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Abstract
The knowledge structure is the result of continuous evolution of the forces intertwined with 
knowledge linkages and structural patterns. However, the dynamics along this path are still 
not fully understood. This study aims to investigate the linkage patterns and incremental 
evolution of domain knowledge structure from the perspective of structure deconstruction. 
To this end, we proposed a novel framework that integrates the incremental update mecha-
nism of knowledge network construction, subgraph enumeration, and knowledge combina-
tion. The proposed integrative framework enables us to embed time-related node attributes 
into identified subgraphs and to deconstruct specific types of decomposable structure into 
exiting knowledge combinations and potential knowledge combinations. Results from our 
case studies, the IIoT and the Metaverse fields, confirmed that the proposed framework 
is applicable to reveal the underlying knowledge linkage patterns and relative evolution 
strength. The identified decomposable structures suggest that the path toward knowledge 
linkages mainly follows a mixed strategy (e.g., high impact knowledge elements are more 
likely to be linked with elements of middle/low level of impact). The framework designed 
in this study, together with findings from two fields, elucidates specific evolutionary 
dynamics through a combined analysis of motifs and structural deconstruction. These find-
ings hold implications for practitioners and policymakers seeking to develop a nuanced 
understanding of the field.
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Introduction

Studying knowledge structure has become increasingly crucial for both researchers and 
managers (Khasseh et al., 2017; Cheng et al., 2020). For the most part, researchers have 
concerned on representing and applying knowledge structures (Katsurai & Ono, 2019; 
Hosseini et  al., 2021). To explore such knowledge structures’ evolutionary characteris-
tics, networks comprising of knowledge elements as nodes and interrelationships as edges 
become an appropriate fit. Pairwise connections, i.e., edges, are non-decomposable in such 
networks, which substantively hinders the understanding of knowledge structure. Taking 
into account dynamic linkages of collective knowledge elements (Fortunato et al., 2018), 
combined with knowledge elements’ attributes, enables the construction of scientific 
knowledge networks. While the literature extensively covers the study of global proper-
ties of knowledge structure (Castillo-Vergara et al., 2018; Cho, 2020), the investigation of 
decomposable structures has received limited attention. Given the central role decompos-
able structures play in shaping knowledge structures, tracking linkage patterns of re-occur-
ring and significant decomposable structures has the potential to provide important and 
distinctive insights into the evolution of knowledge structures. To this end, decomposable 
motif structures such as 3-node subgraphs (i.e., triads), 4-node subgraphs (i.e., tetrads), 
etc., provide a range of possible structures as the output value (i.e., knowledge structure) 
for further investigation.

In statistical bibliography or bibliometrics, existing studies have characterized the 
knowledge structure of a field or discipline through two network-based methods (Choud-
hury et  al., 2020). The first method involves employing co-citation networks to explore 
the structure of scientific communication based on the relationships between various cited 
and citing documents (González-Valiente et al., 2021). The second method entails utilizing 
word co-occurrence or co-word networks (Lee & Lee, 2021). In its essence, both methods 
capture the interactions of a domain-specific knowledge system by representing metadata 
information (such as authors, institutions, citations, keywords, etc.) from scientific publica-
tions as nodes, and their associations (co-citation or co-occurrence relationships) as edges 
connecting them. The term co-occurrence was first coined by Harris (1954), and the tech-
niques of word co-occurrence analysis was then developed by Callon et al. (Callon et al., 
1991). When two words co-occur within one paper, it suggests a relationship between the 
topics they represent. In most cases, authors select keywords for their articles to summa-
rize the research topics. Therefore, word co-occurrence networks are often constructed 
using author-selected keywords, such that they become keywords co-occurrence networks 
(KCNs). The growth of KCNs is basically contributed by the increase of publications and, 
more specifically, by the addition of a complete N-graph (N fully connected nodes) from 
a new paper’s keywords list. Owing to the continuous input of such complete N-graphs, a 
range of different types and sizes of subgraphs were generated, resulting in an increase in 
the scale and complexity of the network structure.

On the other hand, scientific knowledge creation is in nature a dynamic process and 
benefits from the scholarly communication within and across fields. This implies that 
keywords with different properties are connected simultaneously or successively. This 
inspiration led us to collectively consider the properties of knowledge elements, specific 
decomposable structures, and the dynamics of knowledge networks, thereby revealing 
patterns and the evolution process of knowledge combinations. Figure  1 presents the 
overall framework behind the rationale. In particular, the dynamic KCNs are generated 
by progressively adding complete N-graphs, during which the nodes and topology are 
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incrementally updated in tandem with new papers published. This method enables us 
to view papers as a variable that controls the generation of knowledge networks. Then, 
we break the network into specific decomposable structures based on a motif detection 
algorithm (Wernicke, 2005), and investigate implicit combination patterns via time-
related node properties. Lastly, leveraging the output decomposable structures, we inno-
vatively investigate the evolution of knowledge structures by measuring the relative var-
iation of different types of output N-graphs.

In this paper, we are going to present answers to the following two questions: (1) 
what rules underlie the linkage patterns of knowledge elements that we see in decom-
posable structures? (2) taking the literature growth and keywords properties into 
account, how do we quantify existing or "potential" knowledge combinations, and fur-
ther understand the evolution of knowledge structures? The remainder of this paper is 
organized as follows. Sect.  “Related Work” briefly reviews related work to our study, 
Sect.  “Data and Methods” shows the data and methods, Sect.  “Results” presents two 
case studies from IIoT and Metaverse, respectively, Sect.  “Discussion” discusses our 
findings, and Sect. “Conclusion” concludes this paper.

Related work

As a specific kind of knowledge representation techniques, knowledge networks of vary-
ing types have been employed to understand the organization and evolution of scien-
tific knowledge. Therefore, in what follows, we first briefly reviewed major methods and 
results in analyzing knowledge structure through the use of KCN, which are determined 
by the structure to be represented. Then, we can move on to the decomposable struc-
tures in the literature, which have been mainly studied either from the theory or applica-
tion aspects.

Fig. 1  Overview of the proposed research framework
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Knowledge structure and dynamic KCNs

Since scientific knowledge is formed by concepts and relations embodied in various schol-
arly artifacts, it is best described as network with complex topology (Boccaletti et al., 2006; 
Fortunato et al., 2018). KCNs have been extensively applied to the elucidation and map-
ping of knowledge structure, because of the promising effectiveness in expressing knowl-
edge components and knowledge structure (Haunschild et al., 2019; Cho, 2020). To ana-
lyze the structure of scientific knowledge, a series of statistical metrics are utilized to shed 
light on exploit the structural properties at the basis of real networks, for instance node 
degree, degree distribution, network diameter, clustering coefficient, shortest path length, 
etc. The main result has been the discerning of the connectivity, sparsity, and aggregation 
of knowledge structure (Zhang et al. 2016; Cheng et al., 2020). Moreover, several unifying 
principles are revealed, such as the degree correlations, scale-free distribution, relatively 
small characteristic path lengths, and the presence of community structure (La & Chai, 
2021).

There is also a spectrum of literature that uses dynamic KCNs to reproduce the growth 
of network and capture the dynamic nature of knowledge structure. In dynamic KCNs, 
new knowledge elements and interactions are added over time (Katsurai & Ono, 2019). In 
extant works, dynamic KCNs are defined as a set of temporal networks 

{

G1,G2,… ,Gt

}

 
(Balili et al., 2020). Although dynamic KCNs have received enormous interests, they still 
present two major drawbacks: (1) temporal networks have limited ability to accurately rep-
resent the growth of scientific knowledge, as ‘ t ’ is usually divided into equally spaced time 
intervals (often on an annual basis); (2) while temporal networks can control the division 
of time intervals, it also precludes the possibility of controlling the division of papers. In 
response to the above issues, we propose a simple, yet powerful method based on graph 
operations for constructing dynamic KCNs. This method adheres to the principle that lit-
erature growth drives the growth of networks, providing flexible control over the input 
subgraphs.

Decomposable structure and knowledge combinations

Decomposable structures are small, connected, non-isomorphic subgraphs, also known 
as network motifs. Therefore, the motif discovery techniques are able to find significantly 
over-represented decomposable structures in specific networks. After Milo et  al. (2002) 
introduced the concept of network motifs, the use of motifs to capture interactions among 
hidden basic units has been well established. Motifs have been proved to be a powerful 
graph analysis tool in various fields. Sporns and Kötter (2004) performed an analysis of 
structural and functional motifs in various brain networks, leading to the discovery that 
highly evolved neural architectures are structured to optimize functional repertoires. Then, 
Krumov et al. (2011) measured the correlation between motifs and citations in co-author-
ship networks. More recently, Zou et al. (2023) connected motifs with collaboration net-
works to investigate the knowledge transmitting functions in identified scientific teams. 
Furthermore, motifs have been applied in a variety of tasks, from defining which communi-
ties that vertices belong to (Arenas et al., 2008) to improving network clustering accuracy 
(Benson et al., 2016), and to optimizing link prediction performance (Wang et al., 2020).

With regard to the specific application of motifs in depicting knowledge structure, prior 
research has mostly focused on examining how the concentration of various building blocks 
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affects structural stability. Feng et al. (2021) used network motifs to discover the underly-
ing information structure and evolution rules of tagged knowledge networks. Based on this, 
Wang et al. (2022) further utilized network motifs to analysis the structure and develop-
ment of knowledge label network. It has shown that the network motifs theory plays an 
essential role in characterizing the mesoscopic layer of knowledge structure. These studies 
follow the same strict norm, the significance characteristic per se, which originates from 
the motif definition. However, what behind such building blocks is still unclear. It is safe 
to say that less attention has been given to deconstruct knowledge structure, especially the 
part in connecting motif theory with knowledge linkage patterns.

When new knowledge elements are successfully combined with established ones, it 
often violates expectations and leads to the creation of novel ideas with high impact (Lari-
vière et al., 2015). Many networks have complex and highly non-linear structures. While 
motifs alone only reveal significant subgraph patterns in knowledge networks, node attrib-
utes however are needed to understand how and why certain subgraphs are significant pat-
terns. Towards this, colored motifs and types graphlets are the branches of studies most 
closely related to ours (Qian et al., 2011; Ribeiro & Silva, 2014; Rossi et al., 2021). These 
studies typically extend the purely structural motifs by integrating color or type informa-
tion into nodes or edges. Building upon this inspiration, we explore how the scientific 
knowledge, originating from different time periods or influenced by different factors, is 
organized and evolves from a knowledge element properties combination view. Also, the 
relationship between innovation and knowledge combinations has been widely discussed, 
and it is generally accepted that effective knowledge combinations are more likely to lead 
to innovative breakthroughs (Kogut & Zander, 1992; Nerkar, 2003; Tolstoy, 2010; Ji et al., 
2020; Han et al., 2020). That being said, not every knowledge combination has the same 
level of power to support knowledge creation and contributes identically to the evolution 
of knowledge structure (Katila & Ahuja, 2002; Kuo et al., 2019). Thus, it further demands 
deconstruction on specific structures to identify both existing and potential knowledge 
combinations by controlling over the input subgraphs.

Data and methods

Data and pre‑processing

We limit this study to illustrate evolutionary knowledge structures in specific domains, 
where knowledge combinations are assumed to be frequently updated, and the evolu-
tion of knowledge structure is more observable. The first domain is related to the Indus-
trial Internet of Things (IIoT).1 With the rapid advancement of Artificial Intelligence and 
related technologies, the IIoT has emerged as a highly demanding field that involves the 
integration of physical machines, advanced analytics, and the internet to improve industrial 
processes, increase efficiency, and enhance productivity (Serror et al., 2021). The second 
domain revolves around the  Metaverse1, conceptualized as enduring and immersive digital 

1 The search strategies were defined as TS = ("industrial internet" OR "industrial IoT" OR "IIoT") for IIoT, 
and TS = (Metaverse OR "Virtual World") for Metaverse, with English articles published between 1999 and 
2022 being included. Additionally, searches were conducted in other databases such as Scopus and Sci-
enceDirect. While there were no notable discrepancies between them, WoS offered more comprehensive 
metadata for articles.
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environments that leverage various enabling technologies, facilitating the creation, dissem-
ination, and utilization of digital assets (Gao et  al., 2023). Article metadata information 
includes title (TI), abstract (AB), author-selected keywords (DE), year of publication (PY), 
publication date (PD), and WoS number (UT). The following constraints were considered 
during the search: (1) articles published in English journals from Jan. 1999 to Dec. 2022, 
(2) articles indexed in the Web of Science Core Collection, including SCI-E, SSCI, and 
CPCI-S, and (3) articles were sorted by date in ascending order (oldest first) prior to down-
loading the metadata. To save space, we will use the abbreviations DI and DM to refer to 
the datasets related to IIoT and Metaverse, respectively, throughout the rest of this article.

The construction of KCN starts with the extraction and filtering of author-selected key-
words. Firstly, we removed missing values instead of filling them with keywords extracted 
from other fields (such as titles, abstracts, or introduction). The reason behind is that we 
focused exclusively on the author-selected keywords that the authors recognized as relevant 
to the article. Next, we move on to the text processing phase. Apart from a few commonly 
used abbreviations, we manually standardized abbreviations into their full forms. With 
the help of the NLTK text preprocessing tool, we removed symbols like hyphens and per-
formed lemmatization. Figure 2 illustrates the workflow of data processing.

Typically, scholars select a “highly relevant” subset of keywords for co-word analysis, 
among which keyword frequency is a common criterion. Therefore, we extracted author-
selected keywords that appeared in more than one article and labeled them as “*keywords” 
(Choudhury et al., 2020). Keywords that did not receive the minimum attention from the 
research community were considered irrelevant and discarded. Likewise, articles that lack 
more than one “*keywords” are deemed unrelated and removed from consideration. As a 
result, the *duration of DI was reduced to the year 2013. Figure 3 shows yearly statistics 
of articles across various fields, with the filtered dataset comprising highly relevant arti-
cles identified in this study. For IIoT, there has been a significant upward trend in article 

Fig. 2  The workflow of data processing

Fig. 3  Distribution of articles in IIoT (left) and Metaverse (right)
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numbers since 2017, with an increase of 100–200 articles annually compared to the previ-
ous year, indicating a continual rise in academic and industrial interest in this domain. In 
contrast, research on Metaverse has been relatively limited, with fewer than 100 articles 
published annually before 2021. However, starting from 2022, the number of articles on 
Metaverse surged to 247.

At the end of this pre-processing, the number of those cleaned and transformed key-
words were identified as unique and were used in further analyses. Basic dataset statistics 
are presented in Table 1. Note that *Ratio refers to the frequency accumulation ratio of 
keywords between the filtered and original dataset.

Methods

Constructing dynamic KCNs

In graph theory, a network is commonly represented by a graph, which can undergo vari-
ous operations, such as union, intersection, join, etc. Igraph is a particularly useful R 
library providing a set of data types and graph operations for network analysis. In this 
study, graph.full() is used to create a full N-graph, gi=(vi, ei). The graph vertices ( vi ) are 
keywords and edges ( ei ) between vertices are the relations of co-occurrence for each article 
i . Then, with a new article j recorded in WoS (relative to article i), we use graph.union 
() to merge gi and gj into a new graph G . By default, graph.union() keeps the attributes 
of both graphs. It can lead to name clashes if an attribute is presented in multiple graphs. 
In this case, suffixes are used for clarity, for example, weight_1 and weight_2 represent 
the edge weight for gi and gj respectively. It should be noted that the edge weight between 
non-identical or non-overlapping vertices will be marked as null values in G . As such, we 
assign 0 to the null value of weight_1 and weight_2 to address the absent edge weight after 
the operation of graph union.

In this study, dynamic KCNs are a set of graphs constructed by graph operations from 
multiple snapshots. For a dataset D with n articles, dynamic KCNs are denoted by the 
series GD =

{

GD(1),GD(2),… ,GD(n)

}

 , which can be obtained by incrementally collapsing 
subgraphs ( gi ). Each snapshot Gi can be obtained as follows:

The construction of dynamic KCNs has been extensively studied in the literature, with 
perspectives from both sliding-window and aggregate-window approaches, addressing 
short-term as well as long-term dynamics (Balili et  al., 2020). In line with these  
two approaches, we generate two types of KCNs: G′

D
x

 from the sliding-windows  
manner (described by G

�
D

x

= {G�
D

x
(1)
,G�

D
x
(2)
,G�

D
x
(3)
,… ,G�

D
x
(S)
} , x = I∕M for IIoT/

Metaverse), and GDx
 from the aggregate-windows manner (described by 

GDx
= {GDx(1)

,GDx(2)
,GDx(3)

,… ,GDx(S)
} ). The differences between these two forms are 

(1)Gi =

{

gi, i = 1

gi ∪ Gi−1, i > 1

Table 1  Basic statistics of the scholarly dataset

Dataset *Articles *Keywords *Ratio (%) *Duration

D
I

2587 (83.69% of original dataset) 1551 72.72 2013–2022
D

M
1320 (57.97% of original dataset) 1019 52.60 1999–2022
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illustrated in Fig. 4, which was adapted from (Balili et al., 2020). Note that snapshots con-
structed in the sliding-window manner only accounts for the co-occurrences within 
subsets.

Combining motifs and node properties

The motif detection is designed to find frequently re-occurred patterns in real networks. 
According to Ribeiro (2011), the criteria of network motif depend on four parameters, 
{P,U,D,N} , where P is the probability threshold that indicates the frequency of a sub-
graph in the real network is less than that in N randomized networks (preserving the same 
node degree distribution as the real network), and U defines the minimum frequency a sub-
graph in the real network should have, and D is the minimum frequency deviation that 
ensures sufficient difference between the real network and the random networks. Therefore, 
the mathematical definition that a subgraph could be viewed as a network motif is formu-
lated as follows:

where, gk,i is a subgraph ( i ) with k nodes, f rand
(

gk,i
)

 is the average frequency over all ran-
dom networks of gk,i , freal

(

gk,i
)

 is the frequency of gk,i in the real network.
Based on the aforementioned conditions, a subgraph can be identified as a motif 

through the following three main procedures: (1) conducting the subgraph census; (2) 
generating randomized networks; (3) computing subgraphs’ significance. The goal of 

Probability
(

f rand
(

gk,i
)

> freal
(

gk,i
)

)

≤ P

freal
(

gk,i
)

≥ U

freal
(

gk,i
)

− f rand
(

gk,i
)

> D × f rand
(

gk,i
)

Fig. 4  Taking snapshots based on sliding-window or aggregate-window way
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the subgraph census is to enumerate all possible subgraphs of size k. This is a time-
consuming process, and we adopt an efficient algorithm proposed by Wernicke (2005) 
for full subgraph census. Then, we generated 100 randomized networks as null models, 
preserving the same number of nodes and edges hold by the real network. Two met-
rics were involved in computing subgraphs’ significance, Z-score ( Z(gk,i) , Eq. (2)), and 
significance profile ( SPk,i , Eq. (3)). Z-score is a key metric to reflect the statistical sig-
nificance of motifs and is related to the network size. To make comparisons among net-
works of different sizes, we use Eq. (3) to normalize and get a significance profile value 
that ranges from - 1 to 1. Besides, we use the concentration value, Eq. (4) to calculate 
the relative concentration of detected subgraphs with the same size k ranging from 0 to 
1.

As mentioned before, motifs alone only reveal significant subgraph patterns in knowl-
edge networks. Not limited to the pattern significance, we further investigate the implicit 
connected patterns of knowledge elements, with the extraction of two time-related node 
properties, the age and the impact of a node. To capture the rules that underlie the 
organization of decomposable structures, the task of node feature engineering can be 
considered as a classification problem. In other words, we label nodes with its proper-
ties for all possible subgraphs. With the growing development of a field, some keywords 
are repeatedly used, and some might be used because of the emerge of new concepts. 
Thus, the age of a keyword intrinsically relates to its position in knowledge networks. 
For each *keywords, the age is computed by the difference between the first appearance 
timestamp (denoted by τ ) and the observation timestamp (denoted by � ). If � − τ ≤ θ , 
then *keywords is classified as ‘New knowledge element’ ( N ); otherwise, it belongs to 
‘Existing knowledge element’ ( E ). The threshold θ = 3 is a measurement time window. 
Another critical dimension is the impact of a keyword. The relative importance of key-
words in a snapshot Gi is estimated by computing their PageRank values (Cheng et al., 
2020). In this paper, keywords are classified into three types: (1) ‘High-level impact’ 
( H ) if the PageRank value falls within the upper quartile; (2) ‘Low-level impact’ ( L ) if 
the PageRank value falls within the lower quartile; and (3) ‘Medium-level impact’ ( M ) 
for the remaining keywords.

As such, we conduct subgraph censuses, and then record all occurrences for a given 
structure of size k . It should be noted that counting k-motifs is an expensive operation, 
as their number grows exponentially with k increases. In this study, a total of 1551 and 
1019 *keywords (i.e., vertices) are collected from DI and DM , respectively. We focus only 
on 4-node subgraphs, as this process is of highly complexity in both time and space and 
higher-order subgraphs are also composed of lower-order subgraphs (Zou et al., 2023). In 
Fig. 5, we enumerate all types of four-node motifs.

(2)Z
(

gk,i
)

=
(freal

(

gk,i
)

− f rand
(

gk,i
)

)

�rand
gk,i

(3)
SPk,i =

zk,i
�

∑n

i=1
z2
k,i

(4)C
�

gk,i
�

=
freal(gk,i)

∑n

j=1
freal(gk,j)
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Measuring the evolution of knowledge structure

The task of measuring the evolution of knowledge structure can be simplified and tracked 
by modeling the system as dynamic KCNs. Viewing the network growth at the finest-
grained article-level, the inclusion of a new article can lead to fluctuations of the knowl-
edge structure. To magnify these fluctuations, the overall evolution process can be divided 
into snapshots ( Gi ) with each containing a fixed number of articles. The subgraph M4.6 
(see Fig.  5) has the highest connectivity among all 4-node subgraphs and is able to be 
deconstructed into any of the other 5 subgraphs. Based on such properties, we define two 
types of change events to capture the dynamics between two consecutive snapshots, intra-
change and inter-change events. The intra-change reveals the knowledge linkages between 
nodes across or within literature, while inter-change indicates a shift in motifs from one 
type to another. Among those changes, again, we give special focus to the knowledge 
combinations that lead to the formation of a fully connected structure, i.e., M4.6 in Fig. 6. 
It could be further categorized into two types, the existing combinations and the poten-
tial combinations. The existing combinations arise from the incremental intra-change, 
indicating all nodes co-appeared in one successfully published literature. The potential 
combinations are the result of inter-change shifts, which suggest that linkages have been 
constructed among all nodes but have not yet been confirmed. These unconfirmed com-
binations, however, reveal beliefs about which elements of knowledge are most likely to 
work well together and should be preferentially considered. Followed by this, we propose a 
new approach to examine the relative change of knowledge structure, innovatively reveal-
ing changes among the combinations of knowledge elements. This measurement takes into 
account the intra-change and inter-change events in dynamic KCNs. Figure  6 illustrates 
the composition of M4.6 in a snapshot Gi+1 , and we coded different types of combinations 

Fig. 5  All four-node motifs

Fig. 6  The composition of M4.6 
in snapshot G

i+1
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as X = {All, Existing, Potential} , and the form of TGi

X
 is the frequency of a specific type of 

combinations X in a prior snapshot Gi . T2 or T4 is the intersection of existing combinations 

between TGi and TG
′

i+1 . TG
′

i+1

Existing
 is the frequency of M4.6 in snapshot G′

i+1
 , which is added to 

Gi+1 as an intra-change.
In our approach, the relative change (denoted by ξGi→Gi+1

X
 ) of all combinations, existing 

combinations, or potential combinations across consecutive snapshots is calculated based 
on deconstructing M4.6. We defined this change as the knowledge structure evolution 
strength and, ξGi→Gi+1

X
 can be computed by Eq. (5).

Results

Network properties of the dynamic KCNs

Adhering to the workflow introduced in Sect.  “Data and pre-processing”, two sets of 
dynamic KCNs were built for DI and DM , ( Dx hereafter, for simplicity). With regard to the 
yearly statistics of articles in IIoT and Metaverse, Dx is divided into S = 13 equally spaced 
intervals.2 Each subset of DI comprises 199 papers, while each subset of DM consists of 

(5)ξ
Gi→Gi+1

X
=

T
Gi+1

X
− T

Gi

X

T
Gi

X

Table 2  Descriptive statistics of dynamic KCNs properties ( D
I
 = IIoT and D

I
 = Metaverse)

Network properties

′ ′

Mini map Min Max Mini map Min Max Mini map Min Max Mini map Min Max

Articles 199 199 199 2587 100 100 100 1300

Nodes ( ) 345 499 345 1550 181 252 181 1003

Edges ( ) 1217 3893 121723317 385 825 390 5469

Avg. Clustering Coefficient 0.1420.224 0.1050.143 0.1690.404 0.0970.269

Avg. Path Length 2.4512.808 2.4782.808 2.8273.821 3.0403.571

Network Density 0.1890.033 0.0140.021 0.0180.031 0.0100.024

α of the formula: p(x) = Cxα 2.5522.786 2.1392.736 2.7773.419 2.6022.963

Modularity 0.3700.520 0.2580.501 0.5340.748 0.4180.681

2 We assumed that the states of the current time window are all evolved based on the state development of 
the previous time window. As a result of that, the subset associated with multiples of the initial observation 
values can all be covered.
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100 papers.3 This enabled us to explore the evolution of knowledge structure. Table 2 pre-
sents the descriptive statistics of all snapshots in G′

D
x

 and GDx
 , respectively. In the short-

term, based on the derived metrics, there are noticeable differences in the structural proper-
ties between snapshots of G′

D
x

 , despite the input subsets is divided into equal intervals. This 
suggests that the volume of scientific literature is not equivalent to the scope of scientific 
ideas (Fortunato et al., 2018). In the long-term, with the expansion of scientific literature, 
the snapshots of GDx

 become increasingly nonlinear and complex. In particular, for both 
scenarios ( GDI

 and GDM
 ), all α fall into the range of (2, 3), indicating the network growth 

follows a preferential attachment process (Barabási & Albert, 1999). Also, in GDx
 both 

the Network density and the Average Clustering Coefficient experienced a decrease and 
then followed by an increase. In contrast, the Average Path Length and the Modularity 
undergone a decrease trend during the whole process. Generally, in practice, the value of 
modularity greater than approximately 0.3 appears to indicate a high quality of clustering 

Fig. 7  Network snapshots have been arbitrarily picked from the subset of G
D

I
 and G

D
M
 . All network snap-

shots are divided into different colors according to the community detection results. The size of the node 
represents keyword’s degree. The edge thickness represents corresponding edge weight. From these net-
work snapshots, many small, originally isolated groups evolve into larger ones and become major commu-
nities

3 For comparison with D
I
 , we excluded 20 articles that were last published. Thus, the *keywords of D

M
 

was reduced to 1003.
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(Newman, 2004). It is evident that the boundaries of communities are becoming blurry 
with more knowledge elements and their interrelationships added to the network.

As depicted in Fig. 7, network snapshots have been arbitrarily picked from the subset 
of GDI

 (a–c) and GDM
 (d–f). On the one hand, with the continuous growth of literature, the 

development of IIoT has entered the deep cultivation stage of practice from the concept 
popularization, and keywords had gradually evolved from concept definition and bottom 
technology development to industry application, service quality management, energy con-
sumption management, etc. The keywords related to IIoT research can be categorized into 
five types: manufacturing industry development (e.g., smart manufacturing, industry 4.0), 
core technology (data privacy, blockchain, edge computing, etc.), platform infrastructure 
(e.g., WSNs, cyber security), application scenarios (e.g., smart factory, resource manage-
ment, energy consumption), and Function (e.g., authentication, feature extraction, optimi-
zation, task analysis). For snapshots in the Metaverse domain (d-f), although the research 
papers published on the metaverse is limited, significant advancements in technologies 
such as virtual reality, augmented reality, digital twins, and blockchain have led to substan-
tial transformations. Moving from its initial stage, primarily focused on gaming and social 
interactions, known as metaverse 1.0, to the current era of metaverse 2.0, the technology 
has evolved significantly (Gao et al., 2023).

Selecting appropriate keywords is not always straightforward for authors, yet this pro-
cess is crucial for the searchability and impact of an article (Choudhury et  al., 2020). 
Therefore, certain representative keywords that are more likely to be preferentially chosen 
owing to their high popularity and relevance in a specific field. For example, in the net-
works of IIoT, it is noticeable that the representative keywords acquire more connections 
with more papers published and emerge as hotpots of the respective research domain, such 
as CPS, industry 4.0, blockchain, WSNs, QoS, cloud computing, virtual reality. Further-
more, while new keywords initially co-occur with less-known ones, they eventually secure 
new connections with representative topics, corresponding to the process of preferential 
attachment. For instance, digital twins was found to be linked with *keywords CPS and 
smart manufacturing in Fig. 7a. In Fig. 7b–c, it was further connected with keywords like 
smart manufacturing, cloud computing, and achieved endorsement from the representative 
keywords (e.g., industrial IoT, industry 4.0) in later snapshots. This phenomenon, indeed, 
represents a crucial feature in many relevant circumstances. In addition, a similar situation 
occurs in the knowledge network of Metaverse.

In summary, the above descriptive statistics and visualization characterize the connec-
tion of knowledge elements and the evolution of knowledge structure in a certain field. 
However, knowledge structure evolution is embodied in node evolution and structural evo-
lution. Nodes with different properties are combined into specific patterns simultaneously 
or successively, and undergo pattern shifts from one type to another. The subsequent stages 
of this section are driven by the expectation that comprehending the decomposable nature 
of knowledge structures would facilitate a better grasp of their organization and enable 
more accurate measurement of their evolution.

Identified knowledge linkage patterns

In total, we found 6 different types of tetradic motifs among all snapshots in GDx
 (except for 

M4.4 in GDI (1)
 , GDM (1)

 and GDM (2)
 with SP < 0).

For each snapshot in GDx
 , its frequency and concentration value of a subgraph type are 

represented in Fig. 8. In particular, red lines represent the counts of identified significant 
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and re-occurring subgraph patterns, and blue lines in the inset plots provide detailed infor-
mation on the concentrations of these detected structures.

It can be seen that the red lines in the main graphs exhibit a nonlinear increase as 
new subgraphs ( G�

D
x
(i+1)

 ) are sequentially added to GDx(i)
. This trend is found for every 

type of subgraph, suggesting that the complexity of knowledge structure gradually 

Fig. 8  Incremental changes in the frequency and concentration of G
D

I
 and G

D
M
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increases over time. This finding is consistent with the growing need for knowledge 
linkage to facilitate scientific creation in the two fields. We emphasize that these decom-
posable structures serve as the ‘‘building blocks’’ for the formation and evolution of 
knowledge structure. In the context of GDI

 , the result shows that while the frequency of 
M4.1 is significantly higher than that of other subgraphs, its concentration value gradu-
ally decreases. Compared to other subgraphs, M4.1 has the lowest connectivity as it is 
characterized by a star-shaped structure. This implies that a shift from subgraphs with a 
low connectivity to those with a high connectivity, resulting in an increasing level of 
connectivity within the knowledge structure. For GDM

 , there is an interval where the 
blue line remains stable, ranging from GDM (5)

 to GDM (10)
 . This indicates that the 

Fig. 9  The dynamic linkage results of keywords from different ages in G
D

I
 and G

D
M
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increasing level of connectivity within the knowledge structure may primarily stem 
from the intra-change events.

To investigate the linkage patterns behind these ‘‘building blocks’’, we further look at the 
node properties. Figure 9 displays the results of dynamic linkages of keywords from differ-
ent ages. Since this study does not take into account the differences in node positions in the 
same type of subgraphs, we identified 5 different types of combinations 
( Q = {����,����,����,����,����} ). The color of each line represents the con-
centration value (denoted by CQ

(g4,i)
 ) of a given ‘‘building block’’ of a specific subgraph type.

Considering GDI
 , as the network size increased (from GDI (1)

 to GDI (13)
 ), we found that 

knowledge elements undergo a rapid transition from new knowledge elements to existing 
knowledge elements. An interesting fact is that, as knowledge structures gradually mature, 
the concentration values of mono-type combinations (i.e., NNNN and EEEE) are signifi-
cantly lower than other types of combinations (i.e., ENNN, EENN, and EEEN). In other 
words, a mixture of new and existing knowledge elements is the main path toward creating 
new knowledge (Kuo et al., 2019). The principles behind this path are, existing knowledge 
elements are more likely to increase the likelihood of the article being discovered and cited 
by other researchers, and new knowledge elements are used to highlight topics, techniques 
or methods that are different from previous research. Furthermore, as the concentration val-
ues of subgraphs containing new knowledge units and those without new knowledge units 
exhibit an inverse relationship. This implies that the increase of new elements is lower than 
the growth of existing elements.

It is important to recognize that knowledge evolution can differ greatly across various 
fields. As mentioned earlier, the research on the Metaverse has been relatively limited, 
resulting in connectivity changes within the knowledge structure from GDM (5)

 to GDM (9)
 

(2012–2021) that primarily rely on the combination of existing knowledge elements. 
However, this changed in 2022 when there was a significant increase in investments and 
the number of papers in the field of Metaverse (Gao et al., 2023). During this period, cor-
responding to GDM (10)

 to GDM (13)
 , a substantial influx of new knowledge elements entered, 

reflecting technological advancements or conceptual developments. Existing knowledge ele-
ments established linkages with these new elements, resulting in the increasing of hybrid 
combinations, while the concentration of singular types of combinations began to decline.

On the other hand, considering the impact scope of keywords, we identified 81  
distinct combinations in GDI

 and 79 in GDM
 . In the same vein, these combinations are fur-

ther typed into three categories: mono-type (H–H, M-M, and L-L), pairwise-type (H-M, 
H–L, and M-L), and mixed-type (H-M-L). In other words, a total of 7 different types of 
combinations ( R = {H − H, M −M, L − L, H −M, H − L, M − L, H −M − L} ) can be 
identified in GDx

 . Figure  10 provides the dynamic linkage results of keywords from  
different impact-scope. Being a crucial structure of knowledge structure, the combinations 
with higher concentration values (denoted by CR

(g4,i)
 ) in M4.1 dictates the form of knowl-

edge element combination patterns. As can be seen in Fig. 10 ( GDI
 , M4.1), the combina-

tions of pairwise-type ( CH−M

(g4.1)
∈ [0.471, 0.591] and CH−L

(g4,1)
∈ [0.081, 0.121] ) and mixed-type 

( CH−M−L

(g4,1)
∈ [0.305, 0.368] ) take the dominant positions among all patterns. This implies 

that highly important nodes are directly paired nodes of different types.
Subgraphs with low concentration values can still be relatively dominant subgraph types 

(Zou et al., 2023). As the connectivity degree grows (from M4.1 to M4.6), there are clear 
increases in the concentration values of H–H. This type also serves as the dominant mode 
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of M4.4, M4.5, and M4.6. This means that direct links between high-impact nodes are 
favored owing to their high frequency of co-occurrence and thematic relevance, wherein 
such direct connections enhance information propagation efficiency and the structure sta-
bility of the knowledge. Likewise, in GDM

 , the combinations of pairwise-type and mixed-
type similarly dominate among all patterns. Furthermore, with the increase in connectivity 
degree (from M4.1 to M4.6), there is also a noticeable increase in the concentration values 
of H–H. This suggests that the knowledge linking patterns found in GDI

 are not exceptional.
In previous studies, it has been shown that keywords with higher impact are general 

vocabularies with broad semantics (Cheng et al., 2020), which underlie the core structure 
of domain knowledge. This suggests that scientific creations are primarily grounded in the 
core topics of prior works. It should be noted that new keywords secure connections from 
representative keywords directly, instead of co-occurring with less-known keywords at 

Fig. 10  The dynamic combination results of keywords from different impacts in G
D

I
 and G

D
M
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their first timestamps. This finding challenges the conventional understandings described 
in Sect.  “Network properties of the dynamic KCNs” and contributes to a more nuanced 
comprehension of domain knowledge structures.

The incremental changes of knowledge structure

Since the proposed approach to gauge knowledge structure evolution strength takes into 
consideration both knowledge content and structural information, it is beneficial to com-
pare our approach with that only considers knowledge content or structural information.

Figure 11a–b displays the frequency distribution of nodes, edges, and different combina-
tion types across consecutive snapshots for GDI

 . The inset plots detailed frequency distribution 
of existing combinations. It can be seen that all lines in the main graphs increased over time, 
which shows a consistency with the continuous growth of scientific creations in the IIoT field.

Also, we calculated the incremental changes of different types of combinations, as shown 
in Fig. 11c–d. The addition of new nodes ( ΔNode , Eq. (6)) is gradually decreasing, while the 
addition of edges ( ΔEdge , Eq. (7)) continues to grow at a relative high level. In relation to the 
incremental changes of nodes or edges, the fluctuations of ΔEdge are consistent with the fluc-
tuations of ΔX , suggesting the preservation, extension, and combination of existing simpler 
subgraphs. From a quantitative perspective, the substantial increase in fully connected sub-
graphs significantly outpaces the modest growth in edges and nodes, signifying a profound 
transition in the network’s topological patterns. In other words, previously disconnected 

Fig. 11  The frequency distribution and relative changes of nodes, edges, and different types of combina-
tions in G

D
I
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ideas and resources are successfully combined, and this can be confirmed from the addition 
of edges. Another remarkable feature is that the gap between the size of ΔExisting(see Eq. (8)) 
and ΔPotential (see Eq. (9)) became greater over time, accompanied by a decrease in ΔNode . 
This finding indicates that the knowledge structure of IIoT is gradually stabilizing, and sci-
entific knowledge creation is primarily driven by the recombination of existing knowledge.

For comparison, we conducted similar work on GDM
 . The upward trend of all lines in 

Fig. 12 (a-b) indicates a consistent pattern with the ongoing expansion of scientific devel-
opments within the Metaverse domain. One noticeable point is that the value of TExisting 
consistently surpasses TPotential , completely contrasting with the situation observed in GDI

 . 
From GDM (10)

 to GDM (13)
 , the burgeoning interest in the Metaverse led to a rapid reversal of 

ΔPotential over ΔExisting . Meanwhile, the ΔNode underwent a significant decline during this 

(6)ΔNode = NGDx (i+1)
− NGDx (i)

(7)ΔEdge = EGDx (i+1)
− EGDx (i)

(8)ΔExisting = T
GDx (i+1)

Existing
− T

GDx (i)

Existing

(9)ΔPotential = T
GDx (i+1)

Potential
− T

GDx (i)

Potential

Fig. 12  The frequency distribution and relative changes of nodes, edges, and different types of combina-
tions in G

D
M
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stage. This phenomenon suggests that a reshaping of the metaverse is being remodeled, 
with the abundant introduction of new knowledge elements generating more opportunities 
for scientific knowledge creation.

To investigate more in-depth how the knowledge structure evolves, we calculated the 
knowledge structure evolution strength based on different strategies. It should be consid-
ered that different types of evaluation strategies yield different results. Figure 13 shows the 
results for two types of strategies in relation to the evolution strength of knowledge struc-
ture. With the increase of nodes and edges, all lines are consistently above zero and reach a 
peak at a snapshot GDx(2)

 or GDx(3)
 and then shrink to a low level. This similar evolutionary 

trend suggests that the proposed approaches have been proven to be effective in quantify-
ing the intensity of knowledge network evolution. Based on relative alterations in nodes or 
edges, dramatic shifts in the knowledge structure were found around the snapshots GDx(2)

 or 
GDx(3)

 , for both the IIoT and Metaverse. However, this inference could be challenged when 
perspectives shift to subgraph evolution. More specifically, at snapshot G3 , even though 
the value of knowledge structure evolution strength reached a peak, which predominantly 
propelled by existing knowledge components with high impact (see Figs. 9 and 10). At this 
phase, knowledge structure is undergoing a process of internalization, wherein established 
and new knowledge elements lack ample interactions. Yet, as the research field progres-
sively unfolds, an escalating amount of new knowledge begins to intertwine with the exist-
ing knowledge, enriching the semantic of the domain knowledge and leading to a more 
profound evolution of the domain knowledge structure.

Fig. 13  The degree of knowledge structure evolution based on different strategies in G
D

I
 and in G

D
M
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Discussion

Knowledge structure is the result of the continuous evolution of the forces that formed 
it, during which the node properties and structural patterns inherently affect the system’s 
function. The development of knowledge structure is a complex process influenced by vari-
ous factors, such as global network properties (Castillo-Vergara et al., 2018; La & Chai, 
2021), meso-level community structures (Cho, 2020), and so on.

This study goes beyond macro global properties and pure structural motifs, and the goal 
is to uncover linkage patterns and incremental evolution of knowledge structure, thereby 
facilitating the process of knowledge recombination and generating new knowledge. We 
proposed a novel framework that integrates the incremental update mechanism of knowl-
edge network construction, subgraph enumeration, and knowledge combination. On the 
one hand, node attributes are applied to the analysis of linkage patterns and incremental 
evolution of knowledge combinations. On the other hand, with the aid of incremental net-
work methods, specific types of motifs are deconstructed to reveal potential knowledge 
combinations.

Key findings

The key findings arise from the application of the proposed framework and how linkage 
patterns and knowledge structure evolve in specific domains, in our case studies, the IIoT 
and the Metaverse fields.

Firstly, the proposed framework proves to be effective in capturing the dynamics of 
domain knowledge structure. With the integrated elements, it identifies the existence of 
intra-change and inter-change events that further associated with knowledge combinations.

Secondly, from a quantitative perspective, the star-like knowledge structure (i.e., M4.1) 
exhibits a significantly contrasting evolutionary trend compared to the behavior observed 
in other structures, and it partly explains how knowledge creation utilizes the recombina-
tion of existing knowledge elements (nodes not linked in M4.1) (Fortunato et al., 2018).

Thirdly, after incorporating node attributes into the combination structure, the distribu-
tion of knowledge linkage patterns of different types of decomposable structures, largely 
differ from each other. In a sense, the mixed strategy (e.g., high impact knowledge ele-
ments are more likely to be linked with elements of middle/low level of impact) is the main 
path toward knowledge linkages. The rationale might be that node attributes (here the node 
age and node impact) play a role in the evolution of knowledge structure (Ribeiro & Silva, 
2014).

Theoretical and practical implications

This study contributes to innovation research and practice in several ways. Theoretically, 
taking the structure of knowledge networks as proxies for knowledge structure (Cheng 
et al., 2020; Cho, 2020), the novel application of motifs in the paper can identify decom-
posable structures of knowledge in a certain field, which is conducive to revealing the prin-
ciples behind knowledge linkage and quantifying the evolution of knowledge structure. It 
is difficult to understand the evolution of knowledge structure when only involving global 
network properties (Castillo-Vergara et  al., 2018; La & Chai, 2021) or purely structural 
motifs (Feng et al., 2021; Wang et al., 2022). Our research offers a much more comprehen-
sive understanding of the formation and evolution of knowledge structure. The introduction 
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of node attributes enables researchers to investigate the rules that underlie the organization 
of decomposable structures. Also, the view of identifying existing or potential knowledge 
combinations from specific decomposable structures enriches the scenarios of employing 
network motif theory and methods.

Practically, beyond the reported results, the methodologies and findings of our study 
can serve as useful resources for stakeholders. Firstly, the proposed integrative framework 
could be applied into other domains, enabling researchers or policymakers in the short-
term or long-term understanding on any topics, and the overall landscape of the field being 
studied (Balili et al., 2020). Secondly, the dynamics of knowledge structure found in this 
study, pave the way for firms to search for new potential applications around their prior 
existing knowledge combinations, and also to exploit toward more value from their estab-
lished knowledge base (Kuo et al., 2019; Tolstoy, 2010).

Limitations and future work

Nevertheless, this work has several limitations, which suggest possibilities for future 
research. Firstly, it is crucial to select and extract “highly relevant” keywords when con-
structing knowledge networks to represent the domain-specific knowledge structure. To 
cope with the lack of author-selected keywords in some articles, we plan to formulate some 
extraction rules for collecting keywords from title, abstract, and full-text information (Ba & 
Liang, 2021). Secondly, the parameter used in defining the age property should be further 
validated, although using the default setting ( � = 3 ) generates satisfactory results in the 
two fields. As a related point, other types of properties, such as functional, disciplinary, and 
semantic information, should be took into account to further investigate the rules underlie 
the organization of higher-order structures. Thirdly, there are multi-level and multi-type 
relationships between keywords (e.g., co-occurrence, citations, co-citation, and semantic), 
as such, the co-occurrence of keywords cannot fully capture the topic or content correlation 
of a research field. In our future work, it is necessary to introduce multi-level or multi-type 
of relationships in building a simplex or multiplex knowledge network and analyzing the 
domain-specific knowledge structure (Boccaletti et al., 2014).

Conclusion

This study proposed an integrative framework to study the linkage patterns and evolution-
ary domain knowledge structure. The findings indicate the feasibility of utilizing motif 
analysis to uncover linkage patterns in knowledge structures, and the proposed method-
ology demonstrates effectiveness in quantifying the rate of knowledge structure evolu-
tion within specific domains. Guided by the framework, we investigated the evolution of 
domain knowledge structure based on incrementally updated dynamic KCNs. Node prop-
erties and motifs were combined to quantify knowledge combinations, upon which the evo-
lution strength of specific structures was studied. Experiments from two fields demonstrate 
the framework’s capability in identifying favored knowledge combinations and elucidating 
the evolutionary trajectories of these knowledge structures. The insights generated consti-
tute significant contributions to the research community and policymakers, bearing impli-
cations for advancing theoretical comprehension and facilitating practical applications.
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Appendix

The whole procedure to construct dynamic KCNs is shown in pseudo codes described in 
Algorithm 1. The workflow of motifs detection and subgraph enumeration is shown in the 
Algorithm 2.

Algorithm 1: How to construct dynamic KCNs

Algorithm 2: The workflow of motifs detection and subgraph enumeration
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