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Abstract
Even though Artificial Intelligence (AI) has been having a transformative effect on human 
life, there is currently no precise quantitative method for measuring and comparing the 
performance of different AI methods. Technology Improvement Rate (TIR) is a measure 
that describes a technology’s rate of performance improvement, and is represented in a 
generalization of Moore’s Law. Estimating TIR is important for R&D purposes to fore-
cast which competing technologies have a higher chance of success in the future. The pre-
sent contribution estimates the TIR for different subdomains of applied and industrial AI 
by quantifying each subdomain’s centrality in the global flow of technology, as modeled 
by the Patent Citation Network and shown in previous work. The estimated TIR enables 
us to quantify and compare the performance improvement of different AI methods. We 
also discuss the influencing factors behind slower or faster improvement rates. Our results 
highlight the importance of Rule-based Machine Learning (not to be confused with Rule-
based Systems), Multi-task Learning, Meta-Learning, and Knowledge Representation in 
the future advancement of AI and particularly in Deep Learning.
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Introduction

Artificial Intelligence is a disruptive technology that has had a transformative effect on 
human life (Baruffaldi et al., 2020; WIPO, 2019), to the extent that it has been considered 
comparableto electricity. AI is the most popular subfield of computer science (Taheri & 
Aliakbary, 2022) and is expected by some to surpass human intelligence in the near future. 
Despite these expectations and AI’s current success, we still have not achieved General AI, 
i.e., artificial intelligence capable of solving a variety of different problems. The question 
of which AI method has the potential for achieving General AI is an old and controversial 
one. Symbolic AI, Machine Learning, and Neural Networks, as well as their subfields, each 
have their own achievements and adherents. Symbolic AI posits that intelligence can be 
reduced to the manipulation of symbols, and has Logic Programming as its main subdo-
main. Machine Learning is the study of algorithms that can automatically learn from data. 
Neural Networks and Deep Learning, on the other hand, try to mimic the working of neu-
rons in the brain and reduce a given problem in a hierarchical manner.

Given the achievements and the flurry of activities in Deep Learning in recent years, 
many experts regard it as the most promising of AI methods (WIPO, 2019), to the extent 
that it is sometimes equated with AI in general discussions. However, the question remains 
as how to scientifically determine which AI subdomains have more potential for future 
advancement. In technological forecasting, such a problem is addressed by modeling the 
progress of technologies, with Moore’s Law being one of the most empirically-supported 
ones:

here, qt represents the technology’s performance at time t and k is a constant called Techno-
logical Improvement Rate (TIR). The importance of such a model lies in the fact that even 
if an emerging technology has unsatisfactory performance, by estimating k we can forecast 
its future performance. This enables us to avoid being deceived by the current observed 
state of affairs of competing technologies. The present contribution estimates the TIR for 
different subdomains of AI, and thus, fills the long-lasting void for a scientific quantitative 
comparison of advancement rates of AI methods.

Note that the performance measure qt , depends on the underlying technology. For exam-
ple, for wireless technology, it is given by the amount of data transmitted per second. How-
ever, there is currently no all-around performance measure for AI methods, even though 
the development of such a methodology is underway by the US National Institute of Stand-
ards (NIST) (AIME Planning Team, 2021). Given the multifaceted nature of AI, a good 
AI performance measure should take the following into account (AIME Planning Team, 
2021).

•	 Accuracy: This means how close to empirical reality a classification or forecasting 
method is in classifying or forecasting.

•	 Speed: Speed is important for real-time applications of AI. The increase in the adoption 
of the Internet of Things and the Metaverse have further highlighted the need for fast 
AI.

•	 Interpretability (or ‘explainability’): For real-world applications, it is crucial to be able 
to understand how an AI method arrives at a conclusion (Barredo Arrieta et al., 2020).

•	 Ease of implementation: For industrial applications, it is important that an AI method 
is not difficult to implement and use (Khayyam et al., 2020).

(1)qt = q0e
k(t−t0).
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•	 Ability to handle noise: Real-world data often comes with noise and uncertainties. 
Therefore, AI methods which can handle noise (such as probabilistic methods) are 
superior to those which cannot.

•	 Energy consumption: Unlike the human brain, AI methods such as large Deep Learn-
ing models require huge amounts of energy to train and leave a large carbon footprint 
(Strubell et al., 2019).

•	 Bias: AI methods can be biased towards specific demographic groups due to bias in the 
training data or the algorithms themselves. Such bias can cause problems in the social 
or medical applications of AI (Rejmaniak, 2021).

Many of these criteria are difficult to quantify. For example, even for accuracy, there 
are different measures such as accuracy, precision, recall, Receiver Operating Character-
istic (ROC) curve, etc. Moreover, the results often depend on the benchmarking datasets 
used. There are currently some benchmarks for AI performance, such as the MLPerf devel-
oped by ML Commons (Mattson et al., 2020). MLPerf is, however, concerned solely with 
speed-related measures such as training time, latency, and throughput and not with other 
important aspects mentioned above. It also pertains only to some AI problems such as 
object detection, machine translation, and recommender systems and is focused on Deep 
Learning.

There are methods for assessing the performance of software, which can potentially 
be used for AI as well. For example (Leiserson et al., 2020) studied the effect of soft-
ware optimization, algorithmic improvement, and hardware specialization on computing 
performance. Again, the research in (Leiserson et al., 2020) is concerned almost exclu-
sively with speed, which is only one of the many factors that determine an AI method’s 
performance. Other studies focus on computational complexity (Grace, 2013).

There have also been many scientometric studies of AI that use the (yearly) number 
of patents or publications in AI subdomains as a proxy measure for performance, 
see e.g. (Abadi & Pecht, 2020; Liu et  al., 2021a, 2021b; Pandey et  al., 2021; Tseng 
& Ting, 2013). Such studies, including the ones by the World Intellectual Property 
Organization (WIPO) (WIPO, 2019) and the Organization for Economic Cooperation 
and Development (OECD) (Baruffaldi et  al., 2020), actually measure the amount of 
activity in the field which does not necessarily translate into progress and improvement, 
see Fig.  1 comparing wind turbines and MRI. This is because such studies implicitly 
assume that all patents are equal in their contribution to the field. The main difference 
between the current study and former scientomertic studies of AI, is our consideration 
of the network effects in patent analysis. Perhaps, the closest work to ours is the work 
of Jiang et  al. (2022) which uses patent citation network analysis to quantify the 
international diffusion of AI inventions by country.

To circumvent the lack of a suitable performance measure for AI, we use an indirect 
method to estimate the TIR for AI subdomains. This method, first developed by Triulzi 
et  al. in Singh et  al., (2021) and Triulzi et  al., (2020), is based on the empirically 
supported idea that technological domains that have a more central position in the global 
flow of technology, have a higher TIR (Benson & Magee, 2015a). Such positioning is 
measured by the network-theoretic notion of centrality applied to the domain’s patents 
in the Patent Citation Network (PCN). The PCN is a directed network that has more than 
6 million nodes representing US utility patents and approximately 85 million directed 
edges which represent citations between patents, see Fig. 2. We restrict ourselves to US 
patents only, because usually important innovations are eventually patented in the US 
as well. In (Lee et  al., 2022) the notion of centrality was used to find the hubs in the 
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co-classification network of patents. This co-classification network considers the patents 
belonging to each pair of International Patent Classification classes and is different from 
the PCN we study here.

Search Path Node Pair (SPNP) centrality, is a measure of the importance of nodes in 
a network that was originally developed to uncover a “main path” of publications that led 
to the discovery of DNA (Hummon & Dereian, 1989). It is defined as the number of paths 
passing through a given node and here, as in (Triulzi et al., 2020), we apply it to the patents 
in the PCN. SPNP centrality is much more refined than other measures of importance, such 
as the number of citations or even PageRank. While PageRank is only concerned with how 
other patents (or more generally, nodes) cite a given one, SPNP centrality also measures 
the usage that the focal patent makes of other inventions and hence, provides a better quan-
tification of technological flow.

By using centrality, one can quantify the contribution of different patents to a field and 
avoid the aforementioned problem with bibliometric studies. Moreover, as in (Triulzi et al., 
2020) we normalize centrality to cancel out the effect of citation patterns which are caused 
by human practices and are not intrinsic to patents themselves. Normalization also evens 
out the effect of time so that newer patents, which have not had enough time to acquire 
citations, are only compared to each other, see “Estimation of Technological Improvement 
Rate for AI subdomains” section.

In Triulzi et al. (2020), it is shown that if �i, �i are the mean and standard deviation of 
normalized patent centrality for a technological domain, its rate of improvement Ki can be 
estimated by the following formula.

This formula is obtained by applying regression to the empirical performance data for 
30 different technologies on one hand, and the mean centrality of patents belonging to 

(2)estimated K
i
= e

6.22⋅�
i
−4.97 × e

�
2

i
∕2

Fig. 1   Patenting activity does not necessarily translate into an improvement rate. Even though there are 
fewer MRI patents than wind energy patents (1769 and 2493 respectively), most of the patents belonging 
to the latter have a rather low centrality (importance). This translates into a much lower improvement rate 
(TIR) for wind technology, see Fig. 7
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them on the other hand (Triulzi et al., 2020). In Triulzi et al., (2020), a detailed sensitivity 
analysis was performed including an analysis of predictor stability over time and a Monte 
Carlo cross-validation, ensuring the robustness of normalized centrality as a TIR predictor 
and its superiority to other predictors such as the number of citations. See “Model Valida-
tion and Evaluation” section for details on the model validation.

To summarize, we apply the method of (Singh et  al., 2021; Triulzi et  al., 2020) 
(further described in Methodology) to AI patents, to estimate TIR for AI subdomains. 
Regression model selection and evaluation for this work is largely influenced by the 
work of Triulzi et al. (2020) which is based on the former work of Benson and Magee 
(2015a) and Alstott et  al. (2016). The unique contribution of our research lies in its 
focus on AI patents. We’ve applied the methodology of Triulzi et al., (2020) to these AI 
patents and contextualized the results within the broader AI model evaluation landscape. 

Fig. 2   A very small portion of the Patent Citation Network. Only AI patents of the top 5% centrality 
(among all patents) are depicted. Older patents are drawn with lighter colors. Citations between patents are 
represented by arrows. We observe that some patents are more central than others and their removal can 
severely affect network’s connectivity
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Note that unlike (Triulzi et al., 2020) that uses only patent filed up to 2015, we consider 
patents granted up to 2020 and thus we had to compute patent centralities anew.

Even though scientific publications form a citation network as well, e.g. given by the 
Microsoft Academic Graph, we chose not to use them for the following reasons. The 
citation process for patents is a legal process, meaning that, by law, the filing party has 
to cite prior art. For research publications, however, citations are less rigorous and there 
are problems such as self-citations, and citations that do not imply usage (Meyer, 2000).

Methodology

Computations

As mentioned in the Introduction, we use the general method of Triulzi et al. (2020) for 
TIR estimation, which we further explain here. Estimating the TIR of a technological 
domain uses a regression model (Eq. 2) which is trained on the empirical TIRs of 30 dif-
ferent technological domains (Triulzi et al., 2020). The independent variable for the regres-
sion model is the average SPNP centrality for the patents in those domains. SPNP central-
ity is computed in the patent Citation Network (PCN) whose nodes are the patents and 
whose directed edges are given by patent citations.

In Triulzi et al., (2020), only patent data up to 2015 were used. Since AI is a fast-evolv-
ing technology, we used patent data up to 2020 and therefore, performed the centrality 
computations of Triulzi et al., (2020) anew for the updated patent data.

The SPNP centrality of a node in a directed acyclic graph (DAG), such as the PCN, 
is defined to be the number of all directed paths passing through the node. It equals the 
number of paths incoming to the node, multiplied by the number of paths outgoing from 
it. DAGs admit a so-called topological filtration in which nodes in the same layer have 
no links (citations). Using this filtration, one can compute the SPNP centralities of all the 
nodes in a network as large as the PCN in an efficient way using a Dynamic Programming 
algorithm (Batagelj, 2003). This means that the number of incoming paths is computed in 
an inductive way starting from the first layer and the number of outgoing paths is computed 
starting from the patents in the last layer.

Note, however, that the quantity used in the work of Triulzi et al. (2020) to estimate TIR 
is actually the normalized centrality of patents. The normalization process is done to offset 
the effect of biases in the patent citation process such as the following (Triulzi et al., 2020).

•	 Patents tend to cite patents in their own technological domain more often.
•	 Patents in some technological domains give more citations than patents in other 

domains.
•	 The age difference between the citing patent and the cited ones follows a specific fre-

quency distribution.

The normalization process removes the effect of these biases and makes it possible to 
compare the centralities of patents in different domains, and granted in different years in a 
meaningful way. The process is done in two steps (Triulzi et al., 2020). In the first step, a 
frequency distribution is obtained of the centralities of patents in randomized PCNs. A ran-
domized PCN has the same nodes as the original PCN but its edges (citations) are shuffled 
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in such a way that the number of citations between patents in each (patent classification 
class, year) pair is preserved.

As in the work of Triulzi et al. (2020), 1000 such randomized PCNs are constructed and 
for each patent, the z-score of raw centralities is computed in the distribution of centralities 
obtained from these 1000 randomizations. More precisely, the z-score is given by

where c(v) is the (raw) centrality of the node v , and �rand(v), �rand(v) are the mean and 
standard deviation of the distribution of its centralities in the 1000 randomized networks. 
A positive z-score indicates that the node’s centrality is higher than expected in a random 
network.

The second step of the normalization process removes the effect of patent age on the 
number of citations given to patents i.e. that newer patents may receive fewer citations 
than mature ones. In this step, one takes the rank percentile of the aforementioned z-score 
among patents granted in the same year. This rank percentile is, for each patent, a number 
between 0 and 1 and is the sought-after normalized centrality.

Note that we still have to be careful with patents that have been filed in recent years, 
because they have not had enough time to acquire citations. For this reason, instead of 
using the normalized centrality of the focal patent, the average normalized centrality of the 
patents it cites is used as the final centrality measure (Triulzi et al., 2020). This is because 
the future centrality of a new patent can be estimated by the average centrality of the pat-
ents it cites (Triulzi et al., 2020). This quantity has the advantage that it does not change 
in time. In a more recent work (Singh et al., 2021), however, the actual normalized cen-
trality of patents is used, and only patents older than three years are considered. This lat-
ter method is more suitable for older technological domains whose main activity does not 
belong to the last few years (Singh et al., 2021). We, therefore, use the first method i.e. the 
average centrality of the cited patents, because otherwise, we had to consider only patents 
filed in 2017 or earlier. The two methods have very close capabilities in predicting TIR, see 
(Singh et al., 2021).

We used the Python code provided by Alstott (https://​github.​com/​jeffa​lstott/​patent_​
centr​aliti​es) and Triulzi (https://​github.​com/​Giorg​ioTri​ulzi/​Techn​ology​Perfo​rmanc​eImpr​
oveme​ntEst​imates) which are freely available on Github. We slightly modified the code to 
account for obsolete functions, unavailable libraries, or (small) missing steps.

Data collection: finding the right AI patents

We used the Patents View databases for patent information and citations which, at the time 
of our access, included the data for US patents up to September 2020. This includes over 6 
million patents and 85 million citations.

There are a few widely adopted classification schemes for patents such as the Coopera-
tive Patent Classification (CPC) or the International Patent Classification (IPC). However, 
these classifications, on their own, are not enough for finding AI patents. As detailed else-
where (Baruffaldi et al., 2020; WIPO, 2019), finding AI-related patents, without including 
irrelevant ones is not an easy task, even for experts skilled in AI (Giczy et al., 2022). (See 
also (Liu et  al., 2021a) for the case of publications.) This is because AI patents may be 
classified in non-AI classes and many AI subdomains do not have their corresponding CPC 

z(v) =
c(v) − �rand(v)

�rand(v)

https://github.com/jeffalstott/patent_centralities
https://github.com/jeffalstott/patent_centralities
https://github.com/GiorgioTriulzi/TechnologyPerformanceImprovementEstimates
https://github.com/GiorgioTriulzi/TechnologyPerformanceImprovementEstimates
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class. Note that different studies on AI and its impact, use different methods and criteria for 
finding AI patents (Giczy et al., 2022).

In the WIPO report on AI (WIPO, 2019), a scheme for finding AI patents was devel-
oped which consisted of 3 different blocks. The first block consisted of patents in AI-
related CPC classes. The second block was comprised of patents containing specific 
AI-related keywords. The third block consisted of patents satisfying both a CPC class 
and a keyword condition.

We initially used this approach; however, we realized that a lot of high-centrality 
patents found this way, were often not related to their corresponding subdomains. For 
this reason, we used the more stringent search condition used in the OECD report on AI 
(Baruffaldi et al., 2020). This method uses a set of CPC classes, a set of IPC classes, and 
a set of keywords. AI patents are taken to be the ones that satisfy one of the following 
conditions:

1.	 Belong to one of the specified AI-related IPC classes with no keyword condition.
2.	 Belong to one of the specified CPC classes related to AI, and contain one of the specified 

keywords.
3.	 Contain 3 of the specified keywords without a CPC class condition.

The IPC and CPC classes together with the keywords used in Baruffaldi et al., (2020) 
were chosen by a group of experts in Artificial Intelligence and patenting and they are 
reproduced in the Supplementary Tables S-I to S-III. In the OECD report (Baruffaldi 
et al., 2020) the keywords in the second clause are required to be either in the claims or 
the description of the patents. We, however, found many patents which had mentioned 
AI subdomains in their Background section without actually using them i.e. with-
out mentioning the subdomain in the rest of the patent document. For this reason, we 
restricted our keyword search to the abstract and claims sections of patents only. This 
way we found 19,978 AI patents.

Note that the OECD report (Baruffaldi et  al., 2020) does not consider dividing AI 
patents into subdomains as we do here. To perform this subdivision, we first needed a 
taxonomy of AI subdomains. We used a taxonomy similar to that of the WIPO report 
(WIPO, 2019), which is laid out in the Results section. We then map the keywords from 
(Baruffaldi et al., 2020) to their corresponding AI subdomain. Supplementary Table S3 
lists the keywords belonging to each subdomain.

Since the start of this project, USPTO has published a dataset of AI patents (Giczy 
et  al., 2022), based on the earlier work of Abood and Feltenberger (Abood & Felten-
berger, 2018). Their methodology started with 959 patents and patent applications cho-
sen by patent experts, as belonging to AI. A binary classifier was then trained on this 
set (on both patent text and patent forward and backward citations). The predictions 
of the model were examined by patent experts experienced in AI, and were also com-
pared to the WIPO method mentioned above. However, the size of the examined sample 
was very tiny compared to the size of the whole dataset of patents used. Both the seed 
set and the model predictions for patents from 1976 to 2020 have been published. We 
compared the result of our method with that of Giczy et al. (2022) and found that more 
than 87% of our AI patents are classified as AI patents by their method too. The differ-
ence can be attributed to the fact that the method of Giczy et al. (2022) involves select-
ing patents manually for eight different AI technologies (knowledge processing, speech, 
AI hardware, evolutionary computation, natural language processing, machine learning, 
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computer vision and planning/control) and then training a classifier, while ours uses a 
whole-encompassing set of keywords and CPC classes as mentioned above.

Model validation and evaluation

Here we, for the sake of completeness, recall the model evaluation and selection meth-
ods used by Triulzi et al., (2020), based on the earlier work of Benson and Magee (Ben-
son & Magee, 2015a). They used four criteria for choosing a robust predictor of TIR: (1) 
a high correlation with TIR, (2) the correlation must be independent of the time period 
used in evaluation, (3) correlation must not be restricted to any set of technologies used 
and 4) the regression coefficient and intercept must be independent of the time period 
and technological domains whose patents are used in training the model. They consid-
ered six different predictors including the number of citations received within 3 years of 
the patent publication, the average age of the patents the given patent cites and the mean 
centrality of the patents cited by the given patent, which was discussed above.

A Monte Carlo cross-validation was performed to examine the predictors. For each 
predictor and each given year (from 1975 to 2015), an ordinary least squares regression 
model with the sole predictor as independent variable and the logarithm of TIR as the 
target variable was trained. These models were trained using only patent data up to the 
given year, for a randomly selected training set of 15 out of the 30 domains. Domains 
with less than 100 patents (filed up to the year) were excluded. The trained models were 
then tested on the remaining 15 technological domains.

The quantities used for evaluating the predictors were the Pearson correlation 
between the predicted and the empirical TIR for the domains in the testing set (of 15 
domains), the regression coefficient and intercept for the predictor. These quantities 
were recorded for each year for 100 different random samples of 15 out of the 30 tech-
nological domains.

The most accurate and reliable predictors of TIRs, were taken to be the ones with the 
highest and most stable correlation and the smallest variation in regression coefficient 
and intercept over time. It was concluded by (Triulzi et al., 2020) that the normalized 
centrality of patents has the highest and most stable correlation with TIR. It achieves a 
high predicting power with R2 = 0.63 and strong stability of the estimated coefficients 
over time and across domains.

Triulzi et al. then study multiple-variable robust linear regression models (Yu & Yao, 
2017) with the best predictors to see whether the goodness of fit of the prediction is 
improved by including more than one variable in the regression. In this case, all patent 
data for the 30 domains was used to train the regression model. They consider six differ-
ent combinations of the predictors and observed that combining any of the predictors with 
normalized centrality did not significantly increase the predictive power of the model, as 
indicated by its R2 and also the regression coefficient of the added predictors. Tests for 
homoscedasticity are also reported in the Supplementary Materials to (Triulzi et al., 2020).

Results

We use the taxonomy of AI subdomains used in the WIPO report (WIPO, 2019) with 
small modifications. This means that we subdivide AI subdomains into two categories:
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•	 AI technical subdomains: The theoretical foundations of AI, with Machine Learning 
being the predominant subdomain in terms of the number of patents.

•	 AI functional application subdomains: The applied AI subdomains that are based on the 
AI techniques. Computer vision is the dominant one, mentioned in 49% of all AI patents 
(WIPO, 2019).

Estimation of technological improvement rate for AI subdomains

The estimated improvement rates (computed as described in Methodology), as well as the 
number of patents related to each AI technical subdomain, are reported in Fig. 3. We note 
from comparing the two parts of Fig. 3 that the TIR of a domain is not correlated with the 
number of its patents, something that has been discovered independently, for all technological 
domains, in (Singh et al., 2021). A concise description of each subdomain is given here and 
the reasons for high or low TIR are given in the Discussion.

AI technical subdomains

The highest estimated TIRs for technical subdomains belong to Rule-based Machine Learning 
(RBML) and Multi-task Learning. Rule-based Machine Learning (RBML) (TIR = 0.92). It is a 
form of Machine Learning and should not be confused with Rule-based Systems, which are a 
type of expert system. As opposed to other AI methods which find a single model (hypothesis) 
that governs the whole given dataset, RBML finds local rules governing the training dataset 
(Lanzi & Stolzmann, 2000). This enables it to handle complex nonlinear datasets.

Multi-task Learning (MTL) (TIR = 0.86) involves solving several ML problems at once 
(Zhang & Yang, 2021). Cognitive Modeling/Computing (TIR = 0.73) aims at automating 
cognitive tasks and producing algorithms and software which can learn without reprogram-
ming (Hurwitz et al., 2012). A cognitive system typically emulates the large-scale working 
of the mammalian brain. Logic Programming (TIR = 0.73) is one of the oldest AI methods 
and it aims at producing intelligent machines by encoding human logic into computers. Meta-
Learning (TIR = 0.69 = 1) refers to methods that can automatically design or fine-tune learning 
algorithms (Huisman et al., 2021; Vanschoren, 2018). Meta-Learning enables the use of the 
experience gained in one AI problem in other problems and therefore improves performance. 
It is believed to be essential for achieving General AI. Semi-supervised Learning (TIR = 0.65) 
enables one to make use of unlabeled data to improve the performance of Supervised Learn-
ing methods such as classification (van Engelen & Hoos, 2020). Its importance stems from the 
fact that labeling data is expensive. It can also be used in conjunction with various Supervised 
Learning methods.

Among technical AI subdomains, average and low TIRs belong to Graphical Models, Deci-
sion Trees, Transfer Learning, Bayesian Learning, Reinforcement Learning, Fuzzy Logic, 
High dimensional Data, Feature Learning, Clustering, Neural Networks and Deep Learning, 
Instance-based Learning, Ensemble Learning, Latent Representations, Bio-inspired Methods, 
Sparse Representations, and Neuromorphic Computing. The discussion of these subdomains 
is presented in the Supplementary Text, except for Neural Networks and Deep Learning which 
are discussed in the Discussion section.
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Fig. 3   The estimated improvement rate (TIR) for AI Technical Subdomains (top figure), and the number of 
patents found in each (bottom figure). The number of patents found in a domain reflects the activity in the 
subdomain and does not necessarily correlate with its improvement rate



2570	 Scientometrics (2024) 129:2559–2581

1 3

Fig. 4   The estimated TIR (top) and the number of patents (bottom) in AI Functional Application subdomains
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Functional application subdomains

These subdomains generally have higher TIRs compared to technical domains presumably 
because they use the best foundations and they are more applied, see Fig. 4. This figure 
again shows the lack of correlation between improvement rate and patent activity.

Among functional application subdomains, the highest TIRs belong to Predictive Ana-
lytics and Natural Language Processing (NLP) subdomains, i.e., Natural Language Gener-
ation (TIR = 1.96), Dialogue (TIR = 1.2), and Sentiment Analysis (TIR = 1.15). Predictive 
Analytics (TIR = 1.38) is involved in virtually any prediction problem in science, engineer-
ing, finance, business, and medicine. Distributed AI (TIR = 0.92) and Knowledge Repre-
sentation (TIR = 0.76) have low or average TIRs among AI functional application subdo-
mains, even though their TIRs are quite high. The importance of Distributed AI stems from 
the decentralization trends such as Decentralized Finance, Spatial Web, Edge Computing, 
and Blockchain technology which are expected to transform various aspects of human life. 
Distributed AI is even referred to as AI 2.0 by some and is marked by changing goals of 
Artificial Intelligence from making computers mimic human intelligence to building com-
plex intelligent systems (Pan, 2016). Knowledge Representation is very important in AI as 
it provides a way to encode human knowledge about the world onto computers, which is in 
turn needed for computers to be able to solve problems related to the outside world (Davis 
et al., 1993).

Speech Processing (TIR = 0.72) subdomains together with Autonomous Vehicles 
(TIR = 0.66 = − 0.2), Robotics (TIR = 0.59) and Computer Vision subdomains (TIR = 0.47) 
have below-average TIR. Signal Separation (TIR = 0.27), and Brain-Computer Interface 
(TIR = 0.1) have a low TIR. Signal Separation aims at separating simultaneous signals 
without prior knowledge about the signals themselves. Brain-Computer Interface makes 
use of different technological domains i.e. electronics, medicine, neurology as well as ML.

Overlap analysis for AI patents

We analyze the overlaps between patent sets of different AI subdomains. Such analysis 
shows which patents are shared between different AI subdomains and thus gives a strong 
indication of important combinations of two or more AI methods. The overlaps are plotted 
in Supplementary Figs. S1 to S3. Precisely, the numbers in the off-diagonal cells of the 
heat maps are given by the fraction of the patents in the focal domain that are shared with 
the other domain (Sharifzadeh et al., 2019). The numbers in the diagonal cells are the frac-
tions of patents in the focal domain that are not shared with other domains.

There are some obvious overlaps; for example, in Fig. S1, Machine Learning (ML) has 
a lot of overlap with other subdomains. Neural networks and Deep Learning (DL) also 
overlap with most other technical subdomains except for Cognitive modeling, Sparse Rep-
resentation, and Rule-based Learning. Unsupervised learning has a significant overlap with 
High-Dimensional Data and Clustering as dimensionality reduction and clustering are 
important methods in Unsupervised Learning. The largest overlap of Supervised Learning 
is with Decision Trees. Other trivial overlaps include Decision Tree and Ensemble Learn-
ing, and Bayesian Learning and Graphical Models.

Other than such trivial overlaps, interesting overlaps include Bio-inspired methods and 
Meta-Learning, Decision Tree and Rule-based Learning, Feature Learning and Neuromor-
phic Computing, Instance-based Learning, Decision Trees/Ensemble Learning, Sparse 
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Representations, and Neuromorphic Computing. Unsupervised learning has much more 
overlap with Meta-Learning, compared to Supervised Learning.

The most significant overlaps between Neural Networks and DL are related to Multi-
task Learning, Transfer Learning, Neuromorphic Computing, and Reinforcement Learning 
(RL). This is to be expected as Transfer Learning is frequently used in large-scale Neural 
Network models. Neuromorphic computing also mimics the work of biological neurons, 
both on software (through Spiking Neural Networks) and hardware level (through memris-
tors and neuromorphic devices), more than Neural Networks do. Finally, it is through the 
use of Deep Learning in RL that the latter has been able to achieve significant milestones 
such as beating humans in the games of Go and Atari.

We observe that dark diagonal cells in Fig. S1, signifying subdomains that have small 
overlaps with other subdomains, are rare except for Bio-inspired Methods, Cognitive Mod-
eling, Fuzzy Logic, Neural Networks and DL, and Rule-based Learning. Thus, except for 
these sub-domains, AI’s overall foundations are highly integrated.

For Functional Application subdomains (Fig. S2), most overlaps are with related sub-
fields except for Speech Recognition’s overlap with NLP subdomains, such as Machine 
Translation and Natural Language Generation. There is also a small but nontrivial overlap 
between Computer Vision (general) and NLP on one hand and Speech Processing (general) 
on the other.

We also consider overlaps between technical and functional application subdomains, see 
Fig. S3. As can be seen from the Figure’s legend, these overlaps are much smaller than the 
ones in the last two plots. Natural Language Processing (NLP) has significant overlaps with 
Cognitive Modeling and Latent Representations. Latent Representations are used in con-
verting words and texts to vectors (Liu et al., 2020).

Computer Vision overlaps with most technical subdomains, highlighting its use of 
various AI techniques. It overlaps most significantly with Cognitive Modeling, Fea-
ture Learning, Multi-task Learning, Neuromorphic Computing, Similarity Learning, and 
Sparse Representations. It however has insignificant overlaps with Meta-Learning, Rule-
based Learning, Latent Representations, Bio-inspired Methods, Fuzzy Logic, and Logic 
Programming.

Robotics does not have much of an overlap with technical subdomains except for Meta-
Learning. Sentiment Analysis overlaps with Cognitive Modeling. Speech Processing (gen-
eral) and Speech Recognition overlap with Gaussian Mixture Models, Multi-task Learning 
and Bayesian Learning.

Knowledge flow between different AI subdomains

To understand the knowledge flow between different areas of AI, we computed the nor-
malized number of citations between every two subdomains. The normalization process 
is done in a similar way as for normalizing centrality by taking the z-score of the observed 
number of citations in the distribution of such citations in randomized networks. The 
results are depicted in supplementary Figs. S4–S6.

Nontrivial citation flows include Bio-inspired Methods and Feature Learning citing 
Fuzzy logic and Neural Networks; Fuzzy logic citing Bio-inspired methods, Neural Net-
works, and Logic programming; Logic programming citing Fuzzy logic, Bayesian Learn-
ing, and Neural networks. Neural networks and DL cite many other technical domains 
such as Bio-inspired methods, Fuzzy logic, Feature Learning, Logic programming, 
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Instance-based Learning, and Reinforcement Learning. On the contrary, we observe that 
Reinforcement Learning, Transfer Learning, and Sparse Representations do not cite other 
technical subdomains much indicating low knowledge flow. Latent Representations is the 
only technical subdomain cited by Meta-Learning.

Among Functional Application subdomains (Fig. S5), NLP cites Speech Processing 
subdomains; Augmented/Virtual/Mixed Reality cites Computer Vision and Image and 
Video Recognition (with a small z-score). Autonomous Vehicle cites the same two sub-
domains together with Robotics. There is a small but nontrivial citation z-score from both 
Computer Vision and NLP to Speech Processing. Note that Speech Processing cites NLP 
and Computer Vision as well (with a higher z-score). Robotics mainly cites Computer 
Vision Subdomains.

Brain-computer Interface and Distributed AI do not significantly cite Technical subdo-
mains or other Functional Application subdomains. Dialogue and Signal Separation do not 
cite others except Sentiment Analysis.

We also studied citations from Functional Application subdomains to the Technical 
ones (Fig. S6). Machine Learning (general) and Neural Networks receive a lot of citations 
from Functional Application subdomains. Other than these two subdomains, Computer 
Vision (general) uses Feature Learning and Instance-based Learning the most. Distributed 
AI uses Logic Programming, and Robotics uses Bio-inspired Methods and Reinforcement 
Learning. Finally, Speech Processing uses Bayesian Learning, Clustering, and Fuzzy Logic 
the most. Speech Processing (general) uses Unsupervised Learning more than Supervised 
Learning, something which is reversed for Image Classification and Robotics.

Discussion

The assumption behind our results is that domains with more central patents have higher 
improvement rates. This assumption has been validated for a set of 30 technological 
domains by (Triulzi et  al., 2020), see “Model Validation and Evaluation” section. The 
absence of an agreed-upon performance measure for different AI methods (as discussed 
in the Introduction), makes validating our results tricky. For this reason, we rely on NIST 
performance criteria (AIME Planning Team, 2021), mentioned in the introduction, and the 
following general rules for validating our results. Note that, as mentioned in the Introduc-
tion, other similar studies mostly rely on the count of patents in each AI subdomain, and 
thus their results are not in the same vein as ours.

To understand the reasons for low or high TIRs, note that there are a few principles that 
govern a technology’s growth rate such as the following:

•	 Principle 1: Technologies that involve interacting components (e.g. combustion engines 
or robotics) have slower improvement rates than technologies with less internal interac-
tion (Basnet & Magee, 2017). See Figs. 1 and 7.

•	 Principle 2: A technology’s TIR is largely determined by how well it can make use of 
developments in other technological fields rather than the efforts within the technology 
(such as expenditure by governments) (Basnet & Magee, 2017).

Perhaps the most striking result of this research is that Neural Networks and Deep 
Learning have a below-average TIR. Figure 5 suggests that several AI technical subdomains 
are likely to improve faster than Deep Learning (DL) and could be even more significant in 
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the future. Figure 3 compares the TIRs and number of patents of technical (or theoretical 
domains including Rule-based Machine Learning with that of Deep Learning. Figure  6 
demonstrates an overall higher number of patents for the latter and a higher fraction of 
high-centrality patents for the former. First of all, note that this result pertains to Deep 
Learning as a theoretical AI subdomain, and its applications in NLP and Computer Vision 
are assessed in the context of the latter subdomains, among the functional application 
subdomains of AI, in Fig. 4. There are many reasons for believing that the current progress 
rate of Deep Learning may not continue into the future (Marcus, 2018; Rudin & Carlson, 
2019). For example, the computational power required for Deep Learning has been 
increasing at a rate far exceeding the rate of increase in computing power (OpenAI, 2022; 
Thompson et al., 2020). Said differently, increased parallel processing power, whose use 
enabled in Deep Learning through the transformer architecture (Vaswani et al., 2017), has 
been one of the main drivers of DL advancement in last few years and may not continue 
at current levels (Leiserson et  al., 2020; Lohn & Musser, 2022; OpenAI, 2022). Deep 
Learning consumes inordinate amounts of energy resulting in carbon emissions equivalent 
to that of 5 cars in their lifetime, for training a large model (Strubell et  al., 2019). The 
cost of training a large DL model such as Open AI’s GPT-3 is estimated to be around 4.6 
million dollars (Li, 2020). It has an edge over other AI methods only in problem categories 
that involve raw numerical data such as Computer Vision (Rudin & Carlson, 2019).

Fig. 5   The likelihood that an AI technical subdomain is improving faster than other subdomains. These 
likelihoods are computed as in (Triulzi et al., 2020), by assuming a normal probability distribution for the 
TIR of a domain. A similar heat map for AI functional application subdomains is provided in Fig. S7
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There are other reasons behind the low estimated TIR of Deep Learning as well. 
Thompson et al. note that from a statistical point of view, a k-fold improvement in the per-
formance of a model requires at least k2 more datapoints; however because DL models are 
over-parametrized, this factor is at least k4 . Moreover, in practice, one has to increase the 
computational power by a factor of k9 (Thompson et al., 2021). Deep Learning is also not 
very explainable, meaning that one cannot easily understand how a Deep Learning model 
arrives at a conclusion. The implications of our finding are discussed in the Conclusion. 
Our analysis also highlights the dangers hidden in using the raw number of patents or pub-
lications to assess a domain’s progress.

As for other AI subdomains, Rule-based Machine Learning makes use of Genetic Algo-
rithms, probability density estimation, Fuzzy Logic, as well as Bayesian Networks in its 
rule discovery, and it is used in classification, regression, and reinforcement learning. Its 
high TIR (about 2.6 standard deviations more than the mean TIR for AI technical subdo-
mains) is therefore justified by Principle 2, above. It is also by design very interpretable.

Multi-task Learning (MTL) reduces training time and the needed computationsl power, 
compared to solving the problems separately. MTL effectively increases the sample size of 
a problem and therefore, is useful for under-sampled problems (limited data) which consti-
tute an important subclass of Machine Learning problems. This and the fact that it is built 
on top of other AI methods result in the high TIR of MTL methods, see Rule 2, above. 
Even though Logic Programming has lost its spot as the dominant AI method, and it is 
argued that logic and other simple principles are not able to solve complex problems in 
Computer Vision and NLP (Crevier, 1993), logic still plays a significant role in intelligence 
(Darwiche, 2020). Logic Programming has been able to adapt to modern learning methods 
such as probabilistic learning (Statistical Relational Learning (Natarajan et al., 2014)) and 
Neural Networks (Neuro-symbolic Computing (Sarker et al., 2021)).

Theoretical AI subdomains with below-average estimated TIRs are discussed in the 
Supplementary Materials. Here we turn our attention to functional application subdomains 
shown in Fig. 5. We note that the unsupervised nature of NLP methods such as word rep-
resentations (embeddings), and the availability of enormous amounts of training text data 

Fig. 6   The distribution of normalized centrality for Neural Networks and Deep Learning (left) vs Rule-
based Machine Learning (right). Even though the former has many more patents, the latter has a larger 
fraction of high-centrality patents, resulting in a higher estimated TIR
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have a great impact on the NLP’s high improvement rate. This means that NLP algorithms 
can learn the meaning of words by studying their co-occurrences in corpora of texts (Dev-
lin et  al., 2018; Mikolov et  al., 2013). Predictive Analytics also makes use of almost all 
available ML methods. The lower than average estimated TIR of Autonomous Vehicles 
and Robotics is attributed to their use of physical components (Rule 1), being more expen-
sive to develop, as well as safety and legal concerns. We observe that NLP methods have 
a higher TIR than Speech Processing and that has a higher TIR compared to Computer 
Vision. This is because the complexity of data (e.g. in terms of size and representation 
dimension) increases from text to speech to image and video.

We also note that Generative AI subdomains, such as Natural Language Generation and 
Speech Generation, have very high estimated TIRs, and this is validated by a recent flurry 
of activity in Generative AI, especially text generation (Zhao et al., 2023). Signal Separa-
tion has low estimated TIR and this can be attributed to the fact that it is a highly under-
determined problem meaning that there are many more unknowns than constraints. As per 
Human–Computer Interface, its progress needs experiments on live mammals which is 
expensive and raises legal issues. Therefore, its low TIR is justified by Rule 1.

Data limitations

Using patents to assess technological progress has its own shortcomings. Patents do not 
include all advancements within a specific field, e.g. because of interest in keeping an 
invention secret, or a lack of inclination towards safeguarding novel inventions. Addition-
ally, inventions do not encompass every facet of a technological domain (Benson & Magee, 
2015b).

Using patents to measure technological progress in Artificial Intelligence has extra 
caveats as follows. Since the evaluation process for patent applications is a time consum-
ing process, patents typically fall behind the pace of technology and do not necessarily 
reflect the most recent trends. Verendel notes that patenting is less useful for technolo-
gies in which innovation cycle is shorter than patenting process (Verendel, 2023). Some 
AI breakthrough ideas, such as backpropagation are not patented, even though others such 
as the transformer neural network are (Vaswani et al., 2017). The papers on such inven-
tions are usually posted as preprints on the Arxiv preprint server, and then are presented at 
computer science and AI conferences. Note that, there are restriction on patenting abstract 
inventions both in the US (Patent & Trademark Office, 2019) and Europe (European Patent 
Office, 2019). Moreover, many AI tools are released as open source software by companies 
such as Meta, Google and others and are not patented. Examples include the PyTorch deep 
learning libraries and the Llama large language model (Touvron et al., 2023). Such inven-
tions are not detected, at least in their pure form, by the sole analysis of patent datasets. As 
such, our analysis pertains more to the industrial aspect of AI.

It should also be noted that patents often combine more than one technology, and a 
patent which is identified as an AI patent, using keyword or classification criteria, usually 
involves the application of AI to other technologies. For this reason, the centrality of an AI 
patent may not be solely due to its AI aspect, and methods for quantifying the relevance of 
different technologies in a patent can be helpful in performing a more refined analysis.
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Conclusion

In this study, we quantify the importance of patented innovations in Artificial Intelligence, 
using the notion of centrality in the Patent Citation Network, and this goes beyond the 
count of patents and even patent citations. We were thus able to provide estimates for the 
performance improvement rates of AI subdomains, based on the method of (Triulzi et al., 
2020). As discussed in the Introduction, in the absence of a general-purpose performance 
measure for AI methods, our estimated TIR may be used as a proxy for such a measure. We 
also provide evidence, based on the literature, for our results. Despite the limitations of the 
method we use (discussed in the Discussion), it indeed quantifies which AI subdomains are 
more central in the large-scale flow of technology, and hence are likely to improve faster.

Overall, AI has a very high estimated TIR and is second only to one field (Optical Tel-
ecommunications) in this regard, (Fig. 7). The fact that software domains have one of the 
highest TIRs among technological domains has been established independently as well 
(Singh et al., 2021). The fact that the highest estimated TIR among applied AI subdomains 
belongs to Generative AI subdomains such as text generation, is highlighted by the recent 
boom in Large Language Models such as ChatGPT (Zhao et al., 2023).

We demonstrated the importance of research in, and the application of Rule-based 
Machine Learning, Multi-task Learning, Cognitive Modeling, Meta-Learning, Logic Pro-
gramming, Knowledge Representations, and Distributed AI in the future progress of AI, 
as demonstrated by their high TIRs. It is interesting that our estimates show that more 
explainable AI methods such as Rule-based Machine Learning have a higher TIR than less 
comprehensible ones such as Deep Learning and Ensemble Learning.

Note that our results pertain to industrial and patented AI and may not reflect the 
academic significance of AI research or open-source AI innovations. Note also that TIR 
is intrinsic to a technological domain, meaning that external factors such as increased 

Fig. 7   Comparison of the 
estimated TIR of Artificial 
Intelligence to 30 technological 
domains for which empirical 
TIR is known. AI is second only 
to Optical Telecommunication. 
Data for the 30 subdomains is 
taken from (Triulzi & Magee, 
2020)
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spending, do not accelerate the pace of a low-TIR domain (Basnet & Magee, 2017). Thus, 
the results of this paper illustrate which AI subdomains are more worthy of investment for 
future advancement of AI, and therefore, are of importance for policymaking and R&D 
purposes.

Specifically, contrasting the lower-than-average estimated TIR for Deep Learning 
with its recent history of achievements, we arrive at the conclusion that its progress 
can hit a bottleneck related to the needed computational power. Prominent AI research 
labs such as Open AI state that the trend of the rapid increase in computation needed 
for Deep Learning is likely to continue (OpenAI, 2022; Thompson et al., 2020). Given 
the coming end to Moore’s Law for computer chips (Leiserson et  al., 2020), OpenAI 
suggests that “policymakers should consider increasing funding for academic research 
into AI, as it’s clear that some types of AI research are becoming more computationally 
intensive and therefore expensive” (OpenAI, 2022).

The results of the present study also suggest that Deep Learning research should aim 
at incorporating the advantages of other, high TIR AI subdomains, such as Rule-based 
Machine Learning, to mitigate the problems mentioned in the Discussion. There are 
currently two schools of thought concerning how Neural Networks and Symbolic AI 
can merge. The first one suggests that the two should be combined in hybrid AI mod-
els. Hybrid AI is an AI paradigm that has recently garnered more attention (Mao et al., 
2019; Marcus, 2020). The other school of thought, held by the pioneers of Deep Learn-
ing, holds that instead of merging Symbolic AI and Deep Learning in hybrid systems, 
the latter can emulate the strengths of the former, in its own way. “We would like to 
design neural networks which can do all these things [what Symbolic AI aims at] while 
working with real-valued vectors so as to preserve the strengths of deep learning”, write 
the three pioneers of Deep Learning, Y. Bengio, Y. LeCun and G. Hinton (Bengio et al., 
2021). Interestingly, the Neural Production Systems (Goyal et al., 2021) developed by 
the Bengio team is a form of Rule-based Machine Learning in which the learning part is 
done by means of neural networks. These recent developments are all in accord with the 
results of our research. As (Thompson et al., 2021) notes, “We must either adapt how 
we do deep learning or face a future of much slower progress.”

An important future step in this line of research is to enhance the TIR estimation 
method by including AI research publications. As mentioned in Discussion, many AI 
inventions are open source and are announced as preprints on the ArXiv preprint server, 
before being presented in computer science conferences. ArXiv preprints form a citation 
network and one can study their (normalized) centrality. Another refinement is related 
to the fact that patents often combine different technologies and, patents considered as 
AI patents usually use AI methods to aid in other endeavors. As such, we need a method 
of quantifying the belonging of a patent to different technologies. Finally, the regression 
model used by Triulzi et al. has room for improvement. The high correlation between a 
technology’s TIR and the average centrality of its patents, raises the question of whether 
TIR has a network-theoretic counterpart. The regression model used here, ignores the 
temporal structure of the citation network. In other words, averaging centrality over pat-
ents granted in different years, ignores the fact that PCN is a network whose structure 
is dependent on time. It is also important to note that data on the performance improve-
ment (in terms of accuracy, power consumption, etc.) is available for some AI models 
(Patterson et  al., 2022) and one can use them to obtain empirical measures of those 
models’ improvement rates. As mentioned in the introduction, there is ambiguity in how 
to combine these performance measure into a single indicator, and comparison to our 
estimates can be helpful in this regard.
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