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ABSTRACT 

Porosity plays an important part of understanding permeability and fluid flow within 
the continental, crystalline rocks. Geophysical well logs are presently the most consistent 
means of providing continuous information for porosity estimation. However, it is difficult 
to interpret geophysical well logs data in crystalline rocks due to their complex geological 
features and the difficulty in understanding and using the complex and intensive 
information content in these data. Motived by the successful prediction abilities of 
artificial neural networks (ANN) to solve different problems in geophysics, this study 
explore the applicability of using ANNs to predict porosity in continental, crystalline 
rocks. This ANN technique is calibrated on Chinese Continental Scientific Drilling Main 
Hole (CCSD-MH) data, which provides core porosity data combined with four 
geophysical well logs (density, neutron porosity, sonic and resistivity). The data from 
CCSD-MH is utilized to train feed-forward backpropagation (FFBP) neural network and 
radial basis function (RBF) neural network to derive a relationship between geophysical 
well logs and porosity, and hence predict porosity accurately. The findings demonstrate 
that ANNs provide better performances with sets of three geophysical well logs (density, 
sonic and resistivity) than regression technique. Comparison of FFBP to RBF showed 
that RBF reveals better stability and more accurate performances than FFBP. Based on 
the success achieved in this study, this intelligence artificial technique can be a very 
advantageous tool in facilitating the task of geophysicists in the framework of research 
drillings in continental crust. 

 
Ke y wo rd s :  geophysical well logs, geophysical exploration, computational 
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1. INTRODUCTION 

Many problems in geoscientific investigations can be solved by geophysical well 
logging (GWL). GWL involves the monitoring and evaluation of drilled rock from the 
earth’s crust. It provides continuous records on the composition and structural features of 
the penetrated rock. In this context, rock properties such as, porosity can be estimated. 
GWL is widely used for reservoir evaluation in sedimentary environments (see Serra, 
2007). Thus becoming the standard in hydrocarbon companies for the investigation of 
underground geology. Over time GWL has undergone significant improvement both in 
technique and data interpretation by oil companies for usage in sedimentary rocks. As 
a result, log responses in sedimentary environment are well known; even though, this is 
not the case for crystalline rocks (Bartetzko et al., 2005). 

Crystalline rocks cover a wide spectrum of igneous, metamorphic and some 
sedimentary rocks in which the recrystallization process has been significant to their 
formation. These occur in a range of continental and oceanic settings, where a number of 
boreholes have been and continue to be drilled to provide greater insight into the 
composition, structure and processes of the earth’s interior by means of geophysical 
surveys and geological mapping (Harvey et al., 2005). Knowledge in the use of well 
logging in crystalline rocks has been improved due to scientific research programs such as 
the International Continental Drilling Program (ICDP), Deep Sea Drilling Project (DSDP) 
and Ocean Drilling Program (ODP) (Bartetzko et al. 2005). 

Immense investigations have been carried out by geoscientists based on crystalline 
rocks using well logging data (see Anderson et al., 1990; Mooss, 1990; Pratsone et al., 
1992; Pechnig et al., 1997, 2005; Luo and Pan, 2010; Pan et al., 2010). The general 
understanding gathered from these research revealed that, the geophysical logs data from 
crystalline rocks are difficult to analyze because of their complicated geological 
characteristics and the difficulty in understanding and using the immense information 
content in these data. To overcome this problem, an efficient approach in studying 
crystalline rocks is the integration of information from both logs and core samples 
(Pechnig et al., 1997). 

In this prevalent situation, artificial neural networks (ANN) offer various features that 
make them ideal systems for dealing with the complex and nonlinear geological problems 
of crystalline rocks from geophysical well data. ANNs are nonlinear systems, which 
makes them perfect for tackling nonlinearities in actual situations. The talent of ANNs to 
learn “input-output relationship” without prior information of the model structure makes 
them a very advantageous alternative to other modelling techniques. ANNs are 
appropriate approach when the dynamics of the problem is either unknown or too 
complicated. Furthermore ANNs have a high degree of fault tolerance against noise or 
errors in data. Therefore, ANNs are powerful and versatile systems with the capacity to 
deal with the complicated and nonlinear geophysical borehole records obtained so far 
from downhole crystalline crust such as the main hole of Chinese Continental Scientific 
Drilling (hereafter “CCSD-MH”). 

Innovative neural network tools have been successfully developed and utilized to solve 
logging problems (Baldwin et al., 1990; Luthi and Bryant, 1997; Binaouda et al., 1999; 
Moritz et al., 2000; Bhatt and Helle, 2002; Zoveidavianpoor et al., 2013) including 
research drilling in continental crust (Maiti et al., 2007; Pan et al., 2010; Maiti and 
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Tiwari, 2009, 2010). However, despite the existing literature, few papers are dedicated to 
neural networks in research drilling of continental crust especially in the case of Chinese 
Continental Scientific Drilling (CCSD). Therefore, the CCSD project well logs database 
creates an opportunity to apply and evaluate ANNs. 

In terms of rock properties, geophysicists have undertaken several investigations on 
CCSD-MH. Xu et al. (2000) studied the velocity structures of the Sulu-Dabie orogeny and 
implications for seismic tomography. Using seismic refraction and reflection data Kern et 
al. (2002) measured the variation of P- and S-wave velocities from CCSD-MH. Wang et 
al. (2004) investigated on the P-wave velocities of eclogites by utilizing seismic 
properties. An analysis of the correlation between pretrophysical properties of ultra-high-
pressure (UHP) metamorphic rocks from 1003100 m of CCSD-MH was carried out by 
Ou et al. (2005). In Meng et al. (2007) a preliminary investigation was done on 
paleomagnetism and rock magnetism of eclogite from the main hole. It was observed that 
all types of rocks have marked differences in their physical properties. At ambient 
temperature and hydrostatic confining pressures Ji et al. (2007) determined the P-wave 
velocities of UHP metamorphic rock samples collected from the CCSD-MH and from 
surface outcrops in the Sulu orogenic belt. Luo and Pan (2011) focused on Resistivity 
logs of the CCSD main drilled hole. The study showed that the resistivity of the UHP 
metamorphic rocks from the CCSD-MH is very high, because the porosity of the UHP 
metamorphic rocks is extremely low, and there are a few metal minerals dispersed within 
the rocks. In addition, Sun et al. (2012) carried out an investigation on P-wave velocity 
differences between surface-derived and core samples from the Sulu UHP metamorphic in 
order to compare the averages of P-wave velocities of four lithologies (felsic gneiss, 
eclogite, retrograde eclogite, and amphibolite) obtained from core materials sampled by 
the CCSD at depths to 5158 m, and from surface outcrops in the Dabie-Sulu UHP 
metamorphic. 

Based on the above developments, the general understanding is that, 1) Most studies 
on rocks properties are carried out by the implication of seismic properties, and core 
samples from CCSD-MH and surface outcrops; 2) Data on in situ rock properties of 
CCSD-MH are still not fully exploited. The presented research suggests an approach for 
making a formulation between geophysical well logs and porosity. This approach takes 
into consideration all of the porosity indicators contained within geophysical well logs and 
integrates them into an association which perfectly predicts rock porosity. 

Rock porosity is a petrophysical parameter utilized in many areas of geophysics. 
Porosity in crystalline rocks is often defined as the open space generated by fractures 
(Tullborg and Larson, 2006). It plays an important role in understanding permeability and 
fluid flow within the continental, crystalline rocks. There are no geophysical logs which 
can directly estimate porosity. Geophysical logs data provides only continuous 
information for porosity prediction. Therefore, the best source of porosity information 
comes from rock samples obtained from boreholes and measured in a laboratory (Maiti 
and Tiwari, 2010). However, the recuperation of cores is very expensive and is most often 
partial (Chang et al., 2000). 

Several empirical relationships between porosity and geophysical well logs, such as 
density, sonic and neutron porosity have been formulated for sedimentary rocks. 
However, the conversion from these physical properties logs to equivalent porosity is not 
trivial (Helle et al., 2001; Bhatt, 2002). Hence, the applications of these empirical 
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relationships are limited. Following the same reasoning, Pechnig et al. (1997) indicated 
that due to the small porosities in crystalline crust, the performance of porosity predictions 
are poor. Zimmermann et al. (1992) developed statistical multiple regression models to 
predict porosity in crystalline rocks. Attempts have also been made by Pechnig et al. 
(1997) to predict porosity profiles using geophysical well log data from the German 
Continental Deep Drilling Program (KTB) drilled site. This was done using statistical 
methods such as linear regression, multiple regression and factor analysis. They 
mentioned that porosity predicted by statistical approaches overestimate the measured 
porosity at different ranges of depth. The main drawback of the statistical methodology 
are that the complex and nonlinearity of geophysical well logs can make statistical models 
complicated and awkward. This assertion has also been echoed by several authors such as 
Maiti et al. (2007) and Maiti and Tiwari (2009, 2010). 

In line with the above developments, the need for a consistent and high performance 
predicative approach is of particular importance in crystalline crust. The purpose of this 
investigation, consequently, is to develop an artificial intelligence based on ANNs for 
porosity prediction in crystalline crust by using geophysical logs data. This study 
demonstrates the efficiency of two types of ANN which include feed-forward 
backpropagation (FFBP) neural network and radial basis function neural network (RBF) 
for tackling accuracy estimation porosity problems in actual situations. Also of interest 
was the comparison of ANNs’ results to those obtained by regression technique. The 
findings highlighted that the automated porosity prediction by ANNs with sets of three 
geophysical well logs (density, sonic and resistivity) can provide satisfying performance 
in the case of CCSD project. 

2. ABOUT THE CHINESE CONTINENTAL SCIENTIFIC DRILLING 

The Chinese Continental Scientific Drilling (CCSD) project was one of the largest and 
most expensive scientific research projects in geosciences ever undertaken in China. The 
Ministry of Land and Resources, the Ministry of Science and Technology, the National 
Natural Science Foundation of China, and the International Continental Scientific Drilling 
Program financed the project from the planning stage in 1999 through to end in 2007 (Ji 
and Xu, 2009). The CCSD-MH (34.40N, 118.67E) is located in the southern part of 
Donghai County (Jansu province), in the Sulu UHP metamorphic belt of Eastern China 
(Fig. 1). 

The major scientific goal of CCSD project was to access the key composition, deep 
structure, and active processes of the Sulu UHP metamorphic belt that are not exposed, by 
means of drilling a hole into the continental crust. CCSD project has permitted testing of 
hypotheses and models derived from surface observations. Well logging was one of the 
most significant phases and key technologies in the CCSD project. The logging engineer 
employed more than 20 types of well logging tools and used advanced ECLIPS5700 
image logging system to survey the entire section of the main hole, including resistivity 
laterolog, natural gamma ray, digital spectrometer (U, Th, K, SGR, CGR), litho-density, 
compensated neutron, multipole array acoustic log (Vp, Vs, Vst), simultaneous acoustic-
resistivity image(Star-II), temperature, magnetic susceptibility, mud resistivity, Caliper, 
Inclinometer, etc. (Niu et al., 2004).The CCSD project which commenced in June 2001 
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and reached its target depth of 5158 m in April 2005, has provided continuous records of 
physical and chemical data of the metamorphic rocks drilled. 

3. GEOLOGICAL SETTING OF STUDY AREA 

One of the most significant solid earth discoveries of the last three decades is the 
identification of a large ultra-high-pressure (UHP) metamorphic belt, more than 1000 km 
long, in the Sulu-Dabie region of central eastern China (Xu et al., 2009). This UHP 
metamorphic belt was first subducted into the mantle, and then quickly exhumed back up 
to the upper crust, producing the largest UHP metamorphic terrane in the world (see Yang, 
2009 and references therein). The Sulu-Dabie UHP metamorphic belt located at the east 
part of the Tanlu fault, resulted from the continental subduction and collision between the 
North China and the Yangtze cratons during the Triassic period (Liu et al., 2010, and 
references therein).The rocks on the surface outcrops in Dabie-Sulu are largely gneisses, 
comprising monzonitic gneiss, biotite gneiss and biotite plagioclase gneiss. These gneisses 
were constituted in the Proterozoic or older, and went through UHP metamorphism in the 
Triassic period; so the gneisses exhibited on the CCSD location frequently comprise 
coesite (Liu et al., 2006; Yang, 2009). The CCSD-MH is situated in the sigmoid shaped 
Maobei eclogite/ultramafic complex in the northern Sulu UHP upper tectonic slice (Xu et 

 
Fig. 1. Location of the Chinese Continental Scientific Drilling (CCSD) main hole (after Yang, 
2009). WYF: Wuliang-Yantai Fault; JXF: Jiashan-Xionshui fault. 
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al., 2009). Both coesite and diamond have been discovered in eclogite, and coesite has 
also been found in orthogneiss, paragneiss, quartzite and marble in the UHP metamorphic 
belt (Xu et al., 2009, and references therein). 

Core sample from the CCSD-MH consists largely of granitic gneiss, paragneiss and 
eclogite or retrogressed eclogite, with less important amounts of amphibolite, ultramafic 
rock, and minor mica schist, mica-quartzschist, kyanite quartzite, granite and mylonite 
(Xu et al., 2009). The CCSD-MH is the deepest penetration (5158 m) drilled into 
extremely hard crystalline rocks such as eclogite, felsic gneiss, quartzite and garnet 
peridotite, nevertheless it is shallower than the Germany KTB (9101 m) and Russia Kola 
(12000 m) drilled holes respectively (Ji and Xu, 2009); and its crustal geology and 
lithology differ essentially from those sampled by KTB and Kola drilled holes (Ji and Xu, 
2009). Information about CCSD project and its geological and geophysical implications 
can be found in several papers such as Pan et al. (2002); Niu et al. (2004); Pan et al. 
(2005); Ji and Xu (2009); Xu et al. (2009); Liu et al. (2010); Luo et al. (2011) and Yang 
(2009). 

4. DATA AND METHODOLOGY  

The aim of this study is to convert geophysical logs data into porosity prediction by 
neural network modelling in crystalline crust. The available dataset for this work were the 
physical logs (see Table 1) and the porosity measurement from core samples of CCSD-
MH. The logs evaluated in this research are bulk density (DEN), compensated neutron 
porosity (CNL), Sonic (AC), and spherically focused resistivity (RSFL). They were 
collected by Shengli logging company (Pan et al., 2002). The set of four geophysical logs 
selected for this study were considered to estimate porosity. 

This paper focuses only on depths ranging from 1012043 m where available core 
porosity measurement exist. We have combined core porosity data with the corresponding 
values of four geophysical well logs data in CCSD-MH where they were effective at the 
same depth (see example in Table 2). A total of 325 data points, collected from the depth 
interval 1012043 m were used in this study to obtain an approximation of the relation 
between porosity and geophysical well logs. 

To obtain the results presented in this paper, the steps of the methodology are 
described in the following sections. 
  

Table 1. List of geophysical well logs used in this study. 

Parameter Method Symbol Unit 

Compressional wave travel time Sonic AC s/m 
Compensated neutron porosity Neutron absorption CNL p.u 
Bulk density Gamma ray scattering  DEN g/cm3 

Spherically Focused Resistivity Electrical resistivity  RSFL m 
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4 . 1 .  D a t a  p r o c e s s i n g  a n d  i d e n t i f y i n g  i n p u t s  p a r a m e t e r s  

One of the factors affecting the performance of ANNs is related to the quality of 
dataset used in model-building (Dreiseitl and Ohno-Machado, 2002). Therefore, the first 
step considered was the well data processing. An important observation made by Luo and 
Pan (2010, Fig. 4) was that the cavings and breakouts of CCSD-MH caused many 
anomalies on well log data. Therefore, in this study all geophysical well log data which 
exhibited strange, and possibly incorrect data were ignored, so that the geophysical log 
data can be used successfully to predict porosity using a computational neural networks. 
In addition, correction of the matching between core depth and logging depth was done, 
so that the geophysical well logs and experimental data may be matched and integrated 
effectively. 

In the second step, the inputs (geophysical logs) should be identified for training 
ANNs. In this regard, the relationship between inputs and output (measured porosity) is 
required for identifying the potential input geophysical logs. The input data should 
represent the condition for which training of the neural network is done. All input neurons 
should represent some independent variable having an impact over the output of the 
neural network. Moreover the neural network has to be constructed in such a manner that 
the application of set of inputs produces the desired set of outputs. In this light, Pearson 
correlation coefficients were calculated in order to extract statistical significant 
relationships between measured porosity and geophysical logs. 

Table 2. Example of core porosity data associated with values of four well logs at corresponding 
depths. See Table 1 for the parameters. 

Depth [m] RSFL [m] CNL [p.u] AC [s/m] DEN [g/cm3] Porosity [%] 

163.35 1716.56 3.27 50.60 3.29 1.00 
167.20 3244.64 4.66 45.41 3.28 1.46 
172.35 2157.60 4.17 47.86 3.33 1.44 
178.97 2680.57 4.12 48.10 2.89 1.58 
184.65 3406.28 2.39 50.06 2.87 1.55 
189.53 1604.16 3.72 44.94 3.39 1.66 
193.90 3466.52 3.18 50.79 3.34 1.32 
199.70 3225.35 2.93 43.55 3.34 2.11 
211.40 2371.55 3.82 47.15 2.98 1.38 
218.90 2353.18 2.02 48.84 2.85 1.55 
222.60 2614.76 3.08 47.91 3.31 1.58 
229.90 3464.26 5.18 48.89 3.18 1.30 
236.86 1499.99 5.01 52.88 3.52 1.68 
238.50 2800.33 3.45 49.36 3.32 1.46 
248.26 2035.99 3.21 52.08 3.17 1.43 
250.55 1720.68 1.55 52.76 2.82 1.35 
255.90 2361.57 2.54 49.53 3.03 1.07 
261.26 2463.44 2.61 52.03 3.17 1.52 
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Pearson correlation coefficient  ,R x y  is given as 

      

   2 2
, i i

i i

x x y y
R x y

x x y y

 
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 


 

, (1) 

where xi and yi are the i-th values and x  and y  are the mean values of the x and y 
variable, respectively. 

4 . 2 .  N o r m a l i z a t i o n  

The third step was to adequately normalize the selected inputs so that the ANNs will 
provide good results and the calculation time will be significantly reduced. In this study, 
the selected inputs variables were normalized in [0, 1] using scaled value 
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4 . 3 .  A N N s  a r c h i t e c t u r e  

The ANNs models that are popular and appropriate in function approximation are 
FFBP and RBF respectively. They are multilayer, feed-forward and fully connected neural 
network. Their architecture details are described in Section 5. As mentioned by Van der 
Baan and Jutten (2000), there is no theory expanding the present state of knowledge to 
determine the optimal architecture of a network. Therefore, in this study, it was fixed in an 
experimental manner, but the knowledge of the problem, the intuition of the user and the 
ability to experiment with several architectures can often make good assumptions. 

4 . 4 .  N e t w o r k  t r a i n i n g  

We aimed to find an approximation of the relationship between porosity () and 
selected well logs, i.e.  selected well logsf  . Based on collected data, ANNs were 
trained to generate the preferred input-output relationship. A FFBP was trained using 
Levenberg-Marquardt algorithm; RBF was trained both by unsupervised (k-mean 
clustering and P nearest-neighbor) and supervised (gradient descent rule) methods. These 
training methods details are described in Section 5. 

Besides, dataset was divided in two independent part. The first 228 data points were 
used for training the networks. While the remaining data points were used for testing. 

The two networks (FFBP and RBF) were allowed to learn until no additional effective 
improvement occurred. After training the networks, testing data was used to evaluate the 
prediction ability of the ANNs. The two trained networks were then used to interpret the 
porosity profile of CCSD-MH. Only the results released by the best performing model 
was included in this study. 

4 . 5 .  P e r f o r m a n c e  i n d i c a t o r s  

The mean squared error (MSE) and coefficient of determination (R2) between the 
observed and predicted porosity belong to training and testing data are the utmost 
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common indicators to offer a quantitative description of the goodness of the model 
predicted. They are given as  

  2
1

1 N
oi pi

i
MSE

N 
   , (3) 
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where oi  and pi  are the i-th measured and predicted porosity values, respectively, 

o  and p  the respective mean values. MSE measures the average of the squares of the 
errors, i.e. the residual errors, which helps scientists to understand and interpret the 
difference between the observed value and estimated values. We should keep in mind that 
this indicator measures how near a fit line is to data points. The smaller the MSE, the 
nearer the fit is to the data points. R2 is a statistical index that expresses the quality of fit 
estimates of the regression equation and also the intensity of the linear relationship. It 
helps to have a general idea of the model fit. Its value varies between 0 and 1, and if the 
R2 value is close to 1 it is sufficient to say that the fit is good. 

5. ARTIFICIAL NEURAL NETWORKS APPROACH 

An ANN is a system of programs and information structures that mimics the operation 
of the human brain; it involves a large number of processors (neurons) operating in 
parallel to solve a specific problem (Baddari et al., 2009). Each unit (neuron) takes many 
input signals, then, based on an interior weighting organization, produces a single output 
signal that is typically sent as an input to another neuron. The units are interconnected and 
organized into different layers. 

ANNs are computational modeling tools that have been widely utilized in different 
areas of geophysics to model, analyze and solve complex problems (see van der Baan and 
Jutten, 2000; Poulton, 2002). ANNs applications in logging data analysis can be classified 
according to two major features; 1) by the type of problem they can resolve (either 
classification or prediction) and 2) by the type of training used (supervised or 
unsupervised). The approach taken in this paper is supervised training for prediction. 
Supervised learning i.e. guided learning by "teacher"; needs training data which consists 
of input vectors and a target vector connected with each input vector. The advantage of 
supervised training is that the output can be interpreted based on the training values. 

This study has developed and optimized two neural network approaches for porosity 
predictive model. They are feed-forward backpropagation (FFBP) neural network and 
radial basis function neural network (RBF). ANNs such as FFBP and RBF have been 
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proved to be universal function approximators (Park and Sandberg, 1993; Benoudjit and 
Verleysen, 2003). 

5 . 1 .  F e e d - f o r w a r d  b a c k p r o p a g a t i o n  ( F F B P )  n e u r a l  n e t w o r k  

FFBP is the most common neural network, with the utmost application in geophysics 
among all other types of neural networks. This is due to their simple structure design, 
robust capability, and availability of a large number of training algorithms. This method 
also goes by several other names, such as backpropagation neural network (BPNN) and 
multi-layer perceptron (MLN). A FFBP consists of a layer of input units (neurons), one or 
more layers of hidden units, and one layer of output units. Characteristically, the layers 
are entirely interconnected. Fig. 2 shows a FFBP with only one hidden layer. 

Choice of the number of hidden layers, hidden neuron and type of transfer function 
plays an important role in model constructions (White, 1992). Based on literature on 
FFBP, in majority problems, only one hidden layer is sufficient. Hornik et al. (1989) 
proved that FFBP with one hidden layer is enough to approximate any continuous 
function. Therefore, one hidden layer was employed in the current research. Besides, 
transfer functions for the hidden nodes are needed to introduce nonlinearity into the 
network. In this study, the hyperbolic tangent was selected as activation function of the 
hidden neurons while a linear activation function was used in the output neurons. The 
general form of the hyperbolic tangent is given as 

  
e e

e e

S S

S S
f S









, (5) 

where S is the sum of the weighted inputs. Further, the optimal number in hidden layer 
was selected by experimental trial based on the smallest mean squared error (MSE.) 

 
Fig. 2. Scheme of a feed-forward backpropagation neural network with only one hidden layer.  
i - input neurons, h - hidden neurons, o - output neurons. 
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The objective of training the FFBP is to find optimal connection weights (w*) in such 
a manner that the calculated outputs value for each example matches the desired outputs 
value. This is typically a nonlinear optimization problem, where w* is given as 

  arg minw E  w , (6) 

where w is weight matrix and  E w  is an objective function on w, which is to be 

minimized. The  E w  is evaluated at any point of w as follows: 

    p
p

E E w w , (7) 

where p is the number of examples in the training set and  pE w  is the output error for 
each example p and is defined as 

     21
2p pj pj

j
E d y w w , (8) 

where  pjy w  and dpj are the calculated and desired network outputs of the j-th output 
neuron for p-th example, respectively. Substituting Eq. (8) into Eq. (7) we get 

     21
2 pj pj

p j
E d y  w w . (9) 

For each learning (training) process, the network calculated output value is compared 
to the desired output value. If there is a difference between the calculated and desired 
output network, the synaptic weights which contribute to generate a significant error will 
be changed more significantly than the weight that led to a marginal error. The adaptation 
of the weights begins at the output neurons and then continues towards the input data. 
There are many algorithms available to perform this weight selection and adjustment (see 
Bishop, 1995). 

In our study, Levenberg-Marquardt algorithm (LMA, Levenberg, 1944) was chosen to 
train the neural network, because LMA is considered as one of the most efficient training 
algorithms. The study of Hagan and Menhaj (1994) proved that LMA is faster and has 
more stable convergence. LMA is a Hessian based algorithm for nonlinear least squares 
method. Hessian based algorithms are utilized to allow ANNs to learn more suitable 
features of a complex mapping (Isa et al., 2010). The LMA for updating weights, w, can 
be presented as (Reynaldi et al., 2012) 

   1T T
1k k k k k k


    ew w J J I J , (10) 

where wk is the current weight, wk+1 is the next weight, J is the Jacobian matrix, which 
contains first derivatives of the network errors with respect to the weights; e is a vector of 
network errors; I is identity matrix and parameter  is a scaler whose value is always 
positive. This parameter depends on evaluation of the sum of squared errors. The LMA 
starts the minimization process with a large value of , thus approximating a gradient 
descent algorithm. As the algorithm approaches a solution,  decreases. When the value 
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of  is very small (nearly zero), LMA is equal to the Gauss-Newton algorithm, where 
a search direction is obtained at each iteration. The search direction is the solution to the 
linear least squares problem. 

5 . 2 .  R a d i a l  b a s i s  f u n c t i o n  ( R B F )  n e u r a l  n e t w o r k   

RBF is a type of ANN which has a feed-forward structure. It consists of an input layer, 
a single hidden layer and an output layer. Each layer is completely linked with the 
following one (Fig. 3). Here, the connections between the input and the hidden layers are 
unweighted. The inputs thus reach the hidden layer nodes (units) unchanged. Only the 
connections between the hidden layer and the output layer are weighted, leading to 
a much faster training rate. The main differences between FFBP and RBF networks are 
that in the RBF the connections between the input and hidden layer are unweighted and 
the activation functions on the hidden layer neuron are radially symmetric. 

The response characteristics j  of the hidden units j are given by (Celikoglu, 2006) 

 
2

j
j j

j
 



 
 
 
 

x z
. (11) 

Each hidden unit output is obtained by computing the closeness of the input to an 
n-dimensional parameter vector zj associated with the center of the j-th hidden unit, where 

nRx  is the input vector and j the width coefficient for hidden unit j, which represents 

a measure of the data spread. jx z  is a norm of jx z , which represents the distance 

 
Fig. 3. Scheme of a radial basis function neural network with only one hidden layer. i - input 
neurons, h - hidden neurons, k - output neuron, w - synaptic weights. 
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between the input vector x and zj. In this study the Euclidean norm is used. j  is 
a radially symmetric function, which achieves the unique maximum at the point of zj. 

With the increase of jx z , j  rapidly attenuates to zero. 

In an RBF, the output neurons only contain the identity as transfer function and one 
weighted sum as propagation function. Then the network output for nRx  and MR 
can be expressed formally as (Celikoglu, 2006): 

    
1

ˆ , , , , ,
M

k j j
k

y   


 x z w w x z , (12) 

where  , ,j j x z  is the j-th function with center n
j Rz , width j , and MRw  is 

the vector of linear output weights. 
Although the choice of the basis function is not crucial to the performance of the 

network (Chen et al., 1991), the most common is the Gaussian function. In this study the 
Gaussian function was employed as function basis for the hidden units. 

The training of RBF was based on using a hybrid procedure proposed by Moody and 
Darken (1989) consisting of both unsupervised and supervised learning methods. Training 
of the hidden layer involves the calculation of the radial basis functions by identifying 
suitable jz  and j  for each neuron. These parameters are dependent only on the inputs 
and are independent of the outputs, making this section of the learning process an 
unsupervised one. In this light, the radial basis neuron centers jz  were determined using 
k-means clustering. This algorithm find sets a k neuron centers which represent a local 
minimum of the total squared Euclidean distances between the training vectors and the 
neuron centers. 

The next stage of the unsupervised training process concerned the neuron widths j , 
which are determined using a P nearest-neighbor heuristics. This technique varies the 
widths to achieve a certain amount of response overlap between each neuron and its P 
nearest neighbors. In supervised learning, the output layer was trained by gradient descent 
learning rule in which the weights are updated in proportion to the difference between the 
network output and the target output. 

6. RESULTS AND DISCUSSION 

In order to investigate input parameters which are suitable for the ANNs models, an 
analysis was conducted using Pearson correlation. Table 3 highlights the relationship 
between geophysical logs and measured porosity. As shown in Table 3, Pearson 
correlation analysis assumes that the relationships existing between RSFL, DEN, AC logs 
and measured porosity respectively are statistically significant. However, it 
underestimates the strength of these relationships. This fact is reflected by existence of 
nonlinear relationship between these variables. In line with this, we supposed that there 
must exist a relationship between well logs (RSFL, DEN and AC) and measured porosity. 
Therefore in this study RSFL, DEN, AC were selected as inputs parameters of the ANNs 
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The next step was to find an approximation of the relationship between porosity () 
and RSFL, DEN, AC:  , ,f RSFL DEN AC   by using ANNs which include FFBP and 
RBF. We supposed that, the shape of the function f appears to be nonlinear. Accordingly, 
ANNs are highly nonlinear, hence having mapping abilities to approximate f without a 
priori knowledge. 

The inputs parameters (RSFL, DEN and AC) and output (measured porosity) have been 
scaled to the interval [0, 1]. The FFBP used here consists of three inputs, one hidden layer 
using the hyperbolic tangent as activation function and one output layer using linear 
activation function. While RBF consists of three inputs, one hidden layer using Gaussian 
function as activation function and one output layer using linear activation function. 

In order to determine the optimal network structure to predict porosity data in the 
examined CCSD-MH, resulting from the procedure described in the previous section, 
several networks were trained and tested. After some trials, it was found that the optimal 
network for FFBP was one hidden layer of 10 units. While the optimal RBF was one 
hidden layer of 15 radial basis units. 

Figure 4 clearly depict the closeness of fit of these two schemes learning, respectively, 
to the observed porosity from training data. The findings in Table 4 additionally confirm 
the quality of the learning performances, since both FFBP and RBF scheme show high R2 
values. Considering again the findings in Table 4, RBF scheme exhibits higher R2 value 
and lower MSE value than FFBP scheme, indicating that satisfactory training was 
achieved by the RBF scheme. Therefore, in this study, RBF scheme appears to perform 
slightly better than FFBP scheme, which obviously indicates that the RBF has learning 
power. 

After end of the training phase, the testing phase took place. The plot of the FFBP and 
RBF schemes from testing data are depicted in Fig. 5. The statistical assessment criteria 
achieved by the network using testing data (MSE and R2) are presented in Table 5. As can 
be deduced from Fig. 5, both FFBP and RBF scheme closely predict observed porosity 
and appear to follow observed porosity as well indicating that these networks were well-
developed. The result in Table 5 exhibits the better prediction ability of the RBF model 
than FFBP model, as, RBF shows lower MSE value and higher R2 value; while FFBP 
highlights higher MSE value and lower R2 value. A high R2 value indicates that a majority 
of the variability in the porosity could be explained by the three geophysical well logs 
(RSFL, DEN and AC). This means that RBF demonstrates close relationships between 
porosity and the three geophysical logs. 

Table 3. Pearson correlation coefficient r of core measured porosity versus geophysical well logs 
data using all data. 

 r r Probability (p) Level of Significance 
Measured porosity vs RSFL 0.385* 0.000 0.01 
Measured porosity vs AC 0.200* 0.000 0.01 
Measured porosity vs DEN 0.220* 0.000 0.01 
Measured porosity vs CNL 0.033 0.554 0.01 

* Correlation is statistically significant at the 0.01 level (2 tailed). 
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Though not included here, training and testing using FFBP and RBF were carried out 
to explore all possible combinations of inputs. The results showed that the prediction 
became more inaccurate when CNL was added to the actual panel of input parameters; 
possibly because CNL is not a good indicator of porosity prediction. As can be seen in 
Table 3, the probability of correlation coefficient between measured porosity and CNL 
(0.554) is higher than the level of significance (0.01). The hypothesis of linearity is not 
supported and the nonexistence of relationship is not caused by nonlinearity. This is not 
a surprising effect, it has been mentioned by Bartetzko et al. (2005) that CNL cannot be 
used as a porosity indicator in crystalline rocks, providing porosity values that are greatly 

 
Fig. 4. Fit of the feed-forward backpropagation (FFBP) neural network and radial basis function 
(RBF) neural network learning schemes with observations based on the training data. 

Table 4. Statistical performance of the feed-forward backpropagation neural network and radial 
basis function neural network models using the training data. MSE - mean squared error,  
R2 - coefficient of determination. 

Model MSE R2 

FFBP 0.011 0.968 
RBF  0.009 0.979 
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higher than the porosity of the rocks. In this case, it was impossible to build up 
a performance model that includes CNL. 

Based on any modeling approach, it is a good idea to assess the model’s power. 
Statistical diagnostics allow us to detect patterns that are poorly predicted by ANNs. 
Keeping this in mind, careful examination of the distribution of relative residuals of 
porosity was done to demonstrate that if results from the actual ANN schemes were 
acquired purely by chance i.e. noise, or if the ANN schemes were learning from the three 
geophysical logs. 

Relative residuals are defined as: 

 oi pii
r

oi
R

 



, (13) 

where oi  is the measured and pi  the predicted porosity, respectively. 

 
Fig. 5. The same as in Fig. 4, but for the test data. 

Table 5. The same as in Table 4, but for the test data. 

Model MSE R2 

FFBP 0.006 0.968 
RBF  0.003 0.978 
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The distribution of relative residuals of a good model is normally distributed. Fig. 6 
depicts an approximately normal distribution of relative residuals made by the FFBP and 
RBF models for porosity estimation. We have applied a normal density function on the 
histograms. Based on this analysis, we have demonstrated that the sonic, density and 
resistivity, combined into an ANN provide accurate porosity estimates in CCSD-MH. It 
can be obviously concluded in this study, that the ANNs have predicted porosity from the 
logging tools responses i.e. from the three geophysical logs. 

After successfully testing on data not covered by the training (testing data), the two 
ANN models were evaluated on all data. Fig. 7 illustrates the comparison between the 
networks and target value from all data. Referring to Fig. 7 it appears that in general there 
is a satisfactory fit between the porosity predicted by ANN models and the corresponding 
observed porosity. These results can be explained by the fact that by matching 
geophysical well logs with core porosity, ANNs have judiciously established a robust 
physical relationship between the input (geophysical well logs) and output (porosity). 
Therefore, it can be said that, ANNs are not strongly affected by rock composition 
change; since they have predicted porosity satisfactorily, despite the complex features and 
nonlinearity in the crystalline crust, such as CCSD-MH. 

Considering the results in Table 6, it appears that RBF fits much better the porosity 
than the FFBP. Both RBF and FFBP are three-layered networks; the difference between 
them exists in the handling of nonlinearities in the hidden units. Tangent hyperbolic 
function was used in FFBP while function Gaussian function was used in RBF. It is 
shown in Table 6, that the model for better capturing non-linearities was the RBF, since it 
has archived the best results of each performance indicator (MSE and R2). Thus, RBF was 
able to predict porosity along CCSD-MH more successfully. 

 
Fig. 6. Distribution of relative residuals (Eq. (13)) obtained by the feed-forward backpropagation 
(FFBP) neural network and radial basis function (RBF) neural network learning schemes for 
porosity estimation using the test data. 
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In order to compare the current technique (ANN) to the regression technique, we also 
performed several regression models (linear and nonlinear transformation) to predict 
porosity from RSFL, DEN and AC logs. Only we selected models which gave better 
performance in terms of R2 and MSE among several models. Therefore, we retained four 
models based: a multi-linear regression (MLR), a interaction multi-linear regression 
(IMLR), a polynomial regression (POR) and a piecewise regression (PIR) represented by 
Eqs (14)(17), respectively: 
 53.137 0.053 0.691 19 10y AC DEN RSFL      , (14) 

 
Fig. 7. Comparison between network output and observations for the feed-forward 
backpropagation (FFBP) neural network and radial basis function (RBF) neural network using all 
data. 

Table 6. The statistical performance of artificial neural networks and regression models using all 
data. MSE - mean squared error, R - Pearson correlation coefficient, FFBP - feed-forward 
backpropagation neural network, RBF - radial basis function neural network, PIR - piecewise 
regression, POR - polynomial regression, IMLR - interaction multi-linear regression, MLR - multi-
linear regression. 

Model MSE R2 R 

FFBP 0.015 0.969 0.984 
RBF 0.010 0.979 0.989 
PIR 0.086 0.831 0.911 
POR 0.359 0.293 0.541 

IMLR 0.366 0.281 0.530 
MLR 0.378 0.256 0.506 
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where y is the predicted (expected) value, AC, DEN and RSFL are distinct independent 
variables (well logs), and the break point is 1.90. Comprehensible theory of the regression 
techniques can be found Anderson (1984); Liu et al. (1997); Seber and Wild (1989); Aiken 
and West (1991); Muggeo (2003); Montgomery et al. (2006). 

As shown in Table 6, a piecewise regression (PIR) model archived the highest 
performance among the regression models. Since it exhibits the highest R2 and lowest 
MSE values. Based on these results, we can say that the MLR, IMLR and PR models do 
not handle the predicting of porosity in optimal way. On the other hand, in comparing 
regression techniques to ANNs, Table 6 depicts that the ANNs models show better 
performance than the regression models whether AC, DEN and RSFL logs are used as 
inputs. The proposed ANNs show higher R2 and lower MSE value. Whereas lower R2 and 
higher MSE value are achieved applying regression techniques. Additionally, Fig. 8 
clearly shows the closeness of fit of ANN models to the observed porosity as compared to 
the best regression model (PIR model). From these results, we conclude that ANN models 
were more appropriate for capturing the non-linearity of the relationship between porosity 
and well logs in the context of CCSD-MH data. 

In comparison to earlier published papers, the correlation coefficient of porosity by 
Pechnig et al. (1997) using linear regression was 0.75 and by Zimmermann et al. (1992) 
using multiple regression were 0.80 and 0.88. While in this study, as shown in Table 6, 
the results obtained from ANNs models are greater; and the correlation of porosity by 
FFBP and RBF were 0.984 and 0.989 respectively. These higher values indicates that 
ANN approach is more powerful and accurate than regression approaches. However, it is 
important to note that ANN is black box model which do not allow interpretation between 
input and output relationship (Dreiseitl and Ohno-Machado, 2002). In the present context, 
interpretation of functional relationship between porosity and geophysical logs is 
impossible. In contrast the regression analysis helps in the interpretation of this 
relationship. But, computer programs that use a statistical method cannot learn or become 
smarter (Lopez et al., 2005) to discover input-output relationship as compared to the 
intelligence technique used in this study. 

Prediction porosity in the framework of research drillings in continental crust, 
crystalline rock is not an easy task, but in this paper an innovative challenge was made in 
the modelling based on two ANNs which includes FFBP and RBF. The objective of 
prediction was simply to demonstrate that matching geophysical well logs and core data 
could develop a model and enhance accuracy in predicting the porosity of the crystalline 
crust. 
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7. CONCLUSIONS 

This study sought to explore and address concerns encountered by geophysicists in the 
framework of research drillings in continental crust by considering the application of 
artificial neural networks (ANN) in analyzing the Chinese Continental Scientific Drilling 
Main Hole (CCSD-MH) logging data. To this end, feed-forward backpropagation neural 
network (FFBP) and radial basis function network (RBF) models have been presented to 
predict the porosity of rock by four geophysical well logs (density, neutron porosity, sonic 
and resistivity). 

On the CCSD-MH data, the findings showed that, procedural differences in predicting 
of FFBP and FBNN are all talented to offer satisfactory prediction of porosity using sets 
of three geophysical well logs (density, sonic and resistivity). ANNs are therefore 
a talented technique for quick and efficient porosity predictions in framework of research 
drillings. 

In comparison to FFBP, the RBF exhibits superior stability and more accurate results; 
since it results in lower mean squared error (MSE) and higher coefficient of determination 
(R2). It can be suggested that RBF be used instead of FFBP in porosity modeling in the 
framework of research drillings in continental crust. 

Comparison of ANNs to regression technique showed that ANNs provide better 
performance with sets of three geophysical well logs (density, sonic and resistivity) than 
regression technique. 

The idea behind this study is not to remove the expertise and interpretive experience of 
a qualified geophysicist but to show how the task can be simplified and made more 
effective. In this way geophysicists are able to focus on the important information. 

This study will provide a better understanding of the modeling technique of ANN and 
their relevance in the analysis of CCSD-MH. Last, but not least, it will add a new 
dimension to the existing knowledge and will be useful to the geoscientist community. 

From our point of view, it is fair to say that no work ever covers all of the research that 
the researchers envisaged covering when they started the project. The same is true for this 
work. In utilizing neural networks, the whole available data set is generally randomly 

 
Fig. 8. Comparison of neural networks and piecewise regression methods in the porosity 
prediction. FFBP - feed-forward backpropagation neural network, PIR - piecewise regression, RBF - 
radial basis function neural network. 
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divided into training and testing sets. Training set is used to construct the model and 
testing set is used to evaluate how the model behave on unseen data. While this practice is 
implemented in many studies, any bias resulting to the inappropriate split of whole dataset 
may generate a negative impact on the performance of ANN (Van der Baan and Jutten, 
2000). In other perspective, the predicted value can be very different from the target value 
mainly when small sample sizes are concerned. Besides, most importantly, for training-
testing scheme, the hold-out sampling is commonly performed only once during ANN 
development (May et al., 2010). In this sense, the model generalization ability may not be 
guaranteed. For this reason, future directives in improving ANN generalization ability is 
a major significance. Based on this, we see the resampling techniques such as k-fold 
cross-validation, jackknife and bootstrap in which future work can done. They are 
essential tools to enhance a predictor performance. Resampling techniques are computer 
intensive techniques which imply repeatedly drawing samples from a dataset and refitting 
a model of interest on each sample to achieve additional information about the fitted 
model. This technique will give valuable understandings on the reliability of the ANNs 
with regard to sampling rotation. Book-length dealings on resampling methods can be 
found in Shao and Tu (1995) and Good (2006). Next, RBF model could be additional 
exploited for investigating of porosity in some other geologically complex zone of 
interest. Moreover, we are expected to see the application of new types of computational 
tool to CCSMH data. 
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