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Abstract
Measuring the impact of a publication in a fair way is a significant challenge in bibliomet-
rics, as it must not introduce biases between fields and should enable comparison of the 
impact of publications from different years. In this paper, we propose a Bayesian approach 
to tackle this problem, motivated by empirical data demonstrating heterogeneity in citation 
distributions. The approach uses the a priori distribution of citations in each field to esti-
mate the expected a posteriori distribution in that field. This distribution is then employed 
to normalize the citations received by a publication in that field. Our main contribution is 
the Bayesian Impact Score, a measure of the impact of a publication. This score is increas-
ing and concave with the number of citations received and decreasing and convex with 
the age of the publication. This means that the marginal score of an additional citation 
decreases as the cumulative number of citations increases and increases as the time since 
publication of the document grows. Finally, we present an empirical application of our 
approach in eight subject categories using the Scopus database and a comparison with the 
normalized impact indicator Field Citation Ratio from the Dimensions AI database.

Keywords Normalized citation impact · Field normalization · Time normalization · 
Bayesian score · Citation obsolescence · Citation potential · Citation density
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Introduction

There is a large literature on field-normalized citation counting. An overview of this topic 
can be found in Bornmann and Marx (2015), and Waltman (2016). However, the bibliogra-
phy is much smaller in relation to time normalization. In general, for simplicity, the accu-
mulated citations of a document are divided by the number of years since its publication. In 
this way, a citation is given the same value regardless of when it occurred.
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The use of research publications tends to decrease as the literature ages, and authors 
tend to cite more recent documents while neglecting older ones, a phenomenon known 
as literature obsolescence. Despite this, older papers still have had more time to accu-
mulate citations. Modeling literature obsolescence has been studied since the 1960s, 
with De Solla Price (1965) proposing a negative exponential distribution for the decline 
of literature use over time, while others suggest a lognormal distribution as a better 
measure (Egghe & Ravichandra Rao, 1992; Gupta, 1998). However, due to the ever-
increasing rate of scientific publication (Bornmann & Marx, 2015), older influential 
papers may have had lower citation potential in the early stages of their publication 
compared to younger influential papers.

Both because of the phenomenon of obsolescence, which causes the density of cita-
tions to decrease as the age of the cited document increases, and because of the increas-
ing rate of growth of the scientific corpus, citations to older documents should be given 
more weight than citations to more recent documents. Greater weight in the sense of 
greater recognition when measuring the cumulative impact of a publication.

The empirical citation data show heterogeneity in the distributions. Therefore, the 
Bayesian approach could be used to address the problem of field and time normaliza-
tion. In this approach, the a priori distribution of citations in each field is used to esti-
mate the expected a posteriori distribution in that field. This a posteriori distribution is 
then used to normalize the citations received by a publication in that field.

Regarding the impact of publications, Pérez-Hornero et al. (2010) propose a Bayes-
ian approach that utilizes a weighting scheme based on previous impact factors of spe-
cific journals. This method aims to obtain a reliable and consistent version of the actual 
impact factor. The approach depends on selecting a probability distribution for the 
citation process and a prior distribution over the parameters. They suggest a Poisson-
Gamma family, which extends the negative binomial distribution and is suitable for ana-
lyzing over-dispersed data, with the mean being the impact factor of the journal in the 
previous year.

However, the Journal Impact Factor favours journals that concentrate a large propor-
tion of their citations in the first few years after publication, i.e. journals in fields with high 
obsolescence. Thus, a proposal that gives an increasing marginal score over time could 
benefit fields with less obsolescence.

This paper adopts a Bayesian approach to tackle the issues of field and time normaliza-
tion and proposes a Bayesian Impact Score as a measure of a publication’s impact. The 
score is characterized as increasing and concave with the number of citations received and 
decreasing and convex with the age of the publication. This implies that the additional 
value of a citation decreases as the total number of citations increases, while it increases 
with the time since the publication. Therefore, the impact score assigns less weight to cita-
tions received in the early years after publication and gradually reduces their influence as 
the total number of citations grows.

The paper is organized into several sections. Section “Theoretical framework for field-
normalized citation counting” presents the theoretical framework, while Sect. “Empirical 
data” introduces the empirical data. Section “The model” describes the model used in the 
study. Section “Approaching the Bayesian impact score via a loss function” introduces the 
Bayesian Impact Score, discussing its properties and elasticity. The paper then presents in 
Sect. “Numerical experiments” the results of numerical experiments conducted on eight 
subject categories from the Scopus database and a comparison with the normalized impact 
indicator Field Citation Ratio from the Dimensions AI database. Finally, Sect. “Conclu-
sions” provides conclusions based on the study’s findings.
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Theoretical framework for field‑normalized citation counting

Bibliometrics has a long-standing tradition of normalization, with literature reviews on 
this topic available in Bornmann and Marx (2015) and Waltman (2016). The problem of 
field-specific differences in citation counts arises in the evaluation of research institutions. 
Interdisciplinary research institutes, in particular, typically draw scholars from diverse dis-
ciplinary backgrounds (Wagner et  al., 2001), making it challenging to compare citation 
counts directly.

One of the fundamental principles of citation analysis is that the citation counts of publi-
cations from different fields should not be compared directly, as there are significant differ-
ences in citation density. Citation density refers to the average number of citations per pub-
lication and is responsible for the bias effect called ”citation potential,” a term introduced 
by Garfield (1979) based on the average number of references cited in a publication. For 
instance, the biomedical field often has long reference lists with over fifty references, while 
mathematics typically has short lists with less than twenty references (Dorta-González & 
Dorta-González, 2013a).

Moreover, even within the same field, comparing the citation counts of publications 
from different years directly, even after dividing by the age of publication, is not recom-
mended due to significant differences in the average number of citations per year (Dorta-
González & Dorta-González, 2013b). These variations result from differences in citation 
habits, which influence both the number of citations and the likelihood of being cited (Ley-
desdorff & Bornmann, 2011; Zitt & Small, 2008).

However, for practical purposes, it is necessary to compare publications from different 
fields, years, or document types. In order to facilitate such comparisons, normalized cita-
tion impact indicators have been proposed.

Normalized indicators based on average number of citations

Normalized indicators rely on the concept of the expected number of citations for a publi-
cation, which is determined by calculating the average number of citations of all publica-
tions in the same field, from the same year, and of the same document type. Field nor-
malization is traditionally based on a classification system, such as the WoS journal subject 
categories, although there are other options available (Bornmann & Wohlrabe, 2019). 
Under this method, each publication is allocated to one or more fields, and its citation 
impact is evaluated in comparison to other publications within the same field.

The relative citation rate (RCR) was among the earliest techniques developed for nor-
malizing citations across fields. Schubert and Braun (1986) and Vinkler (1986) were the 
originators of this method. They determined the average citation rate for a specific field 
or journal and used it as a reference score to normalize papers published within the same 
field or journal. This was accomplished by dividing the citation counts of each paper by the 
reference score. The Field-Weighted Citation Impact (FWCI) is a variant of this indicator, 
although it is highly correlated with the RCR (Purkayastha et al., 2019). However, the use 
of the arithmetic mean in RCR normalization has been criticized because it is not suitable 
for skewed distributions with a long tail as it is sensitive to outliers (Glänzel & Moed, 
2013; Van Raan, 2019).

A variant of the RCR can be obtained for a set of publications in two ways. One way 
is by calculating the average of the normalized citation scores of the publications in the 
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set. The other way is by computing the ratio of the total number of actual citations to the 
expected number of citations for the same set of publications. There is no consensus in the 
literature as to which of the two approaches is better. However, most researchers seem to 
prefer the first approach, which is the average of ratios, over the second approach, which is 
the ratio of averages. This preference is evident in the works of Lundbert (2007); Opthof 
and Leydesdorff (2010); Thelwall (2017) and Van Raan et al. (2010). Nevertheless, some 
authors (Moed, 2010; Vinkler, 2012) prefer the average ratio approach. Empirical stud-
ies comparing the two approaches indicate that the differences are minor, especially at the 
level of research institutions and countries (Herranz & Ruiz-Castillo, 2012; Larivièere & 
Gingras, 2011).

This paper uses a basic methodology centred on the normalization of actual citation 
counts through the integration of expected citation counts. Currently, the three major gen-
eral purpose bibliographic databases provide standardized citation indicators. Expected 
citation counts are defined as the average citation counts of papers within the same field 
and year, giving rise to the concept of CNCI (Category Normalised Citation Impact). 
CNCI is a metric closely related to Clarivate Analytics’ InCites database. It is similar to the 
Field-Weighted Citation Impact (FWCI) in Scopus’ SciVal database and the Field Citation 
Ratio (FCR) in the Dimensions AI database.

These metrics, including CNCI, FWCI and FCR, share the common goal of providing 
a normalized assessment of citation impact. They do this by accounting for the variation 
that naturally occurs across fields and years. In essence, they provide a more nuanced and 
equitable assessment of scholarly impact by considering the different contexts in which 
scholarly research is conducted.

Normalized indicators based on percentiles

McAllister et  al. (1983) suggested using percentiles to address skewed distributions. 
Typically, a field-specific threshold is selected to identify highly cited publications. For 
example, Tijssen et al. (2002) consider the top 1 and 10% most highly cited publications, 
while Van Leeuwen et al. (2002) focus on the top 5%, and González-Betancor and Dorta-
González (2017) estimate the top 10% most highly cited publications empirically. Born-
mann and Williams (2015) provide a recent review of percentile measures.

However, determining the exact number of publications above a given threshold is 
often impractical because many publications in a field have the same number of citations. 
Pudovkin and Garfield (2009) and Leydesdorff et al. (2011) propose some solutions to this 
issue. Waltman and Schreiber (2013) review this topic, and Schreiber (2013) provide an 
empirical comparison.

Alternatively, Leydesdorff et  al. (2011) propose dividing publications into several 
classes based on percentiles of the citation distribution in a field (e.g. below the 50th 
percentile, between the 50th and 75th percentile, etc.), instead of distinguishing between 
highly cited and not highly cited publications. A similar approach is presented by Glänzel 
(2013) and Glänzel and and Debackere (2014).

Finally, it is worth noting that older papers have had more time to accrue citations. 
However, as the scientific literature expands at an accelerating rate (Bornmann and Mutz, 
2015), influential papers that are older may have had a lower potential for citations in the 
short term than similarly influential but younger papers. Furthermore, calendar year-based 
normalization methods can yield imprecise results for recently published papers (Ioannidis 
et al., 2016). In a recent empirical study comparing normalized indicators, Dunaiski et al. 
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(2019) found that percentile-based citation scores are less affected by field and time biases 
than mean-based citation scores.

Empirical data

The empirical application used the Scopus database as the primary data source. Eight sub-
ject categories (subfields) were considered, including three from the natural sciences, two 
from the social sciences, one from the health sciences, one from engineering and one from 
the humanities: Cell Biology, Economics & Econometrics, Electrical & Electronic Engi-
neering, General Chemistry, General Medicine, General Physics & Astronomy, History 
and Library & Information Science.

The selection of these subfields was guided by the authors’ previous experience to 
include disciplines with diverse characteristics. Within each subfield, one disciplinary 
journal was selected from the top 10% of the most cited journals, as determined by the 
Scopus CiteScore. Then, for each selected journal, all research articles published in 2019 
and catalogued in the database were collected. Finally, for each research article, the pub-
lication years of all cited references less than 150 years old were downloaded. Table  1, 
which was used in Dorta-González and Gómez-Déniz (2022), shows the index of disper-
sion ( ID = var(X)∕IE(X) ) together with the mean and variance of the empirical data.

To empirically analyze the behavior of our Bayesian Score, we used the Dimensions AI 
database and its article-level normalized impact indicator, the Field Citation Ratio (FCR). 
This choice was made because this database offers Open Metrics, which provides open 
access to both citation counts and the FCR. This contrasts with similar normalized indica-
tors in Web of Science (InCites) and Scopus (SciVal), where a subscription to these ser-
vices is required to access such information.

The FCR serves as a metric to measure the relative citation performance of a pub-
lication compared to other articles within its field and of similar age. An FCR greater 
than 1 indicates an above-average citation impact as determined by the journal classi-
fication system used in the Dimensions AI database, specifically the Field of Research 

Table 1  Mean, variance and index of dispersion of the different journals studied

Ag. Cell: Aging Cell; Amer. Econ. Rev.: American Economic Review; IEEE Comm. Mag.: IEEE Commu-
nications Magazine;
Acc. Chem. Res.: Accounts of Chemical Research; BMC Med.: BMC Medicine;
Adv. in Theor. & MP: Advances in Theoretical and Mathematical Physics; Am. Ant.: American Antiquity;
IEEE Trans. Inf. Th.: IEEE Transactions on Information Theory

Ag. Cell Amer. Econ. Rev. IEEE Comm. Mag. Acc. Chem. Res.

Mean 9.21893 13.6897 4.68677 8.59967
Variance 61.9357 258.575 49.128 115.578
ID 6.71832 18.8883 10.4823 13.4398

BMC Med. Adv. in Theor. & MP Am. Ant. IEEE Trans. Inf. Th.
Mean 8.22895 17.5842 21.6714 14.6476
Variance 69.0984 270.698 467.049 254.451
ID 8.39699 15.3944 21.5514 17.3715
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(FoR) subject code and publication year. This calculation is applied to all publications 
in Dimensions AI that are at least 2 years old and published after the year 2000.

We focused on the eight journals listed in Table 1. We randomly selected a simple 
sample of size N = 5048 research articles from the 2014–2021 cohort, each with a cal-
culated FCR. This represents approximately 32% of the total articles published during 
these years. We downloaded the total number of citations from the database up to the 
year 2023. In addition, we retrieved the FCR values and calculated the corresponding 
Bayesian Score based on the definition given in this paper.

The model

We consider that X1,X2,… ,Xt are independent and identically distributed random vari-
ables with values in X ∈ ℕ = {0, 1,…} . They represent the number of citations of a 
journal or a collection of journals in a subject category (in general, a set of papers 
from the same year and as homogeneous as possible on the topic addressed) in the last 
t years. Following to Burrell (2002) we are going to assume that X ≡ Xi initially fol-
lows a Poisson distribution with mean 𝜃 ∈ Θ > 0 . That is,

Based on empirical data, it appears that citations of papers tend to decline over time, par-
ticularly after reaching a certain peak. This trend can be represented through a Poisson 
distribution model. Nevertheless, the Poisson distribution assumes equidispersion, where 
the variance is identical to the mean, rendering it unsuitable for defining the random vari-
able X. Empirical research has demonstrated that X exhibits overdispersion, whereby the 
variance surpasses the mean.

Additionally, it has been proposed that over-dispersion is associated with the het-
erogeneity within the population of subject categories. Under these circumstances, the 
parameter � can be treated as a random variable that varies across distinct journals 
within the same subject category. This reflects the uncertainty surrounding this param-
eter, with its value fluctuating from one entity to another, following a probability den-
sity function. In this situation, it is assumed that the parameter adheres to a gamma 
distribution, characterized by a shape parameter of 𝛼 > 0 and a rate parameter of 𝛽 > 0 , 
i.e.

Thus, the unconditional distribution results a negative binomial distribution, 
X ∼ NB(�, 1∕(� + 1)) . It is well-known that for mixed Poisson distributions the variance is 
always greater than the mean.

Other mixing distributions, such as the inverse Gaussian distribution, can be consid-
ered in practice, in addition to the gamma distribution. In line with this, Burrell (2005) 
explored the use of the negative binomial and beta distributions as mixing distribu-
tions, resulting in the Waring distribution.

(1)f (x|�) = Pr(X = x) =
�x

x!
exp(−�), x = 0, 1,…

(2)𝜋(𝜃) =
𝛽𝛼

Γ(𝛼)
𝜃𝛼−1 exp(−𝛽𝜃), 𝜃 > 0.
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Approaching the Bayesian impact score via a loss function

The number of cites of a journal or a subject category of journals is thus specified by the 
random variable X following the probability mass function f (x|�) which depends on an 
unknown parameter � . In our case X is assumed to follow a Poisson distribution. An impact 
score can be considered as a functional, say F ∈ F  , that assigns to X, the number of cites, a 
positive real number F(X). Here F  is the set of possible values of the impact score. Let now 
L ∶ X × F → ℝ

+ be a loss function that assigns to any (x,F) ∈ ℕ × F  the loss sustained, 
L(x, F), when X takes the value x and the impact score of the journal is F. The impact score 
we propose can be viewed as a function that assigns to each value x ∈ ℕ = {0, 1,…} a 
value within the set F ∈ ℝ

+ , the action space. The impact score is assumed to take only 
positive values. The impact score should be determined such that this expected loss is min-
imised. Thus,

The quadratic loss function, L(x,F) = (x − F)2 , is the most commonly used loss function. 
Here, the unknown F is the mean of the random variable X, i.e., F(�) = IE(X|�) , where F is 
dependent on � . While other loss functions exist, the use of this loss function is often pre-
ferred due to its symmetry, which allows for fair compensation between gains and losses.

The above procedure describes the impact score for a journal when � is known. How-
ever, the population of journals results in practise heterogeneous, among the collective of 
journals in the subject category for which the journal belongs. This can be seen as that � is 
a particular realization of a random variable Θ , with a prior distribution �(�) . If prior expe-
rience is not available, the corresponding impact score can be computed by minimising the 
risk function, i.e. by minimising IE�(�)[L(F(�),F)] , as F = IE�[F(�)] , which is the mean of 
the unknown impact score F(�) among all the journals in the population of journals (the 
subject category).

In practice, it is common to have some prior experience or information available. In 
this case, we can use a sample x̃ = (x1,… , xt) from the random variable X to estimate the 
unknown impact score F(�) by means of the Bayes estimate F∗ , which minimises the Bayes 
risk. This involves minimising IE�[L(F(�), �)] , where the expectation is taken with respect 
to 𝜋(𝜃|x̃) , the posterior distribution of the risk parameter � given the sample information x̃.

Observe that given the sample x̃ from (1) and assumed (2) as the prior distribution we 
get that the posterior distribution of � given x̃ is proportional to

where x+ =
∑t

i=1
xi is the number of cites in the sample. Therefore, this posterior distribu-

tion is again a gamma, i.e. the likelihood and prior are a conjugate pair, but with updated 
parameters given by,

The decision-maker must now calculate the best estimator of the expected number of X 
given the past experience. To achieve this, they must calculate the Bayes estimator of F(�) , 
which can be attained by updating the parameters provided in (3)-(4) in IE(�) = �∕� to get

F = argmin
F

IE[L(x,F)].

𝜋(𝜃|x̃) ∝ 𝜃𝛼+x
+−1 exp [−(𝛽 + t)𝜃],

(3)�∗ = � + x+,

(4)�∗ = � + t.
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We now have all the ingredients needed to formulate an expression for the impact score to 
a journal which x+ cites in the previous t years. First, we normalize the expression given in 
(5) such that at the outset (x+, t) = (0, 0) , which is given by and due that the impact score 
should be revised every two years, we allow t to take even values including the zero. That 
is,

The expression (6) assures us that at the beginning of the process, i.e. (x+, t) = (0, 0) , the 
impact score is 1. This is the impact score for a new journal which enters into the system, 
since no available information exists for it. The remaining combinations of x+ and t are 
expressed as a percentage of this first value.

In practice, if the decision-maker wishes the initial rate to be a value other than 1, it could 
simply be replaced (6) by

where 𝜔 > 0 is a constant.

Properties of the Bayesian impact score and its elasticity

The following relations of the Bayes rate suggested are compatible with the ideas about a 
impact score should verify,

The equation (8) suggests that, all else being equal, the impact score will increase as the 
number of citations increases. In contrast, according to equation (9), the impact score will 
decrease as t increases, while keeping the number of citations constant.

Observe that it is possible to write (7) as

where x̄ is the sample mean and �(t) = t∕(� + t) . That is, this Bayesian estimate of the 
impact score can be written as the convex (weighted) sum of the prior mean of Θ , and the 
mean of the number of cites in the sample, where the weighted factor �(t) can be rewritten 
see (Ericson, 1969) as

(5)F(x+, t) = IE𝜋(𝜃|x̃)(F(𝜃)|x̃) =
𝛼 + x+

𝛽 + t
.

(6)F∗(x+, t) =
F(x+, c)

F(0, 0)
=

�

�

� + x+

� + t
, x+ = 0, 1,… ; t = 0, 2, 4,…

(7)F∗(x+, t) =
�F(x+, c)

F(0, 0)
=

��

�

� + x+

� + t
, x+ = 0, 1,… ;t = 0, 2, 4,…

(8)ΔF∗
x+
(x+, t) =F∗(x+ + 1, t) − F∗(x+, t) =

𝜔𝛽

𝛼(𝛽 + t)
> 0,

(9)ΔF∗
t
(x+, t) =F∗(x+, t + 2) − F∗(x+, t) = −

2𝜔𝛽(𝛼 + x+)

𝛼(𝛽 + t)(𝛽 + t + 2)
< 0.

(10)F∗(x+, t) =
𝜔𝛽

𝛼
[𝛾(t)x̄ + [1 − 𝛾(t)]IE(𝜃)], 0 < 𝛾(t) < 1,

�(t) =
t

� + t
=

t var[IE(X|�)]
t var[IE(X|�)] + IE[var(X|�)]

.
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The quantity var[IE(X|�)] provides a measure of the heterogeneity of subject categories, 
while IE[var(X|�)] represents a global measure of the dispersion of these means across all 
journals in the population. It should be noted that �(t) is a specific function that depends on 
the model parameters, such as � in this case, rather than an arbitrary constant, and is deter-
mined by both the journal and the collective citation experiences.

Moreover, it is worth mentioning that �(t) is supported on the interval (0, 1) and approaches 
0 as � → 0 , while �(∞) → 1 , although these are only limiting cases. In practice, the value of 
�(t) falls between 0 and 1, implying that F∗(x+, t) will always depend on the estimated param-
eters of the model, which will be obtained using an empirical Bayes approach. However, these 
extreme values have meaningful interpretations: when �(t) is close to 1, the journal’s prior 
experience has a more significant impact on the final impact score, whereas when �(t) = 0 , 
less weight is assigned to this experience, and the a priori information plays a more dominant 
role.

Table 3 presents the impact score values, as computed using the formula in (7), for various 
journals and different values of x+ and t, based on the parameter estimates provided in Table 2.

In addition, expressions (7, 8, and 9) can be employed to estimate the elasticity of the 
impact score, which measures the impact of changes in the number of citations on the score 
for a given journal or subject category. This estimator is obtained by

Observe that from (11), we have that 𝜂x+ < 1 , i.e. an inelastic function, being an increasing 
function on x+ and decreasing with respect to � . Then that category (journal) with an esti-
mated value of � greater than another category (journal) will have a worse response in the 
posterior mean of X from one period to another.

On the other hand, the elasticity of (10) with respect to t results

which results negative and again lower than 1. Furthermore, it is an increasing function on 
�.

(11)�x+ =
ΔF∗

x+
(x+, t)

Δx+
x+

F∗(x+, t)
=

x+

� + x+
.

(12)�t =
ΔF∗

t
(x+, t)

Δt

t

F∗(x+, t)
= −

t

� + t + 2
,

Table 2  Estimates, via maximum 
likelihood, of the parameters 
of the poisson and negative 
binomial distributions and AIC 
values for the different journals 
studied

Journal Poisson NB

�̂ AIC �̂ �̂ AIC

Ag. Cell 9.21 61920.80 1.99 0.21 42425.50
Amer. Econ. Rev. 13.68 71880.30 1.03 0.07 29571.10
IEEE Comm. Mag. 4.68 21884.30 1.27 0.27 13981.00
Acc. Chem. Res. 8.59 219046.00 1.08 0.12 112400.00
BMC Med. 8.22 83089.30 1.45 0.17 51546.40
Adv. in Theor. & MP 17.58 28589.80 1.34 0.07 12752.40
Am. Ant. 21.67 40815.70 1.15 0.05 14954.80
IEEE Trans. Inf. Th. 14.64 172890.00 1.14 0.07 72734.40
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Numerical experiments

Table  2 displays the parameter estimates for the journals using both Poisson and nega-
tive binomial distributions. Model selection was based on Akaike’s information criterion, 
which is calculated as AIC = 2(k − �max) , where k represents the number of model param-
eters and �max represents the maximum value of the log-likelihood function. For further 
details on this criterion, see Akaike (1974). A lower value of AIC is indicative of a better 
model fit, and thus desirable for model selection.

In all cases, it is apparent that the negative binomial distribution outperforms the Pois-
son distribution for the datasets considered. This superiority of the negative binomial dis-
tribution over the Poisson distribution and the empirical data is further supported by Fig. 1.

Figure 2 shows the graphics of elasticities given in (11 and 12) for the different journals 
considered. The citation elasticity (time elasticity) of the impact score is a measure used to 

Fig. 1  Empirical and fitted distribution using Poisson (thin line) and negative binomial (thick line) distribu-
tions
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show the degree of response, or elasticity, of a journal’s impact to changes in the number of 
citations received (time). It gives the percentage change in the impact generated in relation 
to a unit percentage change in the citations (time), considering that time (citations) remain 
constant (ceteris paribus).

In general, the impact score of a journal can be considered inelastic (or relatively inelas-
tic) when the elasticity is less than one (in its absolute value); this happens when changes 
in citations (time) have a relatively small effect on the impact generated by the journal. 
As seen in Fig. 2, the impact score of the journals considered in this application is inelas-
tic with respect to citations and time (in absolute value), although its elasticity tends to 
increase with the volume of citations and time.

The elasticity is therefore a measure of the sensitivity (or responsiveness) of the impact 
score to changes in its variables. The formula returns a positive or negative result, depend-
ing on whether the relationship between the variable and the impact is direct or inverse. For 
example, if citation increases by 10% and impact increases by 5%, the citation elasticity 
is 5%/10% = 0.5. However, if time (the age of the cited reference) increases by 10% and 
impact decreases by 5%, the time elasticity is − 5%/10% = − 0.5.

It should be noted that the conclusions drawn here are based on a small sample of jour-
nals and not on the entire Scopus publication corpus. As can be seen in Fig. 2, the dif-
ferences between the journals considered in this empirical application in terms of elas-
ticities are small, almost imperceptible to the naked eye in the case of time elasticity. The 

Fig. 2  Elasticity of the impact 
score for the different journals 
considered
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elasticity of the impact score with respect to the number of citations (citation elasticity) is 
higher for journals in the social sciences and humanities (i.e. economics and archaeology) 
and lower for journals in the natural sciences and health (i.e. biology and medicine). The 
opposite relationships are observed for the elasticity of the impact score with respect to 
time (time elasticity) in absolute value. Except for one engineering journal (IEEE Comm. 
Mag.) that exhibits the smallest absolute value of time elasticity, the impact score’s elastic-
ity in relation to time is less for social sciences and humanities journals (such as economics 
and archaeology) and greater for natural sciences and health journals (such as biology and 
medicine). Note that in the case of negative values, the smallest numbers become the larg-
est in absolute value.

In the interpretation at the paper level, the impact score of the paper appears directly in 
Table 3 when crossing the age of the paper (t) and the citations received ( x+ ). This normal-
ization of the impact of a paper is in relation to the citation frequencies observed in the past 
in each journal. It is adjusted, therefore, to the obsolescence of the literature on the topic of 
the journal. For reasons of space, the scores in Table 3 are shown with only two decimals 
and in intervals or classes of two years and 10 citations. However, it can be extended in a 
similar way to smaller intervals, and even to one citation and one year.

Thus, for example, in the American Economic Review, a highly prestigious publica-
tion in economics, a paper with 10 citations after two years (an average of 5 cites/year), its 
impact can be quantified in a score of 0.36. If said paper does not receive citations in the 
two subsequent years (third and fourth of life), its score is reduced by half (0.18). On the 
other hand, if during the third and fourth year of life it receives another 10 additional cita-
tions (same average of 5 cites/year), then its score would be 0.35, slightly lower than it was 
in the second year.

Observe in this example that with a uniform citation distribution of 5 cites/year, the 
marginal score of the first citations is somewhat higher than that of the last ones. This is 
because in this journal the articles usually receive fewer citations during the first two years 
of life than during the following two, so the marginal score of citations in the field defined 
by the topic of the journal decreases during the first years of life. However, the opposite 
happens when we exceed the peak of the citation distribution, which for this journal is 
between 4 and 6 years. This is observed in the rest of the values of the diagonal that are 
again 0.35.

Now suppose that a different article in this journal receives 20 citations during its first 
two years (at a rate of 10 cites/year). In this case, its impact score is 0.69. If this citation 
rate remains constant, then its score remains at 0.69 during the second interval (third and 
fourth year of life), although it slightly decreases to 0.68 in the following intervals.

As can be seen, the same number of citations has a different impact score depending on 
the expected frequencies in the topic of each journal. These scores are comparable within 
the same journal, but also between journals from different fields. Thus, for example, for 
similar values of citations and years, the scores in the communication journal are much 
higher (almost double) than those in the chemistry journal, for example. Moreover, scores 
in medicine are somewhat higher than those in biology. The lowest scores are reached in 
archaeology and physics, thus indicating that the citation density is higher in these fields.

To empirically analyze the behavior of our Bayesian Score, we used the Dimen-
sions AI database and its article-level normalized impact indicator, the Field Citation 
Ratio (FCR). The FCR serves as a metric to measure the relative citation performance 
of a publication compared to other articles within its field and of similar age. An FCR 
greater than 1 indicates an above-average citation impact as papers in the same field and 
publication year. For the eight journals listed in Table 1, we randomly selected a simple 
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sample of size N = 5048 research articles from the 2014–2021 cohort. This represents 
approximately 32% of the total articles published during these years.

The Pearson linear correlation coefficient between the FCR and the Bayesian Score is 
0.68. This value indicates a significant correlation between the two measures, as would 
be expected when trying to measure the same phenomena. However, it also indicates 
that there are some differences between these normalized measures. We have therefore 
looked at the descriptive statistics of the data distributions to try to identify where these 
observed differences between the two indicators come from.

Table 3  Estimated factor for the journals considered assuming that � = 1

Year: t Number of cites: x+

0 10 20 30 40 50 60 70 80 90 100

2 0.10 0.57 1.05 1.53 2.01 2.48 2.96 3.44 3.92 4.39 4.87 Ag. Cell
4 0.05 0.30 0.55 0.80 1.05 1.30 1.55 1.80 2.06 2.31 2.56
6 0.03 0.20 0.37 0.54 0.71 0.88 1.05 1.22 1.39 1.56 1.73
8 0.03 0.15 0.28 0.41 0.54 0.67 0.80 0.93 1.05 1.18 1.31
2 0.03 0.36 0.69 1.02 1.35 1.68 2.00 2.33 2.66 2.99 3.32 Amer. Econ. Rev.
4 0.02 0.18 0.35 0.52 0.69 0.85 1.02 1.19 1.35 1.52 1.69
6 0.01 0.12 0.24 0.35 0.46 0.57 0.68 0.80 0.91 1.02 1.13
8 0.00 0.09 0.18 0.26 0.35 0.43 0.51 0.60 0.68 0.77 0.85
2 0.12 1.06 1.99 2.93 3.87 4.80 5.74 6.67 7.61 8.55 9.48 IEEE Comm. Mag.
4 0.06 0.56 1.06 1.56 2.05 2.55 3.05 3.55 4.05 4.54 5.04
6 0.04 0.38 0.72 1.06 1.40 1.74 2.08 2.42 2.76 3.09 3.43
8 0.03 0.29 0.55 0.80 1.06 1.32 1.58 1.83 2.09 2.35 2.60
2 0.06 0.58 1.10 1.63 2.15 2.68 3.20 3.73 4.25 4.77 5.30 Acc. Chem. Res.
4 0.03 0.30 0.57 0.84 1.11 1.38 1.65 1.92 2.19 2.46 2.73
6 0.02 0.20 0.38 0.56 0.75 0.93 1.11 1.29 1.47 1.65 1.84
8 0.01 0.15 0.29 0.43 0.56 0.70 0.84 0.97 1.11 1.25 1.38
2 0.08 0.62 1.16 1.70 2.24 2.78 3.32 3.86 4.40 4.94 5.48 BMC Med.
4 0.04 0.32 0.60 0.88 1.17 1.45 1.73 2.01 2.29 2.57 2.85
6 0.03 0.22 0.41 0.60 0.79 0.98 1.17 1.36 1.55 1.74 1.93
8 0.02 0.16 0.31 0.45 0.59 0.74 0.88 1.03 1.17 1.31 1.46
2 0.03 0.29 0.54 0.79 1.04 1.30 1.55 1.80 2.05 2.31 2.56 Adv. in Theor. & MP
4 0.02 0.15 0.27 0.40 0.53 0.66 0.79 0.92 1.04 1.17 1.30
6 0.01 0.10 0.18 0.27 0.36 0.44 0.53 0.61 0.70 0.79 0.87
8 0.00 0.07 0.14 0.20 0.27 0.33 0.40 0.46 0.53 0.59 0.66
2 0.02 0.24 0.45 0.66 0.87 1.08 1.30 1.51 1.72 1.93 2.15 Am. Ant.
4 0.01 0.12 0.23 0.33 0.44 0.55 0.66 0.76 0.87 0.98 1.09
6 0.00 0.08 0.15 0.22 0.30 0.37 0.44 0.51 0.58 0.66 0.73
8 0.00 0.06 0.11 0.17 0.22 0.28 0.33 0.38 0.44 0.49 0.55
2 0.03 0.33 0.63 0.92 1.22 1.52 1.81 2.11 2.41 2.70 3.00 IEEE Trans. Inf. Th.
4 0.02 0.17 0.32 0.47 0.62 0.77 0.92 1.07 1.22 1.38 1.53
6 0.01 0.11 0.21 0.32 0.42 0.52 0.62 0.72 0.82 0.92 1.02
8 0.00 0.08 0.16 0.24 0.31 0.39 0.47 0.54 0.62 0.69 0.77
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The coefficient of variation (CV) in Table  4 is a measure of relative variability used 
to express the dispersion of a sample relative to its mean. It is calculated by dividing the 
sample standard deviation (SD) by the mean. This coefficient is useful for comparing the 
relative dispersion between two data sets, especially when the scales of measurement are 
different, as is the case here, as the CV is dimensionless. A low CV indicates low variabil-
ity relative to the mean, while a high CV indicates higher relative variability.

As can be seen in Table 4, the differences in CV between journals from different disci-
plines are considerable. In the case of the Bayesian Score, these differences are compara-
tively smaller, indicating greater consistency in this new indicator. This can be seen in the 
range of variation for this measure across journals (0.62–3.26 for the FCR and 0.67–2.31 
for the Bayesian Score). However, the discipline of the journal also appears to have a sig-
nificant impact on the CV, highlighting the importance of considering the scientific area of 
application when using either of these indicators. It can also be concluded that the ranking 
of journals from highest to lowest CV is similar according to both metrics. The only dif-
ference is between the American Economic Review and Aging Cell, where they exchange 
positions between sixth and seventh place depending on the metric considered.

The CV is therefore related to the discriminatory power of a measure. The discrimina-
tory power of an impact measure refers to its ability to effectively discriminate between 
the impact levels of different papers. In the context of citation-based impact measures, the 
CV plays a role in this discrimination. A higher CV implies greater variability in the cita-
tion scores of different publications, suggesting a wider range of impact levels. This can 
increase the discriminatory power, as it reflects more pronounced differences in the impact 

Table 4  Descriptive statistics for field citation ratio (FCR) and Bayesian score in a random sample

The coefficient of variation (CV) is defined as the ratio of the standard deviation (SD) to the mean (CV = 
SD/mean)

n Mean SE Median SD CV Kurtosis Skewness Min Max

FCR
 Ag. Cell 385 6.53 0.298 4.32 5.847 0.90 3.453 1.766 0 35.5
 Amer. Econ. Rev. 346 18.52 0.719 16.38 13.368 0.72 0.086 0.748 0.7 67.7
 IEEE Comm. Mag. 1072 4.88 0.253 1.24 8.290 1.70 5.880 2.390 0 52.4
 Acc. Chem. Res. 454 7.61 0.222 6.94 4.739 0.62 0.597 0.811 0.3 24.9
 BMC Med. 597 8.74 0.339 5.82 8.286 0.95 4.209 1.732 0 56.3
 Adv. in Theor. & MP 124 3.43 0.521 1.73 5.797 1.69 36.923 5.294 0 49.9
 Am. Ant. 439 3.13 0.487 0.00 10.204 3.26 116.771 9.602 0 144.9
 IEEE Trans. Inf. Th. 1631 4.14 0.127 2.57 5.124 1.24 11.326 3.043 0 44.1

Bayesian Score
 Ag. Cell 385 0.94 0.036 0.57 0.702 0.75 4.099 1.708 0 4.9
 Amer. Econ. Rev. 346 0.69 0.031 0.52 0.581 0.85 3.003 1.532 0 3.3
 IEEE Comm. Mag. 1072 0.75 0.039 0.12 1.284 1.70 10.709 2.868 0 9.5
 Acc. Chem. Res. 454 1.58 0.049 1.38 1.053 0.67 1.630 1.152 0 5.3
 BMC Med. 597 0.90 0.035 0.62 0.853 0.94 4.427 1.770 0 5.5
 Adv. in Theor. & MP 124 0.08 0.011 0.03 0.121 1.61 19.965 3.996 0 0.9
 Am. Ant. 439 0.05 0.005 0.02 0.111 2.31 45.134 5.592 0 1.3
 IEEE Trans. Inf. Th. 1631 0.17 0.006 0.11 0.223 1.33 17.910 3.322 0 2.7
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of individual papers. Researchers or evaluators may find such a measure valuable in iden-
tifying and prioritizing highly impactful papers, taking into account a more diverse impact 
landscape. Conversely, a lower CV implies a more uniform distribution of citations, which 
may lead to reduced discriminatory power. While this may provide a more consistent view 
of impact across papers, it may struggle to discriminate subtle differences in impact. The 
discriminatory power of an impact measure therefore depends on the specific aims and 
preferences of the analysis. A higher CV might be preferred if the aim is to capture dif-
ferent levels of impact, while a lower CV might be chosen for a more uniform and stable 
assessment of impact.

In essence, a higher CV highlight the heterogeneity in the impact of scholarly papers 
and emphasize that a few can dominate the citation landscape. Researchers and evalua-
tors considering impact measures need to be aware of these dynamics and choose metrics 
that are consistent with their objectives, whether they seek to capture diversity in impact 
(higher CV) or prioritize stability and uniformity (lower CV).

Conclusions

A central problem in bibliometrics is how to compare the impact of publications across dif-
ferent fields and years. While there is a large literature on field-normalized citation counts, 
there is much less research on time normalization.

Traditionally, citation counts are divided by the number of years since a publication’s 
release to simplify the comparison process. This approach assumes that all citations are 
equally valuable, regardless of when they were made. However, as research publications 
age, their usage tends to decrease, and authors tend to cite more recent publications instead 
of older ones, resulting in a phenomenon known as literature obsolescence.

Furthermore, older papers have had more time to accumulate citations, but due to the 
increasing rate at which the scientific corpus is expanding, older influential papers had a 
lower citation potential shortly after publication than younger influential papers. These 
issues highlight the importance of developing a time normalization method that considers 
these factors for more accurate impact comparisons.

Both because of the phenomenon of obsolescence, which causes the density of citations 
to decrease as the age of the cited document increases, and because of the increasing rate 
of growth of the scientific corpus, citations to older documents should be more widely rec-
ognised than citations to more recent documents.

The empirical citation data show heterogeneity in the distributions. Therefore, the 
Bayesian approach is used to solve the problem of field and time normalization. In this 
approach, the a priori distribution of citations in each field is used to estimate the expected 
a posteriori distribution in that field. This a posteriori distribution is then used to normalize 
the citations received by a publication in that field.

The proposed Bayesian Impact Score is increasing and concave with the number of cita-
tions received and decreasing and convex with the age of the publication. This means that 
the marginal score of an additional citation decreases with the cumulative number of cita-
tions and increases with the time since publication.

This impact score gives less value to citations received in the first few years after publi-
cation and reduces its value as the accumulated volume of citations increases. This reduc-
tion in score with citation volume attempts to mitigate the effect whereby highly cited 
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documents attract more attention and tend to receive more citations simply because they 
are highly cited.

Some considerations can be made. The well-known Journal Impact Factor favours jour-
nals that concentrate a large proportion of their citations in the first few years after publica-
tion, i.e. journals in fields with high obsolescence. However, our proposal, which gives an 
increasing marginal score over time, is fairer in fields with less obsolescence.

A citation loss function is used to fit the citations received by a journal to the expected 
citation distribution in its field. It is a bivariate measure and its properties include that it 
increases with citations, decreases over time, and is comparable across fields. It is also 
aggregable in the sense that it can be used at the level of authors by simply adding the 
scores of each of their publications.

In conclusion, the normalization of citation impact indicators is crucial for accurate 
assessment of research output, and this can be achieved by assigning publications to spe-
cific fields. Although the WoS journal subject categories are still the most commonly uti-
lized field classification system, questions have emerged about the reliability of normalized 
indicators based on the selection of the classification system. In addition, scholars have 
investigated the feasibility of substituting alternative classification systems for the WoS 
journal subject categories. It is important to note that our proposal avoids using a jour-
nal classification system altogether, instead utilizing the journal of publication to define 
expected citations within the subject area of each paper. This approach addresses some of 
the concerns raised about the use of traditional classification systems, and could potentially 
offer a more robust and accurate method for normalization.
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