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Abstract
Understanding the evolution of paper and author citations is of paramount importance for 
the design of research policies and evaluation criteria that can promote and accelerate sci-
entific discoveries. Recently many studies on the evolution of science have been conducted 
in the context of the emergent Science of Science field. While many studies have probed 
the link problem in citation networks, only a few works have analyzed the temporal nature 
of link prediction in author citation networks. In this study we compared the performance 
of 10 well-known local network similarity measurements with four machine learning mod-
els to predict future links in author citations networks. Differently from traditional link 
prediction methods, the temporal nature of the predict links is relevant for our approach. 
Our analysis revealed that the Jaccard coefficient was found to be among the most relevant 
measurements. The preferential attachment measurement, conversely, displayed the worst 
performance. We also found that the extension of local measurements to their weighted 
version do not significantly improved the performance of predicting citations. Finally, we 
also found that a XGBoost and neural network approach summarizing the information 
from all 10 considered similarity measurements was able to provide the highest AUC per-
formance and competitive precision values.

Keywords  Link prediction · Citation networks · Network similarity · Science of science · 
Authors citation networks

Introduction

Understanding citation patterns is of paramount importance to understand how sci-
ence evolves  (Fortunato et  al. 2018; Nielsen and Andersen 2021). Many efforts have 
been devoted to understand the mechanisms behind citations  (Molléri et  al. 2018; Liu 
et  al. 2021). This type of knowledge has allowed an enhanced quantification of evalua-
tion indexes in the Scientometrics field  (Bai et  al. 2016). At the macroscopic level, 
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paper citations are known to be dependent on age, field, journals visibility and other fac-
tors (Amancio et al. 2012b; Krumov et al. 2011). It is well known that citations also are 
affected by the preferential attachment rule, since more cited papers tend to accrue even 
more citations. This effect holds for both papers and authors citations (Eom and Fortunato 
2011; Wang et al. 2008; Silva et al. 2020).

Several studies have been devoted to understand the mechanisms underlying citations, 
but most of them have been limited to analyzing and predicting citation counts (Silva et al. 
2020). Amancio et  al. (2012b) proposed a model that considers three features to predict 
the behavior of papers citation and authors’ h-index. The model considered the preferential 
attachment rule, the semantical similarity between papers and a memory effect to mimic 
the tendency of older papers being less cited. While this and other models have been effec-
tive to reproduce the distribution of citations (and other network measurements), they did 
not assess the actual correspondence of each individual edge. This means that microscopic 
citation behavior might not be reproduced even though macroscopic features are consist-
ent with the behavior of real-world citation networks. Similar citation distribution analyses 
have also been performed at the author level (Silva et al. 2020).

A more detailed citation analysis considering both end points of a citation can be per-
formed via link prediction techniques  (Lü and Zhou 2011). A comparison of similarity 
measurements was performed in the context of predicting links in paper citation net-
works (Shibata et al. 2012). The authors found that the Jaccard coefficient and betweenness 
centrality affect the predictability of the machine learning system. In addition, a depend-
ency on how the fields are organized was reported, since most predictive systems predicts 
citations within the same field. Temporal link prediction has also been studied in patent 
citation networks (Chen et al. 2019). Surprisingly, Chen et al. (2019) found that when map-
ping local similarities and capturing global structure information, structural deep network 
embedding is not a good measurement for the task of predicting citations between patents.

While most works in predicting future citations have been performed at the paper/docu-
ment level, here we focus on predicting citations between authors. Studying the individual 
citation behavior of particular interest because it can reveal the emergence of individual 
citation patterns  (Radicchi et  al. 2009; Fortunato et  al. 2018). This type of information 
can be used not only for evaluation purposes, but can be used to understand how a field 
evolves (Silva et al. 2016; Powell et al. 2005). Because most citation behavior implies some 
type of similarity between authors, predicting author citations could also be used to suggest 
potential effective collaborations (Lande et al. 2020).

In the context of predicting authors citations, here we carried out a comparison of tra-
ditional local network similarity measurements for the task of predicting citations between 
authors. We conducted our link prediction comparative analysis in a dataset comprising 
more than 450, 000 papers published in Physics journals. Differently from other studies 
based on author analysis, our methodology is not impacted by authors’ names ambigu-
ity  (Zhang and Ban 2020; Sebo et  al. 2021; Milojević 2013; Amancio et  al. 2015; Nie 
et al. 2021). The considered dataset is enriched with names information extracted from the 
Microsoft Academic Graph (Hug and Brändle 2017).

We limited our comparative analysis to local traditional network measurements for two 
main reasons: (i) local network measurements can be efficiently computed in very large 
datasets, with good accuracy results (Martinčić-Ipšić et al. 2017). (ii) the same idea of local 
neighborhood analysis can be extended to include further hierarchies. Thus, quasi-local 
similarity measurements can be introduced using the same local measurements  (Aman-
cio et  al. 2015). Our analysis considered local network similarity measurements and 
their respective definition in weighted networks. Owing to the popularity of machine 
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learning strategies in a myriad of applications, we also evaluated the effectiveness of four 
machine learning models, like SVM, Logistic Regression, Artificial Neural Networks and 
XGBoost  (Amancio et  al. 2014), combining evidence from all the considered similarity 
measurements.

Several interesting results were observed in our comparative analysis. All local meas-
urements were found to yield a better precision performance when links are evaluated in a 
longer time window. The number of citations established between authors did not improved 
the predictability of citations, since the performance observed with unweighted indexes 
and their respective weighted versions turned out to be similar in several cases. All in all, 
the best performance was achieved with the Jaccard coefficient. We also found that com-
bining all similarity network measurements via machine learning does not improve the pre-
diction accuracy. Finally, we also found that the preferential attachment rule should be used 
in combination with other approaches, since this measurement alone turned out to display a 
low predictive power in author citation networks.

Methodology

This section presents the methodology used in this study. Section 2.1 describes the data-
set used to analyze authors citations. Section 2.2 details the construction of author cita-
tion networks. The measurements used to quantify the similarity between two authors are 
described in Sect. 2.3. Machine learning approaches to address the link prediction task are 
described in Sect. 2.4. Finally, we report our comparative analysis in Sect. 3. Perspectives 
for future works are presented in Sect. 4.

Dataset

We used the dataset of papers provided by the American Physical Society (APS), which 
comprises about 450, 000 articles from several APS journals, including Physical Review 
Letters, Physical Review A–E and Reviews of Modern Physics. This dataset has been 
largely used in several other studies (Bai et al. 2020; Chacon et al. 2020; Li et al. 2019; 
Silva et  al. 2020). Citations and additional paper metadata are also included in the APS 
dataset. Examples of metadata are paper DOI, journal name, title, list of authors, affilia-
tions and PACS code.

In order to avoid noise from names ambiguity, we used Microsoft Academic Graph 
(MAG) information to obtain authors’ names. This same procedure has been used in 
related works analyzing author citation networks  (Silva et al. 2020), Because MAG pro-
vides a unique identifier for each author, we also avoid the name split issue, i.e. when a sin-
gle author appear with different names in different publications. In sum, while citations at 
the paper level are obtained from the APS dataset, we used MAG as an additional dataset 
to address both name ambiguity and name split issues.

The dataset and code used in our experiments is available at this link.

Network construction

Author-citation networks are constructed using the following methodology. Given a time 
interval, we use information from papers to obtain citation between authors. Two authors X 
and Y are connected by a citation in a given time interval if a paper co-authored by X cited 
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at least one paper co-authored by Y. In the weighted version of the network, edges weight 
represents how many times X cited Y.

Figure 1 illustrates the process of creating author-citation networks from paper citations. 
The figure shows that article 1, co-authored by A and B, cites a paper co-authored by C, 
D and E. According to this information, the following links between authors are created: 
A → C , A → D , A → E , B → C , B → D and B → E . All edges from the toy dataset illus-
trated in Fig. 1a are depicted in the graph represented in Fig. 1b (continuous edges). Note 
that not all pairs of authors are linked in Fig.  1b (see blue dashed lines). These are the 
potential future links that are evaluated in the link prediction task. Here we divided the 
links in three main groups, as we can see in Fig. 1c. Blue dashed edges for possible future 
edges and the dark grey for actual links.

Link prediction

Once the network is constructed, our aim is to predict citations between authors. Two 
frameworks are commonly used for the task  (Wang et  al. 2014). The first approach is 
based on nodes similarity. According to this approach, a similarity value is extracted 
from all possible links and then sorted in decreasing order. Given a threshold, the con-
sidered predicted edges are those taking similarity values above the specified threshold. 
A different approach consists in considering similarity measurements as features in clas-
sification systems. Thus, patterns of links creation are obtained based on previous link 

Fig. 1   Representation of the network construction from the articles to the author-citation network



6015Scientometrics (2022) 127:6011–6028	

1 3

creation dynamics. Here we compared the performance of well-known local network 
similarity measurements. We also used four machine learning methods to investigate 
whether simple local measurements are outperformed by an automatic machine learning 
strategy.

Our analysis was restricted to the 1000 most productive authors observed in the test 
and training dataset. The reasons for analyzing only the most productive authors are two-
fold: (i) productive authors are the ones most active in the field, so it is expected that they 
are active along many years. This minimizes the issue of trying to predict links between 
authors that have stopped publishing after a few papers have been published; and (ii) lim-
iting the study to the most productive authors allows us to analyze the citing behavior of 
many influential researchers who receive a large fraction of citations in the whole author-
citation network (Wang et al. 2008).

In the similarity-based strategy, we computed pairwise similarities between all selected 
authors. Ten different measurements were used. The similarity computation was performed 
in the training dataset and then the performance of the prediction was evaluated using typi-
cal evaluation metrics (see Sect. 2.5 for more details regarding the evaluation). The simi-
larity values were then sorted in decreasing order, and the most similar edges were consid-
ered as predicted links according to a threshold value.

In the similarity-based approach, the following similarity measurements were used: 

1.	 Common Neighbors (CN): This is one of the simplest and most used similarity measure-
ments (Newman 2001). It quantifies the total number of shared neighbors. Alternatively, 
this measurement can be regarded as the number of paths of length 2 connecting two 
nodes. Mathematically, the similarity CN(u, v) between nodes u and v is computed as 

 where Γ(v) is the set comprising the neighbors of v. The weighted version of this 
measurement, defined in Lü and Zhou (2010), is given by: 

 where wuz denotes the weight linking nodes u and v.
2.	 Jaccard coefficient (JC): Another widely used similarity technique is the Jaccard coef-

ficient. This index is similar to CN with the advantage of being normalized in relation 
to the sum of all neighbors connecting the two data nodes under analysis, i.e.: 

 While in CN two hubs are more likely to share a neighbor just by chance than low-
connected nodes, this effect is minimized by the normalization in Eq. 3. The weighted 
version of the Jaccard Index (de Sá and Prudencio 2011) is given by: 

3.	 Adamic-Adar (AA): this measurement quantifies the similarity between nodes u and v 
based on the degree (i.e. the number of neighbors) of nodes in Γ(u) ∩ Γ(v)  (Adamic and 
Adar 2003). Mathematically, it is defined as: 

(1)CN(u, v) = |Γ(u) ∩ Γ(v)|,

(2)WCN(u, v) =
∑

z∈Γ(u)∩Γ(v)

(wuz + wvz),

(3)JC(u, v) =
∣ Γ(u) ∩ Γ(v) ∣

∣ Γ(u) ∪ Γ(v) ∣
.

(4)WJC(u, v) =

∑
z∈Γ(u)∩Γ(v)(wuz + wvz)

∑
a∈Γ(u) wau +

∑
b∈Γ(v) wbv

.



6016	 Scientometrics (2022) 127:6011–6028

1 3

 Note that nodes in Γ(u) ∩ Γ(v) with higher degrees contribute with a lower weight in 
the computation of the similarity between u and v. The term in the denominator of 
Eq. 5 minimizes the contribution of z ∈ Γ(u) ∩ Γ(v) whenever z is a hub. This is neces-
sary because hubs are more likely to be connected to both u and v just by chance. The 
weighted version of the Adamic-Adar measurement (Lü and Zhou 2010) is defined as 

4.	 Resource Allocation (RA): Similar to the Adamic-Adar technique, the resource alloca-
tion (Zhou et al. 2009) similarity index aims to give lower weight for shared neighbors 
with a higher degree: 

 Notice that here higher degree neighbors contribute with an even lower weight since 
log |Γ(z)| in Eq. 5 has now been replaced by |Γ(z)| in Eq. 7. The weighted version of the 
RA index also punishes neighbors with high strength (s) (Lü and Zhou 2010): 

5.	 Preferential Attachment (PA): This similarity metric is proportional to the product of 
the degree of the nodes u and v being analyzed (Barabási et al. 2002): 

 Because the preferential attachment states the higher-degree nodes are more likely 
to accrue new links (see e.g. Wang et al. 2008), a new link between two highly con-
nected nodes are very likely to appear in the future. The null model used to quantify 
the modularity measurement also considers that the probability of two nodes being 
linked when links are randomly placed is proportional to the product of the degrees of 
nodes at the end of the edge. The weighted version of the measurement considers the 
in-strength of nodes instead of the number of neighbors (de Sá and Prudencio 2011): 

Machine Learning Approach and Hyperparameter Optimization

In this method, citations are predict via learning models. The similarity measures described 
in Sect. 2.3 were used as features. The edges of the network are used as positive instances, 
while non-existent links (i.e. the dashed lines in Fig. 1) were used as negative instances.

Four machine learning models were used in our comparative analysis: (i) artificial neu-
ral networks (ANN) (Jain et al. 1996), (ii) logistic regression (LR) (Wright 1995), (iii) sup-
port vector machines (SVC) (Noble 2006), and extreme gradient boost (XGBoost) (Chen 

(5)AA(u, v) =
∑

z∈Γ(u)∩Γ(v)

1

log |Γ(z)|
.

(6)WAA(u, v) =
�

z∈Γ(u)∩Γ(v)

wuz + wvz

log(1 +
∑

a∈Γ(z) wza)
.

(7)RA(u, v) =
∑

z∈Γ(u)∩Γ(v)

1

|Γ(z)|
.

(8)WRA(u, v) =
∑

z∈Γ(u)∩Γ(v)

wuz + wvz

sz
.

(9)PA(u, v) = |Γ(u)| × |Γ(v)|.

(10)WPA(u, v) =
∑

a∈Γ(u)

wau ×
∑

b∈Γ(v)

wbv.
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and Guestrin 2016). Apart from ANN, hyperparameters tuning was performed by using the 
5-fold cross validation combined with the grid search technique (Refaeilzadeh et al. 2009). 
For all models, precision and AUC were selected as optimization and satisficing metrics, 
respectively (Bradley 1997).

The predictions were based on the best configuration of each algorithm, i.e. the configu-
ration with highest precision without overfitting (Yegnanarayana 2009; Nielsen 2015). A 
description of the considered methods is provided below: 

1.	 Artificial Neural Networks: the best configuration of the neural network was formed 
by one input layer comprising 10 units and one hidden layer, with 16 unites. The last 
layer comprised one unit. The sigmoid function was used in both hidden and output 
layers (Yegnanarayana 2009; Nielsen 2015). For the training part, we used Adam as 
optimizer and binary cross entropy as loss function, with a batch size of 32 and 50 
epochs of training. The input of the neural network corresponds to the 10 similarity 
measurements described in Sect. 2.3 and the output is a real number ranging between 
0 and 1. In this way, the neural network method can be seen as a a way to combine and 
summarize all measurements into a single similarity value. We adopted the parameter 
optimization adopted in (Amancio et al. 2014).

2.	 Support Vector Machine: Support vector machine is a supervised machine learning 
algorithm that aims to create a hyperplane capable of separate instances from different 
classes. The output for each instance is a score reflecting the membership score (or 
probability) to each possible class. For hyperparameter tuning, we used grid search 
and k-fold cross-validation techniques. In the end, the best configuration was used the 
RBG kernel and 10−4 of kernel coefficient. The best configuration also used 10−1 for the 
regularization parameter (Amancio et al. 2014).

3.	 Logistic Regression: this method multiplies each input value by a weight. The obtained 
products are summed and the result is used as input for a sigmoid function. The output 
is a probability of the considered to belong to a speficif class. The best combination of 
hyperparameters considered L2 as norm. As for the regularization factor, the best value 
found was 10−5.

4.	 Extreme Gradient Boosting Classifier: XGBoost is an improved version of traditional 
random forests (Breiman 2001). Differently from random forests, the XGBoost assigns 
a different weight in the voting process for each generated tree. The most accurate trees 
are the ones receiving the highest weights. Because the output of this method is a score, 
calibration is necessary to obtain membership probabilities to each class. The best com-
bination yielded 0.5 and 0.8 for the subsampling ratio of columns and rows, respectively. 
The best minimum loss reduction required to make a further partition on a leaf ( � ) was 
� = 0 . The other considered parameters were learning rate = 0.1 , maximum depth = 3 , 
regularization term = 10 and ratio of weight control = 1 (Chen and Guestrin 2016).

Evaluation

One of the most traditional means to evaluate the quality of an information retrieval sys-
tem is to divide the set of edges E into two parts: the training and test edges. The set of 
training edges will be used to predict the missing edges. A more elaborated method to 
perform such a division is the k-fold cross validation approach (Kohavi 1995). Accord-
ing to this technique, the dataset of links is separated into k different parts (folds) of 
preferably equal sizes. k − 1 folds are used for training ( Etrain ) and the remaining fold 
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( Etest ) is used to test the performance of the model. This process must be repeated at k 
times using different divisions for the test dataset in order to obtain the performance of 
our prediction model according to the average of the performance over the repetitions. 
At each moment, a different division is used as test dataset.

Because author-citation networks represent an evolving dynamic system, an evolu-
tion of the network structure is expected. Thus, it is natural to expect that new links may 
appear and old ones may disappear (i.e. no citations between a pair of authors might be 
observed in the considered period). New nodes can also appear in the network, as new 
authors are introduced when they publish a paper for the first time. Given that we are 
focusing on a link prediction task, we are not predicting links involving new nodes, i.e. 
nodes that were not observed during the training process.

Owing to the temporal nature of the link prediction problem, we used a modification 
in the evaluation of the system. Given an initial year Y, we consider a past time window 
of length d and a future time window of length p. Here we aim at predicting links that 
are formed in our validation database, which consists in all links formed along the inter-
val tval , where Y ≤ tval ≤ Y + p . In order to train the algorithms, the training dataset uses 
the information observed along the interval ttr , where Y − d ≤ ttr < Y .

In our analysis we varied p so that the prediction quality could be measured at both 
short- and long-terms. Figure 2 illustrates the division of the dataset when considering 
Y = 2016 as reference year. In the figure, we also considered d = 4 years; therefore the 
train dataset encompasses the years 2012 − 2015 . p varies so that the performance of the 
model is evaluated for p = {0, 1, 2, 3} years after the reference year Y.

Results and discussion

The comparison of performance is divided into two parts. We first analyze the precision 
in Sect. 3.1. The analysis considering the receiver operating characteristic (ROC) curve 
is then discussed in Sect. 3.2. While the precision evaluates the accuracy of the model 
in predicting positive links, the ROC analysis also evaluates the accuracy in not predict-
ing absent future links. In Sect. 3.3, we analyze the correlations between the unweighted 
and weighted versions of the considered similarity metrics.

Fig. 2   Illustration of the evaluation methodology used in this analysis. In the first evaluation setting, 2012–
2015 is used as train dataset and 2016 is used as validation dataset. Note that the size of the test dataset 
increases so that one can evaluate both short- and long-term prediction performance
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Precision analysis

In Fig. 3, we show the individual behavior of each similarity measurement as more cita-
tions are predicted. In our analysis, we considered different validation sets. The first 
one corresponds to the period between 2000 and 2001. This curve is represented as a 
blue curve in Fig.  3. The largest validation set corresponds to citations evaluated in 
the period between 2000 and 2016 (see red curve). Curves ranging from blue to red 
correspond to test sets considering papers published in the interval [2000,  y], where 
2001 ≤ y ≤ 2016.

The results in Fig.  3 show that all curves displays similar behavior, meaning that 
the precision increases as more future edges are evaluated. Therefore, if we consider 
larger time scale, the tendency is that the most similar authors will indeed be linked by 
a citation link. The behavior is also independent of the considered test set and similarity 
measurements: highly similar edges are predicted with high precision when considering 
larger periods. The precision slowly drops as similar authors are not linked by citations 
when considering shorter future time windows.

Fig. 3   Evolution of precision values as the most similar edges are included in the link prediction task. In 
each subpanel, each curve corresponds to a different validation set. Curves ranging from blue to red cor-
respond to validation sets considering papers published in the interval [2000, y]. Green dashed lines cor-
respond to the expected precision when links are randomly placed
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One interesting finding from Fig. 3 is that both preferential attachment similarity meas-
urements are clearly outperformed by the other measurements. This means that neighbor-
hood information plays an important role in the task of predicting citations in author cita-
tion networks. This lack of performance confirms that the prediction of both edge ends 
in an author citation network is not trivially performed with the preferential attachment 
rule. We should note, though, that the PA rule is a strong predictor of how many citations 
a researcher will accrue in the future  (Silva et  al. 2020). The number of future citations 
depends mostly on the number of citations received in the last 12-24 months (Silva et al. 
2020). The reasons for not citing similar structural authors are two-fold: authors have a 
limited vision of the network structure, which may cause them to miss the papers of other 
authors. While semantical dissimilarity could be a different reason for similar structural 
authors not citing each other, it should be mentioned that even highly semantical simi-
lar papers are frequently overlooked when authors perform a systematic review (Amancio 
et al. 2012a).

The precision for selected quantities of included edges is also shown in Table 1. The 
results obtained for the Jaccard Index (both unweighted and weighted versions) con-
firmed that this measurement is the most effective measurement to predict future cita-
tions, achieving 84.9% and 83.5% of precision when predicting the top 10,000 top edges, 
respectively for JC and WJC. Both metrics were significantly better than the other con-
sidered approaches. Surprisingly, the approach based on artificial neural networks (ANN) 
and XGBoost were outperformed by the simple Jaccard index. When predicting the largest 
amount of link, however, all methods displayed similar performance. Both Adamic-Adar 
and Common Neighbors metrics also yield good results, especially when predicting a 
larger number of edges. The weighted version of Adamic-Adar, Common Neighbors and 

Table 1   Comparison of precision values when considering all individual similarity measurements and the 
learning models in the 2000–2016 validation dataset

The methods are ordered in descending order, from top to bottom, by the precision average. Each column 
represents the precision obtained when different number of edges were included in the link prediction anal-
ysis. The total number of included edges varied between 2000 to 78, 569 edges, which represents to total of 
authors citations between 2000 and 2016. The best precision is highlighted for each column

Method Precision Precision Precision Precision Precision Precision
2 × 10

3
10 × 10

3
20 × 10

3
30 × 10

3
60 × 10

3 78, 569

JC 0.831 0.849 0.839 0.824 0.750 0.700
WJC 0.804 0.835 0.832 0.816 0.749 0.700
ANN 0.752 0.818 0.821 0.808 0.748 0.701
XGBOOST 0.754 0.818 0.820 0.810 0.742 0.702
AA 0.778 0.813 0.808 0.795 0.738 0.695
CN 0.786 0.814 0.805 0.791 0.736 0.684
SVC 0.759 0.812 0.812 0.799 0.74 0.689
LR 0.756 0.811 0.810 0.798 0.738 0.687
RA 0.760 0.807 0.803 0.791 0.732 0.694
WAA​ 0.741 0.791 0.789 0.778 0.729 0.691
WCN 0.743 0.791 0.787 0.776 0.729 0.690
WRA​ 0.733 0.794 0.789 0.779 0.728 0.690
PA 0.684 0.678 0.666 0.648 0.598 0.572
WPA 0.534 0.551 0.549 0.546 0.535 0.529
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Resource Allocation, compared to the other methods displayed a lower performance. These 
results reinforce the fact that, when precision is sought, different measurements based on 
the same information (i.e. common neighbors) can lead to distinct performance. Finally, 
one can observe that a low precision was observed for the preferential attachment method. 
Even when predicting the most similar 2, 000 edges, the performance is comparable to a 
random classification. The weighted version performs even worse.

In sum, there is no significant improvement in performance when using such measure-
ments as a summarization measurement, when compared with the performance obtained 
via Jaccard index. This is consistent with recent literature showing that neural networks can 
also be outperformed by traditional classifiers (Amancio et al. 2014). Even though graph 
neural networks have become popular in recent years, they require a broader knowledge of 
the network structure (Cui et al. 2018), which implies a much more expensive computation 
time.

True vs. False positive analysis

While in the previous section we focused on precision, here we compare the methods by 
considering the receiver operating characteristic (ROC) curve (Davis and Goadrich 2006). 
The ROC curve establishes a relationship between true positive and false positive rates. 
Thus, higher values of AUC are expected whenever true positives are more frequently 
identified than false positives (Davis and Goadrich 2006) as the threshold in similarity for 
including new links decreases. This analysis is important because, differently from the pre-
cision, the AUC curve also considers the efficiency of the model in not predicting links that 
will not exist.

The ROC curves obtained for each of the considered measurements are illustrated in 
Figure S1 of the Supporting Information. The corresponding AUC curves are shown in 
Fig.  4. Differently from the precision analysis, a higher performance is observed when 
predicting links established within short and long periods. In other words, the efficiency 
drops when predicting both the existence and absence of links in a mid-term scale. Inter-
estingly, when considering the intermediate test dataset [2000 − 2007] , apart from the PA 
measurement, all measurements have similar performance. The highest differences arise 
when predicting citations established in long-term periods. In this context, we do observe a 

Fig. 4   Area Under the ROC Curve (AUC) for all the similarity measurements considered in our analysis 
by each year used in the test dataset. Overall, the best performance was obtained with the artificial neural 
networks (ANN) and XGBoost
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difference in performance. When predicting citations that were established within the first 
year (2001), the best performances were achieved with ANN and XGBoost. The Jaccard 
measurement was found to be the third the most accurate metric, regardless of the end year. 
Interestingly this result also reinforces the effectiveness of the Jaccard Index in a wider 
context, since this same measurement has been reported to be relevant in predicting paper 
citations, even when compared to other global measurements (Shibata et al. 2012).

Some insights can be drawn from the observed results. Once again, preferential attach-
ment-based measurements turned out to be the ones yielding the lowest performance 
(result not shown in Fig. 4). Because PA and WPA do not consider the distance between 
nodes to predict links, this result might indicate that, for most of the future citations at the 
author level, the local similarity seems to play an important role to gauge nodes similar-
ity. In other words, while in many real-world we do know that there is a higher chance of 
two hubs to be connected, this type of information alone is not very useful to predict cita-
tions in author citation networks. The semantic and geographic component are important 
features that are being disregarded when only nodes connectivity is considered  (Henne-
mann et al. 2012; Amancio et al. 2012b). More informed measurements using the degree 
of shared neighbors to quantity similarity includes AA, RA and their weighted versions. 
These measurements take high values whenever there are several shared neighbors and 
those neighbors do not share many links with other nodes other than the ones being evalu-
ated. Because AA and RA displayed low performance, the degree of neighbors, therefore, 
also do not bring much information regarding similarity. It remains to be shown, however, 
if the degree of intermediary nodes connecting the authors being evaluated is also not use-
ful when longer connection paths are considered.

Another interesting result is that the weighted versions of the considered measurements 
were not able to significantly improve the performance of the link prediction task (result 
not shown).

In Table 2 we summarize the results obtained in Fig. 4. We show the mean, minimum, 
maximum and quartile values obtained for each measurement by considering the distribu-
tion of AUC values along the considered years. ANN and XGBoost yielded similar values 
in all considered metrics, being the methods achieving highest performance, as observed 
in Fig. 4. The results confirm that the combination of network similarity metrics via neural 
network and XGBoost provides results that are better than the one obtained when using a 
single similarity metric. Such an optimized performance is not evident, however, when the 
metrics are combined via other classifiers.

Relationship between unweighted and weighted metrics

Here we analyzed the correlation between of the considered measurements. This analysis is 
important because highly correlated measurements might share the same information and 
thus, their combination can lead to a minimum gain in performance.

We found in the previous sections that the weighted version of the considered meas-
urements does not significantly improve the performance of the link prediction task. The 
reason for this could be the fact that the weight information is not relevant for the task. A 
similar performance could stem from the possibility of the weighted and unweighted ver-
sion of the same metric being correlated. In this section, we probe whether this hypothesis 
could be playing a role in the citation prediction task.

In Fig.  5 we show the Pearson correlation values between the unweighted and the 
respective weighted version of the traditional local network similarity indexes. Apart from 
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Table 2   Comparison of Area 
Under the Curve (AUC) values 
when considering all the 
similarity measurements and the 
learning models

Each column represents a summary of the results obtained along 
the years. Rows are ordered by AUC mean. To summarize the AUC 
we used the mean, minimum, quartiles (Q1–Q3) and the maximum 
value. The best precision is highlighted for each column 

Method AUC​ AUC​ AUC​ AUC​ AUC​ AUC​
Mean Min Q1 Q2 Q3 Max

ANN 0.742 0.727 0.732 0.740 0.749 0.762
XGBOOST 0.740 0.728 0.732 0.738 0.747 0.756
JC 0.731 0.718 0.723 0.729 0.738 0.746
WJC 0.730 0.718 0.721 0.729 0.737 0.748
RA 0.722 0.713 0.715 0.721 0.728 0.734
AA 0.720 0.708 0.713 0.719 0.726 0.736
WRA​ 0.719 0.711 0.712 0.717 0.724 0.735
CN 0.717 0.704 0.710 0.716 0.722 0.735
WAA​ 0.716 0.706 0.709 0.715 0.722 0.731
WCN 0.715 0.704 0.708 0.713 0.720 0.730
SVC 0.713 0.705 0.707 0.711 0.716 0.733
LR 0.712 0.704 0.706 0.710 0.715 0.732
PA 0.590 0.584 0.586 0.592 0.593 0.597
WPA 0.549 0.538 0.541 0.550 0.556 0.559

Fig. 5   Correlation analysis between the unweighted and weighted versions of the local network similarity 
metrics
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the the PA metric, we found in all cases high correlation values. The highest correlation 
was found with the Jaccard metric, which is the method yielding high performance in the 
task. Therefore, for the link prediction task in author citation networks, edges weight does 
not seem to yield additional information.

While the correlation between the unweighted and weighted version of the PA metric 
is still high, the value is lower than the correlation found for the other metrics. This means 
that the weight, in this case, provides additional information that can not be recovered via 
the number of links alone. However, despite this difference, the PA metric is significantly 
outperformed by other metrics in the citation prediction task. In other words, even though 
additional information can be found when including edges weight, the provided informa-
tion is irrelevant for the task.

Conclusion

While link prediction have been widely studied in scientometrics scenarios, the analysis 
and comparisons of methods have been mostly limited to predicting links in paper citation 
networks and other limited scenarios at the author level (Daud et al. 2017). Here we per-
formed a systematic performance comparison of several local similarity measurements in 
the context of predicting links in authors citation networks. Because name ambiguity is a 
major problem when dealing with names in scientometrics datasets, we used a disambigu-
ated dataset of names provided by the Microsoft Academic Graph (Wang et al. 2020).

Our comparative analysis focused on local network information to avoid the complex-
ity of analyzing very large networks. While local measurements indeed may not achieve 
state of the art performance, given the limited information they rely on, such techniques 
have shown to yield good performance while not being computationally costly  (Shibata 
et al. 2012). In addition to the traditional network similarity measurements, we also used 
extensions of these measurements that consider the weighted nature of author citation net-
works. Our comparative approach revealed several interesting results. The Jaccard Index 
turned out to be the most effective similarity index, when compared with other traditional 
network similarity measurements. We found that the preferential attachment rule alone is 
not informative for the task, despite the fact that the total number of citations received by 
authors is well described by preferential attachment rules (Silva et al. 2020). Surprisingly, 
the considered Logistic Regression and Support Vector Machine Classifier techniques did 
not yield the best results. This suggests that these machine learning strategy, when used to 
summarize information extracted by local network similarity measurements, is not com-
petitive to predict future citations between authors. Besides that, both Artificial Neural 
Networks and XGBoost displayed the best performance. Our analysis also revealed that, 
apart from the Preferential Attachment rule, the use of edges weight does not significantly 
improves the performance of the task because the weighted and unweighted version of the 
metrics are strongly correlated.

Predicting citations is a task that encompasses many different factors, and thus the accu-
racy of the model depends both on which information is used to address the problem and 
the technique employed to find patterns in the data. Even at the paper level, many factors 
may affect citations, which makes it hard to predict even the number of citations a paper 
will accrue (Bai et al. 2019). Here we focused on a simple information regarding authors 
citations networks. We take the view that the best performance – 84.9% of precision—is 
not a weak result given the simplicity of the used similarity metrics. We expect, however, 
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that the use of additional information, such as semantical similarity, global network simi-
larity metrics and other metadata can improve the performance of the task. However, it is 
still important to have in mind that other type of information might be already encoded 
in citation links. This is the case e.g. of the textual information, since a fraction of papers 
linked by citations are semantically similar (Amancio et al. 2012a).

While in this paper we focused on predicting authors’ citations, we stress that count-
ing citations should not be the only metric used to evaluate researchers. As a side effect, 
predicting links with high precision in author citation networks could be useful to detect 
the authors that will receive more citations in the future. This does not mean, however, that 
one would be able to predict the relevance of authors’ research output. Many studies have 
pointed out that citations should not be treated equally, and thus the number of citations 
should not be used as a unique metric to measure scientific quality (Parnas 2007; Edwards 
and Roy 2017). Several works advocate that one should use the citation context to better 
understand if a citation link can be related to research quality and impact  (Zhang et  al. 
2013; Bornmann and Daniel 2008).

This paper focused only on local information to predict new links, since a local analy-
sis mitigates the cost of computing pairwise similarity indexes via global information. In 
future works, other extensions could be considered in a comparative analysis. One could 
introduce further hierarchies when comparing neighbors. However, this additional com-
plexity could also lead to noise since many higher-level neighbors might be shared by 
many authors due to the small-world effect  (Hung and Wang 2010). As a consequence, 
the characterization performance might decrease with the introduction of deeper con-
centric circles (Amancio et al. 2011). This could be addressed, by providing a lower rel-
evance to higher hierarchies by using a strategy (see e.g. Amancio et al. (2015)) that lin-
early combines similarity values observed in both first and higher hierarchical levels. In a 
similar direction, information from further hierarchies could be introduced via recent net-
work embeddings techniques, where nodes can be artlessly compared via vector similarity 
measurements.

Regarding the limitations and potential future research that could spark from the cur-
rent study, one could extend the number of authors considered. We focused our analysis on 
the most prolific authors, since they are more active in the field and thus the training and 
evaluation do not suffer from the lack of data. The expansion of the number of authors in 
the considered dataset could lead to potential improved results, since more information is 
provided to the methods. Another possibility to improve the results is to capture citations 
from external datasets. While enriching the network can be useful to unveil hidden simi-
larities in the current dataset, this could however lead to spurious information if authors’ 
name are not matched in an accurate way. Another possible extension consists in analyzing 
whether different subfields are more predictable in the sense that citations can be predicted 
with higher accuracy. The results could be potentially relevant in the conception of differ-
ent strategies to measure similarity in different subfields of science.

In addition to using additional sources of citation data, the usage of external data to 
stack on top of the information already provided by the author citation network could 
potentially improve the machine learning results. For example, one could taking into 
account the geographical distance between authors, since many collaborations occur within 
short distances (Hennemann et al. 2012). The research topic is also a factor that could be 
incorporated in the model, since one should expect that scientists sharing interest in the 
same research topic are more likely to have a citation link connecting them. At the seman-
tic level, bag-of-words, complex networks and/or neural text representations could be used 
to calculate the similarities between authors (Amancio et al. 2012b; Katz 1994; Wuestman 
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et  al. 2019; Stella 2019, 2020). All different sources of information could be combined 
e.g. using a linear combination to generate a network reflecting all the different attrib-
utes (Amancio et al. 2015).
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