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ON Σ-SUBSETS OF NATURALS OVER ABELIAN GROUPS

A. N. Khisamiev UDC 512.540+510.5

Abstract: We obtain conditions for the Σ-definability of a subset of the set of naturals in the heredi-
tarily finite admissible set over a model and for the computability of a family of such subsets. We prove
that: for each e-ideal I there exists a torsion-free abelian group A such that the family of e-degrees
of Σ-subsets of ω in HF(A) coincides with I; there exists a completely reducible torsion-free abelian
group in the hereditarily finite admissible set over which there exists no universal Σ-function; for each
principal e-ideal I there exists a periodic abelian group A such that the family of e-degrees of Σ-subsets
of ω in HF(A) coincides with I.
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Problems of Σ-definability of subsets of the set of finite ordinals in admissible sets were addressed in
articles [1–5]. Connections between T -reducibility and Σ-definability were studied in [2, 3, 5], and relations
between e-reducibility and the family of Σ-subsets of ω in admissible sets, in [1, 4]. There are examples
in [1] of the models in whose hereditarily finite extensions the family of Σ-definable subsets of ω coincides
with I∗ = {S ⊆ ω | de(S) ∈ I}, where I is an arbitrary e-ideal. The present article is inspired by [1].
The necessary background on admissible sets can be found in [6, 7]. The fundamentals of the classical

computability theory and group theory can be obtained from [8] and [9] respectively. In this article we
consider hereditarily finite admissible sets over models of finite signatures.
Our notation is standard. Denote by Wn the nth computably enumerable set; and by Dn, the nth

finite set: Dn = {a1, . . . , ak} for n =
∑k
i=1 2

ai . Enumeration reducibility, or e-reducibility for brevity, is
defined by

A ≤e B ⇔ ∃n∀t (t ∈ A⇔ ∃m (〈t,m〉 ∈Wn&Dm ⊆ B)).
Define the enumeration operators Φn by

Φn(S) = {x | ∃m(〈x,m〉 ∈Wn&Dm ⊆ S)}.
This gives another definition of e-reducibility:

A ≤e B ⇔ ∃n (Φn(B) = A).
In this case we say thatWn determines Φn. Call a sequence {Θn}n∈ω of enumeration operators computable
whenever there exists a computable sequence {An}n∈ω of computably enumerable sets that determine Θn.
An arbitrary nonempty family I of e-degrees of sets of naturals is called an e-ideal whenever the

following are fulfilled:
1) a ≤e b and b ∈ I ⇒ a ∈ I;
2) a, b ∈ I ⇒ a � b ∈ I.
Denote by (Mn)�= the set of all n-tuples of pairwise distinct elements of M ; i.e., (Mn)�= = {ā ∈Mn |

ai 
= aj for i < j}.
We will assume that if M0 and M1 are models of distinct signatures then M0 cannot be embedded

into M1.
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§ 1. The Condition of Σ-Definability of Subsets of Naturals
Take a model M of finite signature σ, some subset M0 ⊆ M , and assume that the following are

fulfilled:

1. For each ā = 〈a0, . . . , an−1〉 ∈
(
M<ω
0

)
�= the Σ-subset Sā ⊆ ω is defined in HF(M). If n = 0 then

Sā � S∅.

2. For each n ∈ ω a computable class Kn = {〈Mnr , b̄〉 | r ∈ ω} of constructive models is defined,
with b̄ = 〈b0, . . . , bn−1〉, b̄ ∈

(
Mn
r

)
�=, and for each r ∈ ω a finite set Snr ⊆ ω is defined effectively so that

〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and only if Snr ⊆ Sā, ā ∈
(
Mn
0

)
�=.

3. For each finitely generated submodel 〈M′, ā〉 ⊆ 〈M, ā〉, ā ∈ (Mn
0

)
�=, there exists a number r such

that Snr ⊆ Sā and 〈M′, ā〉 can be isomorphically embedded into 〈Mnr , b̄〉.
We then have

Proposition 1. Take a Σ-formula ϕ(x, y0, . . . , yn−1) of signature σ′ = {σ,∈,∅} without parameters
and a tuple ā = 〈a0, . . . , an−1〉 ∈

(
Mn
0

)
�=. If A ⊆ ω can be defined by the formula ϕ(x, ā) in HF(M) then

A ≤e Sā; conversely, if A ≤e Sā then A is Σ-definable in HF(M).
Proof. The second part of the proposition is already proved in [1], and we will demonstrate the

first part. Take A = ϕHF(M)[x, ā] ⊆ ω and
Ws = {〈m, r〉 | HF(Mnr , b̄) |= ϕ(m, b̄)}. (1)

Condition 2 yields that Ws is computably enumerable.
To verify the equality

A =
{
m | ∃r (〈m, r〉 ∈Ws & Snr ⊆ Sā

)}
, (2)

denote its right-hand side by B. Take m ∈ A. Then
HF(M) |= ϕ(m, ā). (3)

There exists a finitely generated submodel 〈M′, ā〉 ⊆ 〈M, ā〉 such that
HF(M′, ā) |= ϕ(m, ā). (4)

By condition 3 there exists a number r such that Snr ⊆ Sā and 〈M′, ā〉 can be isomorphically embedded
into 〈Mnr , b̄〉. Together with (4) this yields

HF(Mnr , b̄) |= ϕ(m, b̄). (5)

Consequently, 〈m, r〉 ∈Ws & Srn ⊆ Sā; i.e., m ∈ B.
Take now m ∈ B. Then (1) implies (5). By condition 2 the model 〈Mnr , b̄〉 can be isomorphically

embedded into 〈M, ā〉. Thus, we have (3), and so m ∈ A, which proves (2).
Take a computable function f such that Snr = Df(r) and put

W ′
s = {〈m, f(r)〉 | 〈m, r〉 ∈Ws}. (6)

It is clear that W ′
s is computably enumerable. From (2) and (6)

A = {m | ∃t (〈m, t〉 ∈W ′
s & Dt ⊆ Sā)};

i.e., A �e Sā. �
Remark 1. Suppose that for ā ∈ (Mn

0

)
�= the set Sā can be defined by some Σ-formula with param-

eters ā. Then A ⊆ ω can be Σ-defined by some formula ϕ(x, ā) if and only if A ≤e Sā.
Introduce the following condition:
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2′. For each n ∈ ω a computable class Kn = {〈Mnr , b̄〉 | r ∈ ω} of constructive models is defined
uniformly in n, with b̄ = 〈b0, . . . , bn−1〉, b̄ ∈

(
Mn
r

)
�=, and for all n and r a finite set S

n
r ⊆ ω is defined

effectively and uniformly in n and r so that 〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and
only if Snr ⊆ Sā, ā ∈

(
Mn
0

)
�=.

Remark 2. If conditions 1, 2′, and 3 hold for a model M and a set M0 then in Proposition 1 the
required enumeration operator is determined from ϕ effectively.

Suppose that for M and M0 the following condition is fulfilled in addition to conditions 1–3.

4. For each x ∈ M there exist ā ∈ (M<ω
0

)
�= and a parameter-free Σ-formula ϕ(x, ȳ) such that x is

determined by the formula ϕ(x, ā) in HF(M). In this case, say that M is SΣ-generated by M0. If M is
SΣ-generated by its inverse M then we say that M is SΣ-generated.

Proposition 1 implies

Corollary 1. Suppose thatM is SΣ-generated by M0. A set A ⊆ ω is Σ-definable in HF(M) if and
only if there exists ā ∈ (M<ω

0

)
�= such that A ≤e Sā.

Proof. Take A = ϕHF(M)[x, b̄], where b̄ = 〈b0, . . . , bm−1〉 ∈ (Mn)�=. By condition 4 there exists
ā ∈ (M<ω

0

)
�= such that for each i < m there exists a formula ϕi(y, ā) of signature σ

′∪ā, σ′ = σ∪{U,∈,∅},
that defines bi in HF(M). Consider the formula

ψ(x, ā) = ∃y0 . . .∃ym−1
(
ϕ(x, ȳ) ∧

∧

i<m

ϕi(yi, ā)
)
.

It is easy to check that
ϕHF(M)[x, b̄] = ψHF(M)[x, ā].

Together with Proposition 1 this yields the corollary. �
Lemma 1. Every model M of a finite purely predicate signature σ is SΣ-generated.

Proof. Check conditions 1–4. Pick n ∈ ω. Denote by Kn the class of all finite models of signature
σ ∪ b̄, with b̄ = 〈b0, . . . , bn−1〉, whose inverses are the initial segments of the ordered set 〈{bi | i ∈ ω}, <〉,
where bi < bj for i < j. Suppose that Γn is an effective enumeration of this class, M

n
r = Γn(r), and

Snr = {r}. It is easy to check that Kn is a sequence of constructive models computable uniformly in n.
Given ā ∈ (M<ω)�=, a = 〈a0, . . . , an−1〉, denote by Sā the set of numbers r such that 〈Mnr , b̄〉 can

be isomorphically embedded into 〈M, ā〉, and show that Sā ⊆ ω is Σ-definable in HF(M). Pick r ∈ ω.
Suppose that Mn

r = {b0, . . . , bm−1}. Denote by Φ′r(b0, . . . , bn−1, . . . , bm−1) the open diagram of 〈Mnr , b̄〉.
Let F be the set of all formulas of signature σ, and let γ : ω → F be an effective enumeration of it. Put

γ(r′) = Φr′(x̄) = ∃yn . . .∃ym−1Φ′r(x0, . . . , xn−1, yn, . . . , ym−1).
The sequence 〈γ−1Fn0 | n ∈ ω〉 of sets, where Fn0 = {Φr′(x̄) | r ∈ ω}, is computable. The function
f(n, r) = r′ is computable, thus, Σ-definable in HF(M). There exists a Σ-function h : M<ω → ω such
that h(ā) = n, where ā = 〈a0, . . . , an−1〉. Thus, Sā = {r | HF(M) |= TrM(f(h(ā), r), ā)}, where

TrM(m, ā) = {〈m, ā〉 | m is the number of the ∃-formula Φm(x̄) of signature σ,
ā ∈M<ω, and HF(M) |= Φm(ā)},

is a Σ-set in HF(M).
By the definition of Snr this implies that conditions 1 and 2 hold for M and M . Let us check

condition 3. Given a finite submodel 〈M′, ā〉 ⊆ 〈M, ā〉, there exists r ∈ ω such that 〈Mnr , b̄〉 � 〈M′, ā〉.
Hence, Snr = {r} ⊆ Sā; i.e., condition 3 holds for M and M . The verification of condition 4 is obvious.
Consequently, M is SΣ-generated. �
Remark 3. The proof of Lemma 1 also implies that
1) condition 2′ holds for M and its inverse M ;
2) Sā can be Σ-defined by a formula with parameters ā.

Hence, Lemma 1 and Remarks 1 and 2 imply

576



Corollary 2. Take a model M of a purely predicate signature σ. A set A ⊆ ω can be defined by
some Σ-formula ϕ(x, ā) in HF(M) if and only if A ≤e Sā. Moreover, the enumeration operator can be
found effectively from ϕ.

Given a model M, denote by Ie(M) the ideal of e-degrees of Σ-subsets of naturals in HF(M).

Corollary 3 [1]. Given a model M of a finite purely predicate signature σ, the ideal Ie(M) is
generated by the e-degrees de(Th∃(M, ā)), where ā ∈M<ω.

Indeed,M is SΣ-generated by Lemma 1. Suppose that A ⊆ ω is Σ-defined by ϕ(x, ā). Proposition 1
gives A ≤e Sā. The proof of Lemma 1 implies that Sā ≡e Th∃(M, ā). �
It was proved in [9] that every abelian p-group and every Ershov algebra is locally constructivizable.

Thus, Corollary 3 implies

Corollary 4. IfM is an abelian p-group or a Ershov algebra then each Σ-subset of the set of naturals
in HF(M) is computably enumerable.

Given a nonempty family U of nonempty sets of naturals and a sequence Λ = 〈αS | S ∈ U〉 of infinite
cardinals, a model M′〈U,Λ〉 is constructed in [1]. In fact, the construction applies also in the case that U
contains the empty set. Given a nonempty family U of sets of naturals and a sequence Λ, we have

Lemma 2. If U contains all finite sets then the model M � M′〈U,Λ〉 is SΣ-generated by the set
M0 = {〈S, γ〉 | S ∈ U, γ < αS}.
Proof. We have to check conditions 1–4 for SΣ-generation of M by M0.

1. Take ā = 〈a0, . . . , an−1〉 ∈
(
Mn
0

)
�=, ai = 〈Si, αi〉, and put Sā = S0 ⊕ · · · ⊕ Sn−1. It is easy to check

that Sā is a Σ-subset in HF(M).

2. Given some number n, fix an effective enumeration γn : ω → A, where A is the set of all m-tuples
of pairwise distinct pairs of numbers for m ≥ n, m ∈ ω. Let γnr = 〈〈ej , p′j〉 | j < m〉. Put Unr′ =
{De0 , . . . , Dem−1}. Let Unr = {Dr0 , . . . , Drt−1}, where Drj 
= Drj′ , j < j′ < t, prj = max{p′k | Drj = Dek ,

k < m}+ 1, Λnr = {pr0 , . . . , prt−1}, Mnr =M′〈Unr ,Λnr 〉, bi = 〈Dei , p
′
i〉. Put Snr = De0 ⊕ · · · ⊕Den−1 .

It is easy to check that 〈Mnr , b̄〉 can be isomorphically embedded into 〈M, ā〉 if and only if Snr ⊆ Sā.
3. Take some finitely generated submodel

〈M′, ā〉 ⊆ 〈M, ā〉, ā = 〈a0, . . . , an−1〉 ∈
(
Mn
0

)
�=.

Without loss of generality we may assume that if 〈S, γ, n〉 ∈ M ′ then 〈S, γ〉 ∈ M ′. Suppose that
{aj | j < m}, with m ≥ n, is the set of all elements in M ′ belonging to M0, aj = 〈Sj , αj〉, and
De′j = {n | 〈Sj , αj , n〉 ∈M ′}.
It is easy to check that there exist numbers ej , p

′
j , such that for each j < m

1) De′j ⊆ Dej ⊆ Sj ;
2) 〈Dej , p′j〉 
= 〈Dej′ , p′j′〉, j < j′ < m.

Put γr = 〈〈ej , p′j〉 | j < m〉.
It is easy to check that 〈M′, ā〉 can be isomorphically embedded into 〈Mnr , b̄〉, where bi = 〈Dei , p′i〉

for i < n, and Snr ⊆ Sā.
4. Take x ∈ M . If x ∈ ω then it is obvious that x is Σ-definable with respect to signature 〈0, s〉.

Suppose that x = 〈S, γ, n〉. Then
x = 〈S, γ, n〉 ⇔ Q(x, 〈S, γ〉, n).

Thus, each x is Σ-definable in the model M with constants in M0. Therefore, all conditions are fulfilled,
and so the model M′〈U,Λ〉 is SΣ-generated by M0. �
Remark 4. The second part of the proof of Lemma 2 implies that M satisfies condition 2′.
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Suppose that a model M of signature σ and a set M0 ⊆ M satisfy conditions 1, 2′, and 3, and the
following condition is fulfilled.

5. There exists a computable sequence ϕer(x, x0, . . . , xr−1), with r, e ∈ ω, of parameter-free Σ-formulas
of signature σ′ such that the following conditions are fulfilled:
(a) for all numbers r, e and each tuple ā ∈ (M r

0

)
�= the set {x ∈M | HF(M) |= ϕer(x, ā)} contains at

most one element;
(b) for each x ∈ M there exist numbers rx, ex and a tuple āx ∈

(
M rx
0

)
�= such that x is defined in

HF(M) by the formula ϕexrx(x, āx).
Say then that M is computably SΣ-generated by M0.
It is easy to observe the validity of

Lemma 3. Given a modelM and a formula ψ(x, y0, . . . , yn−1, b̄), b̄ ∈ (M t)�=, we can define effectively
by ψ the set of formulas

{ψi(x, y0, . . . , ymi−1, b̄) | i < s, mi < n}
so that

{ψM[x, ā, b̄] | ā ∈Mn} = {ψMi [x, ā, b̄] | i < s, ā ∈ (Mmi)�=, aj 
= bk
}
. (7)

Theorem 1. Suppose that M is computably SΣ-generated by M0. If a family S of subsets of the
set of naturals is computable in HF(M) then the family S ∪ {∅} can be represented in the form

{
Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈

(
Mmi
0

)
�=, aj 
= bk

}

for some computable sequence of enumeration operators Θi, some b̄ ∈
(
M t
0

)
�=, and the functionm(i) = mi

is computable.

Proof. Take some computable family S of subsets of the set of naturals in HF(M). By Proposi-
tion 4.4 in [1] and condition 5 there exists a Σ-formula Ψ(x0, x1, b̄) such that

S ∪ {∅} = {ΨHF(M)[x0, c, b̄] | c ∈ HF(M)} (8)

for some fixed b̄ ∈ (M t
0

)
�=.

Following Ershov [7], introduce the sets Hn = HF(n = {i | i < n}), H0 = HF(∅). Then HF(ω) =⋃
nHn. There exists a Σ-enumeration α : ω → HF (ω) of HF (ω) in HF(M). Denote by tm the element
of HF (ω) with index m. Suppose that tm ∈ Hkm , where km = min{k | tm ∈ Hk}, and

Ψ(m)(x0, z0, . . . , zkm−1, b̄) = Ψ(x, tm(z0, . . . , zkm−1), b̄). (9)

The function k(m) = km is computable. Denote by R the set of all finite tuples of naturals of the form
α = 〈m, r0, e0, . . . , rkm−1, ekm−1〉. It is obvious that R is computable; let ν be a computable function that
enumerates R.
For each i ∈ ω, define a formula Ψi. If ν(i) = α and km � q then put

Ψi
(
x, y00, . . . , y

0
r0−1, y

q−1
0 , . . . , y

q−1
rq−1−1, b̄

)

= ∃z0 . . .∃zq−1
(∧

j<q

U(zj) ∧Ψ(m)(x0, z0, . . . , zq−1, b̄) ∧
∧

j<q

ϕ
ej
rj

(
zj , y

j
0, . . . , y

j
rj−1
))
,

where ϕ
ej
rj are the same formulas as in condition 5.

Condition 5 implies that for each tuple c̄ = 〈c0, . . . , cq−1〉 ∈ M<ω there exist tuples α ∈ R and
ā = 〈āc0 , . . . , ācq−1〉 ∈M<ω

0 such that ν(i) = α and

ΨHF(M)[x0, tm(c̄), b̄] = Ψ
HF(M)
i [x0, ā, b̄].
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Together with (8) and (9) this yields

S ∪ {∅} = {ΨHF(M)i [x0, ā, b̄] | i ∈ ω, ā ∈Mmi
0

}
. (10)

By Lemma 3 we may assume that in (10) we have 〈ā, b̄〉 ∈ (Mmi+t
0

)
�=. Then Remark 2 shows that

S ∪ {∅} = {Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj 
= bk

}

for some computable sequence of enumeration operators Θi, i ∈ ω, some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable. �
Introduce the following conditions for a model M and a set M0 ⊆M .
6. The set M0 is a Σ-subset in HF(M).

7. There exists a Σ-formula Φ1(x, ȳ), possibly with parameters, such that Φ
HF(M)
1 [x, ā] = Sā for each

ā ∈ (M<ω
0

)
�=.

Remark 5. The proof of Lemma 1 implies that for a model M of a purely predicate signature and
its inverse M conditions 6 and 7 are fulfilled.

Corollary 5. If M is computably SΣ-generated by M0 and conditions 6, 7 are fulfilled then a fam-
ily S of subsets of the set of naturals is computable in HF(M) if and only if S ∪ {∅} can be represented
in the form {

Θi(S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj 
= bk

}
(11)

for some computable sequence of enumeration operators Θi and some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable.

Proof. By Theorem 1 we have to prove the sufficiency. Suppose that S ∪ {∅} can be represented
in the form (11) and a computable sequence {Ai} of computably enumerable sets defines the operators
{Θi}. Then there exists a Σ-formula Φ2 such that ΦHF(M)2 [x, i] = Ai.
This, together with (11), implies by condition 7 that

S ∪ {∅} = {λx.∃t Φ2(〈x, t〉, i) & ∀y ∈ t (y ∈ Dt → Φ1(y, 〈ā, b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj 
= bk

}
.

Since the set
{
ā ∈ (Mmi

0

)
�= | i ∈ ω, aj 
= bk

}
is Σ-definable in HF(M), the family S ∪{∅} is computable.

Thus, S is computable. �
Consider the model M′〈U,Λ〉 constructed in [1].

Corollary 6. Given some e-ideal I and M =M′〈I∗,Λ〉, a family S of subsets of the set of naturals is
computable in HF(M) if and only if S ∪ {∅} can be represented in the form

{Θi(R,A) | i ∈ ω, R ∈ I∗}
for some computable sequence of enumeration operators Θi and some A ∈ I∗.
Proof. The sufficiency is easy from the existence of a universal Σ-predicate for admissible sets of

finite signature. To prove the necessity, suppose that a family S is computable. By Theorem 1

S ∪ {∅} = {Θ1i (S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Mmi
0

)
�=, aj 
= bk

}

for some computable sequence of enumeration operators Θ1i and some b̄ ∈
(
M t
0

)
�=, and the function

m(i) = mi is computable. The proof of Lemma 2 implies the equality

S〈ā,b̄〉 = S0 ⊕ · · · ⊕ Smi−1 ⊕A0 ⊕ · · · ⊕At−1,
where aj = 〈Sj , γj〉 for j < mi, and bk = 〈Ak, βk〉 for k < t. Hence, there exists a computable sequence
of enumeration operators Θi such that

S ∪ {∅} = {Θi(S0 ⊕ · · · ⊕ Smi−1, A0 ⊕ · · · ⊕At−1) | Sj ∈ I∗, j < mi, i ∈ ω}.
It remains to notice that {S0 ⊕ · · · ⊕ Smi−1 | Sj ∈ I∗, j < mi} = I∗. �
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§ 2. Σ-Subsets of Naturals over Abelian Groups
Let P be the set of all primes, and take some nonempty family S = {Sα | α < β} of subsets of P ,

where β is some infinite ordinal. Given an ordinal α < β and i ∈ ω, define the group A
(i)
α by the

presentation

A(i)α = gr
(
aiα,
{
bαp,i | p ∈ Sα

}
: pbαp,i = a

i
α

)
,

and put

Aα =
⊕

i∈ω
A(i)α , AS =

⊕

α<β

Aα.

Lemma 4. The group A� AS is computably SΣ-generated by A0 =
{
aiα | α < β, i ∈ ω}.

Proof amounts to checking conditions 1, 2′, 3 and 5 in the definition of a computable SΣ-generated
model.

1. Given ā =
〈
at0α0 , . . . , a

tn−1
αn−1
〉 ∈ (A<ω0

)
�=, define the set

Sā = Sα0 ⊕ · · · ⊕ Sαn−1 ⊕ ω.

It is easy to check that condition 1 is fulfilled.

2′. Let [ ] : ω<ω → ω be an effective enumeration of finite tuples of naturals. Given numbers n and
r = [u0, . . . , un−1,m] such that Dui ⊆ P , i < n, m ∈ ω, define for each i < n the group

Bri = gr
(
bi,
{
cip | p ∈ Dui

}
: pcip = bi

)
,

and put

Mn
r =
⊕

i<n

Bri
⊕

Zm, b̄ = 〈b0, . . . , bn−1〉, Snr = Du0 ⊕ · · · ⊕Dun−1 ⊕ {m},

where Zm is the direct sum of m copies of the infinite cyclic group.

It is easy to verify that the mapping f : bi → atiαi , i < n, can be extended to an isomorphic embedding

of the model 〈Mn
r , b̄〉 into 〈A, ā〉 if and only if Snr ⊆ Sā.

3. Given ā =
〈
at0α0 , . . . , a

tn−1
αn−1
〉 ∈ (A<ω0

)
�= and a finitely generated subgroup A

′ ⊆ A that includes

ai � atiαi , define for each i < n the set

Ri � RiA′ = {p ∈ P | A′ |= ∃y (py = ai)}.

Suppose that Ri =
{
pi0, . . . , p

i
li−1

}
, and for each j < li the number ui and the element b

i
j are such that

Dui = Ri and pijb
i
j = ai. Denote by A

′′ the subgroup generated by
{
bij , ai | j < li, i < n

}
. It is easy to

see that A′′ is servant in A′, and so A′ = A′′ ⊕B for some finitely generated subgroup B.
By the fundamental theorem of finitely generated abelian groups there is a number m such that the

groups B and Zm are isomorphic. Put r = [u0, . . . , un−1,m]. Then Snr ⊆ Sā, and the groups 〈A′, ā〉 and
〈Mn
r , b̄〉 are isomorphic.
5. Each element of A depends linearly on 〈aiα | α < β, i ∈ ω〉. This implies that condition 5 is

fulfilled. �

Lemma 4 and Corollary 1 yield

Corollary 7. A set M ⊆ ω is Σ-definable in the hereditarily finite admissible set HF(AS) over the
group AS if and only if there exists a tuple ā ∈

(
A<ω0
)
�= such that M ≤e Sā.
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Theorem 2. Given an e-ideal I, there exists a torsion-free abelian group A such that I∗ coincides
with the family of all Σ-subsets of the set of naturals in HF(A). Moreover, this group can be chosen so
that card(A) = card(I∗).
Proof. Take an e-ideal I and I∗ = {Sα ⊆ ω | α < β}. For each α < β define the set S′α = {px | x ∈

Sα}, where px is the xth prime, and put I ′ = {S′α | α < β}, A = AI′ , where the group A is constructed
from I ′ as before Lemma 4. Let us show that A is the required group. The construction of A implies
that for each α < β and i ∈ ω we have

S′α =
{
p | A |= ∃y (py = aiα

)}
.

Hence, S′α, and so Sα as well, are Σ-definable inHF(A). Given a Σ-subsetM ⊆ ω inHF(A), by Corollary 7
there exist n and ā ∈ (An0

)
�= such that

M ≤e Sā = Sα0 ⊕ · · · ⊕ Sαn−1 ⊕ ω.
Since S′αi ∈ I∗, we deduce Sā ∈ I∗, which implies that M ∈ I∗. �
Corollary 8. Given an e-ideal I and the associated group A as in Theorem 2, a family S of subsets

of the set of naturals is computable in HF(A) if and only if S ∪ {∅} can be represented in the form
{Θi(R,B) | i ∈ ω, R ∈ I∗}

for some computable sequence of enumeration operators Θi and some B ∈ I∗.
Proof. As in Corollary 6, we prove the necessity. Suppose that S is computable. By Theorem 1

S ∪ {∅} = {Θ1i (S〈ā,b̄〉) | i ∈ ω, ā ∈
(
Ami0
)
�=, ai 
= bk

}

for some computable sequence of enumeration operators Θ1i and some b̄ ∈
(
At0
)
�=, and the function

m(i) = mi is computable. By the proof of Lemma 4 there exists a computable sequence of enumeration
operators Θ2i such that

S ∪ {∅} = {Θ2i (S′α0 ⊕ · · · ⊕ S′αmi−1 , B
′
0 ⊕ · · · ⊕B′t−1 ⊗ ω) | S′αj ∈ I ′, j < mi, i ∈ ω

}
.

Since S′α0 ⊕ · · · ⊕ S′αmi−1 ≡m Sα0 ⊕ · · · ⊕ Sαmi−1 , where Sαj � {x | px ∈ S′αj}, j < mi, and I
∗ =

{Sα0 ⊕ · · · ⊕ Sαmi−1 | Sαj ∈ I∗}, there exists a computable sequence of enumeration operators Θi such
that

S ∪ {∅} = {Θi(R,B′0 ⊕ · · · ⊕B′t−1 ⊗ ω) | R ∈ I∗, i ∈ ω}. �
Suppose that an e-ideal I is generated by total e-degrees and is not principal, I∗ = {Sα | Sα 
= ∅,

α < β}, and A = AI′ is constructed as in the proof of Theorem 2. As in [1], for A we can verify
Corollary 9. There exists a completely reducible torsion-free abelian group A such that in the

hereditarily finite admissible set HF(A) there exists no universal Σ-function.

Given a set S ⊆ P of primes, define the group G� GS =
⊕{Zp | p ∈ S}. In each of the groups Zp

fix an element ap 
= 0, and put G0 = {ap | p ∈ S}.
Lemma 5. The group G is computably SΣ-generated by G0.

Proof amounts to checking conditions 1, 2′, 3, and 5 in the definition of a computably SΣ-generated
model.

1. Given ā = 〈ap0 , . . . , apn−1〉 ∈
(
G<ω0
)
�=, put

Sā =
{
[p0, . . . , pn−1, q0, . . . , qm−1] | q̄ ∈

(
S<ω0
)
�=, pi 
= qj , i < n, j < m

}
.

It is easy to check that S, and therefore Sā as well, are Σ-definable in HF(G).

581



2′. Given n and r such that r = [p0, . . . , pn−1, q0, . . . , qm−1], where 〈p0, . . . , pn−1, q0, . . . , qm−1〉 is
a tuple of pairwise distinct primes, put

Gnr =
⊕
{Zpi | i < n− 1} ⊕

⊕
{Zqj | j < m− 1},

Snr = {[p0, . . . , pn−1, q0, . . . , qm−1]}.

Put Zpi = (bpi). It is clear that the model 〈Gnr , b̄〉, with b̄ = 〈bp0 , . . . , bpn−1〉, can be embedded into 〈G, ā〉
if and only if Snr ⊆ Sā.
3. Take in 〈G, ā〉 some finitely generated subgroup 〈G′, ā〉, ā = 〈ap0 , . . . , apn−1〉 ∈

(
Gn0
)
�=. Denote by

H0 ⊆ G′ the subgroup generated by ai � api for i < n. Then there exists a tuple q0, . . . , qm−1 of primes
such that G′ = H0 ⊕ Zq0 ⊕ · · · ⊕ Zqm−1 .
Put r = [p0, . . . , pn−1, q0, . . . , qm−1]. Then the model 〈Gnr , b̄〉 defined in part 2 is isomorphic to 〈G′, ā〉,

and Snr ⊆ Sā; thus, the validity of condition 3 is ascertained.
5. For each r = [m0, . . . ,mn−1, p0, . . . , pn−1], mi ∈ ω, pi ∈ P , mi < pi, pi 
= pj , i < j < n, define the

formula

ϕnr (x, x0, . . . , xn−1)� (x = m0x0 + · · ·+mn−1xn−1) &
∧

i<n

(xi 
= 0 & pixi = 0).

It is easy to check that for each x ∈ G there exists a number r such that the formula ϕr(x, ap0 , . . . , apn−1)
defines x in HF(G), and for each ā ∈ G0 the set ϕ〈G,ā〉r [x, ā] contains at most one element.

All requirements are met of the definition of a computably SΣ-generated model for G and G0. �

Corollary 10. Take S ⊆ P and G =
⊕{Zp | p ∈ S}. A set A ⊆ ω is Σ-definable in HF (G) if and

only if A ≤e S. The ideal Ie(G) is principal.
Indeed, by Lemma 5 and Corollary 1 there exists ā ∈ (G<ω0

)
�= such that A ≤ Sā. Because Sā ≤e S,

it follows that A ≤e S. The set S is Σ-definable in HF(G). Consequently, de(S) ∈ Ie(G); thus, Ie(G) is
a principal ideal.

Corollary 11. For each principal e-ideal I there exists a periodic abelian group G with Ie(G) = I.

Indeed, if S ⊆ P is such that I = d̂e(S) then Corollary 10 shows that G� GS is the required group.

Definition. Call Uω(x0, x1) a strictly universal numerical function in the hereditarily finite admis-
sible set HF(M) whenever the family HF(M) of all one-place numerical Σ-functions can be represented
in the form

{Uω(x0, x1) | x0 ∈ ω}.

Lemma 6 [10]. There exists a principal e-ideal I that has no universal function for the class of
one-place functions on I.

By Corollary 11, this implies

Corollary 12. There exists a periodic abelian group G such that HF(G) has no strictly universal
numerical Σ-function.

Remark 6. There exists a model M such that HF(M) has no universal function, but does have
a strictly universal numerical Σ-function.

Indeed, take the strongly constructivizable model M, constructed in [11], such that HF(M) has
no universal Σ-function. Corollary 3 implies that Ie(M) = 0. Thus, Ie(M) has a universal numerical
function. Hence, HF(M) has a strictly universal numerical function; i.e., M is the required model.

582



References

1. Morozov A. S. and Puzarenko V. G., “Σ-subsets of naturals,” Algebra i Logika, 43, No. 3, 291–320 (2004).
2. Rudnev V. A., “Existence of an inseparable pair in the recursive theory of admissible sets,” Algebra i Logika, 27, No. 1,
48–56 (1988).

3. Puzarenko V. G., “Computability over models of decidable theories,” Algebra i Logika, 39, No. 2, 170–197 (2000).
4. Morozov A. S., “A Σ-set of natural numbers not enumerable by natural numbers,” Siberian Math. J., 41, No. 6,
1162–1166 (2000).

5. Khisamiev A. N., “On the Ershov upper semilattice LE ,” Siberian Math. J., 45, No. 1, 173–187 (2004).
6. Barwise J., Admissible Sets and Structures, Springer-Verlag, Berlin (1975).
7. Ershov Yu. L., Definability and Computability [in Russian], Nauchnaya Kniga, Novosibirsk (1996).
8. Rogers H., Theory of Recursive Functions and Effective Computability [Russian translation], Mir, Moscow (1972).
9. Kargapolov M. I. and Merzlyakov Yu. I., Fundamentals of the Theory of Groups [in Russian], Nauka, Moscow (1982).
10. Kalimullin I. Sh. and Puzarenko V. G., “The computable principles on admissible sets,” Mat. Trudy, 7, No. 2, 35–71
(2004).

11. Rudnev V. A., “A universal recursive function on admissible sets,” Algebra i Logika, 25, No. 4, 425–435 (1986).

A. N. Khisamiev
Sobolev Institute of Mathematics, Novosibirsk, Russia
E-mail address: hisamiev@math.nsc.ru

583



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


