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ON Σ-SUBSETS OF NATURALS OVER ABELIAN GROUPS

A. N. Khisamiev UDC 512.540+510.5

Abstract: We obtain conditions for the Σ-definability of a subset of the set of naturals in the heredi-
tarily finite admissible set over a model and for the computability of a family of such subsets. We prove
that: for each e-ideal I there exists a torsion-free abelian group A such that the family of e-degrees
of Σ-subsets of ω in HF(A) coincides with I; there exists a completely reducible torsion-free abelian
group in the hereditarily finite admissible set over which there exists no universal Σ-function; for each
principal e-ideal I there exists a periodic abelian group A such that the family of e-degrees of Σ-subsets
of ω in HF(A) coincides with I.
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Problems of Σ-definability of subsets of the set of finite ordinals in admissible sets were addressed in
articles [1–5]. Connections between T -reducibility and Σ-definability were studied in [2, 3, 5], and relations
between e-reducibility and the family of Σ-subsets of ω in admissible sets, in [1, 4]. There are examples
in [1] of the models in whose hereditarily finite extensions the family of Σ-definable subsets of ω coincides
with I∗ = {S ⊆ ω | de(S) ∈ I}, where I is an arbitrary e-ideal. The present article is inspired by [1].
The necessary background on admissible sets can be found in [6, 7]. The fundamentals of the classical

computability theory and group theory can be obtained from [8] and [9] respectively. In this article we
consider hereditarily finite admissible sets over models of finite signatures.
Our notation is standard. Denote by Wn the nth computably enumerable set; and by Dn, the nth

finite set: Dn = {a1, . . . , ak} for n =
∑k
i=1 2

ai . Enumeration reducibility, or e-reducibility for brevity, is
defined by

A ≤e B ⇔ ∃n∀t (t ∈ A⇔ ∃m (〈t,m〉 ∈Wn&Dm ⊆ B)).
Define the enumeration operators Φn by

Φn(S) = {x | ∃m(〈x,m〉 ∈Wn&Dm ⊆ S)}.
This gives another definition of e-reducibility:

A ≤e B ⇔ ∃n (Φn(B) = A).
In this case we say thatWn determines Φn. Call a sequence {Θn}n∈ω of enumeration operators computable
whenever there exists a computable sequence {An}n∈ω of computably enumerable sets that determine Θn.
An arbitrary nonempty family I of e-degrees of sets of naturals is called an e-ideal whenever the

following are fulfilled:
1) a ≤e b and b ∈ I ⇒ a ∈ I;
2) a, b ∈ I ⇒ a � b ∈ I.
Denote by (Mn)�= the set of all n-tuples of pairwise distinct elements of M ; i.e., (Mn)�= = {ā ∈Mn |

ai = aj for i < j}.
We will assume that if M0 and M1 are models of distinct signatures then M0 cannot be embedded

into M1.
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§ 1. The Condition of Σ-Definability of Subsets of Naturals
Take a model M of finite signature σ, some subset M0 ⊆ M , and assume that the following are

fulfilled:

1. For each ā = 〈a0, . . . , an−1〉 ∈
(
M<ω
0

)
�= the Σ-subset Sā ⊆ ω is defined in HF(M). If n = 0 then

Sā � S∅.

2. For each n ∈ ω a computable class Kn = {〈Mnr , b̄〉 | r ∈ ω} of constructive models is defined,
with b̄ = 〈b0, . . . , bn−1〉, b̄ ∈

(
Mn
r

)
�=, and for each r ∈ ω a finite set Snr ⊆ ω is defined effectively so that

〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and only if Snr ⊆ Sā, ā ∈
(
Mn
0

)
�=.

3. For each finitely generated submodel 〈M′, ā〉 ⊆ 〈M, ā〉, ā ∈ (Mn
0

)
�=, there exists a number r such

that Snr ⊆ Sā and 〈M′, ā〉 can be isomorphically embedded into 〈Mnr , b̄〉.
We then have

Proposition 1. Take a Σ-formula ϕ(x, y0, . . . , yn−1) of signature σ′ = {σ,∈,∅} without parameters
and a tuple ā = 〈a0, . . . , an−1〉 ∈

(
Mn
0

)
�=. If A ⊆ ω can be defined by the formula ϕ(x, ā) in HF(M) then

A ≤e Sā; conversely, if A ≤e Sā then A is Σ-definable in HF(M).
Proof. The second part of the proposition is already proved in [1], and we will demonstrate the

first part. Take A = ϕHF(M)[x, ā] ⊆ ω and
Ws = {〈m, r〉 | HF(Mnr , b̄) |= ϕ(m, b̄)}. (1)

Condition 2 yields that Ws is computably enumerable.
To verify the equality

A =
{
m | ∃r (〈m, r〉 ∈Ws & Snr ⊆ Sā

)}
, (2)

denote its right-hand side by B. Take m ∈ A. Then
HF(M) |= ϕ(m, ā). (3)

There exists a finitely generated submodel 〈M′, ā〉 ⊆ 〈M, ā〉 such that
HF(M′, ā) |= ϕ(m, ā). (4)

By condition 3 there exists a number r such that Snr ⊆ Sā and 〈M′, ā〉 can be isomorphically embedded
into 〈Mnr , b̄〉. Together with (4) this yields

HF(Mnr , b̄) |= ϕ(m, b̄). (5)

Consequently, 〈m, r〉 ∈Ws & Srn ⊆ Sā; i.e., m ∈ B.
Take now m ∈ B. Then (1) implies (5). By condition 2 the model 〈Mnr , b̄〉 can be isomorphically

embedded into 〈M, ā〉. Thus, we have (3), and so m ∈ A, which proves (2).
Take a computable function f such that Snr = Df(r) and put

W ′
s = {〈m, f(r)〉 | 〈m, r〉 ∈Ws}. (6)

It is clear that W ′
s is computably enumerable. From (2) and (6)

A = {m | ∃t (〈m, t〉 ∈W ′
s & Dt ⊆ Sā)};

i.e., A �e Sā. �
Remark 1. Suppose that for ā ∈ (Mn

0

)
�= the set Sā can be defined by some Σ-formula with param-

eters ā. Then A ⊆ ω can be Σ-defined by some formula ϕ(x, ā) if and only if A ≤e Sā.
Introduce the following condition:
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2′. For each n ∈ ω a computable class Kn = {〈Mnr , b̄〉 | r ∈ ω} of constructive models is defined
uniformly in n, with b̄ = 〈b0, . . . , bn−1〉, b̄ ∈

(
Mn
r

)
�=, and for all n and r a finite set S

n
r ⊆ ω is defined

effectively and uniformly in n and r so that 〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and
only if Snr ⊆ Sā, ā ∈

(
Mn
0

)
�=.

Remark 2. If conditions 1, 2′, and 3 hold for a model M and a set M0 then in Proposition 1 the
required enumeration operator is determined from ϕ effectively.

Suppose that for M and M0 the following condition is fulfilled in addition to conditions 1–3.

4. For each x ∈ M there exist ā ∈ (M<ω
0

)
�= and a parameter-free Σ-formula ϕ(x, ȳ) such that x is

determined by the formula ϕ(x, ā) in HF(M). In this case, say that M is SΣ-generated by M0. If M is
SΣ-generated by its inverse M then we say that M is SΣ-generated.

Proposition 1 implies

Corollary 1. Suppose thatM is SΣ-generated by M0. A set A ⊆ ω is Σ-definable in HF(M) if and
only if there exists ā ∈ (M<ω

0

)
�= such that A ≤e Sā.

Proof. Take A = ϕHF(M)[x, b̄], where b̄ = 〈b0, . . . , bm−1〉 ∈ (Mn)�=. By condition 4 there exists
ā ∈ (M<ω

0

)
�= such that for each i < m there exists a formula ϕi(y, ā) of signature σ

′∪ā, σ′ = σ∪{U,∈,∅},
that defines bi in HF(M). Consider the formula

ψ(x, ā) = ∃y0 . . .∃ym−1
(
ϕ(x, ȳ) ∧

∧

i<m

ϕi(yi, ā)
)
.

It is easy to check that
ϕHF(M)[x, b̄] = ψHF(M)[x, ā].

Together with Proposition 1 this yields the corollary. �
Lemma 1. Every model M of a finite purely predicate signature σ is SΣ-generated.

Proof. Check conditions 1–4. Pick n ∈ ω. Denote by Kn the class of all finite models of signature
σ ∪ b̄, with b̄ = 〈b0, . . . , bn−1〉, whose inverses are the initial segments of the ordered set 〈{bi | i ∈ ω}, <〉,
where bi < bj for i < j. Suppose that Γn is an effective enumeration of this class, M

n
r = Γn(r), and

Snr = {r}. It is easy to check that Kn is a sequence of constructive models computable uniformly in n.
Given ā ∈ (M<ω)�=, a = 〈a0, . . . , an−1〉, denote by Sā the set of numbers r such that 〈Mnr , b̄〉 can

be isomorphically embedded into 〈M, ā〉, and show that Sā ⊆ ω is Σ-definable in HF(M). Pick r ∈ ω.
Suppose that Mn

r = {b0, . . . , bm−1}. Denote by Φ′r(b0, . . . , bn−1, . . . , bm−1) the open diagram of 〈Mnr , b̄〉.
Let F be the set of all formulas of signature σ, and let γ : ω → F be an effective enumeration of it. Put

γ(r′) = Φr′(x̄) = ∃yn . . .∃ym−1Φ′r(x0, . . . , xn−1, yn, . . . , ym−1).
The sequence 〈γ−1Fn0 | n ∈ ω〉 of sets, where Fn0 = {Φr′(x̄) | r ∈ ω}, is computable. The function
f(n, r) = r′ is computable, thus, Σ-definable in HF(M). There exists a Σ-function h : M<ω → ω such
that h(ā) = n, where ā = 〈a0, . . . , an−1〉. Thus, Sā = {r | HF(M) |= TrM(f(h(ā), r), ā)}, where

TrM(m, ā) = {〈m, ā〉 | m is the number of the ∃-formula Φm(x̄) of signature σ,
ā ∈M<ω, and HF(M) |= Φm(ā)},

is a Σ-set in HF(M).
By the definition of Snr this implies that conditions 1 and 2 hold for M and M . Let us check

condition 3. Given a finite submodel 〈M′, ā〉 ⊆ 〈M, ā〉, there exists r ∈ ω such that 〈Mnr , b̄〉 � 〈M′, ā〉.
Hence, Snr = {r} ⊆ Sā; i.e., condition 3 holds for M and M . The verification of condition 4 is obvious.
Consequently, M is SΣ-generated. �
Remark 3. The proof of Lemma 1 also implies that
1) condition 2′ holds for M and its inverse M ;
2) Sā can be Σ-defined by a formula with parameters ā.

Hence, Lemma 1 and Remarks 1 and 2 imply
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Corollary 2. Take a model M of a purely predicate signature σ. A set A ⊆ ω can be defined by
some Σ-formula ϕ(x, ā) in HF(M) if and only if A ≤e Sā. Moreover, the enumeration operator can be
found effectively from ϕ.

Given a model M, denote by Ie(M) the ideal of e-degrees of Σ-subsets of naturals in HF(M).

Corollary 3 [1]. Given a model M of a finite purely predicate signature σ, the ideal Ie(M) is
generated by the e-degrees de(Th∃(M, ā)), where ā ∈M<ω.

Indeed,M is SΣ-generated by Lemma 1. Suppose that A ⊆ ω is Σ-defined by ϕ(x, ā). Proposition 1
gives A ≤e Sā. The proof of Lemma 1 implies that Sā ≡e Th∃(M, ā). �
It was proved in [9] that every abelian p-group and every Ershov algebra is locally constructivizable.

Thus, Corollary 3 implies

Corollary 4. IfM is an abelian p-group or a Ershov algebra then each Σ-subset of the set of naturals
in HF(M) is computably enumerable.

Given a nonempty family U of nonempty sets of naturals and a sequence Λ = 〈αS | S ∈ U〉 of infinite
cardinals, a model M′〈U,Λ〉 is constructed in [1]. In fact, the construction applies also in the case that U
contains the empty set. Given a nonempty family U of sets of naturals and a sequence Λ, we have

Lemma 2. If U contains all finite sets then the model M � M′〈U,Λ〉 is SΣ-generated by the set
M0 = {〈S, γ〉 | S ∈ U, γ < αS}.
Proof. We have to check conditions 1–4 for SΣ-generation of M by M0.

1. Take ā = 〈a0, . . . , an−1〉 ∈
(
Mn
0

)
�=, ai = 〈Si, αi〉, and put Sā = S0 ⊕ · · · ⊕ Sn−1. It is easy to check

that Sā is a Σ-subset in HF(M).

2. Given some number n, fix an effective enumeration γn : ω → A, where A is the set of all m-tuples
of pairwise distinct pairs of numbers for m ≥ n, m ∈ ω. Let γnr = 〈〈ej , p′j〉 | j < m〉. Put Unr′ =
{De0 , . . . , Dem−1}. Let Unr = {Dr0 , . . . , Drt−1}, where Drj = Drj′ , j < j′ < t, prj = max{p′k | Drj = Dek ,

k < m}+ 1, Λnr = {pr0 , . . . , prt−1}, Mnr =M′〈Unr ,Λnr 〉, bi = 〈Dei , p
′
i〉. Put Snr = De0 ⊕ · · · ⊕Den−1 .

It is easy to check that 〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and only if Snr ⊆ Sā.
3. Take some finitely generated submodel

〈M′, ā〉 ⊆ 〈M, ā〉, ā = 〈a0, . . . , an−1〉 ∈
(
Mn
0

)
�=.

Without loss of generality we may assume that if 〈S, γ, n〉 ∈ M ′ then 〈S, γ〉 ∈ M ′. Suppose that
{aj | j < m}, with m ≥ n, is the set of all elements in M ′ belonging to M0, aj = 〈Sj , αj〉, and
De′j = {n | 〈Sj , αj , n〉 ∈M ′}.
It is easy to check that there exist numbers ej , p

′
j , such that for each j < m

1) De′j ⊆ Dej ⊆ Sj ;
2) 〈Dej , p′j〉 = 〈Dej′ , p′j′〉, j < j′ < m.

Put γr = 〈〈ej , p′j〉 | j < m〉.
It is easy to check that 〈M′, ā〉 can be isomorphically embedded into 〈Mnr , b̄〉, where bi = 〈Dei , p′i〉

for i < n, and Snr ⊆ Sā.
4. Take x ∈ M . If x ∈ ω then it is obvious that x is Σ-definable with respect to signature 〈0, s〉.

Suppose that x = 〈S, γ, n〉. Then
x = 〈S, γ, n〉 ⇔ Q(x, 〈S, γ〉, n).

Thus, each x is Σ-definable in the model M with constants in M0. Therefore, all conditions are fulfilled,
and so the model M′〈U,Λ〉 is SΣ-generated by M0. �
Remark 4. The second part of the proof of Lemma 2 implies that M satisfies condition 2′.
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Suppose that a model M of signature σ and a set M0 ⊆ M satisfy conditions 1, 2′, and 3, and the
following condition is fulfilled.

5. There exists a computable sequence ϕer(x, x0, . . . , xr−1), with r, e ∈ ω, of parameter-free Σ-formulas
of signature σ′ such that the following conditions are fulfilled:
(a) for all numbers r, e and each tuple ā ∈ (M r

0

)
�= the set {x ∈M | HF(M) |= ϕer(x, ā)} contains at

most one element;
(b) for each x ∈ M there exist numbers rx, ex and a tuple āx ∈

(
M rx
0

)
�= such that x is defined in

HF(M) by the formula ϕexrx(x, āx).
Say then that M is computably SΣ-generated by M0.
It is easy to observe the validity of

Lemma 3. Given a modelM and a formula ψ(x, y0, . . . , yn−1, b̄), b̄ ∈ (M t)�=, we can define effectively
by ψ the set of formulas

{ψi(x, y0, . . . , ymi−1, b̄) | i < s, mi < n}
so that

{ψM[x, ā, b̄] | ā ∈Mn} = {ψMi [x, ā, b̄] | i < s, ā ∈ (Mmi)�=, aj = bk
}
. (7)

Theorem 1. Suppose that M is computably SΣ-generated by M0. If a family S of subsets of the
set of naturals is computable in HF(M) then the family S ∪ {∅} can be represented in the form

{
Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈

(
Mmi
0

)
�=, aj = bk

}

for some computable sequence of enumeration operators Θi, some b̄ ∈
(
M t
0

)
�=, and the functionm(i) = mi

is computable.

Proof. Take some computable family S of subsets of the set of naturals in HF(M). By Proposi-
tion 4.4 in [1] and condition 5 there exists a Σ-formula Ψ(x0, x1, b̄) such that

S ∪ {∅} = {ΨHF(M)[x0, c, b̄] | c ∈ HF(M)} (8)

for some fixed b̄ ∈ (M t
0

)
�=.

Following Ershov [7], introduce the sets Hn = HF(n = {i | i < n}), H0 = HF(∅). Then HF(ω) =⋃
nHn. There exists a Σ-enumeration α : ω → HF (ω) of HF (ω) in HF(M). Denote by tm the element
of HF (ω) with index m. Suppose that tm ∈ Hkm , where km = min{k | tm ∈ Hk}, and

Ψ(m)(x0, z0, . . . , zkm−1, b̄) = Ψ(x, tm(z0, . . . , zkm−1), b̄). (9)

The function k(m) = km is computable. Denote by R the set of all finite tuples of naturals of the form
α = 〈m, r0, e0, . . . , rkm−1, ekm−1〉. It is obvious that R is computable; let ν be a computable function that
enumerates R.
For each i ∈ ω, define a formula Ψi. If ν(i) = α and km � q then put

Ψi
(
x, y00, . . . , y

0
r0−1, y

q−1
0 , . . . , y

q−1
rq−1−1, b̄

)

= ∃z0 . . .∃zq−1
(∧

j<q

U(zj) ∧Ψ(m)(x0, z0, . . . , zq−1, b̄) ∧
∧

j<q

ϕ
ej
rj

(
zj , y

j
0, . . . , y

j
rj−1
))
,

where ϕ
ej
rj are the same formulas as in condition 5.

Condition 5 implies that for each tuple c̄ = 〈c0, . . . , cq−1〉 ∈ M<ω there exist tuples α ∈ R and
ā = 〈āc0 , . . . , ācq−1〉 ∈M<ω

0 such that ν(i) = α and

ΨHF(M)[x0, tm(c̄), b̄] = Ψ
HF(M)
i [x0, ā, b̄].

578



Together with (8) and (9) this yields

S ∪ {∅} = {ΨHF(M)i [x0, ā, b̄] | i ∈ ω, ā ∈Mmi
0

}
. (10)

By Lemma 3 we may assume that in (10) we have 〈ā, b̄〉 ∈ (Mmi+t
0

)
�=. Then Remark 2 shows that

S ∪ {∅} = {Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj = bk

}

for some computable sequence of enumeration operators Θi, i ∈ ω, some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable. �
Introduce the following conditions for a model M and a set M0 ⊆M .
6. The set M0 is a Σ-subset in HF(M).

7. There exists a Σ-formula Φ1(x, ȳ), possibly with parameters, such that Φ
HF(M)
1 [x, ā] = Sā for each

ā ∈ (M<ω
0

)
�=.

Remark 5. The proof of Lemma 1 implies that for a model M of a purely predicate signature and
its inverse M conditions 6 and 7 are fulfilled.

Corollary 5. If M is computably SΣ-generated by M0 and conditions 6, 7 are fulfilled then a fam-
ily S of subsets of the set of naturals is computable in HF(M) if and only if S ∪ {∅} can be represented
in the form {

Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj = bk

}
(11)

for some computable sequence of enumeration operators Θi and some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable.

Proof. By Theorem 1 we have to prove the sufficiency. Suppose that S ∪ {∅} can be represented
in the form (11) and a computable sequence {Ai} of computably enumerable sets defines the operators
{Θi}. Then there exists a Σ-formula Φ2 such that ΦHF(M)2 [x, i] = Ai.
This, together with (11), implies by condition 7 that

S ∪ {∅} = {λx.∃t Φ2(〈x, t〉, i) & ∀y ∈ t (y ∈ Dt → Φ1(y, 〈ā, b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj = bk

}
.

Since the set
{
ā ∈ (Mmi

0

)
�= | i ∈ ω, aj = bk

}
is Σ-definable in HF(M), the family S ∪{∅} is computable.

Thus, S is computable. �
Consider the model M′〈U,Λ〉 constructed in [1].

Corollary 6. Given some e-ideal I and M =M′〈I∗,Λ〉, a family S of subsets of the set of naturals is
computable in HF(M) if and only if S ∪ {∅} can be represented in the form

{Θi(R,A) | i ∈ ω, R ∈ I∗}
for some computable sequence of enumeration operators Θi and some A ∈ I∗.
Proof. The sufficiency is easy from the existence of a universal Σ-predicate for admissible sets of

finite signature. To prove the necessity, suppose that a family S is computable. By Theorem 1

S ∪ {∅} = {Θ1i (S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj = bk

}

for some computable sequence of enumeration operators Θ1i and some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable. The proof of Lemma 2 implies the equality

S〈ā,b̄〉 = S0 ⊕ · · · ⊕ Smi−1 ⊕A0 ⊕ · · · ⊕At−1,
where aj = 〈Sj , γj〉 for j < mi, and bk = 〈Ak, βk〉 for k < t. Hence, there exists a computable sequence
of enumeration operators Θi such that

S ∪ {∅} = {Θi(S0 ⊕ · · · ⊕ Smi−1, A0 ⊕ · · · ⊕At−1) | Sj ∈ I∗, j < mi, i ∈ ω}.
It remains to notice that {S0 ⊕ · · · ⊕ Smi−1 | Sj ∈ I∗, j < mi} = I∗. �
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§ 2. Σ-Subsets of Naturals over Abelian Groups
Let P be the set of all primes, and take some nonempty family S = {Sα | α < β} of subsets of P ,

where β is some infinite ordinal. Given an ordinal α < β and i ∈ ω, define the group A
(i)
α by the

presentation

A(i)α = gr
(
aiα,
{
bαp,i | p ∈ Sα

}
: pbαp,i = a

i
α

)
,

and put

Aα =
⊕

i∈ω
A(i)α , AS =

⊕

α<β

Aα.

Lemma 4. The group A� AS is computably SΣ-generated by A0 =
{
aiα | α < β, i ∈ ω}.

Proof amounts to checking conditions 1, 2′, 3 and 5 in the definition of a computable SΣ-generated
model.

1. Given ā =
〈
at0α0 , . . . , a

tn−1
αn−1
〉 ∈ (A<ω0

)
�=, define the set

Sā = Sα0 ⊕ · · · ⊕ Sαn−1 ⊕ ω.

It is easy to check that condition 1 is fulfilled.

2′. Let [ ] : ω<ω → ω be an effective enumeration of finite tuples of naturals. Given numbers n and
r = [u0, . . . , un−1,m] such that Dui ⊆ P , i < n, m ∈ ω, define for each i < n the group

Bri = gr
(
bi,
{
cip | p ∈ Dui

}
: pcip = bi

)
,

and put

Mn
r =
⊕

i<n

Bri
⊕

Zm, b̄ = 〈b0, . . . , bn−1〉, Snr = Du0 ⊕ · · · ⊕Dun−1 ⊕ {m},

where Zm is the direct sum of m copies of the infinite cyclic group.

It is easy to verify that the mapping f : bi → atiαi , i < n, can be extended to an isomorphic embedding

of the model 〈Mn
r , b̄〉 into 〈A, ā〉 if and only if Snr ⊆ Sā.

3. Given ā =
〈
at0α0 , . . . , a

tn−1
αn−1
〉 ∈ (A<ω0

)
�= and a finitely generated subgroup A

′ ⊆ A that includes

ai � atiαi , define for each i < n the set

Ri � RiA′ = {p ∈ P | A′ |= ∃y (py = ai)}.

Suppose that Ri =
{
pi0, . . . , p

i
li−1

}
, and for each j < li the number ui and the element b

i
j are such that

Dui = Ri and pijb
i
j = ai. Denote by A

′′ the subgroup generated by
{
bij , ai | j < li, i < n

}
. It is easy to

see that A′′ is servant in A′, and so A′ = A′′ ⊕B for some finitely generated subgroup B.
By the fundamental theorem of finitely generated abelian groups there is a number m such that the

groups B and Zm are isomorphic. Put r = [u0, . . . , un−1,m]. Then Snr ⊆ Sā, and the groups 〈A′, ā〉 and
〈Mn
r , b̄〉 are isomorphic.
5. Each element of A depends linearly on 〈aiα | α < β, i ∈ ω〉. This implies that condition 5 is

fulfilled. �

Lemma 4 and Corollary 1 yield

Corollary 7. A set M ⊆ ω is Σ-definable in the hereditarily finite admissible set HF(AS) over the
group AS if and only if there exists a tuple ā ∈

(
A<ω0
)
�= such that M ≤e Sā.
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Theorem 2. Given an e-ideal I, there exists a torsion-free abelian group A such that I∗ coincides
with the family of all Σ-subsets of the set of naturals in HF(A). Moreover, this group can be chosen so
that card(A) = card(I∗).
Proof. Take an e-ideal I and I∗ = {Sα ⊆ ω | α < β}. For each α < β define the set S′α = {px | x ∈

Sα}, where px is the xth prime, and put I ′ = {S′α | α < β}, A = AI′ , where the group A is constructed
from I ′ as before Lemma 4. Let us show that A is the required group. The construction of A implies
that for each α < β and i ∈ ω we have

S′α =
{
p | A |= ∃y (py = aiα

)}
.

Hence, S′α, and so Sα as well, are Σ-definable inHF(A). Given a Σ-subsetM ⊆ ω inHF(A), by Corollary 7
there exist n and ā ∈ (An0

)
�= such that

M ≤e Sā = Sα0 ⊕ · · · ⊕ Sαn−1 ⊕ ω.
Since S′αi ∈ I∗, we deduce Sā ∈ I∗, which implies that M ∈ I∗. �
Corollary 8. Given an e-ideal I and the associated group A as in Theorem 2, a family S of subsets

of the set of naturals is computable in HF(A) if and only if S ∪ {∅} can be represented in the form
{Θi(R,B) | i ∈ ω, R ∈ I∗}

for some computable sequence of enumeration operators Θi and some B ∈ I∗.
Proof. As in Corollary 6, we prove the necessity. Suppose that S is computable. By Theorem 1

S ∪ {∅} = {Θ1i (S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Ami0
)
�=, ai = bk

}

for some computable sequence of enumeration operators Θ1i and some b̄ ∈
(
At0
)
�=, and the function

m(i) = mi is computable. By the proof of Lemma 4 there exists a computable sequence of enumeration
operators Θ2i such that

S ∪ {∅} = {Θ2i (S′α0 ⊕ · · · ⊕ S′αmi−1 , B
′
0 ⊕ · · · ⊕B′t−1 ⊗ ω) | S′αj ∈ I ′, j < mi, i ∈ ω

}
.

Since S′α0 ⊕ · · · ⊕ S′αmi−1 ≡m Sα0 ⊕ · · · ⊕ Sαmi−1 , where Sαj � {x | px ∈ S′αj}, j < mi, and I
∗ =

{Sα0 ⊕ · · · ⊕ Sαmi−1 | Sαj ∈ I∗}, there exists a computable sequence of enumeration operators Θi such
that

S ∪ {∅} = {Θi(R,B′0 ⊕ · · · ⊕B′t−1 ⊗ ω) | R ∈ I∗, i ∈ ω}. �
Suppose that an e-ideal I is generated by total e-degrees and is not principal, I∗ = {Sα | Sα = ∅,

α < β}, and A = AI′ is constructed as in the proof of Theorem 2. As in [1], for A we can verify
Corollary 9. There exists a completely reducible torsion-free abelian group A such that in the

hereditarily finite admissible set HF(A) there exists no universal Σ-function.

Given a set S ⊆ P of primes, define the group G� GS =
⊕{Zp | p ∈ S}. In each of the groups Zp

fix an element ap = 0, and put G0 = {ap | p ∈ S}.
Lemma 5. The group G is computably SΣ-generated by G0.

Proof amounts to checking conditions 1, 2′, 3, and 5 in the definition of a computably SΣ-generated
model.

1. Given ā = 〈ap0 , . . . , apn−1〉 ∈
(
G<ω0
)
�=, put

Sā =
{
[p0, . . . , pn−1, q0, . . . , qm−1] | q̄ ∈

(
S<ω0
)
�=, pi = qj , i < n, j < m

}
.

It is easy to check that S, and therefore Sā as well, are Σ-definable in HF(G).
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2′. Given n and r such that r = [p0, . . . , pn−1, q0, . . . , qm−1], where 〈p0, . . . , pn−1, q0, . . . , qm−1〉 is
a tuple of pairwise distinct primes, put

Gnr =
⊕
{Zpi | i < n− 1} ⊕

⊕
{Zqj | j < m− 1},

Snr = {[p0, . . . , pn−1, q0, . . . , qm−1]}.

Put Zpi = (bpi). It is clear that the model 〈Gnr , b̄〉, with b̄ = 〈bp0 , . . . , bpn−1〉, can be embedded into 〈G, ā〉
if and only if Snr ⊆ Sā.
3. Take in 〈G, ā〉 some finitely generated subgroup 〈G′, ā〉, ā = 〈ap0 , . . . , apn−1〉 ∈

(
Gn0
)
�=. Denote by

H0 ⊆ G′ the subgroup generated by ai � api for i < n. Then there exists a tuple q0, . . . , qm−1 of primes
such that G′ = H0 ⊕ Zq0 ⊕ · · · ⊕ Zqm−1 .
Put r = [p0, . . . , pn−1, q0, . . . , qm−1]. Then the model 〈Gnr , b̄〉 defined in part 2 is isomorphic to 〈G′, ā〉,

and Snr ⊆ Sā; thus, the validity of condition 3 is ascertained.
5. For each r = [m0, . . . ,mn−1, p0, . . . , pn−1], mi ∈ ω, pi ∈ P , mi < pi, pi = pj , i < j < n, define the

formula

ϕnr (x, x0, . . . , xn−1)� (x = m0x0 + · · ·+mn−1xn−1) &
∧

i<n

(xi = 0 & pixi = 0).

It is easy to check that for each x ∈ G there exists a number r such that the formula ϕr(x, ap0 , . . . , apn−1)
defines x in HF(G), and for each ā ∈ G0 the set ϕ〈G,ā〉r [x, ā] contains at most one element.

All requirements are met of the definition of a computably SΣ-generated model for G and G0. �

Corollary 10. Take S ⊆ P and G =
⊕{Zp | p ∈ S}. A set A ⊆ ω is Σ-definable in HF (G) if and

only if A ≤e S. The ideal Ie(G) is principal.
Indeed, by Lemma 5 and Corollary 1 there exists ā ∈ (G<ω0

)
�= such that A ≤ Sā. Because Sā ≤e S,

it follows that A ≤e S. The set S is Σ-definable in HF(G). Consequently, de(S) ∈ Ie(G); thus, Ie(G) is
a principal ideal.

Corollary 11. For each principal e-ideal I there exists a periodic abelian group G with Ie(G) = I.

Indeed, if S ⊆ P is such that I = d̂e(S) then Corollary 10 shows that G� GS is the required group.

Definition. Call Uω(x0, x1) a strictly universal numerical function in the hereditarily finite admis-
sible set HF(M) whenever the family HF(M) of all one-place numerical Σ-functions can be represented
in the form

{Uω(x0, x1) | x0 ∈ ω}.

Lemma 6 [10]. There exists a principal e-ideal I that has no universal function for the class of
one-place functions on I.

By Corollary 11, this implies

Corollary 12. There exists a periodic abelian group G such that HF(G) has no strictly universal
numerical Σ-function.

Remark 6. There exists a model M such that HF(M) has no universal function, but does have
a strictly universal numerical Σ-function.

Indeed, take the strongly constructivizable model M, constructed in [11], such that HF(M) has
no universal Σ-function. Corollary 3 implies that Ie(M) = 0. Thus, Ie(M) has a universal numerical
function. Hence, HF(M) has a strictly universal numerical function; i.e., M is the required model.
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