
,

d

dt

(
∂T0

∂ϕ̇

)
− ∂T0

∂ϕ
= λx

∂fx

∂ϕ̇
+ λy

∂fy

∂ϕ̇
,

(29)
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where T0 is the kinetic energy of the ball without constraints (28) (which is obviously independent of x,
y, and ψ):

T0 =
1

2
m(ẋ2 + ẏ2) +

1

2
(ω, Iω).

Eliminating the undetermined multipliers λx and λy by means of the first two equations in (29) and
constraints (28), we find that

λx
∂fx

∂θ̇
+ λy

∂fy

∂θ̇
= −mR2(θ̈ + ψ̇ϕ̇ sin θ),

λx
∂fx

∂ϕ̇
+ λy

∂fy

∂ϕ̇
= −mR2(ϕ̈ sin θ + θ̇ϕ̇ cos θ − θ̇ψ̇) sin θ.

Consequently, the equations of motion for the angles θ and ϕ are independent of ψ and depend only
on ψ̇. Thus, we see that ψ is a cyclic variable and can be eliminated by the Routh reduction; afterwards
we can rewrite the equations of motion for θ and ϕ as

d

dt

(
∂R

∂θ̇

)
− ∂R

∂θ
= −ϕ̇S, d

dt

(
∂R

∂ϕ̇

)
− ∂R

∂ϕ
= θ̇S, S = mR2 sin θ(ϕ̇ cos θ + ψ̇). (30)

Here R is the Routh function:

R(θ, ϕ, θ̇, ϕ̇) = T0 − ψ̇ ∂T0
∂ψ̇

where we should insert ẋ and ẏ from the equations of constraints and eliminate ψ̇ by means of the
equation for the cyclic integral

∂T0

∂ψ̇
= (I1 − I2)θ̇ sin θ sinϕ cosϕ+ I3ϕ̇ cos θ

+((I1 sin
2 ϕ+ I2 cos

2 ϕ) sin2 θ + I3 cos
2 θ)ψ̇ = c = const . (31)

We have thus represented the equations of motion in the form of a generalized Chaplygin system (1)
and, since the system possesses a measure, we can represent equations (30) in Hamiltonian form with
bracket (3).

Carry out the change of time of the form

N(θ, ϕ)dt = dτ, (32)

where N = ρμ is the density of the invariant measure (23) in the case under consideration.

By (2), the equations of motion with the new time take the form

d

dτ

(
∂R

∂θ′

)
− ∂R

∂θ
= −ϕ′S, d

dτ

(
∂R

∂ϕ′

)
− ∂R

∂ϕ
= θ′S,

S = cDJ3N
3 sin θ(J1 cos

2 ϕ+ J2 sin
2 ϕ),

(33)

where

θ′ =
dθ

dτ
= N−1θ̇, ϕ′ =

dϕ

dτ
= N−1ϕ̇, and R = R(θ, θ̇, ϕ, ϕ̇)|θ̇=Nθ′, ϕ̇=Nϕ′ .

Carrying out the Legendre transform for the system with the new time τ , we obtain the following
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Theorem 4 (on the Hamilton property of the Chaplygin ball). After the change of time Ndt = dτ
the equations of motion (30) for the Chaplygin ball are representable in Hamiltonian form:

dθ

dτ
=
∂H

∂pθ
,

dpθ
dτ
= −∂H

∂θ
− S ∂H

∂pϕ
,

dϕ

dτ
=
∂H

∂pϕ
,

dpϕ

dτ
= −∂H

∂ϕ
+ S

∂H

∂pθ
with the Poisson bracket of the form

{θ, pθ} = {ϕ, pϕ} = 1, {pϕ, pθ} = S(θ, ϕ), {θ, ϕ} = 0, (34)

where

pθ =
∂R

∂θ′
, pϕ =

∂R

∂ϕ′
,

H = θ′pθ + ϕ′pϕ −R =
1

2
p2θ(I3Ĩ12 −D(γ, Iγ)) +

1

2

p2ϕ

sin2 θ
(I1I2 sin

2 θ + I3Ĩ12 cos
2 θ −D(γ, Iγ))

+
pθpϕ

sin θ
I3(I1 − I2) cos θ sin θ sinϕ cosϕ− Ncpθ

sin θ
(I1 − I2)(I3 +D sin2 θ) sinϕ cosϕ

−Ncpϕ
sin2 θ

I3(Ĩ21 +D) +
N2c2

sin2 θ
(I3 +D sin

2 θ)(Ĩ21 +D),

Ĩ12 = I1 sin
2 ϕ+ I2 cos

2 ϕ, Ĩ21 = I1 cos
2 ϕ+ I2 sin

2 ϕ.

Expressing now the variables L = ρμM of (25) in terms of the local variables θ, ϕ, pθ, and pϕ, we
find that

L1 = pθ cosϕ− pϕ cos θ sinϕ
sin θ

+ cN
sinϕ

sin θ
,

L2 = −pθ sinϕ− pϕ cos θ cosϕ
sin θ

+ cN
cosϕ

sin θ
, L3 = pϕ.

We check immediately that this mapping takes the Poisson bracket (34) into the above-indicated struc-
ture (26).

The Chaplygin ball with a gyrostat (see [5]). If we add a rotor having a constant angular
velocity to a ball rolling over the plane then the equations of motion (21) take the form

Ṁ = (M + k)× ω + γ × ∂U

∂γ
, γ̇ = γ × ω, M = IQω,

where k is the constant gyrostatic momentum vector. Similarly, for (30) we have to choose

T0 =
1

2
m(ẋ2 + ẏ2) +

1

2
(ω, Iω) + (ω, k).

This system possesses the same invariant measure (23) and, obviously, we can also apply the reducing
multiplier method to the system (Theorem 1); moreover, for the corresponding function S we have

S = N3D sin θ(cJ3(J1 cos
2 ϕ+ J2 sin

2 ϕ) + detJ(γ,J−1k).
Using (34) with the new function S, we find the following commutation relations (similar to (26)) for the
components of the vectors L = ρμ(M + k) and γ:

{Li, Lj} = εijk
(
Lk −D detJ

(
ρ2μ(L, γ)− (γ,J−1k)

)
γk
)
,

{Li, γj} = εijkγk, {γi, γj} = 0.
Isomorphism with the Clebsch system. Consider the integrable case U = 0 at the zero constant

of areas (M , γ) = (L, γ) = 0 in more detail, since in this case bracket (26) corresponds to the algebra e(3).
Write the Hamiltonian (22) and the additional integral (24) in the variables L and γ in the form (dropping
down some inessential factors)

H =
1

2
L2(γ,Bγ)− 1

2
[(L,BL)(γ,Bγ)− (γ,BL)2],

F = L2(γ,Bγ), B = 1−DJ−1 = IJ−1.
Using Lemma 1, we obtain
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Theorem 5. After the changes of time (25) and variables s = (γ,Bγ)−1/2B−1/2γ and L̃ = B−1/2L
the vector field (21) for U = 0 at a fixed level (M ,M) = const and (M , γ) = 0 reduces to the vector field
of the Clebsch case in the Kirchhoff equations for the zero constant of areas.

Remark 7. Perhaps the indicated isomorphism can be used for proving integrability of the n-
dimensional Chaplygin ball at least on special orbits similar to the corresponding result on the Veselova
problem in [2].

Remark 8. In [15, 21] the equations were considered of the n-dimensional Chaplygin ball rolling
over the (n − 1)-dimensional plane. Although the question of integrability of this problem is still open,
in [15, 21] an invariant measure was found together with a series of the first integrals which generalize
the energy integrals, the integral of areas, and the geometric integral.

References

1. Chaplygin S. A., “To the theory of motion of nonholonomic systems. The theorem of a reducing multiplier,” in: Collected
Works. Vol. 1 [in Russian], Gostekhizdat, Moscow; Leningrad, 1948, pp. 15–25.
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