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Abstract
Collaboration networks are widely recognized as essential channels for accessing innova-
tion resources and facilitating creative activities by enabling the exchange of knowledge 
and information. However, there is little known about whether and how the similarities 
and dissimilarities between actors forming ties in a collaboration network can either stimu-
late or inhibit firms’ breakthrough innovation. This study explores the relationship between 
degree assortativity in collaboration networks and breakthrough innovation performance, 
considering the moderating role of knowledge network characteristics. Using a sample of 
80,129 semiconductor patents from the United States Patent and Trademark Office data-
base spanning the years 1975 to 2007, we constructed both the internal collaboration net-
work and the knowledge network of firms. To test our hypotheses, we employed a negative 
binomial regression model. Our findings demonstrate that firms with lower degree assorta-
tivity in their collaboration networks tend to exhibit higher levels of breakthrough innova-
tion performance compared to those with higher degree assortativity. Moreover, the num-
ber of direct ties in the knowledge network strengthens the negative relationship between 
collaboration network degree assortativity and breakthrough innovation. Conversely, the 
number of non-redundant ties in the knowledge network mitigates the negative relation-
ship between collaboration network degree assortativity and breakthrough innovation. This 
study provides practical guidance for firms aiming to enhance their innovation capabilities 
by simultaneously developing internal collaboration networks and knowledge networks.
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Introduction

Innovation activities are embedded in multilevel networks (Brennecke & Rank, 2017; Guan 
et al., 2015, 2017; Luo & Zhang, 2021), especially knowledge networks and collaboration 
networks (Guan & Liu, 2016; Wang et al., 2014). Both collaboration networks and knowl-
edge networks have a significant impact on innovation and jointly influencing innovation 
performance (Wang & Yang, 2019; Wang et al., 2020; Xu et al., 2017). Collaboration net-
works are recognized as an important channel for accessing innovation resources, provid-
ing the knowledge and information needed for creative activities (Fleming, 2001; Rodan 
& Galunic, 2004; Singh, 2005). Within an organization, researchers frequently engage in 
innovative activities that lead to the development of a collaboration network (Nerkar & 
Paruchuri, 2005). This network is decoupled from the firm’s knowledge network. Firm 
knowledge represents a collection of links between knowledge elements (Dibiaggio et al., 
2014). Knowledge networks are consisted of connections between the core domains of 
scientific and technical knowledge (Carnabuci & Bruggeman, 2009; Yayavaram & Ahuja, 
2008). In knowledge networks, nodes represent knowledge domains, and the ties between 
them capture past combinatorial relationships (Carnabuci & Bruggeman, 2009; Phelps 
et al., 2012). Previous research has indicated that certain structural characteristics of col-
laboration networks and knowledge networks are associated with exploratory and exploita-
tive innovations (Guan & Liu, 2016; Wang et al., 2014), the quantity and quality of inven-
tion outputs (Ahuja, 2000; Yan & Guan, 2018), and breakthrough innovation (Vestal & 
Danneels, 2022), such as structural holes (Guan & Liu, 2016; Wang et al., 2014), centrality 
(Dong & Yang, 2016; Wang et  al., 2014), and network cohesion (Wang & Yang, 2019; 
Wang et al., 2020). Consequently, recognizing the significant roles played by collaboration 
networks and knowledge networks in enhancing innovation performance at the firm level 
and driving economic development, scholars have called for additional studies to explore 
the diverse dimensions of these networks and their effects on innovation outcomes (Yan & 
Guan, 2018).

In their seminal study of the pharmaceutical industry, Khanna and Guler (2021) investi-
gated degree assortativity as a structural attribute that characterizes patterns of collabora-
tive relationships in a collaboration network. They discovered that higher degree assor-
tativity in the collaboration network, indicating a stronger tendency for similar nodes to 
connect with each other, is associated with increased innovation output but lower average 
novelty and impact. Degree assortativity measures the similarity in node degrees between 
connected nodes (Watts, 2004). In a collaboration network, a high degree assortative struc-
ture implies that inventors with similar degree centrality ranks tend to form connections, 
such as highly central members connecting with other highly central members. These net-
work characteristics influence access to knowledge and resource mobilization and are asso-
ciated with firm-level innovation outcomes (Khanna & Guler, 2021), which are also crucial 
for breakthrough innovation generation. A large number of studies have shown that break-
through innovation requires an extensive search for information (Fleming, 2001; Romer, 
1994; Schumpeter, 1939), the integration and recombination of different types of knowl-
edge or previously unrelated knowledge elements (Ahuja & Lampert, 2001). Therefore, our 
objective is to investigate the relationship between collaboration network degree assortativ-
ity and breakthrough innovations in firms.
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Moreover, this study emphasizes the importance of knowledge network structural attributes 
for organizational knowledge creation and the inclination towards generating new knowledge. 
A firm’s internal knowledge network is an important factor in the effective use of external 
knowledge resources. Intra-firm knowledge networks are critical for acquiring new knowl-
edge and generating useful and impactful new combinations. The structural characteristics of 
knowledge networks indicate the potential for combining existing knowledge elements with 
other knowledge elements within a firm’s technological domain as well as knowledge search 
tendencies (Guan & Liu, 2016; Yayavaram & Chen, 2015). Following Wang et al. (2014), we 
test the conceptual model using a dataset of patents from U.S. semiconductor firms. In this 
study, we focus on two specific organizational knowledge network characteristics, direct ties 
and non-redundant ties. The number of direct ties in a knowledge network represents the aver-
age level of direct connections that nodes possess (Guan & Liu, 2016). Another characteristic 
is the number of non-redundant ties in the knowledge network, which describes the extent 
to which focal organization’s knowledge elements are interconnected, i.e., the degree of non-
redundancy in the relationships. Following Guan and Liu (2016), we measure it using network 
efficiency, the ratio of non-redundant connections to the total connections in the ego network, 
to describe the structural hole position of knowledge elements. Since the degree of assortativ-
ity of the collaboration network affects the firm’s acquisition of new knowledge as well as 
the generation of useful and impactful knowledge combinations, the direct and non-redundant 
links in its knowledge network show motivation for new knowledge acquisition and learning. 
This is crucial for understanding the impact of the degree assortativity of a collaboration net-
work on a firm’s breakthrough innovation. Therefore, we argue that the number of direct ties 
and non-redundant ties in a firm’s knowledge network can moderate the influence of degree 
assortativity on breakthrough innovation.

Based on the studies of Ahuja et al. (2012) and Khanna and Guler (2021), this study com-
plements and enriches previous studies of multilevel networks for innovation and further 
extend the discussion on the relationship between the degree assortativity of a collaboration 
network and breakthrough innovation. The composition level of collaboration between similar 
individuals within a firm affects not only differences in the quantity, novelty, and impact of 
innovation (as in Khanna & Guler, 2021), but also differences between firms’ breakthrough 
innovation performance. This paper focuses on the question of how degree assortativity of 
a collaboration network influences a firm’s breakthrough innovation outcomes, especially 
how different knowledge bases and knowledge network structures affect this relationship. We 
argued that this network structure influences breakthroughs, as degree assortativity impacts 
the transfer and acquisition of new knowledge, as well as the creation of useful and influ-
ential novel combinations, thereby causing systematic differences in breakthrough outcomes. 
And the number of direct ties in a knowledge network and non-redundancy among ties in a 
knowledge network can affect a firm’s motivation to explore new knowledge (Guan & Liu, 
2016; Wang et al., 2014), which may moderate the impact of degree assortativity within the 
collaboration network on breakthroughs. This study further confirms that innovation outcomes 
of organizations are influenced by multilevel networks. And in order to enhance breakthrough 
innovation performance, organizations should also consider their internal knowledge base 
as well as knowledge network structure when designing collaborative teams to achieve their 
innovation strategy goals.
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Theoretical background and hypotheses

Collaboration networks, knowledge networks, and innovation

Networks serve as the foundation for systematic innovation (Lin & Li, 2006). Innovation 
activities within firms are embedded in multiple networks (Brennecke & Rank, 2017; Guan 
et al., 2015, 2017; Luo & Zhang, 2021), especially collaboration networks and knowledge 
networks (Guan & Liu, 2016; Wang et  al., 2014). According to social network theory, 
internal collaboration within organizations exhibits a network structure, with researchers 
as nodes and their collaborations forming the connections. Distinct from collaboration 
networks, knowledge networks consist of connections between scientific and technologi-
cal knowledge elements (Carnabuci & Bruggeman, 2009; Yayavaram & Ahuja, 2008). 
The structural characteristics of collaboration networks and knowledge networks signifi-
cantly influence innovation outcomes, jointly affecting innovation performance (Wang & 
Yang, 2019; Wang et al., 2020; Xu et al., 2019). In the modern business environment, a 
firm’s competitiveness increasingly relies on its knowledge resources. The firm’s innova-
tion capability depends on how it transforms knowledge resources into internal knowledge 
assets within its internal networks, thereby driving innovation development (Carnabuci & 
Operti, 2013; Funk, 2014; Grigoriou & Rothaermel, 2017; Zahra & George, 2002).

Previous studies considered collaboration networks and knowledge networks are not 
isomorphic, but decoupled (Guan & Liu, 2016; Wang et al., 2014), as depicted in Fig. 1. 
The top section illustrates a partial view of an organization’s internal collaboration net-
work, where nodes represent researchers, and links denote past collaborations in inven-
tions. The example covers 12 researchers as nodes, with an average degree centrality of 
4.333 for researchers within the internal collaboration network. Additionally, the average 
network efficiency of researchers in the internal collaboration network is 0.598. On the 
other hand, knowledge networks differ from social networks as they consist of connections 

Fig. 1  An example for the decoupling of collaboration and knowledge networks (referring to Guan & Liu, 
2016; Wang et al., 2014)
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between elements of scientific and technical knowledge (Carnabuci & Bruggeman, 2009; 
Yayavaram & Ahuja, 2008). The bottom section presents the firm’s knowledge network, 
where nodes represent knowledge elements, and links represent connections between two 
knowledge elements. The average degree centrality of knowledge elements in the internal 
knowledge network is 9.789. Moreover, the average network efficiency of knowledge ele-
ments in the internal knowledge network is 0.455.

Degree assortativity and breakthrough innovation

Degree assortativity in collaboration networks

Degree assortativity, or degree correlation, is defined as the Pearson correlation of the 
degree of connected network members, and measures the extent of connectivity and clus-
tering between nodes with similar numbers of ties of a network (Ahuja et al., 2012; Muller 
& Peres, 2019; Newman, 2003). In social networks, the structure shows assortative match-
ing or assortative mixing, if actors prefer to connect with those who are similar or dissimi-
lar to themselves (Newman, 2002, 2003). In a collaboration network, the high degree assor-
tative structure implies inventors connect with similar degree centrality ranks members, 
such as highly central members connect with other highly central members. Moreover, a 
collaboration network with similar levels of degree centrality, average degree, and density 
may have different levels of degree assortativity. Figure 2a, b are respectively collabora-
tion networks of Microsemi Corporation and Sirenza Microdevices Inc. in 2000–2004, and 

Fig. 2  a are collaboration networks of Microsemi Corporation and Sirenza Microdevices Inc. (2000–2004); 
b are collaboration networks of Centillium Communications Inc. and Semtech Corporation (1999–2003)
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collaboration networks of Centillium Communications Inc. and Semtech Corporation in 
1999–2003. As shown in Fig. 2, two networks have similar typical characteristics in col-
laboration networks, but the levels of degree assortativity are different. Therefore, degree 
assortativity of a firm’s collaboration network probably relates to their benefits and con-
straints on breakthrough innovation outcomes.

Breakthrough innovation is a subset of innovation that serves as the foundation for 
numerous technological advancements, enabling firms to create new value and explore new 
markets (Ahuja & Lampert, 2001; Cho & Kim, 2017; Rosenberg, 1994). In "The Structure 
of Scientific Revolutions" (1962), Kuhn proposed that new ideas are initially disregarded 
but gradually accumulate and trigger a paradigm shift, leading to the replacement of old 
viewpoints with new perspectives. The theory of scientific change posits that whether 
focusing on large-scale and rare revolutionary changes or more frequent and gradual evo-
lutionary changes, they revolve around two key concepts: novelty and significance. Highly 
assortative network structures, characterized by collaborations between inventors with sim-
ilar degrees, there exists a potential drawback.

In highly assortative network, nodes with similar degrees are connected to each other. 
High assortativity may increase network redundancy, deepening the homogeneity of 
knowledge among highly connected nodes, much like clustering (Muller & Peres, 2019). 
Within this structure, inventors within highly connected clusters of similarity possess abun-
dant information and resource flow, yet information flow between clusters is limited (Fang 
et al., 2010). Establishing trust and knowledge sharing among members of different lev-
els in highly assortative networks might pose challenges. The clustered network structure 
could reduce openness to information and diverse approaches, leading to collective blind-
ness at times, resulting in catastrophic consequences (Nahapiet & Ghoshal, 1998). Higher 
knowledge similarity among members may lead to entrenched thinking patterns, favoring 
similar methods and perspectives when addressing problems and seeking opportunities 
(Mangelsdorf, 2018). This homogeneity might inhibit breakthrough innovation output, as 
breakthrough innovations often require diversity in backgrounds and perspectives (Glover 
& Kim, 2021). Overreliance on existing knowledge domains may lead organizations into a 
’maturity trap’, reducing their acceptance and exploration of new knowledge, while these 
knowledge domains gradually become outdated and lose competitiveness, thereby depriv-
ing firms of breakthrough innovation opportunities.

In intra-firm collaboration networks, assortative mixing frequently results in the emer-
gence of core-periphery structures. In such configurations, the core is composed of densely 
interconnected central inventors, whereas inventors with lower centrality make up the 
periphery (Ahuja et al., 2012; Borgatti & Everett, 2000). Core/periphery structures might 
exhibit highly uneven and hierarchical link distributions (Goyal et al., 2006). However, Xu 
et al. (2022) found that flat structures are more effective in driving innovation. In contrast 
to flat, egalitarian teams, highly hierarchical teams generate less novelty and tend to iterate 
on existing ideas more frequently. While these hierarchical teams may enhance produc-
tivity for individuals at the top, they often decrease productivity for those at the bottom. 
Moreover, they may receive more short-term citations but experience a decline in long-
term influence or impact.

Conversely, networks with lower assortativity might provide opportunities for new 
knowledge combinations through information flow between central and peripheral clusters 
(Ahuja & Lampert, 2001; Hargadon & Sutton, 1997). It fosters more knowledge transfer 
among members. Comparatively, peripheral roles are more likely to offer fresh perspectives 
to the system. Being peripheral enables exploration of ideas and information not widely 
shared yet, while the core effectively organizes support around these ideas and information 
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(Cattani & Ferriani, 2008). Collaboration among members with mixed hierarchies pro-
motes more new knowledge transmission, offering organizational members more exposure 
to new knowledge, increasing the likelihood of generating novel knowledge combinations. 
Additionally, members with higher degree centrality often possess a conventional knowl-
edge base and higher influence. Collaboration among members with mixed hierarchies 
provides opportunities to combine existing and new knowledge, not only enhancing the 
novelty of innovation but especially fostering useful and impactful novelty. Not all forms 
of novelty are conducive to breakthrough innovation (Leahey, 2023; Hofstra et al., 2020), 
where useful and impactful novelty is more conducive to breakthrough innovation. There-
fore, we propose the following baseline hypothesis:

Baseline hypothesis Degree assortativity of a firm’s collaboration network is negatively 
associated with the likelihood of generating breakthrough innovation.

Knowledge and knowledge networks

Innovation is considered a knowledge-intensive activity (Kanter, 1988), and knowledge 
plays a significant role as an organizational attribute in facilitating innovation (Dougherty, 
1992). Many studies suggest that the knowledge base is essentially comprised of knowl-
edge elements (Carnabuci & Bruggeman, 2009; Wang et al., 2014; Yayavaram & Ahuja, 
2008). Specifically, the knowledge base can be broken down into numerous independent 
cores, each belonging to different scientific and technological fields, which are defined as 
knowledge elements (Carnabuci & Bruggeman, 2009; Wang et  al., 2014; Yayavaram & 
Ahuja, 2008). From the perspective of knowledge stock, previous research has covered the 
breadth/diversity of knowledge (Zhou & Li, 2012; Tortoriello et al., 2015; Moreira et al., 
2018), the knowledge recombinant process (Gruber et  al., 2013; Moaniba et  al., 2018; 
Schillebeeckx et al., 2021), and knowledge distance (Capaldo et al., 2017; Rosenkopf & 
Nerkar, 2001; Stuart & Podolny, 1996). In fact, what organizations and individuals possess 
is not just an accumulation of knowledge elements but rather a collection of connections 
between knowledge elements (Dibiaggio et  al., 2014). In which knowledge elements are 
regarded as nodes, and the combination of two knowledge elements in previous patents is 
regarded as ties, forming the knowledge network of an enterprise (Carnabuci & Brugge-
man, 2009; Guan & Liu, 2016; Wang et al., 2014). The structural features of knowledge 
networks indicate the extent of opportunities for combinations within the technological 
domain of the enterprise and the potential combinations with other knowledge elements 
(Yayavaram & Chen, 2015). Figure 3 illustrates the knowledge networks of Vitesse Semi-
conductor Corporation (up to 2002) and Kopin Corporation (up to 2002).

The moderating role of direct ties in knowledge network

Previous research considered that the specific characteristics of intra-firm knowledge net-
works have an impact on the likelihood of firms generating new knowledge (Grigoriou & 
Rothaermel, 2017; Guan & Liu, 2016; Wang et al., 2014; Yan & Guan, 2018; Zakaryan, 
2023). Direct ties in knowledge networks represent the topological relationships between 
knowledge domains (Zhao et al., 2019). The number of direct ties between knowledge ele-
ments in a knowledge network is the count of other knowledge elements with which a par-
ticular knowledge element has been combined in previous technological inventions (Wang 
et  al., 2014). This indicator not only reflects the degree of involvement of knowledge 
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elements in past technological innovations but also indicates the potential for forming new 
knowledge combinations in innovation activities. Wang et al. (2014) argued that organiza-
tions are likely to search for subject-related knowledge elements through their own existing 
knowledge elements (Katila & Ahuja, 2002), because knowledge elements possess a natu-
ral degree of association with other knowledge elements (Quatraro, 2010). The educational 
psychologist Ausubel (1968) states that the construction of new knowledge needs to be 
based on existing knowledge. The direct linkages of a firm’s knowledge network play a 
vital role in accepting new knowledge, making connections with existing knowledge, and 
realizing the potential of the knowledge combination.

In assortative networks, nodes with higher similarity are more likely to connect with 
each other. The similarity among collaborators may lead to higher levels of trust, com-
mon cognitive frameworks, and motivation to share knowledge. However, this structural 
or status-based homophily also inhibits knowledge sharing among collaborators with sta-
tus asymmetry, as differences in status may affect their willingness to share (Bunderson & 
Reagans, 2011; Tzabbar & Vestal, 2015). Additionally, the similarity among collaborators 
can result in them possessing more consensual knowledge, thereby reducing their ability to 
explore diverse knowledge. In networks with higher degree assortativity, it is easier to form 
a core-periphery structure, where collaborators with higher centrality are connected to each 
other, while those with lower centrality are connected at the periphery. However, the con-
nections between these two types of clusters are very limited, leading to fragmented knowl-
edge formation within the organization, where knowledge sharing occurs mainly within 
clusters and is limited between clusters (Fang et al., 2010).

When direct ties of knowledge networks increase, the negative effect between collabora-
tion network degree assortativity and breakthrough innovation will be enhanced. Although 
leveraging familiar knowledge elements for knowledge combinations can enhance inven-
tion efficiency by establishing conventions, standards, and modules (Levitt & March, 
1988), it may also heighten dependence on previous work, leading to the ’knowledge echo 
chamber’ predicament. The allocation of enterprise resources tends to lean towards this 

Fig. 3  a Knowledge network of Vitesse Semiconductor Corporation (up to 2002) with mean direct ties (1.9) 
and non-redundancy among ties (0.93); b knowledge network of Kopin Corporation (up to 2002) with mean 
direct ties (7.27) and non-redundancy among ties (0.51)
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relevant theme (Guan & Liu, 2016), further reinforcing the focus of members on devel-
oping existing knowledge. As existing knowledge becomes reinforced, the likelihood of 
integrating external new ideas and perspectives decreases. Consequently, the production 
of innovative combinations within assortative collaboration networks diminishes. In such 
circumstances, obtaining diverse knowledge sources might become challenging, thereby 
increasing the homogeneity of knowledge within the organization. Similar groups are more 
inclined to establish cooperation, potentially resulting in unequal hierarchical structures 
(Rubí-Barceló, 2012). This further reinforce the negative impact of assortativity in collabo-
ration networks on breakthrough innovation.

Therefore, we put forward the hypotheses as follows:

Hypothesis 1 The direct ties of a firm’s knowledge elements in a knowledge network rein-
force the negative effect between the degree assortativity of a firm’s collaboration network 
and the likelihood of generating breakthrough innovation.

The moderating role of non‑redundancy among ties in knowledge networks

Non-redundant ties ae also an important dimension of knowledge network configuration. 
When a knowledge element has been combined with other knowledge elements in previ-
ous inventions, and these elements themselves are unrelated to each other (Carnabuci & 
Bruggeman, 2009; Wang et al., 2014), the egocentric network of that knowledge element 
becomes a non-redundant or sparse structure. An organization that possesses numerous 
non-redundant knowledge network structures faces minimal constraints when exploring 
new ideas because it is less susceptible to knowledge inertia, which is a common phenom-
enon in redundant network structures (Cheon et al., 2015).

According to Guan and Liu (2016), organizations exhibit a preference for local search 
within the ego-networks of their knowledge elements. However, in redundant knowledge 
network structures, organizations are more likely to be influenced by inertial tendencies 
and inclined towards exploit existing knowledge. Considering the costs associated with 
searching and learning new ideas, organizations locked within redundant knowledge struc-
tures may be reluctant to invest time and financial resources in exploring new knowledge 
structures. A redundant knowledge network structure enhances an organization’s tendency 
to focus on and utilize existing knowledge elements and hinders the exploration of new 
knowledge and ideas. In redundant knowledge structures, organizations may prefer to focus 
on the utilization of existing knowledge elements rather than exploring new ideas. Con-
versely, in knowledge network structures with non-redundant connections, enterprises face 
fewer limitations when exploring new knowledge, as such structures exhibit less knowl-
edge inertia (Cheon et al., 2015). On one hand, this structure is more conducive to accept-
ing and acquiring new knowledge; on the other hand, having fewer redundant connections 
implies a greater potential for new combinations of existing knowledge within the network. 
For instance, if knowledge elements A and B, as well as A and C, have been combined pre-
viously, but there hasn’t been a combination between B and C, the combination of B and 
C represents a new combination of existing elements. Such knowledge combinations, built 
upon a conventional knowledge base, are more likely to generate useful novelty, thereby 
fostering breakthrough innovation. Therefore, having a higher level of non-redundant con-
nections in the knowledge network can mitigate the negative impact of degree assortativity 
in collaboration networks on breakthrough innovation.

Therefore, we put forward the hypotheses as follows:
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Hypothesis 2 Non-redundancy among ties of a firm’s knowledge elements in a knowledge 
network mitigates the negative effect between the degree assortativity of a firm’s collabora-
tion network and the likelihood of generating breakthrough innovation.

Figure 4 summarizes all the hypotheses of the study.

Methodology

Data collection and samples

Our focal sample consists of inventions made by semiconductor firms from 1975 to 2007. 
We investigated our hypotheses by examining semiconductor patents held by U.S. firms 
used with all other U.S. semiconductor firms that are available via COMPUSTAT (SIC 
code = 3674). Next, we compiled a list of 164 U.S. semiconductor firms, which have a 
COMPUSTAT record and at least granted one USPTO patent during the time period 
1975–2007. We obtained enterprise patent data from the database "DISCERN: Duke 
Innovation & SCientific Enterprises Research Network," linking patent data to Compustat 
firms. Our sample consisted of firms that filed patents during the observation period from 
1996 to 2007 and submitted at least one patent application within the 5 years preceding the 
focal year. After handling missing values, our primary sample spanned from 1975 to 2007, 
comprising 80,129 patents assigned to 124 firms.

We constructed firms’ collaboration networks and knowledge networks, using patents data 
of semiconductor firms. The collaboration network was based on co-application in patents for 
the t to t + 2 years prior to the observation period. We then filtered different firms’ patent data 
for the years t to t + 2. By matching this data with "The careers and co-authorship networks 
of U.S. patent-holders, since 1975" database, we obtained information about the inventors. 
For example, in patent US6829240B1, inventors 57,682,750,031 and 57,682,750,011 (data 
sourced from "The careers and co-authorship networks of U.S. patent-holders, since 1975", 
https:// doi. org/ 10. 7910/ DVN/ YJUNUN, Harvard Dataverse) are considered as two nodes in 
the collaboration network, establishing a collaborative relationship between them due to their 
joint involvement in the patent. Because this paper only studies the intra-firm collaboration 

Fig. 4  The conceptual model

https://doi.org/10.7910/DVN/YJUNUN
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network and innovation relationship, the patent data of inter-firm collaboration (of which there 
are 93 patents of inter-firm collaboration from 1975 to 2005) are excluded.

Then we constructed a knowledge network of knowledge elements based on the co-
application of four-digit CPC (Cooperative Patent Classification) codes in each patent 
before t-1 years (i.e., during 1975 to t-1 year). The knowledge network represents the net-
work expression of the knowledge possessed by a firm from its previous research activi-
ties and the combinations of this knowledge. In this network, the elements of knowledge 
serve as nodes, while the combinations of these knowledge elements serve as connections 
or edges between the nodes.

For instance, consider a patent such as US6175880, with a CPC classification code 
where the first four segments are G06F; G06F; Y02B; Y02D. In this case, the three knowl-
edge elements (G06F; Y02B; Y02D) would establish pairwise connections between each 
other within the knowledge network (refer to Wang et  al., 2014). Because patents need 
enough time to accumulate forward citations, our focal sample is limited to the 1996–2007 
periods, reducing the concern for right censoring.

Variables and measures

Dependent variable

Breakthrough innovation We defined breakthroughs as fundamental inventions that have 
a great impact on subsequent technological advances (Rosenberg, 1994). Breakthrough 
innovation is usually measured by the number of forward citations, that is, a higher number 
of citations indicates that the patent is a breakthrough innovation (Kaplan & Vakili, 2015; 
Trajtenberg, 1990; Vestal & Danneels, 2022). Following recent research (Ahuja & Lampert, 
2001; Vestal & Danneels, 2022), we identify breakthrough inventions based on the top 5% 
of future citations received (up to 2015) compared with patents (from 1996 to 2005) filed in 
the same year. Initially, for each year (t, t + 1, and t + 2), we identify patents within the top 
5% of industry patent citations, coding them as ‘1’, while the remaining patents are labeled 
‘0’. Subsequently, for the focal firm, we calculate the count of patents ranked in the top 5% 
of citations obtained during the periods of t, t + 1, and t + 2. This count serves as a measure 
of the firm’s breakthrough innovation from t to t + 2. And for sensitivity we also repeated 
the analyses using top 3 percent.

Independent variables

Degree assortativity The independent variable is the degree assortativity of a firm’s col-
laboration network. Following Newman (2003), we defined assortative mixing characteris-
tics as eij , the fraction of edges in a network that connect a vertex of degree type i to one of 
degree type j, that is,

In an undirected network, this quantity is symmetric in its indices eij=eji . It satisfies the 
sum rules:

(1)
eij = probability that an edge links node of degree typeiwith a node of degree typej

(2)
∑

ij

eij = 1,
∑

j

eij = ai,
∑

i

eij = bj
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where ai is the fraction of each degree type of end of an edge that is attached to vertices of 
degree type i, same as for bj . And in a perfectly assortative network, the probability eij that 
an edge joins nodes of degree types i and j would be 0; in a perfectly disassortative net-
work, the probability eij that an edge joins nodes of degree types i and j would be 1, since 
no two nodes in the network that are connected are of the same degree type.

To quantify degree assortativity of a network, r, we estimate it as the Pearson correla-
tion coefficient:

where e is the element of the matrix is eij and |||�2|| | is the sum of all elements of the matrix 
e . When the mixing is random, the value of r is 0, because in this case eij = aibj . In the case 
of perfect assortativity, r = 1 and eij=1; in the case of perfect disassortativity, r = -1 and eij = 
0. Therefore, the value of r ranges between -1 and 1, with a negative value representing a 
disassortative structure and a positive value representing an assortative structure.

Moderating variables

Mean knowledge network direct ties This variable represents the average direct ties of 
the focal firm’s knowledge elements. The value is calculated by the following two steps. 
First, we calculated direct ties of each knowledge element in the focal firm’s knowledge net-
work for the period 1975 to t-1. Second, for each firm, we averaged the direct ties values for 
all knowledge elements it possessed. We calculated these variables using UCINET 6.186.

Mean knowledge network non‑redundancy  Following Guan and Liu (2016), we selected 
network efficiency as a metric to assess the level of non-redundancy in knowledge networks. 
This variable indicates the average extent to which knowledge elements tied to the focal 
firm’s knowledge elements are disconnected, without being combined in previous inven-
tions. The value of this variable is calculated by averaging the network efficiency scores of 
each knowledge element of a firm. Following Burt’s (1992), we used the efficiency measure, 
which calculates the ratio of nonredundant contacts to total contacts to total contacts for the 
focal firm i:

where piq is the proportion of relations that the knowledge element i invested in the con-
nection with the knowledge element q. The meaning of pjq is similar to it. And Ci expresses 
the total number of its direct connecters. This formula yields a value in the range of 0 to 1, 
where higher values indicate a lower presence of redundant ties.

Control variables

Certain firm-level attributes can influence breakthrough innovation in the focal firm. 
First, we controlled for collaboration network direct ties, measured as the average degree 
of inventors in a firm’s collaboration network. And we control for collaboration network 

(3)r =

∑
i eii −

∑
i aibi

1 −
∑

i aibi
=

Tr� − ����2�� �
1 − ����2�� �

(4)Networkefficiencyi =

[
∑

j

(
1 −

∑

q

piqpjq

)]
∕Ci



3821Scientometrics (2024) 129:3809–3839 

1 3

non-redundancy, measured as the ratio of non-redundant ties to a firm’s collaboration 
network (Burt, 1992). We also controlled for other properties that may influence creativ-
ity, such as coordination costs, using a five-year rolling window procedure in which we 
divided the total number of partnerships used to develop patents from year t-4 to year t by 
the same five-year window of participation in the total number of inventors involved in the 
knowledge production process (i.e., network size) (Grigoriou & Rothaermel, 2017). We 
controlled for knowledge network local cohesion as the weighted overall clustering coeffi-
cient of the focal firm, and knowledge network global cohesion as the density of the overall 
network (Guler & Nerkar, 2012). There are some knowledge-related control variables. At 
the firm level, we controlled for Technological diversity measures as a Herfindhal index of 
concentration (see also Ahuja & Katila, 2001; Fleming, 2001). R&D intensity(asset) was 
measured as the mean level of R&D expenditures scaled by lagged total assets (Miller, 
2006). Then, at the patent level, we controlled for firm patents lagged, measured as the 
number of successful patent applications of the firm in the prior year (ln) (Paruchuri & 
Awate, 2017). We measure firm age of the focal firm by calculating the difference between 
its first patent application year and the focus year (ln) (e.g., Sørensen & Stuart, 2000).

Model specification

The dependent variable of the study, breakthrough innovation performance, is a count vari-
able and takes only nonnegative integer values. The Poisson model strictly assumes that 
the mean and variance of the dependent variables should be equal. Since the variance of 
explanatory variable is greater than its mean, the negative binomial model (NB) is more 
appropriate (Gulati et al., 2012). And according to the Hausman test (p < 0.01), we adopted 
negative binomial regression models with fixed effects for the panel data. We used STATA 
14. to estimate the models.

Results

Table 1 presents the descriptive statistics of variables and their correlations. To deal with 
the problem of multicollinearity, we calculated variable inflation factors (VIFs) for each 
variable. The maximum VIF score is 3.29 less than 5, and the average VIF is 1.81, indicat-
ing that the estimated results of this study are insignificantly affected by the potential bias 
of the multicollinearity problem (Belsley, 1991). We summarized our theoretical frame-
work in Fig. 1 and the predicted directions of the coefficients in order to facilitate the dis-
cussion of our findings.

Table 2 presents the results of the negative binomial regressions. Model 1 is the baseline 
model that only includes the control variables. Model 2 adds the independent variable of 
collaboration network degree assortativity to Model 1. In model 2, the results show that the 
degree assortativity of an intra-firm network negatively and significantly associated with 
breakthrough innovation performance. The coefficient of assortativity is-0.608 at a p-value 
of 0.002. Model 3 extends upon Model 2 by introducing Mean knowledge direct ties and 
the interaction term with assortativity. The results of Model 3 show that the interaction 
term between the degree assortativity of a collaboration network and direct ties of a knowl-
edge network was negative and significant for breakthrough innovation performance. This 
means that when the number of direct ties in a knowledge network is high, it can inten-
sify the negative impact between the degree assortativity of a collaboration network and 
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Table 2  The results of the hypotheses test

Standard errors are reported in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

Variables/model Model 1 Model2 Model 3 Model 4
Breakthrough 
Innovation

Breakthrough 
Innovation

Breakthrough 
Innovation

Break-
through 
Innovation

Control variables
 Knowledge network local cohesion − 0.215*** − 0.217*** − 0.119*** − 0.211***

(− 5.16) (− 5.27) (− 3.24) (− 5.14)
 Knowledge network global cohesion 0.400*** 0.412*** 0.470*** 0.354***

(3.21) (3.35) (4.02) (2.87)
 Collaboration network direct ties − 4.540*** − 5.240*** − 4.780*** − 5.422***

(− 4.33) (− 4.67) (− 4.45) (− 4.79)
 Coordination costs − 0.104 − 0.093 − 0.206** − 0.114

(− 1.20) (− 1.06) (− 2.34) (− 1.31)
 Collaboration network non-redundancy − 0.751 − 1.104* − 0.936 − 0.781

(− 1.26) (− 1.81) (− 1.51) (− 1.27)
 Firm patents lagged(ln) 0.283*** 0.258*** 0.409*** 0.256***

(6.23) (5.56) (7.52) (5.54)
 Technological diversity − 0.037 − 0.166 0.126 − 0.026

(− 0.08) (− 0.36) (0.27) (− 0.06)
 R&D intensity(asset) − 0.695 − 0.691 − 0.723 − 0.753

(-1.48) (− 1.47) (− 1.56) (− 1.63)
 Firm age(ln) − 0.913*** − 0.851*** − 0.667*** − 0.896***

(− 6.80) (− 6.19) (− 4.78) (− 6.45)
Moderating variables
 Mean knowledge network direct ties − 0.156***

(− 3.32)
 Mean knowledge network non-redundancy − 1.369***

(− 2.96)
Direct effect
 Collaboration network degree assortativity − 0.608*** 0.176 − 2.952***

(− 3.07) (0.49) (− 3.15)
Moderating effects
 Collaboration network degree assortativ-

ity × Mean knowledge network direct ties
− 0.258***
(− 2.66)

 Collaboration network degree assortativ-
ity × Mean knowledge network non-
redundancy

3.266***
(2.61)

 Constant 3.646*** 4.069*** 3.550*** 4.959***
(6.69) (7.07) (6.02) (7.77)

 Wald χ2 180.85 185.87 234.87 195.42
 Log likelihood − 1106.13 − 1101.28 − 1084.39 − 1095.87
 Observations 572 572 572 572
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breakthrough innovation. The coefficient of the interaction term between the degree assor-
tativity of a collaboration network and the number of direct ties in a knowledge network is 
-0.258 at a p-value of 0.008. Thus, H1 is supported. Furthermore, we tested H2 in Model 4. 
Model 4 extends upon Model 2 by introducing Mean knowledge network non-redundancy 
and the interaction term with assortativity. And the results show that non-redundancy 
among ties in a knowledge network weaken the negative effect between the degree assor-
tativity of a collaboration network and breakthrough innovation performance. The coef-
ficient of the interaction term between degree assortativity of a collaboration network and 

Fig. 5  The moderating role of the number of direct ties in a knowledge network on the relationships 
between the degree assortativity of a collaboration network and breakthrough innovation performance

Fig. 6  The moderating role of non-redundancy among ties in a knowledge network on the relationships 
between the degree assortativity of a collaboration network and breakthrough innovation performance
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non-redundancy among ties in a knowledge network is 3.266 at a p-value of 0.009. Thus, 
H2 is supported. The moderating effects are further confirmed by Figs. 5 and 6, showing 
the difference in the slope effect of the degree assortativity of a collaboration network on 
breakthrough innovation performance at the two levels of number of direct ties and non-
redundancy in a knowledge network.

Robustness check

We conducted a range of additional robustness checks for the results. First, we also re-esti-
mated the model after defining the dependent variable breakthrough inventions as include 
all patents in the top 3% cited patents (rather than the top 5%), reported in Table 3. Sec-
ond, we constructed knowledge networks for focal firms based on 3-digit and 6-digit CPC 
categories to examine the moderating effects of knowledge network structural attributes at 
different levels of granularity. The results obtained were consistent with those previously 
reported, and they are presented in Tables 4 and 5. Third, we addressed covariate imbal-
ances between treatment and control groups using coarsened exact matching (CEM) (Iacus 
et al., 2011). Following Khanna and Guler (2021), we created a binary variable to represent 
high and low assortativity. Specifically, firms with assortativity greater than 0.5 take the 
value of 1; firms with assortativity less than 0.5 take the value of 0. To ensure the reliabil-
ity of the results, we compared the observed outcomes between the treated and untreated 
groups (Abadie & Imbens, 2002, 2011). R&D intensity (asset) and firm age were selected 
as matching criteria, and we presented descriptive statistics and mean difference test results 
for both treatment and control groups before and after Coarsened Exact Matching (CEM) 
in Table 6. By integrating the weights derived from CEM, we conducted regression analy-
sis on the matched observations using a year fixed-effects negative binomial model and 
report the results in Table  7. These regressions are generally consistent with previous 
results, thus confirming the robustness of the results.

Conclusion

Based on the multilevel networks view (Brennecke, 2017; Guan et  al., 2015, 2017), we 
argued that firm-level breakthrough innovation outcomes will be influenced by the struc-
ture of intra-firm collaboration networks as well as knowledge networks. And tie formation 
mechanisms of collaboration networks could lead to differences of innovation outcomes for 
organizations (Khanna & Guler, 2021). In this paper, we sought to gain insight into how 
the degree assortativity of a collaboration network affects breakthrough innovation perfor-
mance and further discuss the moderating role of the number of direct ties and non-redun-
dant ties in a knowledge network. The empirical setting is the semiconductor patents of the 
USPTO database from 1975 to 2007. Our estimation results confirm that firms with lower 
degree assortativity in their collaboration networks tend to achieve higher breakthrough 
innovation performance than those with higher assortativity, indicating a negative rela-
tionship between collaboration network degree assortativity and breakthrough innovation. 
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Furthermore, when the number of direct ties in the knowledge network increases, the nega-
tive effect between the degree assortativity of a collaboration network and breakthrough 
innovation is strengthened. Conversely, an increase in the number of non-redundant ties in 
the knowledge network mitigates this negative effect. This is because a higher number of 
direct ties in the knowledge network tends to facilitate local search for firms, whereas non-
redundant ties are more conducive to exploring new knowledge. There are several interest-
ing and important implications of our findings for theory and practice.

Theoretical contributions

Our research makes several theoretical contributions. First, we analyze the factors 
influencing firms’ breakthrough innovation performance from the multiple network 
embedding perspective. Firms’ innovation activities are embedded in multiple net-
works, including collaboration networks and knowledge networks. While there are 
considerable studies on the relationship between the structure of collaboration net-
works and innovation (Guan & Liu, 2016; Wang & Yang, 2019; Wang et  al., 2014), 
there are few explorations of the mechanisms of tie formation or collaboration among 
members (Khanna & Guler, 2021). Our study highlights the importance and influence 
of the degree assortativity of intra-firm collaboration networks on breakthrough inno-
vation, and further extends the boundary conditions of the relationship between degree 
assortativity of collaboration networks and breakthrough innovation of firms through 
knowledge networks architectural attributes. Previous research suggested that knowl-
edge creation depends on factors at the individual, team, and organizational levels 
(Powell & Grodal, 2005; Wuchty et al., 2007). We find that firms’ breakthrough inno-
vation outcomes are influenced not only by the mechanisms of tie formation among 
collaborators but also by the organizational knowledge environment, such as direct ties 
and non-redundant ties in the knowledge network. This study extends the existing lit-
erature on the relationship of collaboration network assortativity and the interaction 
between multilevel networks and innovation (Wang & Yang, 2019; Wang et al., 2020; 
Xu et al., 2017).

Second, we extend the research on the impact of knowledge network structure on 
innovation outcomes (Grigoriou & Rothaermel, 2017; Guan & Liu, 2016; Wang et al., 
2014; Yayavaram & Ahuja, 2008), enriching our understanding of the internal innova-
tion processes within organizations. Phelps et  al. (2012) emphasized that knowledge 
networks exist separately from other networks. In the process of innovation, the struc-
ture of knowledge networks will affect the ability to transfer, acquire, and combine 
knowledge. We analyze at the firm level to identify how certain structural attributes of 
knowledge network influence innovation. By elucidating the impact of direct and non-
redundant ties on breakthrough innovation, we emphasize the importance of consider-
ing the structure of the firm’s knowledge network to understand the innovation pro-
cess and outcomes. This study responds to the call for further research on knowledge 
networks (Phelps et  al., 2012). In particular, during the period of rapid development 
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of artificial intelligence, there is a need to supplement prior knowledge and improve 
the interpretability of models through the exploration of knowledge networks (Sheth 
et  al., 2019). With the growing uncertainty of the task of generalizing to a specific 
domain, and the incremental improvements that come with large amounts of training 
data and increased model complexity, concerns have arisen about the features learned 
by the model. Exploring the logic underpinning innovation from a knowledge net-
work perspective will help drive the development of proprietary AI models that pro-
vide clearer and more credible explanations and understandings for organizations. In 
particular, when utilizing techniques such as deep learning, knowledge networks can 
provide additional information and constraints to help models better understand and 
utilize data, improve their performance, enhance their explanatory and interpretable 
nature, and increase decision credibility.

Managerial implications

This paper is relevant in showing how organizations can enhance the competitive advan-
tage of breakthrough innovations by implementing teamwork mechanisms and knowledge 
management. First, we found that developing the lower degree assortativity of a collabo-
ration network is necessary for improving a firm’s breakthrough innovations. Therefore, 
firms focusing on breakthrough innovations are advised to alter the level of degree assorta-
tivity through teamwork design to a lower one. At the same time, for firms aiming to trans-
form their innovation landscape and strategies, it is critical to design incentive strategies 
for mixed-rank collaborations.

Second, our findings also suggest that the structure of a firm’s knowledge network will 
influence breakthrough outcomes of collaboration among members. For instance, firms 
inclined towards exploring new knowledge (i.e., those with more non-redundant ties in 
their knowledge networks) may choose collaborative patterns among inventors with vary-
ing degrees centrality in the collaboration network to foster breakthrough innovation. Con-
versely, for knowledge-conservative firms that prefer to exploit existing knowledge (i.e., 
those with more direct ties in their knowledge networks), the adoption of a mixed-rank 
collaborative pattern to achieve more breakthrough innovation may be weakened. Manag-
ers might adjust the structure of their organization’s knowledge base to better promote the 
capability to integrate and apply new ideas and knowledge to firms’ existing knowledge 
repertoire, while also leveraging the structure of the knowledge network. These findings 
imply that firms with a higher number of breakthrough innovations are those that possess 
the knowledge and skills to effectively position themselves through strategic innovation 
design and the coordination of their knowledge networks.
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Limitation and future research

While this research advanced our understanding of multilevel networks and breakthrough 
innovations, our study has a few limitations that may serve as directions for future research.

First, this study selects patent data to construct collaboration networks and knowledge 
networks. Previous studies suggested that patents may be the most valid and robust indica-
tor of knowledge creation and collaboration research, and many scholars have used pat-
ent data to study collaboration innovation activities (Ahmadpoor & Jones, 2017; Guan & 
Liu, 2016; Maoret et al., 2020; Wang et al., 2014; Wu et al., 2019). However, in addition 
to working together on patent applications, there are probably other ways of knowledge 
exchange and sharing within firms, such as friendship networks, project groups (but not 
co-author patents), work-related advice network, etc. These network connections will influ-
ence the willingness to share knowledge and hence breakthrough innovation outcomes as 
well. Future research could further establish several different networks through various 
methods such as questionnaires to study this issue.

Secondly, this study focuses on the impact of the degree assortativity of an intra-firm 
collaboration network on breakthrough innovations. The individual inventor attributes 
also affect breakthroughs, such as educational background, job title, whether he or she is 
a specialist or generalist, scientist or engineer, and other demographic traits (Gruber et al., 
2013). Future research could further analyze how these individual characteristics influ-
ence the relationship between degree assortativity and firms’ breakthrough innovation 
performance.

Finally, this study is a firm-level analysis of the impact of structural attributes of intra-
firm collaboration networks and knowledge networks on breakthrough innovation perfor-
mance. Future research can explore the impact of mixed-rank collaborations on innovation 
outcomes at the team level, and at the individual level, and further examine how the inter-
action between individuals produces innovation outcomes at the macro level, providing a 
new understanding of the generation of breakthrough innovation outcomes.

Appendix

See Tables 3, 4, 5, 6, and 7.
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Table 3  Results of robustness analysis (patents in the top 3%)

Standard errors are reported in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

Variables/model Model 1 Model2 Model 3 Model 4
Breakthrough 
innovation

Breakthrough 
innovation

Breakthrough 
innovation

Break-
through 
innovation

Control variables
 Knowledge network local cohesion − 0.192*** − 0.193*** − 0.088** − 0.188***

(− 4.62) (− 4.70) (− 2.49) (− 4.64)
 Knowledge network global cohesion 0.316** 0.325** 0.435*** 0.282**

(2.33) (2.43) (3.26) (2.15)
 Collaboration network direct ties − 4.695*** − 5.267*** − 4.793*** − 5.562***

(− 3.71) (− 3.90) (− 3.77) (− 4.02)
 Coordination costs 0.018 0.023 − 0.126 0.005

(0.19) (0.23) (− 1.26) (0.05)
 Collaboration network non-redundancy − 0.538 − 0.662 − 0.631 − 0.410

(− 0.72) (− 0.88) (− 0.82) (− 0.54)
 Firm patents lagged(ln) 0.284*** 0.261*** 0.446*** 0.257***

(5.34) (4.78) (6.92) (4.68)
 Technological diversity − 0.310 − 0.637 − 0.441 − 0.372

(− 0.53) (− 1.03) (− 0.73) (− 0.60)
 R&D intensity(asset) − 0.944 − 0.897 − 0.880 − 1.079*

(− 1.53) (− 1.44) (− 1.42) (− 1.74)
 Firm age(ln) − 1.075*** − 0.987*** − 0.677*** − 1.025***

(− 6.19) (− 5.51) (− 3.75) (− 5.69)
Moderating variables
 Mean knowledge network direct ties − 0.226***

(− 3.92)
 Mean knowledge network non-redundancy − 1.456**

(− 2.55)
Direct effect
 Collaboration network degree assortativity − 0.602** 0.156 − 3.693***

(− 2.29) (0.34) (− 3.02)
Moderating effects
 Collaboration network degree assortativ-

ity × Mean knowledge network direct ties
− 0.250**
(− 2.11)

 Collaboration network degree assortativ-
ity × Mean knowledge network non-
redundancy

4.256***
(2.64)

 Constant 4.070*** 4.426*** 4.022*** 5.303***
(5.83) (6.09) (5.28) (6.78)

 Wald χ2 129.78 132.46 182.20 141.98
 Log likelihood − 852.30 − 849.59 − 832.11 − 845.14
 Observations 500 500 500 500
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Table 5  Results of robustness analysis (Six-digit CPC groups)

Standard errors are reported in parentheses
***p < 0.01, **p < 0.05, *p < 0.1

Variables/model Model 1 Model2 Model 3 Model 4
Break-
through 
innovation

Break-
through 
innovation

Break-
through 
innovation

Break-
through 
innovation

Control variables
 Knowledge network local cohesion (CPC-6) 0.888** 0.899** 1.172*** 0.529

(2.07) (2.08) (2.86) (0.81)
 Knowledge network global cohesion (CPC-6) − 0.400 − 0.518* − 0.327 − 1.140***

(− 1.33) (− 1.70) (− 1.09) (− 3.10)
 Collaboration network direct ties − 4.133*** − 4.822*** − 5.272*** − 5.916***

(− 4.12) (− 4.47) (− 4.75) (− 5.03)
 Coordination costs − 0.298*** − 0.298*** − 0.225*** − 0.316***

(− 3.22) (− 3.20) (− 2.61) (− 3.43)
 Collaboration network non-redundancy − 0.618 − 1.025 − 0.970 − 0.979

(− 1.02) (− 1.63) (− 1.58) (− 1.56)
 Firm patents lagged(ln) 0.231*** 0.202*** 0.355*** 0.187***

(5.10) (4.35) (7.06) (4.05)
 Technological diversity − 0.574 − 0.720 − 0.377 − 0.947*

(− 1.25) (− 1.51) (− 0.81) (− 1.94)
 R&D intensity(asset) − 0.083 − 0.117 − 0.487 − 0.241

(− 0.18) (− 0.25) (− 1.07) (− 0.51)
 Firm age(ln) − 1.067*** − 1.021*** − 0.924*** − 1.191***

(− 7.69) (− 7.23) (− 6.90) (− 7.79)
Moderating variables
 Mean knowledge network direct ties (CPC-6) − 0.087***

(− 3.21)
 Mean knowledge network non-redundancy 

(CPC-6)
− 1.896**
(− 2.11)

Direct effect
 Collaboration network degree assortativity − 0.638*** 0.569 − 3.302***

(− 3.15) (1.50) (− 4.66)
Moderating effects
 Collaboration network degree assortativ-

ity × Mean knowledge network direct ties 
(CPC-6)

− 0.241***
(− 3.63)

 Collaboration network degree assortativ-
ity × Mean knowledge network non-redun-
dancy (CPC-6)

4.987***
(3.95)

 Constant 3.808*** 4.375*** 4.025*** 6.484***
(5.12) (5.61) (5.26) (4.85)

 Wald χ2 161.58 166.42 221.76 171.94
 Log likelihood − 1124.00 − 1118.84 − 1088.98 − 1110.11
 Observations 578 578 578 578
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Table 7  Results of robustness analysis (CEM fixed year effect Negative binomial regression)

Standard errors are reported in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Variables/model Model 1 Model2 Model 3 Model 4
Breakthrough 
innovation

Breakthrough 
innovation

Breakthrough 
innovation

Break-
through 
innovation

Control variables
 Knowledge network local cohesion − 0.036 − 0.060 − 0.079** − 0.059

(− 0.94) (− 1.63) (− 2.10) (− 1.59)
 Knowledge network global cohesion 0.159 − 0.020 − 0.027 − 0.018

(1.31) (− 0.17) (− 0.23) (− 0.15)
 Collaboration network direct ties − 1.204*** − 3.482*** − 4.930*** − 4.618***

(− 2.61) (− 6.19) (− 7.62) (− 6.73)
 Coordination costs 0.268*** 0.133 0.091 0.143

(2.88) (1.53) (1.06) (1.63)
 Collaboration network non-redundancy − 2.192*** − 2.360*** − 2.225*** − 2.420***

(− 4.25) (− 4.71) (− 4.46) (− 4.78)
 Firm patents lagged(ln) 0.769*** 0.589*** 0.556*** 0.556***

(15.06) (10.64) (10.10) (9.87)
 Technological diversity − 0.451 − 0.707** − 0.804** − 0.674**

(− 1.42) (− 2.18) (− 2.52) (− 2.08)
 R&D intensity(asset) − 3.477*** − 3.436*** − 2.841*** − 3.097***

(− 6.42) (− 6.56) (− 5.41) (− 5.80)
 Firm age(ln) − 0.326*** − 0.310*** − 0.222** − 0.261***

(− 3.03) (− 3.08) (− 2.21) (− 2.58)
Moderating variables
 Mean knowledge network direct ties 0.206*** 0.352*** 0.212***

(5.12) (7.34) (5.23)
 Mean knowledge network non-redundancy − 0.444 − 0.231 − 1.102*

(− 0.87) (− 0.47) (− 1.92)
Direct effect
 Collaboration network degree assortativity − 1.077*** 0.137 − 4.107***

(− 5.78) (0.48) (− 4.49)
Moderating effects
 Collaboration network degree assortativ-

ity × mean knowledge network direct ties
− 0.454***
(− 5.48)

 Collaboration network degree assortativ-
ity × mean knowledge network non-
redundancy

4.194***
(3.40)

 Year Yes Yes Yes Yes
 Constant 1.808*** 3.116*** 2.621*** 3.612***

(3.48) (4.87) (4.16) (5.36)
 Pseudo R2 0.183 0.208 0.217 0.212
 LR χ2 632.08 718.10 748.03 730.49
 Log likelihood − 1408.23 − 1365.22 − 1350.26 − 1359.029
 Observations 625 625 625 625
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