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ON THE NONCOMMUTING GRAPH
ASSOCIATED WITH A FINITE GROUP

A. R. Moghaddamfar, W. J. Shi, W. Zhou, and A. R. Zokayi UDC 519.542

Abstract: Let G be a finite group. We define the noncommuting graph ∇(G) as follows: the vertex
set of ∇(G) is G \ Z(G) with two vertices x and y joined by an edge whenever the commutator of x
and y is not the identity. We study some properties of ∇(G) and prove that, for many groups G, if H
is a group with ∇(G) isomorphic to ∇(H) then |G| = |H|.
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1. Introduction

Generally, there is an intimate relation between Group Theory and Graph Theory, and in many
occasions the properties of graphs give rise to some properties of groups and vice versa. For instance,
Gruenberg and Kegel introduced the prime graph Γ(G) associated with a finite group G (cp. [1]). Also,
the concept of solvable graph ΓS(G), for a finite group G, was defined recently by Abe and Iiyori in [2].

One of the graphs that has attracted the attention of many authors is the commuting graph associated
with a finite group. For a finite group G and X a subset of G, the commuting graph on X denoted C (G, X)
has X as its vertex set with x, y ∈ X joined by an edge whenever [x, y] = 1 (x and y commute). Many
authors have studied C (G, X) for different choices of G and X. In [3] and [4], Segev and Seitz apply the
commuting graph ∆(G) := C (G, X), with G a nonabelian simple group and X = G \ {1}, in order to
prove the Margulis–Platonov conjecture on arithmetic groups.

In this article we consider the complementary graph of the commuting graph ∆(G) = C (G, X) where
X := G\Z(G), and for convenience we denote this graph by ∇(G). We call this graph the noncommuting
graph of G, and in this graph the vertex set V (G) := G \Z(G) and x, y ∈ V (G) form an edge if and only
if [x, y] 6= 1 (denoted by x ∼ y). Note that G is abelian if and only if V (G) = ∅. So, throughout this
paper let G denote a nonabelian finite group.

In this article we first obtain some interesting properties of the noncommuting graph ∇(G). For
example, we will show that ∇(G) is always connected for every finite group G (see Proposition 1). Next,
we will determine the structure of the groups G such that ∇(G) is k-regular, for certain values of k; that
is, the vertices of the graph are of the same degree k. Finally, we will verify for some finite groups G
and H that if ∇(G) ∼= ∇(H) then |G| = |H|. For example, we consider the dihedral groups D2m with
m odd, the alternating groups An (n ≥ 4), all sporadic simple groups, the simple groups of Lie type
with nonconnected prime graph, the symmetric groups Sn (n ≥ 3), etc.; and we show that the above
statement holds for them. So far, we have not found any counterexample to the above statement. Hence,
it is quite natural to put forward the following

Conjecture. Let G and H be two arbitrary finite groups such that ∇(G) ∼= ∇(H). Then |G| = |H|.
Note that there exist some groups H and K such that ∇(H) ∼= ∇(K) and H � K. For example, we

assume that H = D8 and K = Q8. Certainly D8 � Q8, but ∇(D8) ∼= ∇(Q8).
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March–April, 2005. Original article submitted July 6, 2004.

0037-4466/05/4602–0325 c© 2005 Springer Science+Business Media, Inc. 325



2. Notations and Definitions

To state our results we need some notation. Given a group G, we denote by πe(G) the set of all
element orders of G and by π(G), the set of all prime factors of |G|. It is clear that the set πe(G) is
closed and partially ordered by divisibility. Hence, it is determined uniquely by µ(G), the subset of its
maximal elements.

Definition 1. The prime graph Γ(G) of a group G is defined as follows. The set of vertices of Γ(G)
is π(G) and two distinct primes p and q are joined by an edge if pq ∈ πe(G).

The number of connected components of Γ(G) is denoted by t(G), and the vertex sets of the connected
components are denoted by πi = πi(G), i = 1, 2, . . . , t(G). If 2 ∈ π(G) we always assume 2 ∈ π1. Denote
by µi(G) the set of n ∈ µ(G) such that π(n) ⊆ πi(G). For simple groups S, the connected components
of Γ(S) were found by Williams and Kondrat′ev (see [5] and [1]). Moreover, it was proved that in [6] if
S is a simple group with disconnected prime graph Γ(S) then |µi(S)| = 1 for 2 ≤ i ≤ t(S). Denote by
ni = ni(S) the unique element in µi(S). The values for S, π1(S) and ni(S) for 2 ≤ i ≤ t(S) are the same
as in Tables 1a–c of [7].

The number of edges incident with a vertex v, in a graph is called the degree of v and denoted by
deg(v). For the noncommuting graph ∇(G), we put

ρ(G) :=
∑

g∈V (G)

deg(g).

Definition 2. Two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2) are said to be isomorphic (in writing:
Γ1
∼= Γ2) if there exists a one-to-one onto mapping

φ : V1 → V2,

such that
u ∼ v ⇔ φ(u) ∼ φ(v) for all u, v ∈ V1.

Such a mapping φ is called a graph isomorphism. Note that, for isomorphic graphs Γ1 and Γ2 we have
|V1| = |V2|, |E1| = |E2| and deg(v) = deg(φ(v)) for every v ∈ V1.

Every group in this paper is a finite group. Also, we assume that G\Z(G):={g1, g2, . . . , gn}. Evidently
|Z(G)|

∣∣n. Moreover, if we know ∇(G) then we know the centralizer of gi in G. Put ti := |CG(gi) \Z(G)|.
It is easy to see that |Z(G)|

∣∣ti. Suppose that the conjugacy class length of gi is li. Then we also have

li :=
n + |Z(G)|
ti + |Z(G)|

. (1)

To every group G we can associate the set of divisors of the order of G; namely, the class size of G defined
as follows:

cs(G) := {|gG| : g ∈ G}.

Clearly, 1 ∈ cs(G).
Given a group G, we denote its class number by k(G). The rest of notation is standard.

3. Some Properties of ∇(G)

In this section, we state a few results on the noncommuting graph. In what follows we show that the
noncommuting graph of every group is always connected.

Proposition 1. For every group G, the noncommuting graph ∇(G) is connected.

Proof. Assume ∇(G) is disconnected. So there exists a pair of vertices x and y in V (G) such that
x � y. It is easy to see now that CG(x)∪CG(y)  G, which means that there exists z ∈ G\(CG(x)∪CG(y)).
It is evidently by definition that z ∼ x and z ∼ y, which means that ∇(G) is connected. This is
a contradiction. �
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Proposition 2. There is no group G with a normal subgroup N 6= 1 such that ∇(G) ∼= ∇(G/N).
Proof. Let the order of G, N , Z(G), and N∩Z(G) be l, n,m, and t, respectively. If∇(G) ∼= ∇(G/N)

then we have |G− Z(G)| = |G/N − Z(G/N)|. It is clear that Z(G/N) ≥ Z(G)N/N and |Z(G)N/N | =
m/t. So we infer |G − Z(G)| = |G/N − Z(G/N)| ≤ |G/N − Z(G)N/N)|, that is, l −m ≤ l/n −m/t.
Since n ≥ 2, we have

l/m ≤ 1− 1/t

1− 1/n
≤ 1− 1/t

1− 1/2
≤ 2.

It means that |G/Z(G)| ≤ 2, and so G is abelian, which is a contradiction. �

Proposition 3. There is no group G with H < G such that ∇(G) ∼= ∇(H).
Proof. If a group like G with a proper subgroup H exists satisfying ∇(G) ∼= ∇(H) then |G| −

|Z(G)| = |H| − |Z(H)|. Clearly, |H| ≤ (1/2)|G| and |Z(G)| < (1/2)|G|. We now have

|G| = |H| − |Z(H)|+ |Z(G)| < |G|,
which is a contradiction. �

Proposition 4. Let G be a group. If ∇(G) is k-regular then | cs(G)| = 2 and G = P × A with P
a nonabelian p-group and A, abelian.

Proof. Since, for all g ∈ V (G), we have deg(g) = |G| − |CG(g)| = k; it follows that all CG(g)
(g ∈ V (G)) and as a consequence all conjugacy classes gG (g ∈ V (G)) have the same order. Therefore,
since G is nonabelian we obtain | cs(G)| = 2. Now, by a result of N. Ito (see [8]), we infer that G is
a nilpotent group and G = P × A with P a p-group and A, abelian. Moreover, since G is a nonabelian
group, it follows that P is nonabelian. �

4. Some Useful Results

In this section we list some useful results about ∇(G).

Proposition 5. For a group G, we have ρ(G) = |G|(|G|−k(G)). In particular, |E(G)| = |G|(|G|−k(G))
2 .

Proof. By easy calculation, we obtain

ρ(G) =
∑
x∈G

|G\CG(x)| = |G|2 −
∑
x∈G

|CG(x)| = |G|2 − |G|
∑
x∈G

1
|xG|

= |G|2 − |G|k(G),

as required. The rest of the proof is obvious. �

Corollary 1. The class number of an odd order group is odd.

This is immediate from the previous proposition because ρ(G) is always even.
A graph Γ = (V,E) is k-partite, k > 1, if it is possible to partition V into k subsets: V1, V2, . . . , Vk

(called partite sets) such that every edge of E joins a vertex of Vi to a vertex in Vj , i 6= j. Now, if
[G : Z(G)] = m then ∇(G) is (m − 1)-partite, with m ≥ 4. In fact, if T = {x0 = 1, x1, x2, . . . , xm−1} is
a transversal of Z(G) in G then Vi = xiZ(G), i = 1, 2, . . . ,m− 1.

Proposition 6. Let G be a group with [G : Z(G)] = m. Let T = {x0 = 1, x1, . . . , xm−1} be
a transversal of Z(G) in G, and Λ(xi) = {xj | [xi, xj ] 6= 1}. Then for all g ∈ xiZ(G), i ≥ 1, we have
deg(g) = |Λ(xi)||Z(G)|, |Λ(xi)| ≥ |xG

i | − 1 and |Λ(xi)| ≥ 2. In particular,

ρ(G) = |Z(G)|2
m−1∑
i=1

|Λ(xi)| ≤ |Z(G)|2(m− 1)(m− 2).

Proof. Clearly, for all u, v ∈ xiZ(G), [u, v] = 1 and so u � v. Also, if [xi, xj ] = 1, j ≥ 1, then for
every u ∈ xiZ(G) and v ∈ xjZ(G), [u, v] = 1 and so u � v. On the other hand, if [xi, xj ] 6= 1 then for
every u ∈ xiZ(G) and v ∈ xjZ(G), [u, v] 6= 1 and hence u ∼ v. Because |xjZ(G)| = |Z(G)|, for every j,
it is easy to see that if g ∈ xiZ(G), i ≥ 1, then deg(g) = |Λ(xi)||Z(G)|.
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For all i ≥ 1, we have deg(xi) = |G \ CG(xi)| = |Λ(xi)||Z(G)|, and so |CG(xi)|(|xG
i | − 1) =

|Λ(xi)||Z(G)|. Since |Z(G)| divides |CG(xi)|, we now have
|Λ(xi)|
|xG

i | − 1
=
|CG(xi)|
|Z(G)|

∈ N.

Thus |xG
i | − 1 divides |Λ(xi)|, and so |Λ(xi)| ≥ |xG

i | − 1. Moreover, if there exists i ≥ 1, such that
|Λ(xi)| = 1, then we have |CG(xi)| = |Z(G)|, which is a contradiction. The rest of the proof is clear. �

Proposition 7. Let G be a group. Then the following hold:
(a) ∇(G) has no vertex of degree 2.
(b) If ∇(G) has a vertex of degree p where p is an odd prime then G ∼= D2p.

Proof. Assume there is g ∈ V (G) with deg(g) = p, where p is a prime. Then we have p = deg(g) =
|CG(g)|([G : CG(g)] − 1), from which it follows |CG(g)| = p, [G : CG(g)] = 2 and |G| = 2p. Since G is
nonabelian, p must be an odd prime and G ∼= D2p. Therefore, the proof of (a) and (b) is complete. �

An immediate consequence of this result is the following

Corollary 2. If G and H are two groups such that ∇(G) ∼= ∇(H) and ∇(G) possesses a vertex of
prime degree p then G ∼= H.

Proposition 8. Let G be a group such that there exists a vertex g ∈ V (G) of degree p2. Then one
of the following occurs.

(a) G is a Frobenius group of order p(p + 1), whose complement is cyclic of order p.
(b) G is a group of order 2p2, where p is a prime.

Proof. Since deg(g) = p2, we have p2 = |CG(g)|([G : CG(g)] − 1), and we consider the following
two cases:

Case 1. |CG(g)| = p.
In this case, CG(g) = 〈g〉 and we have |G| = p(p+1). Since the conjugacy class gG has p+1 elements of

order p, there exists an element x of order p with x /∈ 〈g〉. Hence 〈g〉 cannot be a normal Sylow p-subgroup
of G, and so the number of Sylow p-subgroups of G is p+1. Now we have NG(〈g〉) = CG(〈g〉) = 〈g〉, and
therefore G is p-nilpotent. Thus,

G = M〈g〉, M C G, M ∩ 〈g〉 = 1.

Clearly, g acts fixed-point-freely on M . So M is nilpotent, and G is a Frobenius group with kernel M
and complement 〈g〉.

Case 2. |CG(g)| = p2.
In this case G is a group of order 2p2. We show now that for every group of order 2p2, ∇(G) possess

a vertex of degree p2. We first assume that p = 2. In this case G ∼= D8 or Q8, and in ∇(G) every vertex
is of degree 4. So we may assume that p is an odd prime. Let t be an involution in G and let P be
a Sylow p-subgroup of G which is clearly normal in G. Now Z(G) = CP (t) ≤ P which is of order 1 or p.
So, there always exists an element x ∈ P \ Z(G), and obviously deg(x) = p2. �

Corollary 3. Let G and H be two groups such that∇(G) ∼= ∇(H). If∇(G) has a vertex of degree p2

then |G| = |H|.
Proof. By Proposition 8, |G| = p(p + 1) or 2p2. Also, from the graph isomorphism ∇(G) ∼= ∇(H),

∇(H) has a vertex of degree p2, and again by Proposition 8, |H| = p(p + 1) or 2p2. Assume now that
|G| 6= |H|. Without loss of generality, we may assume that |G| = p(p + 1) and |H| = 2p2. In this case, G
is a Frobenius group and Z(G) = 1. From |V (G)| = |V (H)| it follows now that |G| − 1 = |H| − |Z(H)|,
that is, |Z(H)| = p2 − p + 1, which is a contradiction. �

Corollary 4. If ∇(G) is p2-regular then p = 2 and G ∼= D8 or Q8.

Proof. We note first that if G is a Frobenius group then ∇(G) cannot be k-regular for any k. Now,
if ∇(G) is p2-regular then by Proposition 8, G is a nonabelian group of order 2p2 which is not Frobenius.
In this case, let t be an involution in G. Then |CG(t)| = 2p, and so p2 = deg(t) = 2p2− 2p, which implies
p = 2 and G ∼= D8 or Q8. �
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Proposition 9. Let g be a vertex of the graph ∇(G) such that deg(g) = |G| − 2. Then g is an
involution and G is isomorphic to the Frobenius group of order 2m, where m is odd.

Proof. From |G|−2 = deg(g) = |G|− |CG(g)| it follows that |CG(g)| = 2, and so g is an involution.
Also, CG(g) is a Sylow 2-subgroup of G. Hence |G| = 2m where m is an odd integer. Now, G is
2-nilpotent, and there exists a normal subgroup of order m, upon which the involution g acts fixed-
point-freely. Therefore, G is a Frobenius group with abelian kernel of order m and cyclic complement of
order 2. �

Proposition 10. Let G and H be two groups such that ∇(G) ∼= ∇(H). Suppose y = |Z(G)|
|Z(H)| ∈ N. If

{2, 3} ∩ cs(G) 6= ∅ then |H| = |G|.
Proof. Let x = t/|Z(G)| where t = |CG(g) \ Z(G)| for some g ∈ G. Suppose that the conjugacy

class length of g is l. Then by (1), we have

n + |Z(H)| = (l − 1 + lx)y|Z(H)|+ |Z(H)|

and
t + |Z(H)| = (xy + 1)|Z(H)|.

Again by (1), since (n + |Z(H)|)/(t + |Z(H)|) ∈ N, we have

lxy + (l − 1)y + 1
xy + 1

∈ N.

Hence, by a simple manipulation we obtain

(l − 1)(y − 1)
xy + 1

∈ N ∪ {0}.

We now consider the following two cases:
Case 1: l = 2 ∈ cs(G). In this case, it is easy to see that y = 1, and so |Z(H)| = |Z(G)|, which

implies that |H| = |G|.
Case 2: l = 3 ∈ cs(G). Assume that y > 1. Since xy + 1 ≥ y + 1 > y − 1, we find

0 ≤ (3− 1)(y − 1)
xy + 1

<
2(y − 1)
y − 1

= 2,

which is a contradiction. Hence, y = 1. Therefore, |Z(H)| = |Z(G)|, and so |G| = |H|. �

5. On Centerless Groups

Throughout this section we assume that G 6= 1 is a centerless group; i.e., Z(G) = 1. The purpose of
this section is to verify the Conjecture for some centerless groups in order to strengthen the Conjecture.

Lemma 1. Let |G| = p + 1, for some prime p. If H is a group with ∇(H) ∼= ∇(G) then |H| = |G|.
Proof. From ∇(H) ∼= ∇(G) it follows that |V (H)| = |V (G)|. Therefore, |H|−|Z(H)| = |G|−1 = p,

and so
|Z(H)|(| H

Z(H)
| − 1) = p.

We claim now that |Z(H)| = 1. If not then |H/Z(H)| = 2, which implies H is abelian, i.e., H = Z(H).
But then |G| = 1, which is a contradiction. It is evident now that |H| = |G|. �

Proposition 11. Let G and H be two groups such that ∇(G) ∼= ∇(H). Let g be a vertex in V (G)
such that deg(g) = |G| − 2. Then |H| = |G|.

Proof. From ∇(H) ∼= ∇(G) it follows that |H| − |Z(H)| = |G| − 1, and there exists h ∈ V (H)
such that deg(h) = |H| − |Z(H)| − 1. We claim that Z(H) = 1. If not, we assume that 1 6= z ∈ Z(H).
Evidently, hz ∈ V (H) and [h, hz] = 1. Hence h � hz, and so deg(h) ≤ |H\Z(H)| − 2, which is
a contradiction. Therefore, Z(H) = 1 and |H| = |G|, as required. �
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Example 1. Take G = D2m = 〈x, y : xm = y2 = 1, yxy = x−1〉, the dihedral group of order 2m.
When m is odd, Z(G) = 1. On the other hand, [y, xiyj ] 6= 1, where 1 ≤ i and j = 0 or 1, and so
deg(y) = 2m − 2. Now, if H is a group such that ∇(H) ∼= ∇(G), by Proposition 11 we deduce that
|H| = |G|.

Lemma 2. Let G and H be two groups such that ∇(H) ∼= ∇(G). The following hold:
(a) |Z(H)| divides |CG(gi)| − 1 and |gG

i | − 1 for every gi ∈ G#. In particular, if one of the following
two conditions holds:

g.c.d. {|CG(g1)| − 1, |CG(g2)| − 1, . . . , |CG(gn)| − 1} = 1,

or

g.c.d. {|gG
1 | − 1, |gG

2 | − 1, . . . , |gG
n | − 1} = 1

then |H| = |G|.
(b) |Z(H)| divides k(G)− 1.

Proof. (a) Let φ : V (G) → V (H) be a graph isomorphism. First of all, we have |H| − |Z(H)| =
|G| − 1, which implies that |Z(H)|

∣∣ |G| − 1 and (|Z(H)|, |G|) = 1. Moreover, for all gi ∈ V (G) = G#, we
have |Z(H)|

∣∣ deg(φ(gi)) = deg(gi), and since

deg(gi) = |G| − |CG(gi)| = (|G| − 1)− (|CG(gi)| − 1),

it follows that |Z(H)|
∣∣ |CG(gi)| − 1.

We also have
deg(gi) = |G \ CG(gi)| = |CG(gi)|(|gG

i | − 1)

for every gi ∈ V (G). From (|Z(H)|, |CG(gi)|) = 1 it follows now that |Z(H)| divides |gG
i | − 1 for every

gi ∈ V (G). The rest of the proof is obvious.
(b) Since

|H| − |Z(H)| = |G| − 1 =
k(G)∑
i=1

(|gG
i | − 1) + (k(G)− 1),

it follows by (a) that |Z(H)| divides k(G)− 1. �

Remark 1. As a consequence of Lemma 2, it is easy to see that if ∇(H) ∼= ∇(G) and 2 ∈ cs(G)
then |G| = |H|. For instance, if G = D2m, where m is odd, we always have 2 ∈ cs(G), and hence from
∇(H) ∼= ∇(G) it follows that |G| = |H| (which was previously addressed in Example 1).

Using Lemma 2(a), we can verify the Conjecture for alternating groups An (n ≥ 4), all sporadic
simple groups, simple groups of Lie type with nonconnected prime graph, symmetric groups Sn (n ≥ 3).
We deal with the above cases separately.

Theorem 1. Let S = An (n ≥ 4). If H is a group such that ∇(H) ∼= ∇(S) then |H| = |S|.
Proof. By Lemma 1, the result holds for the alternating groups A4, A5, and A6. If S = A7 then

there exists an element of order 7, say x, such that |CS(x)| = 7. Hence, |Z(H)| divides 6, and since
(|Z(H)|, |S|) = 1 we deduce that |Z(H)| = 1, i.e., |H| = |S|. Now, we may assume n ≥ 8. Consider
the permutations x = (12)(3456) and y = (123)(456). Evidently, the length of the conjugacy classes of x
and y is the same in Sn and An. Hence,

|xS | = a

8
and |yS | = a

18
,

where a = n!
(n−6)! . It is easy to see now that (|xS | − 1, |yS | − 1) = 1, and by Lemma 2(a), we obtain

|H| = |S|. �
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Theorem 2. Let S be a sporadic simple group. If H is a group such that ∇(H) ∼= ∇(S) then
|H| = |S|.

Proof. It is easy to check the existence of a pair of elements x, y ∈ S \ {1} such that (|CS(x)| − 1,
|CS(y)| − 1) = 1 (see [9]), and hence by Lemma 2(a), we conclude that |H| = |S|. �

Theorem 3. Let S be a simple group of Lie type with t(S) ≥ 2. If H is a group such that
∇(H) ∼= ∇(S) then |H| = |S|.

Proof. In every finite simple group of Lie type S with t(S) ≥ 2 (except S = A1(q), q odd), there
are some maximal tours such as T which is a cyclic Hall subgroup of S and evidently CS(T ) = T (see [6]).
Since ni = |T | for some i ≥ 2 we deduce that |CS(g)| = ni for every g ∈ T#. Therefore, by Lemma 2(a),
if H is a group such that ∇(H) ∼= ∇(S) then |Z(H)|

∣∣ ni− 1, for every i ≥ 2. We recall that |Z(H)| must
also be a divisor of |S| − 1. Our observations through the results summarized in Tables 1a–c in [7] show
that for each disconnected simple graph of Lie type S with exception of A1(q), q odd, the following is
always true:

g.c.d. {n2 − 1, . . . , nt(S) − 1, |S| − 1} = 1. (2)

For instance, in the following we will investigate the property 2, for some simple groups.
(1) S = Bn(q), n = 2m ≥ 4, q odd.
In this case we have n2 = qn+1

2 and

|S| = 1
(2, q − 1)

qn2
n∑

i=1

(q2i − 1).

Evidently, n2 − 1 = qn−1
2 divides |S|, and so (n2 − 1, |S| − 1) = 1.

(2) S = 3D4(q).
In this case we have n2 = q4 − q2 + 1 and

|S| = q12(q2 − 1)(q8 + q4 + 1)(q6 − 1).

Again, since n2 − 1 = q2(q2 − 1) divides |S|, we obtain (n2 − 1, |S| − 1) = 1.
(3) S = G2(q), q ≡ 0 mod 3.
For this group, we have n2 = q2 − q + 1, n3 = q2 + q + 1 and

|S| = q6(q2 − 1)(q6 − 1).

By easy calculations we see now that g.c.d. {n2 − 1, n3 − 1, |S| − 1} = 1.
(4) S = 2B2(q), q = 22f+1.
Here n2 = q − 1, n3 = q −

√
2q + 1, n4 = q +

√
2q + 1, and |S| = q2(q − 1)(q2 + 1). Easy calculations

show now that g.c.d. {n2 − 1, n3 − 1, n4 − 1, |S| − 1} = 1.
(5) S = E8(q).
In this case t(S) ≥ 4, and we have n4 = q8 − q4 + 1, and

|S| = q120(q2 − 1)(q8 − 1)(q12 − 1)(q14 − 1)(q18 − 1)(q20 − 1)(q24 − 1)(q30 − 1).

Since n4 − 1 = q4(q4 − 1) divides |S|, it is clear that (n4 − 1, |S| − 1) = 1, and so the property 2 holds.
If S = A1(q), 3 < q ≡ ε mod4, ε = ±1 then S contains an element of order (q − ε)/2, and since

π1(S) = π(q − ε), we conclude that S contains a selfcentralizing cyclic subgroup C1 of order (q − ε)/2.
On the other hand, S contains the selfcentralizing cyclic subgroup C2 of order n3 = q+ε

2 . Since |Z(H)|
divides (|C1| − 1, |C2| − 1) = 1, we now obtain |Z(H)| = 1 or |H| = |S|, as required. �

Theorem 4. Let G = Sn (n ≥ 3). If H is a group such that ∇(H) ∼= ∇(G) then |H| = |G|.
Proof. By Lemma 2(a), it is sufficient to find a pair of elements in G, say x and y, such that

(|xG| − 1, |yG| − 1) = 1. Suppose first that n ≥ 4. Take x = (12)(34) and y = (1234). Clearly,
2|xG| = |yG| = a/4, where a = n!

(n−4)! . It is easy to see now that (|xG| − 1, |yG| − 1) = 1, as required.
Suppose next that n = 3. In this case we consider x = (12) and y = (123). �
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