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Abstract
We introduce and analyse a simple probabilistic model of article production and citation 
behavior that explicitly assumes that there is no decline in citability of a given article over 
time. It makes predictions about the number and age of items appearing in the reference list 
of an article. The latter topics have been studied before, but only in the context of data, and 
to our knowledge no models have been presented. We then perform large-scale analyses of 
reference list length for a variety of academic disciplines. The results show that our simple 
model cannot be rejected, and indeed fits the aggregated data on reference lists rather well. 
Over the last few decades, the relationship between total publications and mean reference 
list length is linear to a high level of accuracy. Although our model is clearly an over-
simplification, it will likely prove useful for further modeling of the scholarly literature. 
Finally, we connect our work to the large literature on “aging” or “obsolescence” of schol-
arly publications, and argue that the importance of that area of research is no longer clear, 
while much of the existing literature is confused and confusing.
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Introduction

The growth of science (which we take as a synonym for “published scholarly findings”, 
including in fields such as humanities and social sciences) can be measured by the number 
of articles published, the number of authors, the number of cited articles, etc. These have 
been heavily studied, and each is a “global” indicator that requires complete enumeration. 
A more “local” indicator is the length of reference lists (that is, the number of bibliography 
items) in an article. The distribution, or simply a statistic such as the mean or median, can 
be well estimated via sampling a relatively small number of articles. Another convenient 
and obvious property is that the reference list of a published article remains unchanged 
over time.
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The overall distribution of the length of reference lists is obviously related to the overall 
distribution of citations. If we consider the directed graph where each article is a node and 
there is an edge from X to Y precisely when X includes Y in its reference list, then the total 
outdogree euals the total indegree: in other words, the number of references over all articles 
equals the total number of citations to all articles. However, the number of citations to a given 
article increases over time, which makes reference lists more convenient for many compu-
tations. For example, details about reference list length have been used for normalization in 
citation analysis among other topics (Marx & Bornmann, 2016). This distinction between 
synchronous (looking at reference lists) and diachronous (looking at citations) bibliometric 
analysis has been made by many authors since Line & Sandison in the early 1970s. The term 
diasynchronous has also been used to describe time series of synchronous studies.

The length of reference lists has been much less studied than the number of citations 
received, or the number of articles published. We recommend (Yitzhaki & Ben-Tamar, 1991) 
for a review of older literature, which was mostly a collection of small-sample statistical data 
about reference lists in various research fields or particular journals. It is easily noticeable 
from the older data that papers from many decades ago tended to include fewer references 
than those written today. More refined analysis shows that the number of references has been 
increasing, that there is considerable variation between research fields in the mean or median 
reference list length, and that there is much variation between article types (for example, 
review articles tend to include more references than original research articles). More recent 
and detailed data has been compiled (Larivière et al., 2007; Ucar et al., 2014).

Our contribution

Although several researchers have modeled the growth in the number of published articles, 
we are not aware of any modeling of the length of reference lists—to our knowledge all previ-
ous work has been purely descriptive based on data. We present a simple continuous-time 
model for article production that links quantities, and explore its behavior. The model explic-
itly denies any “obsolescence” process by which older articles become less likely to be cited 
than newer ones. We use a large dataset of articles published in the period 2006–2016 and 
show that that the model fits remarkably well for our purposes, despite clearly being an over-
simplification. In particular, we find that over the period studied, the growth in mean reference 
list length is well modeled by a linear function, as is the growth of the number of articles pro-
duced, while there is a clear linear relationship between the total number of articles and mean 
reference list length. We also obtain a better fit than expected (although not a good fit) to the 
distribution of the lengths of reference lists, which is a much more stringent test of the model. 
This overall good fit to data gives support to the use of the model in other contexts. We also 
include a generalization of the model which may be useful for more refined modeling.

We connect the above work to the literature on aging and obsolescence, and give a review 
of some confusions in that literature.

A basic model

A good general reference for basic material on citations, references, obsolescence, etc, 
is Cassidy (2018) (although the reader should note that it mixes up the definitions of the 
terms “synchronous” and “diachronous”). Some of the key factors that seem likely to 
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increase the length of reference lists, given by previous authors (for example (Yitzhaki & 
Ben-Tamar, 1991; Ucar et al., 2014)), are:

•	 As time progresses there are simply more possible works available that a researcher 
could cite;

•	 Modern authors use electronic keyword search, making it easier to find relevant refer-
ences than in the print journal era;

•	 Page limits have been relaxed because of online publication, allowing more space in 
which to cite other work;

•	 Changes in citation practices (for example: peer review is more stringent now, and 
reviewers often suggest papers to cite; courtesy citations may be more prevalent now).

The main likely countervailing force is the “obsolescence" of scientific articles, which has 
been studied by many authors. The rapid growth in literature is often accompanied by an 
improvement in understanding, meaning that older references are completely subsumed by 
newer ones and no longer cited (certainly, Newton’s original work receives very few cita-
tions today) (Cassidy, 2018); also, authors may prize novelty and have only finite stamina 
for literature review. Thus older papers may become less “citable”, by which we simply 
mean less attractive to a citing author than newer ones.

However, obsolescence is not obviously a major factor, owing to the many ways in 
which researchers find and study potentially citable works. Ellis (1993), in an influential 
study that develops a model for information-seeking behavior of researchers, discusses 
among other topics “monitoring” (keeping up to date with a given topic by regular reading 
of latest findings), and “chaining”, in which a researcher reads a given article, then follows 
up its references, etc. The former would contribute to obsolescence, but the latter would 
presumably give an advantage to older works, especially if a researcher chooses the most 
cited items first, since these are more likely to be older references.

It is therefore very unclear what we ought to expect from the time evolution of citability. 
However, the above considerations lead to two clear research hypotheses. Hypothesis A 
states that citability of articles is constant over time. In other words, there is no clear bias 
either toward or away from older articles. Hypothesis B states that citability of articles 
declines over time, so that there is a bias toward newer articles. Hypothesis B has been 
assumed (after an initial increase in citability soon after publication) by many authors in 
the literature on aging/obsolescence of scholarly articles.

The model

Consider the following model of article production. Suppose that articles are published 
continuously and let P(t) be the total number of articles published up to time t, so that P�(t) 
is the instantaneous rate of publication at time t. Suppose that each new article cites each 
previously published article with probability q(a) depending only on the age a. In other 
words, the number of citations by article X published at time t of each article Y published at 
time s < t is a Bernoulli random variable ct−s,XY , and for a fixed value t − s these variables 
are independent and identically distributed.

The simplest special case, which explicitly uses Hypothesis A, is when q is independent 
of a. In other words, the number of citations by article X published at time t of each article 
Y published at time < t is a Bernoulli random variable cXY , these variables are independent 
and identically distributed, and independent of t. We call this “the uniform model” below.
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The quantity q in the model should be expected to vary between research fields, even in 
the simplest case when it is constant. Much research shows disciplinary differences in cita-
tion statistics (see, for example, the study (Boyack, 2018) of over 5 million articles). Our 
data below shows that the number of references varies substantially between disciplines. In 
our professional (anecdotal) experience, Mathematics articles are typically written fairly 
tersely, and citations are mostly given to work which is directly built on by the article in 
question. By contrast, articles in Economics tend to have noticeably longer introductions 
with many citations. More detailed study of disciplinary differences in author citation 
behavior, beyond the difference in field size and speed of publication.

Behavior of the model

Our first prediction is that the expected length L(t) of the reference list of each article pub-
lished at time t is

The intuition behind this is that P�(s) ds is the approximate number of papers published in 
small time interval [s, s + ds] , the age for such papers is approximately t − s , and so each is 
cited with probability q(t − s).

Under the uniform model we have the special case

Differentiating, we see that in this case the growth rate of L is proportional to the growth 
rate of P.

It will often be convenient to start time at some t0 > −∞ (for example, because we only 
have data since time t0 ). In this case we can simply rewrite to obtain

An important feature of the model is that because we assume uniformly random choice of 
article to cite, if we consider the restriction whereby we count only citations to articles pub-
lished at time t0 or later, the analysis is essentially unchanged. For example, defining L∗(t) 
to mean the number of references published at time t0 or later, and P∗(t) = P(t) − P(t0) the 
number of articles published at time t0 or later, we have

Experimental setup

We used a dataset supplied by the company Academic Analytics https://​aarcr​esear​ch.​com/. 
The dataset is rather comprehensive and covers all publications in the period 2006–2016 by 
faculty members at a list of 390 PhD-granting universities in North America. More details 
on the process used can be found in Appendix  A. We note that such a comprehensive 

L(t) = ∫
t

−∞

q(t − s)P�(s) ds

L(t) = qP(t)

L(t) = L(t0) + ∫
t

t0

q(t − s)P�(s) ds

L∗(t) = ∫
t

t0

q(t − s)(P∗)�(s) ds

https://aarcresearch.com/
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dataset is not really necessary for much of the analysis in the present article, because ran-
dom sampling will be good enough.

We filtered out entries with missing data and those with fewer than 5 references (in 
order to eliminate letters to the editor). The dataset, taken as a sample of the total amount 
of articles published over the given time period, seems likely (to us) to be unbiased as far 
as reference list length goes. In this dataset we have (147,149, 53,776, 30,160, 16,957) arti-
cles published in 2006–2016 from the fields of Chemistry, Mathematics, Economics and 
Oncology respectively, and the number of pages and number of references of each article.

We also needed estimates of P(t). For this we used manual queries in Scopus. Of course, 
we do not know whether the research field classification used by Scopus is the same as 
that used in our provided dataset. This was one reason why we restricted to the four fields 
listed above—the original dataset contained several other research fields such as History 
and Geography, where we expected some classification inconsistencies.

All statistical analyses were performed using Python with standard packages numpy, 
pandas, and matplotlib.

Results

In each research field under investigation, we found a steady increase over the period 
2006–2016 in the mean number of articles published each year, and in the number of refer-
ences per article. The fit of each via ordinary linear regression was good (see Table 1), sug-
gesting a linear growth in reference list length over time. We found noticeable and consist-
ent differences by research field in the mean reference list length, as shown in Fig. 1 (right).

We compared the mean list length L(t) against our estimates of P(t) from Scopus. The 
uniform case of our model predicts an affine relationship (there is a nonzero constant term 
coming from all articles published up to 2006) of the form L(t) = q

(

P(t) − P(t0)
)

+ d . The 
fit was extremely good (see Fig. 2 and Table 1). We expect that different research cultures 
will lead to different values of q in our model; for example we would expect the value 
of q in the model to be larger for Economics than Mathematics, to the extent that they 
are disjoint fields. The slope values we obtained from the least squares fitting mentioned 
above indeed differed substantially, and that for Economics was much larger than that for 
Mathematics.

We performed several robustness checks on the above results. The appendix shows 
how replacing the mean with the median makes relatively small changes. We also checked 
against another dataset. Data kindly supplied by the authors of the detailed study Larivière 
et al. (2007) show clearly that from around 1980 there has been a roughly linear growth in 
P and L, and that P is closely fitted by a linear function of L (see Fig. 3 and Table 2).

Table 1   Fit of linear models for L(t) and P(t), 2006–2016 (as shown in Figs. 1 and 2)

Field R
2 for L(t) R

2 for P(t) R
2 for L vs P R

2 for P(t) − P(t − 1)

Chemistry 0.405948 0.997372 0.963810 0.964448
Mathematics 0.605758 0.997737 0.993011 0.947762
Economics 0.521143 0.968208 0.978862 0.908734
Oncology 0.269766 0.993056 0.888816 0.969280
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Our model and the exponential growth phase

Our uniform model predicts an exponential growth rate of reference list length during 
a period in which growth in articles is exponential. The data supplied by the authors of 
Lariviere et al. (2007) contradicts this clearly: the growth of reference lists, the growth in 
P, and the relationship between L and P in various aggregated subfields over the period 
1900–2004 are shown in Fig. 4.

In fact no function q in our more general model will yield a subexponential growth rate 
of reference lists when literature is growing exponentially, as the following computation 
shows, assuming P(t) = Cekt:

L(t) = Ck ∫
t

−∞

q(t − s)eks ds

= Ck ∫
∞

0

q(a)ek(t−a) da

= Ckekt ∫
∞

0

q(a)e−ka da.

Fig. 1   Relationships between t, P(t) and L(t)
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The integral in the last line is a nonnegative constant.
These results are not surprising, since the justification for the model is lacking in this 

case. It is not reasonable to assume that during the exponential growth phase of science 
(before the 1980s), authors could consistently locate all relevant references. For example, 
that time period was before the advent of widespread electronic search for publications. A 
more reasonable assumption is that authors added a few references to the reference lists of 
articles that they had read. This would lead to fairly slow growth in L, perhaps a little faster 
than linear.

Connection to the literature on obsolescence and aging

Obsolescence and aging

A seemingly very different topic in bibliometrics is the aging/obsolescence of scientific 
literature. Having reviewed at least 30 articles from the bibliometric literature on these top-
ics, we make several critical comments about that literature.

First, we deal with terminology. Many authors use “aging” as a synonym for “obso-
lescence”. For a diachronous example, Brookes (1972): “Aging of scientific and 

Fig. 2   Linear relationship between P(t) and L(t)
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technical literature in this case means a decrease in intensity (frequency) of the use of 
publications by scientists and specialists with the increase in the time which elapsed 
since the date of publication. To measure the obsolescence rate, ...”; A synchronous 
example is Egghe & Ravichandra Rao Egghe (1992): “The paper deals with the shape of 
the obsolescence function, which one can construct, based on the age data of reference 
lists.” (Gupta, 1998), p. 336 states clearly as justification for a synchronous approach to 
obsolescence that “Evidence of the obsolescence of publications is presumed, if the use 
of these publications declines with age. Decline in the use literature over time (aging or 

Fig. 3   Linear relationship between P(t) and L(t) from dataset of Lariviere et al. (2007), 1985–2004

Table 2   Fit of linear model for 
L(t) versus P(t) from dataset 
of Lariviere et al. (2007), 
1985–2004

Field R
2

Medicine 0.982209
Natural sciences 0.994795
Social sciences 0.990064
Arts and humanities 0.925461
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decay) may be ascertained through studies of library use or by studying age of citations 
in publications or articles cited.”

The above examples conflate two different concepts. Obsolescence means a lowered 
utility (in our context, being less attractive for citation) occurring over time. However, as 
we see below, obsolescence may occur as the article gets older, but it is not very accurate to 
say that an article becomes obsolete just because it is older. Rather, it is also because more 
relevant, more citable articles have been published in the interim. By analogy, steamships 
did not become obsolete simply because time passed, but because better alternatives were 
invented.

Also, some authors have used the term “aging” to refer to an increase over time in the 
(mean or median) age of items occurring in reference lists—in other words, aging (en 
masse, not individually) of reference lists. This usage may easily lead to confusion, because 
increase in the age of reference lists is caused by a decrease in the rate of “aging” (in the 
sense of obsolescence) of articles!

To avoid confusion, from now on we refer only to obsolescence of articles and recency 
bias of reference lists.

There is an even more important point to make—obsolescence is often confused with 
growth of literature, and is not really proven. The connection of our work on reference list 
length to these topics is as follows. 

Fig. 4   Relationship between P(t) and L(t) from dataset of Lariviere et al. (2007), 1900–2004
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(1)	 Growth in scientific literature leads to recency bias in reference lists: older items are 
crowded out by the more numerous newer ones. This is true even if the length of 
reference lists keeps pace with the growth in article production. It is not necessary to 
postulate any obsolescence effect (the decline in citability of articles as time passes) 
in order for recency bias in reference lists to occur.

(2)	 However, any age-related obsolescence effect will also cause recency bias, even if no 
growth in the literature occurs. Thus, recency bias in reference lists is caused by both 
growth of literature and obsolescence.

(3)	 Many authors have taken obsolescence (that is, Hypothesis B) as given, and used 
recency bias in reference lists as a way to estimate obsolescence.

The first point holds because this behavior is seen in our uniform model, as discussed 
in “The uniform model and the age distribution” below. In this model, the fraction of 
papers cited at time t and having age at least a is simply P(t − a)∕P(t) , which decreases 
as a increases. This obvious effect has been noted before. For example, in Lariviere et al. 
(2007) we find: “we suggest that the principal cause of the increased age of the cited 
scientific information is a fairly mechanistic response to the phenomenal growth in the 
quantity of published material after the war and to the current slowing in the growth of 
science.”

The second point is clear. If q is a decreasing function of a, at least after a short ini-
tial period, then we would expect this expression for L(t) to be smaller than when q is 
constant.

We come now to the third point listed above. Of course, if obsolescence is conflated 
with aging, it is obvious, because articles do age! Beyond that, Line and Sandison 
(1974) point out that obsolescence of articles is an assumption that must be verified, 
and there is evidence that it does happen. Many other authors have simply assumed 
obsolescence of articles. For example, Lariviere et  al. (2007) assume obsolescence 
(after, as usual with such an assumption, an initial increase in citability) as common 
knowledge. After a diasynchronous study of the age of items in reference lists of arti-
cles published in the period 1900–2004, they find: “Indeed, in contrast to a widely-held 
belief, scientific literature does not become obsolete faster nowadays and, actually, quite 
the opposite is observed. The useful life of scientific publications has been increasing 
steadily since the mid-seventies.” This is correct insofar as an increase in the rate of 
obsolescence should lead to a reduction in the average age of items in reference lists, all 
other things being equal. However, the existence of obsolescence has not been shown by 
this study—the results on recency bias in reference lists can be explained without it, as 
explained above.

Line and Sandison (1974) surveyed the area almost 50 years ago, and most of our obser-
vations were already noted by them or earlier authors. However, as described above, the 
distinction between obsolescence of articles and recency bias in reference lists, and the fact 
that both obsolescence and growth of the literature play a role in recency bias of reference 
lists, has subsequently been missed by several authors.

Some of the confusion between obsolescence and recency bias may be caused by a mis-
take in conditional probability: we want to know whether P(cited ∣ old) is small, but we 
only observe P(old ∣ cited) . Bayes’ formula shows
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Since P(old) may be considerably smaller than P(cited), we cannot make the desired 
conclusion.

In Lariviere et  al. (2007) we find: “we suggest that the principal cause of the 
increased age of the cited scientific information is a fairly mechanistic response to the 
phenomenal growth in the quantity of published material after the war and to the current 
slowing in the growth of science.” However, growth by itself cannot explain recency 
bias in reference lists, as our uniform model shows. A consequence of our model is that 
a slowdown in article production will lead to an increase in the average age of items in 
reference lists. However, if obsolescence is really a factor, then this property need not 
hold.

In summary, the relationship between aging and obsolescence is considerably more 
nuanced than much of the literature would lead a casual reader to believe.

As a more general criticism, we claim that the literature on obsolescence is of rather 
limited practical relevance today, and some of it appears to have been misconceived from 
the start. As explained by Line and Sandison (1974), we should distinguish between obso-
lescence of documents and of knowledge. In the age of print collections, limitations on 
shelf space made it important for librarians to determine which serials were less likely to 
be consulted in future by their patrons. However, in the electronic age where it is possible 
to maintain easy access to the long tail of less popular items, obsolescence of documents is 
much less of a concern. It is not clear whether obsolescence of knowledge is a major prob-
lem, or ever was.

In short, we find the literature on aging/obsolescence to be in serious need of improve-
ment, and hope that our contribution here will spur further more rigorous work.

The uniform model and the age distribution

Consider, under our general model, the reference list of articles published at time t. The 
expected total age of all items in such a list is

Note that A(t)/L(t) gives the mean age of an item in the reference list of a randomly selected 
article published at time t.

We restrict now to the uniform model, where q(a) is constant for all a ≥ 0 . Since it will 
be difficult to analyse this in full generality owing to lack of historical data on P, we restrict 
to citations to articles published at time t0 or later by articles appearing at time t0 or later, to 
obtain the formula

Integration by parts allows us to rewrite this quantity as

P(cited ∣ old)P(old) = P(old ∣ cited)P(cited).

A(t) ∶= ∫
t

−∞

(t − s)q(t − s)P�(s) ds

A∗(t) = q∫
t

t0

P∗(s) ds
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We use a “mean-field approximation” approach, estimating the expected mean age of an 
item by

and the median by solving P∗(t − a) = P∗(t)∕2 for a. Note that the expected mean age is is 
at most t − t0 , and equals the reciprocal of the fraction of the rectangle formed by the points 
(t0,P(t0)) , (t,P(t0)) , (t, P(t)) and (t0,P(t)) that lies under the graph y = P(t) . If for exam-
ple P∗ grows quadratically in t (corresponding to a linear increase in the number of arti-
cles produced per unit time), then these approximations yield a mean age of (t − t0)∕3 and 
median (t − t0)(1 − 2−1∕3) ≈ 0.206(t − t0) . We tested Eq. (1) on our dataset—Table 3 shows 
the predictions. To obtain data on age of items in reference lists, we randomly sampled 30 
articles from each field for publication year 2016, and extracted their data from CrossRef. 
This required manual queries: because the details about a publication’s references are not 
available using CrossRef’s API, the entire reference list was manually extracted for each 
item. Afterward, a Python program was used to analyse the reference list and calculate the 
sample mean and median of the referenced items. Only the references published after 2006 
were considered. The results are also shown in Table 3. The fit is good given the sample 
sizes.

It is not to be expected that our mean-field approach should lead to accurate predic-
tions about the distribution of the length of the reference list for a randomly chosen arti-
cle published at time t. The model predicts that this should follow a binomial distribution 
Bin(P(t), c).

A∗(t) = q∫
t

t0

(t − s)P�(s) ds

= qt ∫
t

t0

P�(s) ds − q∫
t

t0

sP�(s) ds

= qt
(

P(t) − P(t0)
)

− q[sP(s)]t
t0
+ q∫

t

t0

P(s) ds

= q∫
t

t0

P(s) − q(t − t0)P(t0) ds

= q∫
t

t0

(

P∗(s) − P(t0)
)

ds

= q∫
t

t0

P∗(s) ds

(1)A∗(t)

L∗(t)
=

∫ t

t0
P∗(s)

P∗(t)

Table 3   Predictions versus 
sample statistics for age of 
references conditional on article 
being published in 2016 and 
references being published no 
earlier than 2006

Field Mean age 
(prediction)

Mean age 
(sampling)

Median age 
(prediction)

Median age 
(sampling)

Chemistry 5.36 4.74 5 5
Mathematics 5.40 5.19 5 5
Economics 4.62 5.37 5 5
Oncology 5.65 4.79 5 5
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However we do consider this more stringent test of the model in Fig. 5. The results are 
not especially good, as expected, and more detailed modeling of the distribution of refer-
ence list length should be undertaken.

Discussion and conclusion

Our results show that the uniform citation model we have used is good enough to explain 
the time evolution of the length of reference lists and to relate this to the growth in the 
number of articles published, at least in the modern era of electronic searching. We con-
clude that the model is promising for statistical studies of this type, and may be of use in 
other areas. Our more general model may yield more detailed predictions, but we face the 
serious problem of how to estimate the obsolescence function q. It would be very interest-
ing to study a fast-growing modern field which essentially started during the last 20 years, 
to see how well our uniform model holds up.

Differences in citation patterns of research fields were already discussed by Price 
(1965). Fields such as mathematics seem on the face of it to be more suited to the uniform 
model, where citability of results, once established, presumably does not decline as quickly 
as in more fast-moving fields. We hope to inspire other researchers to investigate citation 

Fig. 5   Binomial fitting of mean reference list length of documents published in 2016
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behavior in enough detail to allow improvements on the model presented here, and to dis-
tinguish more between growth and obsolescence.

The empirical and modeling results above lead to policy questions. The increasing 
growth in the number of references per article (also called “citation inflation”) is poten-
tially a cause for concern, if it continues long enough. This has been noted by previous 
authors (Ucar et al., 2014; Yitzhaki & Ben-Tamar, 1991). Given a constant cost per unit 
time for reading, scholars will face increasing difficulties in checking references. For exam-
ple, our linear models predict an increase in the mean of at least five references per decade, 
and this would likely increase. This points to the need for more efficient machine reading 
of articles, which in turn requires open access to primary research literature. Another, more 
radical, option would be for journals to restrict the number of references. This is analogous 
to applicants for grants or promotions focusing on the most important publications. Of 
course this would not reduce the work of the author, but it would help the reader, and make 
it easier to compare citation productivity of researchers over time. Alternatively, reasons 
for citation could be clarified and references to literature standardized. For example, all 
perfunctory (Moravcsik & Murugesan, 1975) citations (where the author mentions work by 
others in order to convince reviewers that the author is knowledgeable or to show respect to 
other researchers, but that work is not directly built on by the present paper) could be listed 
in a standard place where readers could classify them as such, and ignore them if time is 
short. This might be a nontrivial saving; for example, Cano (1989) found in a small study 
that over one-quarter of citations fall into this category.

Appendix A. Datasets

The following description of the dataset was supplied by Academic Analytics.
We culled the Digital Object Identifiers (DOIs) of journal articles (co)authored by 

scholars in the Academic Analytics commercial database (AAD; http://​www.​acade​mican​
alyti​cs.​com/) between 2007 and 2019. The AAD is composed of an annually updated ros-
ter of faculty members employed by 390 American Ph.D. granting universities. Faculty 
members in the AAD are linked to each CrossRef-DOI journal articles they (co)authored 
using manual and semi-automated disambiguation. The AAD also contains the academic 
department affiliation(s) of each faculty member; these departments, in turn, are manu-
ally classified into disciplines based on NCES CIP codes (https://​nces.​ed.​gov/​ipeds/​cipco​
de/). We extracted from the AAD the DOI of each journal article (co)authored by scholars 
whose departments are classified in the following disciplines: Chemistry, Economics, Eng-
lish Language and Literature, Geography, History, Mathematics, and Oncology. Each DOI 
was entered as a search term in the CrossRef API (https://​www.​cross​ref.​org/) to retrieve the 
length of the reference list and the first and last page numbers, from which the total page 
count of each article was calculated.

Appendix B. Robustness checks

B.1. Median vs. mean

We repeated the analyses using the mean from the main text, this time using the median. 
The results were similar, as seen in Figs. 6 and  7 and Table 4).

http://www.academicanalytics.com/
http://www.academicanalytics.com/
https://nces.ed.gov/ipeds/cipcode/
https://nces.ed.gov/ipeds/cipcode/
https://www.crossref.org/
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Fig. 6   Median reference list 
length, by year

Fig. 7   Linear relationship between P(t) and L(t) (Median)
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Table 4   Fit of linear model for 
L(t) versus P(t) - Median

Field R
2

Chemistry 0.962511
Mathematics 0.988723
Economics 0.980056
Oncology 0.805837
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