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Abstract
Based on the backward citation information of patents and the geographical information of 
inventors, this study constructed an overlap index of highly-cited patent technologies between 
31 provinces in mainland China and 49 foreign countries (or regions) with active PCT patent 
inventors (1998–2017), in order to depict the bilateral codified knowledge relatedness index. 
It further investigates its impact on the scale of allocation of overseas inventors by Chinese 
patent activities. According to the results, the codified knowledge relatedness significantly 
increased the scale of overseas patent inventors imported to China, that is, for every 1000 pat-
ents added in the technological overlap of highly-cited patents, the number of local inventors 
introduced from foreign countries (or regions) to local high-quality patent activities in China 
increased by 14, and this effect is mainly concentrated in the active innovation areas around 
the world. Further study showed that the impact of the bilateral tacit knowledge linkage on 
the allocation of overseas inventors with the codified knowledge relatedness was substitutive, 
and this substitutability decreased with the improved quality of innovation activities.

Keywords  Codified knowledge relatedness · Technological overlap · Patents · Overseas 
inventors

JEL Classification  F43 · O15 · O32 · O53

Introduction

The global innovation network, which is led by multinational companies in Europe and the 
United States, has formed the characteristics of “Local Hotspot, Global Networks” (WIPO, 
2019),1 which guides the flow of global innovation resources. Europe and the United States 
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1  The report of the World Intellectual Property Organization (WIPO) in 2019 noted that the geocoding 
data provided by millions of patent inventors and authors of scientific publications described to the world 
the remarkable characteristics of the global innovation geographical map in recent years: “Local Hotspot, 

http://orcid.org/0000-0003-0915-3866
http://orcid.org/0000-0002-5939-3764
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-022-04563-8&domain=pdf


878	 Scientometrics (2023) 128:877–899

1 3

are the leaders of the current global innovation network and the global innovation resource 
allocation competition, with particularly prominent positions in attracting overseas high-
skilled laborers. For example, the United States and Switzerland are the largest net import-
ers of high-skilled immigrants, with a considerable proportion from emerging countries, 
such as China and India (Kerr et  al., 2016). At the same time, during the continuous 
extension and reshaping of the international innovation network, the innovation strength 
of emerging countries represented by BRICS has been greatly improved (Kogler et  al., 
2017; Lee et al., 2019; WIPO, 2020) and has gradually become a new important node in 
the global innovation network.2 During this process, the allocation of overseas innovation 
resources based on the global innovation network, especially high-end technical talents, 
is an important approach for emerging countries to consolidate their independent inno-
vation strength. As shown in Fig. 1, since the beginning of the twenty-first century, with 
the expansion of the global innovation network, the cross-border joint R&D cooperation 
between BRICS countries and G7 countries has been rapidly deepened, and the scale of 
PCT patents jointly developed by countries from both parties have increased from 31,000 
(2001 to 2010) to 73,000 (2011 to 2017). Specifically, the cross-border cooperation patents 
between China and G7 countries have increased from 15,000 to 51,000 during the same 
period, which makes China a representative case of global emerging countries in allocat-
ing overseas innovation resources. Different from the “siphon effect” of traditional innova-
tion highlands, such as Europe and the United States, on global innovative talents through 
long-term accumulated innovation strength and reputation, the micro basis for emerging 
countries to attract overseas high-end technical talents is a topic worth exploring. In view 
of China’s outstanding performance in global innovation activities, this study focused on 
China’s allocation of overseas innovation talents.

Current studies focusing on cross-border innovation talent flows are based on the perspec-
tives of agglomeration effects and spillover effects, which explain why the traditional innova-
tion highlands such as OECD countries, which constitute less than a fifth of the world’s popu-
lation, could host two-thirds of high-skilled migrants (Artuç et al., 2015; Kerr et al., 2016). 
Relevant studies indicate that traditional innovation highlands attract high-skilled laborers 
based on selection effects (Combes et al., 2012) with high monetary or non-monetary benefits 
(Davis & Dingel, 2020; Kerr & Kerr, 2018). Meanwhile, the highly skilled laborers choose 
to agglomerate to traditional innovation highlands, which are characterized by high innova-
tion activity and high knowledge spillovers, based on their own comparative advantages in 
absorptive capacity (Cohen & Levinthal, 1990) and their capacity to internalize knowledge 
spillovers (Davis & Dingel, 2019). However, for emerging countries, neither the skill premium 
provided by productivity advantage, nor the knowledge spillover provided by agglomeration 
of innovation activities, can be compared to traditional innovation highlands. Obviously, cur-
rent theories based on agglomeration and selection effects are not applicable to explaining 
why the emerging countries (such as BRICS countries), which are not advantaged in terms of 
both agglomeration and skill premiums, can accelerate the cross-border acquisition of highly 
skilled inventors from the traditional innovation highlands (such as G7 countries). Therefore, 

2  For example, Shenzhen-Hong Kong-Guangzhou, Beijing, and Shanghai in China have already entered the 
top ten of the top 10 global innovation clusters (WIPO, 2020).

Footnote 1 (continued)
Global Networks” with a slight sense of disobedience, that is, knowledge creation is highly concentrated in 
a few regional hotspot cities, but it is spreading to the wider international community.
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Fig. 1   Evolution of R&D collaboration between G7 and BRICS from 2001 to 2017
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this study intended to explain how emerging countries acquire highly-skilled foreign talents 
(especially from the traditional innovation highlands) based on the perspective of knowledge 
relatedness.

Different from tacit knowledge, with the help of revolutionary communication technol-
ogy, codified knowledge expressed in the form of academic journals and patents spread with 
unprecedented breadth, depth, and speed around the world. When they are learned, mastered 
and internalized by scientific and technical workers scattered around the world, they poten-
tially become a professional “common language” for innovative personnel to exchange. Obvi-
ously, the higher the overlap degree of internalized codified knowledge among innovative 
personnel, the more professional the “common language” between them, which enhances the 
possibility of building innovative teams. During the gradual diffusion of the global innovation 
network, the widespread dissemination of such codified knowledge promotes the knowledge 
relatedness among nodes of the innovation network to be gradually strengthened, thus, creat-
ing conditions for the increased flow and cooperation of talents among such networks. There-
fore, this study regarded codified knowledge as the microscopic basis for the allocation of 
overseas inventors by emerging countries. According to existing empirical studies, the techno-
logical overlap, which was often constructed based on patent citation data, can be regarded as 
codified knowledge relatedness among innovation subjects (Bena & Li, 2014; Sears & Hoet-
ker, 2014). Moreover, from the perspective of space, the matching effect of knowledge related-
ness on cross-border innovation teams is also in line with the sorting effect (Gaubert, 2018), 
which leads to the spatial agglomeration of resources in new economic geography. Therefore, 
combined with the spatial spillover characteristics of knowledge, this study constructed the 
technological overlap index of the geospatial dimension, as based on patent data. The bilateral 
codified knowledge relatedness between China and other parts of the world was drawn and 
presented, then, its impact on China’s allocation of overseas patent inventors and its spatial 
heterogeneity was investigated. In addition, a large number of studies have emphasized the 
prominent role of tacit knowledge in innovation activities (Lecuona & Reitzig, 2014). Hence 
the question, does tacit knowledge play a moderating role in the process of attracting overseas 
inventors through the codified knowledge relatedness?

There are two main aspects of the marginal contribution of this paper. First, based on 
microdata at the patent level, a technological overlap index between 31 provinces in mainland 
China and 49 foreign geographical units (countries or regions) with active PCT patent inven-
tors was measured in this study for the first time. The co-cited patents were used to present the 
bilateral codified knowledge relatedness among innovation nodes, and its impact on China’s 
attraction of overseas patent inventors was investigated to provide new evidence and insights 
into how global emerging innovation nodes attract cross-border innovative talents. Second, 
this study measured the bilateral tacit knowledge linkage between China and foreign regions 
using the number of patent inventors flowing into different regions of China from overseas 
R&D partners. Then, this study investigated its moderating role in the process of allocating 
overseas inventors through the codified knowledge relatedness to provide evidence for the 
interactive effect between tacit knowledge and codified knowledge in the process of allocating 
cross-border innovation resources.
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Literature review and research hypotheses

Technological overlap, also known as knowledge base overlap, refers to the overlap degree 
of the existing knowledge of two invention subjects at a certain time point and focuses on 
discussing the knowledge relatedness between innovation subjects from the perspective of 
commonness. A patent is a typical product of knowledge codification, and its citation infor-
mation provides the flow footprint of related codified knowledge (Alcacer & Gittelman, 
2006; Jaffe et al., 1993). Due to the improved availability of patent data by electronization, 
the technological overlap index has been constructed in many studies based on the same 
backward citation patent information, as found in the patent applications of two invention 
subjects (such as two enterprises). Thus, as the existing knowledge relatedness (Bena & Li, 
2014; Sears & Hoetker, 2014) between invention subjects can be measured, technological 
overlaps can be used to measure the codified knowledge relatedness index between inven-
tion subjects.

According to relevant studies, the higher the overlap degree of existing codified knowl-
edge among innovation subjects, the more familiar they are with relevant technologies 
and knowledge. This helps to alleviate the frictions and troubles caused by information 
asymmetry in the establishment of innovation teams (such as searching and matching both 
parties in mergers and acquisitions) and the post-establishment innovation activities (such 
as understanding and using external technologies or knowledge). Therefore, this concept 
is often discussed in studies of enterprises’ behavior in acquiring external knowledge 
resources (such as technology mergers, acquisitions, and R&D alliances) (Ahuja & Katila, 
2001; Kapoor & Lim, 2007; Makri et al., 2010; Sears & Hoetker, 2014). In addition, stud-
ies on corporate banking held that the overlap of existing codified knowledge also con-
tributes to the formation of economies of scale of innovation resources after mergers and 
acquisitions (Bena & Li, 2014).

Meanwhile, some existing studies also focused on the impact of technological over-
lap on the internalization of external knowledge activities by innovation subjects. While 
Chesbrough (2003) noted that the R&D innovation activities of R&D subjects, such as 
enterprises presenting a trend of openness innovation, the internalization of external ideas 
or knowledge is not an automatic or free process. According to Cassiman and Colombo 
(2006), the essential purpose of technology-driven mergers and acquisitions is to coordi-
nate internal and external technical resources to enhance innovation output. Both Ahuja 
and Katila (2001) and Bena and Li (2014) noted that the correlation between external 
knowledge acquired by R&D subjects through mergers and acquisitions, as well as their 
existing codified knowledge (i.e., technological overlap), can affect the quantity and quality 
of innovation output after acquiring external knowledge resources.

Generally speaking, as a measure of the bilateral codified knowledge relatedness, the 
mechanism of technological overlap affecting innovation activities mainly includes the 
following aspects. First, a technological overlap helps to alleviate the frictions caused by 
information asymmetry in the process of collaboration between internal knowledge and 
external knowledge. According to Graebner et  al. (2010), technological overlap helps to 
improve the absorptive capacity of enterprises (Cohen & Levinthal, 1990) and reduces the 
barriers for enterprises to understand and use external knowledge resources. According to 
Kavusan et al. (2016), the higher the technological overlap, the more similar the innova-
tion activity paradigms of all parties in the innovation alliance, which is conducive to the 
understanding and use of external knowledge by all parties, and further conducive to the 
smooth development of R&D cooperation. According to Bena and Li (2014), technological 
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overlap helps buyers identify and discover the actual value of knowledge and technical 
resources. In this way, the search and match efficiency in the mergers and acquisitions mar-
ket can be improved, and the related transactions can be promoted. Second, technological 
overlap helps to form economies of scale and the scope of innovation resources. According 
to Henderson and Cockburn (1996), since a technological overlap is the intersection of the 
existing knowledge of both parties, mergers and acquisitions help to preserve innovation 
resources, thus, forming economies of scale; or this knowledge can be used more widely to 
form economies of scale. Third, technological overlap helps to specialize innovation activi-
ties. In order to make more effective use of the surplus innovation resources, as derived 
from technological overlap, both parties of the innovation cooperation will reconfigure 
the combined innovation resources, and then, promote R&D activities in the technical 
field where they have advantages, thus, enhancing their specialization level (Cassiman & 
Colombo, 2006).

However, technological overlaps may also push the resistance and costs of internaliz-
ing the external knowledge of innovation subjects. Sears and Hoetker (2014) noted that a 
technological overlap may cause knowledge redundancy among R&D subjects, which will 
increase the cost and difficulty of effectively identifying each party’s high-value knowl-
edge; therefore, the excessive expansion of technological overlap may have a negative 
impact on the effect of the internalization of external knowledge by innovation subjects. 
According to Kavusan et al. (2016), the internalization effect of technological overlap on 
external knowledge presents an inverted U-shaped relationship, which is in conformity 
with the viewpoint of Sears and Hoetker (2014). Therefore, compared with the techno-
logical overlap constituted by high-value patents, the expansion of technological overlap 
constituted by general-value patents is not entirely beneficial for enterprises to search and 
identify external innovation human resources. As highly-cited patents are widely used as 
background knowledge sources for R&D subjects, they have wider recognition and deeper 
understanding among R&D groups, and thus, have a more significant impact in alleviating 
any inconsistencies caused by information asymmetry during R&D cooperation. Therefore, 
this study focused on the structural features of technological overlap, constructed corre-
sponding technological overlap indicators based on highly-cited patents and non-highly-
cited patents, and compared the impact of the two on the allocation of cross-border inven-
tor resources.

High-quality innovation activities usually require innovative talents with higher skill 
levels, and such talents are highly irreplaceable. However, enterprises seeking exter-
nal innovation resources may find it difficult to obtain suitable high-end technical talents 
locally, which is particularly obvious for emerging countries due to their relatively weak 
reserve of high-end technical talents. Therefore, in order to carry out high-quality inno-
vation activities, emerging countries must expand their search scope of external inventor 
resources (Ahuja & Katila, 2004; Katila & Ahuja, 2002), and rely more on introducing 
them from global innovation hotspots. Meanwhile, more complex and cutting-edge knowl-
edge must be invested in high-quality innovation activities (Akcigit et  al., 2016), which 
leads to more serious information asymmetry in innovation teams carrying out such high-
quality innovation activities (Wuchty et  al., 2007). Therefore, in order to build effective 
cross-border innovation teams, bilateral codified knowledge relatedness can play a greater 
role in alleviating the impact of information asymmetry.

This study puts forward the following hypothesis:
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H1  The technological overlap of highly-cited patent technologies can promote the scale 
of the introduction of overseas inventors to the high-quality R&D activities of emerging 
countries

In addition to codified knowledge, tacit knowledge also plays an important role in inno-
vation activities. During the allocation of cross-border inventor resources with technologi-
cal overlap, the tacit knowledge linkage (Latilla et al., 2018) can enrich the diversity of the 
cognitive dimensions among innovation team members (Nonaka & Krogh, 2009), thereby 
directly enhancing the team’s creativity potential (Hoever et al., 2012; Kurtzberg, 2005). 
Moreover, in addition to transmitting the uncodified frontier knowledge in the technical 
dimension, the tacit knowledge linkage can affect the unique innovation behavior of R&D 
subjects through the cognitive dimension (Nonaka & Krogh, 2009). However, due to its 
abstractness and inexpressiveness, tacit knowledge is difficult to be codified, or it cannot 
be codified or disseminated in a timely manner due to its excessive advance. Therefore, the 
communication and sharing of tacit knowledge usually require face-to-face communication 
between people, meaning it relies more on those who participate in innovative activities 
(Dhanaraj et  al., 2004), such as direct peer-to-peer interaction in private social networks 
(Lecuona & Reitzig, 2014).

During the innovation activities carried out using the codified knowledge contained in 
knowledge documents, innovation personnel must decode such knowledge documents. On 
one hand, the redundant knowledge (Sears & Hoetker, 2014), which is irrelevant to the 
theme of the current innovation activities in the codified knowledge search, is screened 
to eliminate its interference. On the other hand, when codifying the knowledge, distorted 
information can be restored (Arora et al., 2018; Roach & Cohen, 2013), and such factors 
will restrict the utilization efficiency of codified knowledge by the innovation team. How-
ever, during this process, the tacit knowledge possessed by innovation participants will 
play a reasonable role in interpreting relevant codified knowledge, thus, alleviating this 
restriction. Therefore, in an environment where emerging countries attract overseas innova-
tive talents, tacit knowledge may enhance the attraction of codified knowledge to overseas 
inventors. Meanwhile, when the tacit knowledge attached to overseas inventors has a strong 
impact on the interpretation of codified knowledge, the role of codified knowledge in alle-
viating information asymmetry may be replaced, thus, the attraction of codified knowledge 
to overseas inventors may be weakened.

This study puts forward the following hypothesis:

H2  In the process of attracting overseas innovative talents from emerging countries, the 
tacit knowledge linkage plays a moderating role in the allocation effect of overseas patent 
inventors by the codified knowledge relatedness.

To summarize the above research hypotheses, the model framework of this study is 
shown in Fig. 2.
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Data source, variable construction, and model setting

Data source and variable construction

The data used in this study came from two patent databases,3 REGPAT and Citations, as 
compiled by the Organization for Economic Cooperation and Development (OECD), in 
which REGPAT provides the geographical location of patent inventors at the NUTS2 level, 
while Citations provides the forward- and backward-citation information of patents.

The key explanatory variable in this study is the technological overlap (HC_Overlapijt), 
based on highly-cited patents, where subscript i represents provinces in mainland China, j 
represents foreign geographical units (countries or regions), and t represents the year of the 
territory. The specific construction steps are, as follows. First, according to the Citations 
database, all backward citation patents in the global PCT patent citation database were 
grouped according to priority years, and the patents cited in the top 10% in each prior-
ity year were defined as Highly-cited Patents, while other patents were regarded as Non-
Highly-cited Patents. Second, according to the geographical information of PCT patent 
inventors, as published in the REGPAT database from 1998 to 2017, this study selected 31 
provincial administrative regions in mainland China (hereinafter referred to as provinces) 
and 49 foreign countries or regions with active PCT patent inventors (hereinafter referred 
to as countries) as the geographical research units, in order to construct 1519 Chinese prov-
ince-foreign country pairs to build the technological overlap index. Finally, this study took 
31 Chinese provinces and 49 foreign countries as the geographical units, respectively, and 
the backward citations of the patents of the geographical units, as identified in period t,4 
were summed up as the knowledge source database of the geographical unit. Then, the 

Fig. 2   Theoretical model of the main hypotheses

4  In order to smooth the process, each index was constructed in the benchmark regression with a period of 
three years, and rolling calculation was carried out.

3  The impact of relevant policy tools on private R&D in European Union region was investigated using 
REGPAT in Egger & Loumeau (2018).
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co-cited patents of each Chinese province-foreign country pair were further extracted,5 and 
the numbers of Highly-cited Patents and Non-Highly-cited Patents were calculated, respec-
tively, in order to extract the key explanatory variable HC-Overlapijt and the control vari-
able Non-HC_Overlapijt.

The dependent variable is the scale of the introduction of overseas inventors to China’s 
provincial high-quality patent activities (InvImportHQijt).6 The construction steps of this 
variable are, as follows. First, this study constructed a patent width index for all PCT pat-
ents from 1998 to 2017 using the method inAkcigit et  al. (2016),7 and then, the patents 
were grouped according to priority years, that is, the patents with the same priority years 
were merged into the same group. The patents ranked in the top 10% of the patent width 
index in each group were defined as high-quality patents, while others were attributed to 
non-high-quality patents. Second, the scales of overseas inventors in high-quality patents 
belonging to 1519 Chinese Province-Foreign Country pairs were calculated, respectively. 
Specifically, in this study, based on the geographical information of patent inventors, as 
provided by REGPAT, the patents containing at least one applicant in China were identi-
fied from the high-quality patent database, and then, the number of inventors of foreign 
geographical units in this patent was summed up individually, which was regarded as the 
inflow scale8 of overseas inventors to Chinese Province-Foreign Country pairs.

Other control variables in this study include the inflow scale of overseas inventors 
(InvImportijt−3) and the outflow scale of domestic inventors (InvExportijt−3)9 in the previ-
ous observation period (lag by one standard observation period consider as three years), 
which were used to control the flow intensity of brain gain and brain drain between Chi-
nese provinces and foreign countries (or regions); the similarity of the technical structure 

5  Fig. 4 in the appendix shows a detailed description of the construction of the technological overlap index. 
In addition, of note in this study, the technological overlap index was only extracted based on non-cooper-
ative patents (that is, excluding the patents of inventors from Chinese and foreign geographic unit pairs), to 
alleviate the endogenous errors caused by reverse causality in the regression analysis.
6  In view of the fact that the applicant is usually the owner of the intellectual property contained in the pat-
ent, the non-Chinese inventor in a patent including at least one Chinese applicant is considered in this study 
as the inflow of foreign inventors in China. Similarly, Chinese inventors in a patent with at least one non-
Chinese applicant is considered as the outflow of domestic inventors in China.
7  A patent serves as an important carrier of innovation knowledge. The complexity of its knowledge can 
directly reflect the content of knowledge created by innovation behavior itself, and provide patent hold-
ers with higher monopoly power of innovation products to realize the commercial value of the patent by 
improving the difficulty of competitors’ imitation and improvement under the patent protection system. 
Therefore, patent knowledge width, which can reflect the complexity and extensiveness of patent knowl-
edge, is an ideal index to measure patent quality (Akcigit et al.,2016). The specific calculation method is 
Quality = (1-HHI), where HHI is the Herfindal-Hirschman index of the IPC number of the patent, which 
distributes the weight at each Group level.
8  For example, suppose a patent had at least one applicant from Beijing, and three of the four inventors 
from the United States and one from Japan. In this study, the scale of InvImport obtained by Beijing from 
the United States was calculated as 3 person-times, and the scale of InvImport obtained by Beijing from 
Japan was calculated as 1 person-time. In the following robustness test, other methods were used to meas-
ure the scale of InvImport in this study.
9  The variable InvExportij measures the outflow of domestic inventors, which form Chinese province i to 
foreign country j as Brain Drain. For example, suppose a patent had at least one applicant from the United 
States, and four inventors from China (three from Beijing and one from Shenzhen). In this study, the scale 
of InvExport obtained by the United States from Beijing was calculated as 3 person-times, and the scale of 
InvExport obtained by the United States from Shenzhen was calculated as 1 person-time.
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of Chinese and foreign geographical unit pairs (Co_techijt)10 was used to control the cor-
relation between the technical fields of bilateral innovation activities (Jiang et al., 2017).

Model setting

To test the abovementioned hypotheses, this study set the benchmark measurement equa-
tion,11 as follows:

where, the dependent variable is the scale of the introduction of high-quality patent activi-
ties to China’s province i from foreign country j in t period; the key dependent variable 
is the technological overlap HC−Overlapijt−3 constructed based on highly-cited patents by 
Chinese and foreign geographical unit pairs in t-3 period. In addition to technological over-
lap Overlapijt−3, as constructed based on non-highly-cited patents in t-3 period, the control 
variable X also includes InvImportijt−3 and InvExportijt−3 in t-3 period and Co_techijt in t 
period. To better control the errors caused by missing variables, the estimation equation 
introduces the joint fixed effect FEit of provinces in mainland China and years, the joint 
fixed effect FEjt of foreign countries (or regions) and years, and the fixed effect FEij of Chi-
nese and foreign geographical unit pairs.

(1)
Inv Import HQijt = � + �

1
HC − Overlapijt−3 + �

2
NC−

Overlapijt−3 + X� + FEit + FEjt + FEij + �ijt

Table 1   Statistical characteristics 
of cross-border R&D cooperation 
scale and technological overlap 
samples of Chinese and foreign 
geographical unit pairs

OECD REGPAT database, OECD Citations database. Unless other-
wise specified, the same is below

Explanatory variable InvImportHQijt

Obs Mean Std. Dev Min Max

From All Countries 22,785 0.143 2.049 0 114
From G7 3255 0.782 5.209 0 114
From Non-G7 19,530 0.037 0.547 0 33
Explained Variable HC-Overlapijt−3

Obs Mean Std. Dev Min Max
From All Countries 22,785 13.729 116.182 0 5151
From G7 3255 60.022 285.547 0 5151
From Non-G7 19,530 6.013 41.777 0 1314

10  In this study, the Pearson correlation coefficient of patent activities in 35 technical fields in each obser-
vation period of 1519 Chinese and foreign geographical unit pairs was calculated using the comparison 
table of patent IPC and technical fields set by WIPO, which was used as the proxy variable of similarity of 
innovation activities in technical fields of Chinese and foreign geographical unit pairs. For specific compari-
son table of patent IPC and technical fields, see https://​www.​wipo.​int/​meeti​ngs/​en/​doc_​detai​ls.​jsp?​Doc_​id=​
117672 (retrieval date: March 12, 2021).
11  To alleviate endogenous bias, we lag our explanatory variable by one standard observation period (three 
years). In the robustness tests, we also used different lengths of observation periods to extract the those 
variables, and adjusted the lag lengths of the corresponding variables according to the lengths of the obser-
vation periods.

https://www.wipo.int/meetings/en/doc_details.jsp?Doc_id=117672
https://www.wipo.int/meetings/en/doc_details.jsp?Doc_id=117672
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Descriptive statistics

As shown in Table 1, the overseas inventors imported to China were mainly concentrated 
in G7 countries, and the average technological overlap of highly cited patent technologies 
in Chinese province-G7 country pairs exceeded 60 patents, while the index of Chinese 
province-non-G7 country pairs was only six patents.

From 1998 to 2017, the annual total scale of the inflow of foreign inventors to Chinese 
PCT patent activities maintained steady growth, with an average annual growth rate of over 
30%, while the annual scale of the inflow of foreign inventors to Chinese high-quality PCT 
patent activities expanded rapidly from 2011, and then, quadrupled in two years. In addi-
tion, whether at the overall level or the high-quality innovation activity level, more than 
75% of the inventor resources, as introduced by applicants-led PCT patent activities in 
China, came from G7 countries (as shown in Fig. 3).
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Fig. 3   Annual inventor import of PCT patents introduced to China from 1998 to 2017
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Basic results and discussion

Benchmark results and explanation

Table 2 shows the benchmark regression results. First, column (1) of Table 2 only intro-
duces the technological overlap (Overlapijt−3) of Chinese and foreign geographical unit 
pairs extracted, as based on the full reference database. In addition, in order to control the 
specific impact of the spatio-temporal dimension, the fixed effect of common years and 
geographical units was also introduced. According to the results, the estimated coefficient 
of InvImportijt of the Overlapijt−3 pair was positive and significant at the level of 1%. To 
alleviate the estimation errors caused by missing variables, this study introduced the joint 
fixed effect of geographical units and years (FEit and FEjt) and the fixed effect of Chi-
nese and foreign geographical unit pairs (FEij). The first two fixed effects help to control 
the affecting factors of the changes of Chinese and foreign geographical units over the 
years, such as the scale of patent inventors of each geographical unit over the years. Mean-
while, the last fixed effect could control the impact of the specific connection or related-
ness between Chinese and foreign geographical units, such as the personnel flow cost due 
to the bilateral spatial distance. As shown in column (2), the adjusted R2 increased from 
0.368 to 0.585, and up to 58.9%, which shows the rationality and effect of introducing the 
above fixed factors on relieving missing variables. Meanwhile, the estimated coefficient of 
Overlapijt−3 decreased to 0.158 but was still significant at 5%. Worthy of note, the inflow 

Table 2   Introduction of overseas inventors to high-quality innovation activities promoted by overlap of 
highly-cited patents

All standard errors were the clustering standard errors between Chinese and foreign geographical units
*p < 0.1, **p < 0.05, ***p < 0.01

Explained Variable InvImportijt InvImportHQijt InvImportNQijt

(1) (2) (3) (4) (5) (6)

Overlapijt−3 0.179*** 0.158** 0.01
(2.80) (2.48) (0.17)

HC-Overlapijt−3 0.041 0.014** 0.027
(0.74) (1.96) (0.51)

Non-HC-Overlapijt−3  − 0.23  − 0.048**  − 0.138
(− 0.67) (− 2.16) (− 0.40)

InvImportijt−3 1.386*** 1.452*** 0.040** 1.412***
(4.55) (4.06) (2.09) (4.04)

InvExportijt−3  − 0.078  − 0.088  − 0.004  − 0.087
(− 0.91) (− 1.12) (− 1.18) (− 1.13)

Co_techijt−3 2.451 2.681 0.233 2.424
(0.99) (1.05) (1.61) (0.98)

FEt,FEi,FEj Yes
FEit,FEjt,FEij Yes Yes Yes Yes Yes
N_clust 31 1519 1519 1519 1519 1519
adj. R2 0.368 0.585 0.802 0.803 0.63 0.809
N 22,785 22,785 22,785 22,785 22,785 22,785
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scale of foreign inventors (InvImportijt−3), the outflow scale of domestic inventors (InvEx-
portijt−3) of both parties in the previous period, and the technical structure similarity index 
(Co_techijt−3) of the innovation activities of Chinese and foreign geographical unit pairs 
were constructed based on the subdivision of technical fields and introduced into the equa-
tion as control variables. The third column shows that although the adjusted R2 further 
increased from 0.585 to 0.802, which is up more than 37%, the estimated coefficient of 
the dependent variable Overlapijt−3 was no longer significant, while the coefficient of the 
control variable InvImportijt−3 was significant at 1%. These results mean that, at the overall 
level, Chinese innovation subjects were more inclined to attract overseas inventors from the 
same region by relying on the relationships with existing overseas inventors and utilizing 
the spatial agglomeration effect to allocate overseas inventor resources.

As highly-cited patents are widely used as the background knowledge sources of R&D 
subjects, they have a more significant effect in alleviating friction during R&D coopera-
tion, thus, the dependent variable Overlapijt−3 was decomposed into HC_Overlapijt−3 and 
Non-HC_Overlapijt−3 in column (4). This study regarded the new estimation equation, HC_
Overlapijt−3 as the key dependent variable, and Non-HC_Overlapijt−3 was used to control 
the knowledge redundancy caused by the technological overlap of non-highly-cited patents. 
According to the results, the coefficient of HC_Overlapijt−3 was still not significant.

As mentioned above, the impact of the technological overlap of highly-cited patents on 
attracting overseas inventors to emerging countries was heterogeneous, thus, this study fur-
ther divided the samples according to patent quality. Column (5) and column (6) repre-
sent the scale of overseas inventors of high-quality innovation patents (InvImportHQijt) and 
non-high-quality patents (InvImportNQijt), respectively. According to the results, the coef-
ficient of the key dependent variable HC-Overlapijt−3 was significantly positive at the level 
of 5% in column (5), but not significant in column (6). This result means that the techno-
logical overlap of highly-cited patents significantly increased the inflow scale of overseas 
inventors; however, this effect only occurred in high-quality patent activities. The results 
support H1. In addition, worthy of note, the estimated coefficient of the control variable 
InvImportijt−3 in column (5) was obviously smaller than that in column (6), and while the 
self-accumulation of the inflow scale of overseas inventors had a significant impact on both 
high-quality and non-high-quality patent activities, it was stronger in non-high-quality pat-
ent activities.

Therefore, column (5) was taken as the benchmark estimate in this study, which means 
that for every 1000 more highly-cited patents in the co-cited patent database between 
Chinese and foreign geographical units, the number of overseas inventors participating 
in high-quality patent activities introduced from corresponding regions to Chinese prov-
inces would increase by 14. Unlike current studies that explain the agglomeration of highly 
skilled laborers to traditional innovation highlands in terms of a premium for monetary 
and non-monetary benefits (Davis & Dingel, 2020; Kerr & Kerr, 2018), we find that the 
codified knowledge relatedness, as measured by technological overlap, is also a significant 
factor for emerging countries, such as China, to allocate foreign innovative talents, such as 
inventors.
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Robustness test

Robustness test 1

The length of the observation period was changed. In order to test the potential impact of 
fluctuation of the observation period on the regression results, this study further provided 
the results from observation periods of 2/4/5 years. Specifically, the key independent vari-
able and the dependent variables were adjusted according to the length of the observation 
period. According to the estimation results given by Panel A in Table  3, the estimation 
coefficient of HC-Overlapijt-2 was significantly positive at 10%, and the estimation coef-
ficient of HC-Overlapijt-4 and HC-Overlapijt-5 was significantly positive at 5%.

Robustness test 2

Different regression methods were used. Since innovation activities were highly concen-
trated at the geographical level, and knowledge spillover itself had highly regional char-
acteristics, the variable of the inflow scale of overseas inventors to the high-quality patent 
activities constructed in this study was positive and had many zero values. Therefore, Pois-
son Pseudo-Maximum Likelihood Estimation (PPML) was used to re-test the benchmark 
regression model. According to the PPML estimation results given by Panel B in Table 3, 
the estimation coefficient of HC-Overlapijt−3 was still significantly positive at 5%.

Table 3   Robustness test

We adjusted the lag lengths of the explanatory variable and control variables according to the lengths of the 
observation periods in Panel A; all standard errors were the clustering standard errors between Chinese and 
foreign geographical units
*p < 0.1, **p < 0.05, ***p < 0.01

Panel A Panel B Panel C Panel D

2 years 4 years 5 years PPML Patnum nuts2

(1) (2) (3) (4) (5) (6)

HC-Overlapijt−2 0.009*
(1.82)

HC-Overlapijt−3 0.001** 0.004** 0.005***
(2.13) (2.31) (3.51)

HC-Overlapijt−4 0.014**
(2.21)

HC-Overlapijt−5 0.013**
(2.23)

FEit,FEjt,FEij Yes Yes Yes Yes Yes Yes
N_clust 1519 1519 1519 92 1519 18,166
adj. R2 0.54 0.662 0.69 0.715 0.503
P. R2 0.755
N 24,304 21,266 19,747 977 22,785 272,490
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Robustness test 3

The construction method of the inflow scale of overseas inventors was replaced. With ref-
erence to the construction method of Lee et al. (2019), this study measured the inflow scale 
of overseas inventors to high-quality patent activities according to the number of high-
quality patent achievements,12 and the estimation results are given in Panel C of Table 3. 
While the estimation coefficient of HC-Overlapijt−3 decreased to 0.004, it was still signifi-
cant, meaning that when the number of co-cited high-quality patents of Chinese and for-
eign geographic units increased by 1,000, the number of cooperative patents of Chinese 
and overseas inventors could increase by nearly 4.

Robustness test 4

The geographical unit level was changed. In order to measure whether the benchmark 
regression results were still stable at the smaller geographical unit level, this study recorded 
586 foreign NUTS2-level geographical units13 with PCT patent activity from 49 foreign 
countries (or regions), which were further refined and identified, then, 18,166 Chinese 
and foreign province pairs were constructed on this basis, and the corresponding variables 
were recalculated. According to the estimation results given by Panel D in Table 3, even 
in NUTS2, which is a smaller geographical space, the estimation coefficient of HC-Over-
lapijt−3 was still significantly positive at 1%.

Overall, the estimation results of the correlation robustness test are consistent with those 
of the benchmark regression.

Heterogeneity analysis

With China’s increasing economic strength and the transformation of high-quality growth 
pushed by the government, innovation has become the first driving force for develop-
ment, and the purpose, methods, and partners of China’s global intelligence introduction 
are increasingly diversified. Olechnicka et al. (2019) held that the innovation policies for-
mulated by the Chinese government especially encourage international scientific research 
cooperation, among which the United States and Taiwan are the largest partners (Zheng 
et al., 2012). Zhou and Glänzel (2010) focused on scientific publications and held that the 
number of times of international cooperation between China and scientific and technical 
workers in the European Union and North America was gradually increasing, whereas that 
with emerging countries (such as Brazil and Turkey) was declining.

In order to investigate the spatial heterogeneity of the attraction of technological overlap 
to overseas inventors in the dimension of inventors’ source locations, the samples in this 

12  Based on the cooperation scale of patent quantity measurement, the inventors of the same geographical 
unit were not calculated repeatedly; for example, there were 6 inventors in patent A, of which 2 were from 
Beijing, 2 were from the United Kingdom and 2 were from the United States, thus, the cooperation scale of 
Beijing-UK and Beijing-US was 1. Therefore, Patnum was smaller than the cooperation scale InvImport, as 
constructed based on the number of inflow of foreign inventors in benchmark regression.
13  Eurostat set up the NUTS classification as a system for dividing up the EU’s territory in order to produce 
regional statistics for the Community. The NUTS classification includes three geographical levels, NUTS1, 
NUTS2 and NUTS3. The NUTS2 regions represent the first administrative tier of subnational government; 
for example, the Province of Ontario in Canada. Refer to: https://​ec.​europa.​eu/​euros​tat/​web/​nuts/​backg​
round (retrieval date: March 12, 2021).

https://ec.europa.eu/eurostat/web/nuts/background
https://ec.europa.eu/eurostat/web/nuts/background
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study were classified at the national and NUTS2 levels. At the national level, this study 
constructed two sub-samples of G7 countries and non-G7 countries; at the NUTS2 level, 
two sub-samples of innovation hotspots and non-innovation hotspots14 were constructed. 
As shown in Table  4, whether at the national level or the NUTS2 level, the promotion 
effect of technological overlap on China’s introduction of overseas inventors was mainly 
concentrated in the global innovation active regions, such as G7 countries and NUTS2 
regions with the top 100 global innovations (Table 4).

Interaction effect of tacit knowledge on the allocation of overseas 
inventors by technological overlap

As mentioned above, the technological overlap index describes the relatedness of the codi-
fied knowledge between geographical units, which alleviates information asymmetry in 
cross-border R&D cooperation. In fact, non-codified tacit knowledge also plays this role. 
Do interactive effects exist between the two types of knowledge relatedness when promot-
ing the allocation of cross-border inventors?

Since the construction of a tacit knowledge dissemination network relies more on point-
to-point interactions among individuals (Lecuona & Reitzig, 2014), geographical proxim-
ity provides the possibility of tacit knowledge dissemination. On one hand, the geographi-
cal proximity facilitates the construction and extension of innovation talents’ personal 
social networks, thus, facilitating the flow of tacit knowledge among network nodes. On 
the other hand, the spillover effect of knowledge is further strengthened in the smaller geo-
graphical space, and both of these factors promote the dissemination of tacit knowledge. 
In addition, by attracting and gathering highly-skilled talents in specific technical fields 
or industries, geographical units can consolidate and strengthen local technical advantages 
in corresponding sub-fields and deepen the thickness of relevant professional knowledge, 

Table 4   Heterogeneity test 
(source locations of overseas 
inventors)

All standard errors were the clustering standard errors between Chi-
nese and foreign geographical units
*p < 0.1, **p < 0.05, ***p < 0.01

Geological Level Panel A: Countries 
(or Regions)

Panel B: NUTS2

Inventors From G7 Non-G7 Hotspots Non-Hotspots

(1) (3) (4) (5)

HC-Overlapijt−3 0.0220** 0.0015 0.0061***  − 0.0002
(2.45) (1.37) (3.73) (− 0.47)

FEit,FEjt,FEij Yes Yes Yes Yes
N_clust 217 1302 3100 15,066
adj. R2 0.659 0.541 0.514 0.479
N 3255 19,530 46,500 225,990

14  According to the geographical information of PCT patent inventors, as published in the REGPAT data-
base from 1998 to 2017, this study calculated the accumulative inventor activity times of 586 geographi-
cal units with PCT patent activity records outside China during the observation period, and the top 100 
with NUTS2 level were selected as innovation hotspots outside China, while the remaining regions were 
regarded as non-innovation hotspots outside China.
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thus, creating a favorable environment for external inventors to disseminate and share their 
tacit knowledge. In addition, this role will form a scale effect with the increase in the num-
ber of external inventors introduced.

Obviously, overseas inventors are an important carrier of their local tacit knowledge and 
have the function of disseminating tacit knowledge. Therefore, this study took the number 
of overseas inventors in the t-3 period of Chinese and foreign geographical units (InvIm-
portijt−3) as the proxy variable of the tacit knowledge of foreign geographical units, and 
then, introduced Eq. (1) as an interactive variable to check its regulatory effect on the allo-
cation of overseas inventors by technological overlap. The specific measurement model is 
shown, as follows:

The estimation results are given in Table  5 Panel A. In the total sample, the esti-
mation coefficient of interactive variable InvImportijt−3 × HC-Overlapijt−3 was signifi-
cantly negative. There was a significant substitution for the impact of the bilateral tacit 
knowledge linkage, as caused by the self-accumulation of the inflow scale of overseas 
inventors on the allocation of overseas inventors by the codified knowledge relatedness, 
which not only reduced the dependence of cross-border innovation activities on the 

(2)

InvImportHQijt =� + �
1
HC − Overlapijt−3 + �

2
Non − HC − Overlapijt−3

+ �
3
InvImportijt−3 + �

4
InvImportijt−3 × HC − Overlapijt−3

+ �
5
InvImportijt−3 × Non − HC − Overlapijt−3

+ X� + FEit + FEjt + FEij + �ijt

Table 5   The impact of the bilateral tacit knowledge linkage on the allocation of overseas inventors with 
codified knowledge relatedness

All standard errors were the clustering standard errors between Chinese and foreign geographical units
*p < 0.1, **p < 0.05, ***p < 0.01

Innovation quality type Total High-quality Normal-quality
(1) (2) (3)

Panel A: Mijt as InvImportijt−3

InvImportijt−3 2.098*** 0.064*** 2.058***
(7.56) (4.57) (7.62)

InvImportijt−3#HC-Overlapijt−3  − 0.001***  − 0.000*  − 0.001***
(− 2.80) (− 1.79) (− 2.81)

InvImportijt−3#Non-HC-Overlapijt−3 0.002** 0.000 0.001**
(2.01) (1.24) (1.99)

Adj. R2 0.849 0.659 0.855
Panel B: Mijt as InvImport_Totalit−3

InvImport_Totalit−3 #HC-Overlapijt−3  − 0.000  − 0.000 0.000
(− 0.12) (− 1.34) (0.02)

InvImport_Totalit−3 #Non-HC-Over-
lapijt−3

 − 0.000 0.000  − 0.000
(− 0.29) (1.09) (− 0.50)

Adj. R2 0.805 0.643 0.812
FEit,FEjt,FEij Yes Yes Yes
N_clust 1519 1519 1519
N 22,785 22,785 22,785
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effective part (HC-Overlapijt−3) of codified knowledge but also reduced the interference 
of the redundant part (Non-HC-Overlapijt−3) in codified knowledge. Columns (2) and (3) 
of Panel A further show that, while this substitution mainly focused on non-high-quality 
patent activities, it had no significant effect on high-quality patent activities.

Although codified knowledge relatedness could effectively alleviate information 
asymmetry, the interpretation of codified knowledge relatedness itself costs time and 
energy to eliminate the interference of redundant knowledge in codified knowledge 
(such as the identification of high-cited patents and general patents in the technological 
overlap). Regarding the general quality innovation activities that were more sensitive to 
cost constraints, compared with paying more to interpret the codified knowledge relat-
edness, the tacit knowledge of existing innovation partners is more inclined to be used 
to alleviate information asymmetry; on one hand, the high-quality innovation activities 
with higher input of innovation elements were less sensitive to the cost constraint of 
the codified knowledge relatedness; on the other hand, the specific high-skilled inventor 
resources needed in high-quality innovation activities were more irreplaceable, which 
would make it difficult to completely replace the role of the codified knowledge relat-
edness by using tacit knowledge alone. Therefore, in innovation activities with higher 
quality, the substitution effect of the bilateral tacit knowledge linkage on codified 
knowledge, as caused by the self-accumulation of the inflow scale of existing overseas 
inventors, would show a downward trend.

In addition, this study further replaced InvImportijt−3 with the scale of existing overseas 
inventors (InvImport_Totalit-3) in Chinese provinces, and the results are given in Table 5 
Panel B. The coefficient of interactive item InvImportijt−3 × HC-Overlapijt−3 was not sig-
nificant in all subsamples, which reflects the unique “geographical stickiness” of tacit 
knowledge.

Discussion and conclusions

This study empirically investigates the impact of interregional codified knowledge relat-
edness on attracting foreign highly skilled talent to China. To the best of our knowledge, 
this is the first study to provide evidence that technological overlap between regions and 
countries enhances the cross-border flow of patent inventors from developed econo-
mies to emerging economies, and this is also the first study to investigate the interactive 
effect between the interregional codified knowledge relatedness and tacit knowledge link-
age in the process of allocating cross-border innovative talents. We draw the following 
conclusions.

First, the interregional technological overlap, based on highly-cited patents, significantly 
boosts the scale of the inflow of local patent inventors from globally innovative countries 
or regions to 31 provinces in mainland China. In contrast, the technological overlap, based 
on non-highly-cited patents, does not have this role. The main reason is that highly-cited 
patents are more widely recognized and deeper understood among patent inventors than 
non-highly-cited patents, and thus, can more effectively mitigate the information frictions 
faced by cross-border R&D cooperation. Moreover, this effect of technological overlap on 
the inflow of foreign patent inventors shows obvious heterogeneity in terms of the origin 
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of foreign inventors. Specifically, the technological overlap mainly helps China to attract 
foreign inventors from G7 countries or global innovation hotspots. The fact that most of the 
high-cited patents are created by developed countries is the reason for this phenomenon.

Second, the interregional tacit knowledge linkage, as measured by the number of exist-
ing foreign inventors, can negatively moderate the impact of the technological overlap on 
foreign inventors’ inflow. However, this negative moderating effect is very slight for high-
quality patenting activities. As mentioned earlier, specific highly skilled talents that match 
with high-quality innovation activities are more irreplaceable, thus, the moderating role of 
tacit knowledge linkage is limited.

The relevant conclusions have important practical significance and rich policy 
implications. First, when formulating and implementing industrial policies, the Chi-
nese government should pay more attention to identifying cross-border collaborative 
R&D opportunities and technology areas, as based on knowledge relatedness between 
international and domestic innovation activities. It is well known that China, as an 
emerging country, participates in global innovation networks as a “catcher” and builds 
up its innovation strength by following traditional innovation highlands through 
“catch-up strategies” (Guo et al., 2019). Therefore, the Chinese government can mine 
information on cross-border knowledge linkages, as based on open information about 
global innovation activities (e.g., scientific papers, grants, and patents), and make this 
information available to domestic innovation agents seeking foreign innovation talents. 
Second, facing a more complex international political environment, Chinese compa-
nies need to rely on the knowledge relatedness formed by the global innovation net-
work to precisely explore more opportunities to allocate innovation resources abroad.

Although this study provided empirical evidence on the impact of knowledge related-
ness regarding the cross-border flow of highly skilled laborers, it is acknowledged that our 
analysis has limitations. One limitation of this study is that we only use PCT patent data to 
construct the technological overlap, which may lead to the possibility that the technologi-
cal overlap constructed in this study may not provide a complete picture of the knowledge 
relatedness between China and other countries. Another limitation is that the detailed infor-
mation of cited patents is not available, which prevents us from investigating the impact 
of the structural features of technological overlap on the allocation of overseas innovative 
talents by China. Future research can combine the co-cited patent database with the other 
databases, such as USPTO, EPO, CNP, and JPO, in order to improve the detailed informa-
tion of co-cited patents. In addition, the attempt to measure the codified knowledge related-
ness based on scientific publications is valuable.

Appendix

See Table 6.
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Table 6   Geographical distribution with PCT patent activity records

OECD REGPAT database

Continent Number of 
countries (or 
regions)

Number 
of NUTS2 
regions

Country (or region) code and number of subdistricts 
(NUTS2 units)

Asia 7 88 Mainland China (CN,31), Chinese Hong Kong (HK,1), 
Chinese Taiwan (TW,1), Israel (IL,6), India (IN,32), 
Japan (JP,10), Korea(KR,7)

North America 3 96 USA(US,51), Canada(CA,13), Mexico(MX,32)
South America 2 41 Brazil (BR,26), Chile (CL,15)
Europe 35 361 Austria (AT,9), Belgium (BE,3), Bulgaria (BG,6), 

Switzerland (CH,7), Cyprus (CY,1), Czech (CZ,8), 
Germany (DE,38), Denmark (DK,5), Estonia (EE,1), 
Spain (ES,19), Finland (FI,5), France (FR,27), United 
Kingdom (GB,12), Greece (GR,13), Croatia (HR,2), 
Hungary (HU,7), Ireland (IE,2), Iceland (IS,2), 
Italy (IT,21), Liechtenstein (LI,1), Lithuania (LT,1), 
Luxembourg (LU,1), Latvia (LV,1), Monaco (MC,1), 
Malta (MT,1), Netherlands (NL,12), Norway (NO,7), 
Poland (PL,16), Portugal (PT,7), Romania (RO,8), 
Russia (RU,77), Sweden (SE,8), Slovenia (SI,2), 
Slovakia (SK,4), Turkey (TR,26)

Oceania 2 22 Australia (AU,8), New Zealand (NZ,14)
Africa 1 9 South Africa (ZA,9)

Fig. 4   Extraction procedure of co-cited database between Chinese and foreign geographical units
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Construction of technological overlap

With reference to the concept of the extraction of technological overlap by Bena and Li 
(2014), the specific steps of extracting the main independent variable Overlapijt in this 
study are shown in Fig. 4:

It was assumed that during investigation period t, the PCT patents participated by inven-
tors from China province i were: A (cited document: a, b, c), B (cited document: b, c, d), 
and C (cited document: d, e, f); PCT patents participated by inventors from countries (or 
regions) outside mainland China j are: C (cited document: d, e, f), D (cited document: a, c, 
e), and E (cited document: c, d).

(1)	 According to the patent database (A, B, C) in which the inventors from China province 
i participated and the patent database (C, D, E) in which the inventors from foreign 
countries (or regions) j participated, the patent library (C) invented by the inventors i 
and j was identified;

(2)	 The patent library (C) invented by inventors i and j was excluded from the respective 
patent databases of regions i and j, to obtain patent database (A, B) and patent database 
(D, E), respectively;

(3)	 According to the patent database (A, B) and patent database (D, E), the cited document 
database (a, b, c, d) of Chinese province i and the cited document database (a, c, d, e) 
of foreign country (or region) j were extracted, respectively;

(4)	 According to the cited document database (a, b, c, d) of Chinese province i and the 
cited document database (a, c, d, e) of foreign country (or region) j, the overlap part was 
extracted as the co-cited database (a, c, d) of both parties during observation period t, 
and the number of patents within was counted to obtain the technological overlap of i 
and j in observation period t of 3.

Funding  This study was funded by Ministry of Education of China (Grant Number: No.19YJA790126), 
Natural Science Foundation of Guangdong Province (Grant Number: No. 2314050003951), and Big Data 
Lab, Jinan University (Grant Number: No.20JNZS39).
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