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ABSTRACT 

Seismic data reconstruction is a crucial process involving the restoration of missing or 
corrupted traces to create a uniform dataset for subsequent data processing. Various 
factors such as equipment failures, and surface obstacles, result in irregularly located or 
corrupted traces. The absence of these traces can compromise the quality and accuracy of 
the resulting image. To address this issue, the Nonuniform Fast Fourier Transform 
(NUFFT) method is employed to reconstruct missing traces in datasets with non-uniformly 
sampled data. It works by interpolating the non-uniformly sampled data onto a regular grid, 
enabling the traditional Fast Fourier Transform application for data recovery. This 
interpolation process is adjusted using a kernel function to account for non-uniform 
sampling and reduce aliasing artifacts. The outcome is a collection of Fourier coefficients 
that can be utilized to reconstruct missing or incomplete parts of data. This problem is 
transformed into a linear constraint problem, which is efficiently solved using the Fast 
Iterative Shrinkage-Thresholding Algorithm (FISTA). In this study, we explore various 
techniques aimed at improving the convergence of FISTA, collectively referred to as 
improved FISTA methods. To validate the NUFFT+FISTA method for data reconstruction, 
we conducted numerical tests using 3D and 2D synthetic datasets, as well as field data. 
These tests show the advantages of the Greedy-FISTA in terms of convergence rate and 
affirm the accuracy of this approach in filling missing data traces. 

 
Ke y wo rd s :  data reconstruction, FISTA, missing traces, NUFFT 

1. INTRODUCTION 

Irregular distribution of recorded traces in land operations is mainly due to the presence 
of urban facilities, lakes, and rivers, and in marine surveys is due to technical issues in 
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streamers. For many processing steps, the reconstruction of data with missing traces has 
a particularly important role (Liu et al., 2015). 

Several reconstruction techniques have been proposed, each with its own strengths and 
weaknesses. They include filter and transform-based methods (Abma and Kabir, 2005), 
wavefield interpolation (Mazzucchelli et al., 1998), and deep learning for data 
reconstruction (Abedi and Pardo, 2022). 

Wave equation methods are useful tools as they help to fill in missing observations. 
However, they require a deep understanding of subsurface velocity distribution and involve 
complex full wavefield calculations, which limits their practical use. Predictive error 
filtering methods offer a simpler approach by using low-frequency data components on 
a regular grid to predict and fill in high-frequency data. For more information on the 
background of these methods, please refer to Lan et al. (2022). 

By applying sparsity regularization to the coefficients in a transform domain, the 
transform domain methods can reconstruct under-sampled and incomplete data. The data 
reconstruction based on sparse transforms such as the Fourier, curvelet, contourlet, and 
seislet transforms has been extensively discussed in the literature (Eslami and Radha, 2006; 
Hennenfent et al., 2010; Gilles et al., 2010; Ciabarri et al., 2015; Liu et al., 2016; Galvis et 
al., 2022; Tian and Qin, 2022). Meng et al. (2008) employed the Nonuniform Fourier 
Transform (NUFT) in a data reconstruction problem. In order to solve it, they convert the 
problem into a least squares form. The NUFT is applicable to irregularly sampled signals, 
in contrast to the classical Fourier transform, which presumes that the signal is sampled at 
regular intervals. 

A fast approach for calculating the NUFT of a signal is called the Nonuniform Fast 
Fourier Transform (NUFFT) (Duijndam and Schonewille, 1999). The NUFFT is an 
extension of the Fast Fourier Transform (FFT), which is used to compute the Fourier 
Transform of a uniformly sampled signal. The NUFFT is a multi-step process that includes 
interpolating the non-uniformly sampled data onto a uniform grid, multiplying the 
interpolated data by a kernel function, and then applying the FFT to the resulting uniformly 
sampled data. The NUFFT has many practical applications, including image reconstruction, 
data compression, and signal processing in fields such as Magnetic Resonance Imaging 
(MRI) and Computed Tomography (CT) (Greengard and Lee, 2004). 

To solve the reconstruction of the missing trace problem using NUFFT, we utilize the 
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) method. Beck and Teboulle 
(2009) introduced FISTA to improve the standard Iterative Shrinkage-Thresholding 
Algorithm (ISTA), enabling quicker convergence rates. FISTA is an iterative method for 
solving linear convex optimization problems. It is a first-order optimization procedure, 
which means that each iteration only requires the gradient of the objective function to be 
computed. The FISTA algorithm operates by iteratively revising a sequence of optimal 
solution estimates. At each iteration, the algorithm computes a gradient descent step 
followed by a shrinkage operation that ensures the solution is sparse. The shrinkage 
operation is carried out by applying a threshold derived from the gradient descent step. The 
quantity of thresholding is determined by a parameter known as the proximal parameter, 
which controls the solution sparsity (Beck and Teboulle, 2009). 

The capacity to handle irregularly recorded data, which is prevalent in land surveys, is 
one of the benefits of NUFFT-based data reconstruction. In comparison to other 
reconstruction techniques, it may also reduce computational costs, making it appropriate 
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for large and 3D datasets. To achieve accurate and effective reconstruction, NUFFT-based 
reconstruction needs careful parameter selection and optimization (Liu et al, 2015). We 
utilized advanced FISTA algorithms to improve the optimization process related to the Non-
Uniform Fast Fourier Transform (NUFFT) missing trace recovery problem. Our approach 
was tested on both synthetic and real datasets, and it showed remarkable proficiency in 
reconstructing the missing traces. The results highlight the superior performance achieved 
by using the improved FISTA algorithms. 

Following a brief introduction to data reconstruction, the FISTA and its improved 
versions are discussed. Then, the newly introduced approaches are evaluated through 
numerical testing and compared based on various aspects. 

2. DATA RECONSTRUCTION 

To reconstruct multi-channel data, we use a mathematical model expressed as follows: 

 b dS , (1) 

where vector r tn nd   denotes the recorded field data; vector s tn nb   represents the 
incomplete field data, which are often under-sampled; and s rn nS   is the sampling 
operator; nr, nt and ns denote the number of temporal recorded, trace-patch and incomplete 
samples, respectively, contained in each patch. The sampling operator S is an under-
determined matrix: 

 
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 
   
  

S




. (2) 

To solve the under-determined problem shown in Eq. (1), it is converted into an 
optimization problem with a regularization term 

  2
2
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 
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 
d b dS , (3) 

where  Reg   denotes the regularization operator that contains prior information on the 

model, 2
2  denotes the square of L2 norm,  is the regularization parameter weighing the 

fidelity term d bS  and the model constraint term  Reg  . 
The regularization optimization based on sparsity promotion constraints is given as 

(Hennenfent et al., 2010; Wang et al., 2011; Bai et al., 2014): 
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where F  is the non-uniform Fourier transform (NUFFT) operator, F1 is the inverse of the 
Fourier transform, x contains the coefficients of the signal in the frequency domain, and 

1  denotes the L1 norm. Since b can represent irregularly sampled data, the NUFFT is 
employed to transfer it to the frequency domain. The non-uniform discrete Fourier 
transform transforms a sequence of N complex numbers u0, …, uN1 into another sequence 
of complex numbers U0, …, UN1 defined by 

 
1

2 i

0
e n k

N
d f

k n
n

U u


 


  ,   0 ≤k ≤ N  1, (5) 

where  0,1nd   (n = 0, …, N  1) are sample points and  0,kf N  (k = 0, …, N  1) 
are frequencies. The second term in Eq. (4) is in the frequency domain, while the first term 
is in the time domain. In this way, by solving the minimization problem of Eq. (4), we can 
reconstruct the full data ˆ d d . 

For simplicity, we define 1A SF  in Eq. (4), leading to 

  2
2 1arg min  

x
x b xA . (6) 

Equation (6) is a linear constraint problem that can be solved using the FISTA method (Beck 
and Teboulle, 2009). 

3. FISTA ALGORITHM 

The convex optimization in Eq. (6) can be solved via interior point methods (Ben-Tal 
and Nemirovski, 2001). However, in most applications, the problem is not only large scale 
(may approach millions of decision variables) but also involves dense matrices, which 
frequently prevents the usage and potential benefit of complex interior point algorithms. 
Therefore, inexpensive gradient-based algorithms have been proposed to solve the problem. 
Figueiredo et al. (2007) reformulated Eq. (6) as a box-constrained quadratic problem solved 
by a gradient projection algorithm. ISTA, which involves matrix-vector multiplication 
followed by a shrinkage/soft-threshold step in each iteration, is one of the most widely used 
techniques for solving Eq. (6) (Figueiredo and Nowak, 2003; Daubechies et al., 2004; 
Chambolle et al., 1998). To be more precise, ISTA’s standard procedure is 

  T
1 2k k k      x x b xA A , (7) 

where  is an appropriate step size and  is the shrinkage operator (e.g., Mallat, 1999; Yang 
and Gao, 2015) given by the following expression 

   max 1 , 0
s
 

   
 

s s . (8) 
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Here s is the desired vector that the shrinkage operator is operating on. Since ISTA is a slow 
method (Bredies and Lorenz, 2008), FISTA (Fast ISTA) was proposed by Beck and 
Teboulle (2009) to generate a faster convergence rate. The implementation steps of Eq. (6) 
using FISTA are shown in the Algorithm 1. 

Algorithm 1: FISTA method for data reconstruction in the Fourier domain. 

Input: 

1A SF , T TA FS , b (under-sampled data), 0 1 1  x x y bF , 

1 1 1t   , and L is Lipschitz constant (1 L  is step-size). 

Output: 

 1ˆ d xF  (reconstructed data) 

For k = 1, 2, 3, … 
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 T T
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1 1
k L kx y

L L 
  

    
  

bI A A A  

Here, I is an identity matrix. The main difference between the above algorithm and ISTA 
is that the iterative shrinkage operator is not employed on the previous point xk1, but rather 
at the point yk+1, which uses a specific linear combination of the previous two points 
 1 2,k kx x  . The main computational effort in both ISTA and FISTA remains the same. 

3 . 1 .  M o d i f i e d  F I S T A  
The first modification of FISTA is in the update of tk (Algorithm 1), which replaces the 

constant values with three parameters p, q and r. The modified FISTA scheme is the same 

as the Algorithm 1 with a modification as 2
1 2k kt p q rt

    
 

. Therefore, there are 

three hyperparameters to set: p, q > 0 and  0, 4r . When r is strictly smaller than 4, 
Algorithm 2 is simply a variant of the inertial forward-backward method (refer to Liang et 
al., 2017) for more details on its convergence properties). A benefit of the parameters p, q 
and r in FISTA-Mod is faster convergence rate (Liang et al., 2022). 
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3 . 2 .   - F I S T A  

The degree of freedom provided by the three hyperparameters of modified FISTA 
allows the design of more advanced schemes, which can make the convergence rate faster 
in practice. The following modification is an extension of modified-FISTA, where the 
values of p and q determine the value of r as follows: 

    
   

 

2

2

44 1
, , , 4 1

1 1

p qp
f p q r p


 

 


    

 
, (9) 

where 1 L   and  ≥ 0. This method is called -FISTA. Since  , 0, , 4f p q    , 

the -FISTA provides the  21 k  convergence rate for the non-strongly convex case. 

3 . 3 .  R a d a - F I S T A  

The -FISTA aims to prevent the oscillating behavior sometimes seen in FISTA 
applications. This feature works for strong convexity, and it only examines the situation in 
which strong convexity is available, which is rarely the case in practice. It takes time to 
estimate the robust convexity in general. Consequently, an efficient method of estimation 
is also required. To resolve this issue, the next modified version of FISTA has a restarting 
adaptive scheme (Algorithm 2), incorporating the restarting technique of O’Donoghue and 
Candes (2015) in -FISTA. 
Algorithm 2: Restarting and adaptive -FISTA (Rada-FISTA). 
Input: 

1A SF , T TA FS , b (under-sampled data), 0 1 1  x x y bF , 1 1 1t   , 
 , 0, 1p q ,  < 1,  0, 4r  and Lipschitz constant L (1 L  is step-size). 

Output: 

 1ˆ d xF  (reconstructed data) 

For k = 1, 2, 3, … 
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 Restart if    T
1 1 0k k k ky x x x    : r = r and yk = xk and tk = 1 

This strategy can effectively prevent the oscillatory behavior. 
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3 . 4 .  G r e e d y - F I S T A  

The FISTA schemes has the oscillation issue when converging to the solution, because 
k  1. For the restarting scheme, resetting tk to 1 will cause k to increase from 0, 
approach 1, and cause the subsequent oscillation, after which the scheme will recommence. 
If the time between two restarts can be cut down with such a loop, further acceleration might 
be acquired. It turns out that this can be done utilizing a constant k (near to or equal 1). 
Algorithm 3 shows how the Greedy-FISTA is implemented (Liang et al., 2022). 

Algorithm 3: Greedy-FISTA method. 

Input: 

1A SF , T TA FS , b (under-sampled data), 0 1 1  x x y bF , s ≥ 1, 

 1 , 2L L  ,  < 1, and Lipschitz constant L (1 L  is step-size). 

Output: 

 1ˆ d xF  (reconstructed data) 

For k = 1, 2, 3, … 

  1 1k k k ky x x x     

   T T
1 1k kx y      bI A A A  

 Restart if    T
1 1 0k k k ky x x x    : yk = xk 

 Safeguard if 1 1 0 0k kx x s x x    :  max ,1 L   

A larger step-size (larger than 1 L ) is chosen for , which can further shorten the 
oscillation period. A safeguard step is provided to ensure convergence because a big step 
size can cause divergence. The safety feature eventually leads to 1 L   if it is used 
frequently. In practice,  1 , 1.3L L   provides faster performance than Rada-FISTA and 
restarting FISTA (Liang et al., 2022). 

3 . 5 .  M o d i f i e d  A P G  

The following optimization technique is based on the accelerated gradient method, 
known as the accelerated proximal gradient (Nesterov, 2004). To solve Eq. (6), one can use 
modified APG, which combines the APG and modified-FISTA methods. We recommend 
interested readers to Section 6 of Liang et al. (2022) for a more thorough explanation of the 
modified-APG approach. 
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Algorithm 4: Modified APG procedure. 

Input: 

1A SF , T TA FS , b (under-sampled data), 0 1 1  x x y bF ,  0 0, 1  , 

L  ,  0,1  , and Lipschitz constant L (1 L  is step-size). 

Output: 

 1ˆ d xF  (reconstructed data) 

For k = 1, 2, 3, … 
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  

    
  

bI A A A  

Table 1 compares different aspects of the studied methods. The hyperparameters 
indicate the parameters that the user must define prior to the algorithm execution. Even 
though the modified version contains more hyperparameters, it can deliver much more 
accurate results and faster convergence if the parameters are properly tuned. A decent 
parameter selection requires trial and error. The choice in Table 1 was initially made by trial 
and error, while, we had no a priori information in hand about the optimal value of the 
parameters. 

Table 1. Comparison of the presented methods. See text for the meaning of symbols. 

Method Hyperparameters Restart 
Option 

Safeguard 
Option 

FISTA , L --- --- 
Modified FISTA p > 0, q > 0,  0, 4r , , L --- --- 

-FISTA p > 0, q > 0,  ≥ 0, 1 L  , , L --- --- 

Rada-FISTA  0,1p ,  0,1q ,  < 1,  0, 4r , , L  --- 

Greedy-FISTA  1 , 2L L  ,  < 1, s > 1, , L   

Modified APG  0 0,  ,  0,  , , L --- --- 
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4. NUMERICAL TEST 

We apply the introduced and proposed methods to the reconstruction of data using the 
NUFFT method in order to compare them. Initially, a simple 2D synthetic test is examined, 
followed by another more complex synthetic data from wide azimuth SEG Salt Model C3 
(https://wiki.seg.org/wiki/SEG_C3_WA). A set of synthetic 3D data is also evaluated to 
examine the performance of the methods. The mentioned 2D data are shown in Fig. 1. 

We compare the methodologies for recovering the synthetic data's missing traces. 
Figure 2 depicts the three instances in with 30, 50, and 70% randomly missing traces, 
respectively. Missing traces are recovered using the proposed NUFFT method along with 
the aforementioned optimization techniques. The convergence criteria of the algorithm are 
determined by the square root of the mean error between the actual and reconstructed data 
MSE < 2.5  105. Figure 3 illustrates the convergence rates of all approaches in Fig. 2. All 
parameters are set through trial and error, and the optimal configuration for each method is 
utilized. Our procedure to obtain the optimal parameter is to start with a simple FISTA, then 
fix its optimal value to be used in the improved FISTA schemes. By implementing the 
improved FISTA using optimal values obtained from simple FISTA, a suitable value for 
the new parameter will be achieved. The values in Table 2, which displays the parameters 
values for each test, seem nearly optimal for the reconstruction problem and are a good 
starting point for any new dataset. 

Figure 3 demonstrates the convergence rate of the introduced methodologies. Original 
FISTA algorithm has the slowest convergence, while Greedy-FISTA outperforms other 
methods. Figure 4 illustrates the reconstructed data from Fig. 2 using the NUFFT and 
Greedy-FISTA methods. Even in the rough case, where 70% percent of traces are lacking 
(Fig. 2c), the missing traces are perfectly reconstructed (Fig. 4c). 

 
Fig. 1. a) Synthetic 2D data, b) SEG synthetic data; TWT stands for two-way travel time. 
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It is necessary to mention that the Fourier transform can handle linear or quasi-linear 
events. In the presence of curved or very complex events, the data is divided into small 
windows (Fig. 5, synthetic data and 10 field data). Fourier transform can be obtained by 

 
Fig. 2. Synthetic 2D data, shown in Fig. 1a, with randomly removed a) 30%, b) 50% and c) 70% 
of the traces; TWT stands for two-way travel time. 

 
Fig. 3. Respective convergence rates for reconstruction of data shown in Fig. 2ac, expressed using 
mean square error (MSE, convergence criterium: MSE = 2.5  105). 
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constructing subdivided windows in advance. The generalized Gabor transform of a signal 
is regarded as a windowed inverse Fourier transform (Rebollo-Neira and Fernandez-Rubio, 
1999). 

The second test is performed on complex synthetic data shown in Fig. 1b. In Fig. 5, 
30%, 50% and 70% of traces are eliminated to generate the input data for the reconstruction 
schemes. Figure 6 shows the results from modified and enhanced optimization methods. 
The convergence criteria are determined by MSE < 2.5  105. Again, the Greedy-FISTA 
algorithm outperforms the other algorithm, while the original FISTA algorithm has the 
slowest convergence rate. The NUFFT resulted well in interpolating and not extrapolating. 
This issue is seen in most of our tests. Therefore, it can be considered a drawback of this 
method. However, we have to admit that the noisy trace reconstruction in the boundary of 
the model exists in cases where many traces are missing which is far from real cases for the 
field data, as shown later. 

Table 2. Optimal parameters obtained using the improved FISTA method on synthetic 2D data 
(Test 1) and complex synthetic data (Test 2) (obtained by trial and error). 

Parameter Test 1 Test 2 Parameter Test 1 Test 2 

 10 10 r 4 4 
 1 1  1.1 1.1 
L 1 1 s 100 100 
p 5 10  0.0001 0.0001 
q 10 100 0  0.001 0.001 

 
Fig. 4. a) Reconstruction of data in Fig. 2c (70% of traces are lacking), and results of reconstruction 
using b) NUFFT and c) Greedy-FISTA method; TWT stands for two-way travel time. 
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Figure 7 shows the results of reconstruction of data shown in Fig. 5 using the NUFFT 
and Greedy-FISTA methods, and the improved FISTA method demonstrates a satisfactory 
recovery of lost traces. For both experiments, the original FISTA algorithm has the slowest 
convergence, while the Greedy-FISTA algorithm outperforms other methods (Figs 3 
and 6). Every modification introduced in the previous section accelerates the convergence 
rate. Both Greedy-FISTA and modified-APG converge in nearly half the number of 
iterations compared to the original FISTA algorithm. Plots of Fig. 8 show, respectively, 
zoomed upper sections of Figs 5 and 7. 

Next, we apply the Greedy-FISTA to a 3D synthetic dataset to demonstrate the efficacy. 
The 3D P-velocity model is illustrated in Fig. 9a. Figure 9b shows the shot record 
corresponding to a source (at 0.5  0.5 km) on the surface, and receivers are distributed 
uniformly on the surface with a 10-m interval. Figure 9c depicts the shot record with 50% 
of the total traces removed. The output of Greedy-FISTA is in Fig. 9d. It accurately and 
efficiently reconstructs the missing traces in a 3D dataset. 

To evaluate the effectiveness of the presented approach on real data, we use the Greedy-
FISTA for the reconstruction of real-field data displayed in Fig. 10. The field data consists 
of about 500 traces with a 50-m trace interval and a time sampling rate of 2 ms. It shows 
that Greedy-FISTA can effectively reconstruct the real-field data using the NUFFT 
approach. 

 

 
Fig. 5. Synthetic SEG data, shown in Fig. 1b, and 10 field data added, with randomly removed 
a) 30%, b) 50% and c) 70% of the traces; TWT stands for two-way travel time. 
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Fig. 6. The same as in Fig. 3, but for data shown in Fig. 5ac. 

 
Fig. 7. a) Reconstruction of data in Fig. 5c (70% of traces are lacking), and results of reconstruction 
using b) NUFFT and c) Greedy-FISTA method; TWT stands for two-way travel time. 
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Fig. 8. a)c) Zoomed sections of the respective upper parts of Fig. 5 (incomplete input data), and  
d)f) zoomed sections of the respective upper parts of Fig. 7 (reconstructed data); TWT stands for 
two-way travel time. 

 
Fig. 9. a) 3D P-velocity synthetics model, b) true data, c) data with 50% missing traces, and d) data 
reconstructed with the NUFFT and Greedy-FISTA method; TWT stands for two-way travel time. 
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5. CONCLUSIONS 

We show that the NUFFT method can be used for reconstructing missing traces in shot 
records when employing an appropriate optimization strategy. We use NUFFT for more 
generality. Although for regularly sampled data with missing traces simple FFT can be 
employed, in real land data with irregular trace intervals NUFFT should be used. Among 
the various enhanced and modified versions of the FISTA method used for trace 
reconstruction with NUFFT, the Greedy-FISTA approach stands out as the most promising. 
It exhibits superior convergence rates compared to other methods and demonstrates its 
effectiveness in reconstructing both simple and complex synthetic as well as real field data. 
One of its significant advantages is its higher convergence rate which in our examples was 
near half the number of iterations required for convergence of other methods, especially 
when dealing with large 3D datasets. This method addresses real-world data challenges and 
provides promising results. 
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