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Abstract
Given that citations are not equally important, various techniques have been presented to 
identify important citations on the basis of supervised machine learning models. However, 
only a small volume of instances have been annotated manually with the labels. To make 
full use of unlabeled instances and promote the identification performance, the semi-super-
vised self-training technique is utilized here to identify important citations in this work. 
After six groups of features are engineered, the SVM and RF models are chosen as the 
base classifiers for self-training strategy. Then two experiments based on two different 
types of datasets are conducted. The experiment on the expert-labeled dataset from one 
single discipline shows that the semi-supervised versions of SVM and RF models signifi-
cantly improve the performance of the conventional supervised versions when unannotated 
samples under 75% and 95% confidence level are rejoined to the training set, respectively. 
The AUC-PR and AUC-ROC of SVM model are 0.8102 and 0.9622, and those of RF 
model reach 0.9248 and 0.9841, which outperform their counterparts and the benchmark 
methods in the literature. This demonstrates the effectiveness of our semi-supervised self-
training strategy for important citation identification. Another experiment on the author-
labeled dataset from multiple disciplines, semi-supervised learning models can perform 
better than their supervised learning counterparts in term of AUC-PR when the ratio of 
labeled instances is less than 20%. Compared to our first experiment, insufficient amount 
of instances from each discipline in our second experiment enables the performance of the 
models to be unsatisfactory.

Keywords Important citation · Semi-supervised learning · Self-training · Expert-labeled 
dataset · Author-labeled dataset

Introduction

Citations are reckoned as a proxy of scientific knowledge flow in the literature, thus they 
are usually utilized for multifarious academic evaluation purposes, such as ranking of 
researchers (Hirsch, 2005), journals (Garfield, 2006), organizations (Lazaridis, 2010), etc. 
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But most studies treat all references as equally important to an interested citing publication. 
This is obviously not in line with actual situations. Therefore, important citations identifi-
cation plays a vital role in scientific evaluation procedure. It has promising potentials in fair 
distribution of academic resources and fair evaluation of talents. In recent years, research-
ers have argued that citations are not equally important and presented various techniques to 
identify important citations (An et al., 2021a; Hassan et al., 2017, 2018a; 2018b; Qayyum 
& Afzal, 2019; Valenzuela et al., 2015; Wang et al., 2020; Zhu et al., 2015).

Given a scholarly article, its important citations are actually the references that greatly 
contribute to this article. It is easy to see that the citation importance is closely related 
with citation function (viz. the reason for citing a paper) (Teufel et al., 2006; Valenzuela 
et al., 2015). Though various classification schemes for citation function were constructed 
in the literature (Abu-Jbara et al., 2013; Dong & Schafer, 2011; Li et al., 2013; Radoulov, 
2008; Teufel et  al., 2006), these schemes were greatly simplified after 2015 to facilitate 
annotation and machine-learning model building with satisfactory performance (An et al., 
2021a). For example, Zhu et al. (2015) distinguished influential references from incidental 
ones from the role which a reference plays in the core idea, method of a given citing paper. 
Valenzuela et al. (2015) classified citations into related work, comparison, using the work 
and extending the work, and then further folded these categories into two ones: important 
citations (related work and comparison) and incidental ones (using the work and extend-
ing the work). Many follow-up studies followed these simplified classification schemes 
(An et al., 2021a; Hassan et al., 2017, 2018a; 2018b, Qayyum & Afzal, 2019; Wang et al., 
2020).

To identify important citations, the supervised learning methods are commonly used, 
which can learn a discriminant pattern from a labeled dataset to form a classification 
model. However, most supervised learning methods require a large amount of labeled 
instances to ensure the performance of the resulting models (Xu et al., 2011). To the best 
of our knowledge, only annotated datasets in Valenzuela et al. (2015) and Zhu et al. (2015) 
can be accessed publicly due to the time-consuming annotation and heavy workload. The 
number of pairs of citing-cited articles is 456 and 2,685 in these two datasets respectively 
(cf. Section Datasets). Consequently, the overwhelming majority of classification models 
for identifying important citations are built on the basis of hundreds of labeled instances in 
previous studies (Hassan et al., 2017, 2018a; 2018b; Qayyum & Afzal, 2019; Valenzuela 
et al., 2015; Wang et al., 2020).

As a matter of fact, large amount of relatively inexpensive unlabeled instances can be 
available, but have not been exploited for identifying important citations. One branch of 
machine learning techniques, semi-supervised learning, is able to leverage large amount of 
un-annotated instances along with small amount of annotated instances. Last two decades 
have witnessed significant progress in the field of semi-supervised learning. Correspond-
ingly, many learning strategies and methods have been proposed in the literature, such as 
self-training (Yarowsky, 1995), co-training (Blum & Mitchell, 1998), transductive support 
vector machine (TSVM) (Bennett & Demiriz, 1999; Joachims, 1999), and graph-based 
method (Zhu et  al., 2005). Among these approaches, the self-training strategy provides 
more choices on base classifiers and has great flexibility in threshold setting.

However, important citations identification with semi-supervised model remains largely 
under-studied. To make full use of unlabeled instances and promote the model perfor-
mance, a semi-supervised self-training learning strategy is deployed here to identify 
important citations. The SVM and Random Forest (RF) model are taken here as base clas-
sifiers of self-training learning strategy. In this study, we devote to exploiting whether and 
to what extent the unlabeled instances can benefit a supervised model. Besides, from the 
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perspective of practical significance, we hope the proposed strategy for important citations 
identification in this research can contribute fair evaluation of scientific research and aca-
demic achievements.

The rest of the article is structured as follows. After Section  Related work briefly 
describes the important citations identification and semi-supervised learning, the frame-
work of semi-supervised self-training for important citations identification is introduced in 
Section Methodology. Section Datasets shows the statistics of two different types of data-
sets from Valenzuela et al. (2015) and Zhu et al. (2015). In Section Experimental results 
and discussion, two experiments of SVM and RF models armed with semi-supervised self-
training strategy are conducted, and Section Conclusions concludes this work.

Related work

Important citations identification

In recent years, the classification of citations has shifted from manual classification (Gar-
field, 1965) into automatic identification, from multi-categories (Abu-Jbara et  al., 2013; 
Dong & Schafer, 2011; Li et al., 2013; Radoulov, 2008; Teufel et al., 2006) into only two 
categories (important vs. incidental) (Iqbal et  al., 2021). Various approaches have been 
developed in the literature to identify important citations automatically.

Zhu et al. (2015) collected about 100 scholarly articles from 40 researchers with their 
opinions on the most essential references to their works, which generated 3,143 labeled 
pairs of citing-cited papers. Then, they used the SVM model as their supervised learn-
ing algorithm to classify the citations into influential category and non-influential one. 
Valenzuela et al. (2015) annotated 465 citations from the Association for Computational 
Linguistics (ACL) anthology into important and incidental categories and two supervised 
learning models (SVM and RF) were used to classify important citations. Since then, a 
plethora of studies have been implemented with different supervised learning models on 
these annotated datasets.

Hassan et  al. (2017) employed five classification techniques (SVM, RF, Naïve Bayes, 
K-Nearest Neighbors and Decision Tree) on the dataset in Valenzuela et al. (2015) with 14 
features, including context-based features, cue words-based features and textual features. 
Hassan et al. (2017) found that the RF model performed the best in terms of the area under 
the curve of receiver operating characteristic (AUC-ROC) and precision-recall (AUC-
PR), followed by the SVM model. Hassan et  al. (2018b) further exploited the potential 
of a deep learning model, Long Short-Term Memory (LSTM) model, for this task on the 
same dataset. Hassan et al. (2018b) observed that the LSTM model outperformed the tradi-
tional counterparts, but its performance is limited by the unavailable large-scale annotated 
instances.

Compared to Valenzuela et al. (2015), Qayyum and Afzal (2019) improved the perfor-
mance of the SVM and RF models in term of precision by relying on freely available meta-
data on the dataset in Valenzuela et  al. (2015) and their self-collected dataset with 488 
labeled citation pairs. Wang et al. (2020) distinguished important and non-important cita-
tions by engineering the syntactic and contextual features on the dataset in Valenzuela et al. 
(2015) and their self-annotated dataset with 458 citation pairs. Zeng et al. (2020) detected 
citation worthiness by using a Bidirectional Long Short-Term Memory (Bi-LSTM) net-
work with attention mechanism and contextual information. An et  al. (2021a) combined 
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generative model and discriminative model for identifying important citations on the data-
sets in Valenzuela et al. (2015) and Zhu et al. (2015). An et al. (2021a) found that the RF 
model outperforms the SVM model, but the Convolutional Neural Network (CNN) model 
did not achieve the desired performance due to the small volume of annotated instances. 
Aljuaid et al. (2021) improved the performance by using sentiment analysis of in-text cita-
tions to identify important citations with the SVM, Kernel Logistic Regression (KLR) and 
RF models on the dataset in Valenzuela et al. (2015) and the dataset in Qayyum and Afzal 
(2019).

It can be seen that the supervised learning model is a main-stream technique in this task. 
Among all these supervised models, the SVM and RF models were the most commonly 
used and outperformed the other counterparts. However, the supervised learning technique 
heavily relies on large amount of labeled instances to maintain the performance, which 
is in contrast with the reality that labeled instances are costly to obtain. In fact, only two 
small-scale labeled datasets in Valenzuela et al. (2015) and Zhu et al. (2015) are publicly 
available. Until now, large amount of unlabeled instances have not still been exploited.

Semi‑supervised learning

In practice, to overcome the limitation of little amount of labeled instances and make full 
use of unlabeled instances, the semi-supervised learning technique has been receiving 
more attention. It attempts to harness the unlabeled instances to exceed the performance of 
supervised learning models. Over the past two decades, many semi-supervised classifica-
tion methods have been raised on the basis of different assumptions, such as smoothness, 
low-density and manifold (van Engelen & Hoos, 2020).

According to the distinct optimization procedures, the semi-supervised classification 
algorithms can be divided into two groups, namely inductive algorithms and transductive 
algorithms (van Engelen & Hoos, 2020). The inductive algorithm aims to form a classifi-
cation model to predict the whole input space. Among these, generative mixture models 
and expectation–maximization (EM) are considered as the earliest semi-supervised learn-
ing method (Zhu, 2008), which needs the identifiability and model correctness to maintain 
the performance. The wrapper methods are the most commonly used, which train super-
vised base classifiers on labeled instances and utilize pseudo-labeled instances to augment 
the performance, including self-training (Yarowsky, 1995), co-training (Blum & Mitchell, 
1998), etc. Theoretically, any supervised classifier can be used as a base learner in this 
group of methods, which is deemed as one of the most significant advantages.

Another group of semi-supervised methods is transductive algorithms, which can only 
predict the given set of unlabeled instances. The semi-supervised SVM  (S3VM) was pro-
posed as the extension of SVM to the semi-supervised learning, of which transductive 
SVM (TSVM) (Joachims, 1999; Vapnik, 1998) aims to find the maximum margin on 
labeled and unlabeled instances. But the TSVM encounters the problem of NP-hard. In 
addition, the graph-based methods define a graph over labeled and unlabeled instances 
and reflect the pairwise similarity using edges (Zhu et  al., 2005). The more similar the 
edges, the more likely two instances share a same label. The graph-based methods include 
Mincut (Blum & Chawla, 2001), Gaussian Random field and Harmonic Functions (Zhu 
et al., 2003), etc. But the graph construction relies on domain knowledge and has high time 
complexity.

In general, the self-training method expands the training set with predictions on 
unlabeled instances. It is easy to operationalize and has great flexibility in threshold 
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setting. This gives more choices on base classifier selection and has been utilized in 
many domains, such as word sense disambiguation (Yarowsky, 1995), object detec-
tion (Rosenberg et al., 2005), sentence subjectivity classification (Wang et al., 2008), 
sentiment classification (He et al., 2011), and so on. Furthermore, it has been shown 
the effectiveness in improving the predictive performance of base classifiers (Li et al., 
2008; Tanha et al., 2017; Zhang et al., 2021). Therefore, to make full use of the unla-
beled instances, the semi-supervised self-training method is preferred to identify 
important citations in this paper.

Methodology

Figure  1 depicts the sketch of our research framework on important citations identifica-
tion, which is based on the full-text articles. After the preprocessing steps, six groups of 
features are extracted in the feature engineering module. Then the whole dataset is divided 
into labeled dataset and unlabeled dataset, which are fed to the SVM and RF models with 
self-training strategy to identify important citations. The self-training strategy, preprocess-
ing, feature engineering, and statistics of datasets will be described in more details in the 
following sections in turn.

Self‑training strategy

The main idea of self-training strategy is to train a base classifier on a small volume of 
labeled instances and make predictions on large amount of unlabeled instances. Then, 
pseudo-labeled instances with high level of confidence are selected to expand the scale 
of labeled dataset. After that, the model is retrained on newly synthesized labeled dataset. 
This process is iterated until no new instance meets the condition. A significant advantage 
of this method is that any supervised model can be used as a base classifier in theory (van 
Engelen & Hoos, 2020).

Figure  2 depicts the framework of important citations identification on the basis of 
semi-supervised self-training learning strategy. First of all, a supervised learning model 
(such as SVM and RF) is trained on the labeled dataset with fivefold cross validation pro-
cedure. After learning the training set of each fold, the labels of the unlabeled dataset are 
predicted respectively. We select the samples with 95%, 90%, 85%, 80%, 75%, and 70% 
confidence levels as the pseudo-labeled dataset to rejoin the training set. For each fold, the 
model is retrained on the new combined dataset and evaluated on the test set. The involved 
parameters are optimized correspondingly. The areas under the curve of PR and ROC are 

Fig. 1  Research framework on identifying important citations
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used as indicators for evaluating the performance. Please refer to the pseudo code in Algo-
rithm  1 for more details on our methodology for identifying important citations (in our 
case, V = 5).

Fig. 2  Framework of semi-supervised self-training strategy for identifying important citations
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Algorithm 1 Algorithm for identifying important citations with semi-supervised self-training strategy 

Preprocessing

The preprocessing includes the following steps: (1) The citing papers are collected 
in the format of PDF and then converted to text format with the Xpdf toolkit (http:// 
xpdfr eader. com). (2) The textual data is parsed by the ParsCit software (Councill et al., 
2008) to extract title, author list, abstract, main body, and references of each citing 
paper. It is worth noting that the ParsCit software can normalize each section in a citing 
publication into a generic section header (introduction, related work, method, experi-
ment, discussion, and conclusion). To avoid parsing mistakes, each parsed document 
is checked carefully and corrected manually. (3) The citation contexts are extracted on 
the basis of regular expressions. (4) All textual information including citation contexts 
and abstract is cleaned with Natural Language Toolkit (NLTK).

http://xpdfreader.com
http://xpdfreader.com
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Feature engineering

As for the feature engineering, the following six groups of features from our previous study 
(An et al., 2021a) are utilized here, as shown in Table 1. The effectiveness of these features 
has been verified on identifying important citations. G1 contains two generative features 
extracted from the CIM model (Citation Influence Model) (Dietz et  al., 2007; Xu et  al., 
2019), which incorporates the topical innovation and topical inheritance via citations on 
the basis of the first-order Markovian assumption. One is a multinomial distribution of ref-
erences, which reflects the importance degree of a cited publication to a citing publication. 
The other is the symmetrized Kullback–Leibler divergence between multinomial distribu-
tion of topics specific to a pair of citing and cited publications, which represent the similar-
ity in the topic space between citing and cited papers.

According to the structure of a paper, G2 counts the number of each cited paper men-
tioned in each section (e.g., introduction, related work and so on) of a citing paper. In 
actual situations, a cited publication may be mentioned separately in the text of a citing 
publication, or mentioned together with other cited ones. Abu-Jbara et al. (2013) argued 
that a separate cited publication was usually more important to a citing publication than a 
group of cited ones. Therefore, G3 devotes to calculating the proportion of a cited publica-
tion mentioned separately in a citing paper.

Valenzuela et al. (2015) observed that if a pair of citing-cited articles was simultane-
ously authored by one or more scholars, this might indicate that the citing article extends 
the cited one. Hence, the Jaccard similarity coefficient between the citing authors and cited 
authors is generated as G4. This feature can reflect the development of self-work. Indeed, 
it is rare that a pair of citing-cited articles share common authors. That is to say, in most 
cases, this feature is assumed to zero. But according to our observation (An et al., 2021a), 
this feature with non-zero provides a signal on distinguishing important citations.

G5 counts the number of important/incidental cue words appearing in citation contexts, 
which may reveal the citing intention of authors. Specific words can hint different inten-
tions of citing paper and reveal different importance thereby. For example, “according to” 
or “use” may indicate that a method/technique/theory from a cited paper is utilized in a 
citing paper. From over 80 papers pertinent to citation behavior, Hassan et al. (2017) com-
piled 81 important cue words and 51 incidental ones. The calculation of G5 is based on 
these cue words. Finally, G6 is derived by calculating the cosine similarity between the 
citation contexts and the abstract of a focal cited paper. The similarities are averaged if the 
cited paper is mentioned several times in a citing article. Please refer to An et al. (2021a) 
for more details.

Datasets

Two types of datasets are used to evaluate the performance of the proposed methodology 
in this paper.

Dataset I: This dataset was collected from a collection of 20,527 papers in ACL anthol-
ogy with 106,509 citations, and 465 citations were randomly selected (Valenzuela et al., 
2015). The citations were manually annotated by one expert with the label 0 (related 
work), 1 (comparison), 2 (using the work), and 3 (extending the work) according to the 
citation contexts in the citing papers. The inner-annotator agreement was verified between 
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two experts for a subset of the dataset to reduce the bias raised by human annotation and 
reached 93.9% (Valenzuela et al., 2015). In this study, we combine the “related work” and 
“comparison” categories into incidental class with the label 0 and “using the work” and 
“extending the work” categories into important class with the label 1.

Table 2 lists the statistics of this dataset. Note that during the preprocessing steps, sev-
eral citing-cited paper pairs with missing information, non-English language or non-article 
document type are removed. From 465 labeled pairs, 434 citing papers and 4,589 unique 
cited papers are collected after the preprocessing steps. In the end, this yields 8,541 pairs 
of citing-cited papers totally with 456 annotated pairs and 8,085 un-annotated ones. The 
summary of labeled dataset is listed in Table 3, of which 14.7% are important citations. 
Similar to the labeled dataset, the feature engineering and preprocessing are also conducted 
on the unlabeled dataset.

Dataset II: This dataset is very different from Dataset I. This is an author-labeled data-
set, which was collected in Zhu et al. (2015). Through the questionnaire survey, about 40 
researchers were required to indicate the most essential references for them in each paper 
they provided. According to previous classification approach (An et  al., 2021a), the ref-
erences marked as “essential” are viewed as important citations, and the others as inci-
dental citations. After the same preprocessing steps, 112 citing papers and 2,579 unique 
cited papers are collected. This yields 2,685 labeled citing-cited paper pairs in total, of 
which only 11.6% are important citations. Table 2 shows the statistics of Dataset II, and 
the summary of labeled dataset is showed in Table 3. It is worth mentioning that Dataset II 
involves 10 different disciplines, as illustrated in Table 4. About 70% of citing papers are 
from the discipline of Computer Science.

Experimental results and discussion

As shown in Fig.  3, two experiments based on two different types of datasets are con-
ducted. Experiment I is based on Dataset I, which is an expert-labeled dataset from one 
single domain (Valenzuela et al., 2015). Experiment II is based on Dataset II, which is an 
author-labeled dataset from multiple domains (Zhu et al., 2015). In Dataset I, only a part 

Table 2  Statistics of Dataset I and Dataset II

Dataset #of unique citing 
papers

#of unique cited 
papers

#of labeled pairs of citing 
and cited papers

#of unlabeled pairs of 
citing and cited papers

Dataset I 434 4,589 456 8,085
Dataset II 112 2,579 2,685 0

Table 3  Summary of labeled 
Dataset I and Dataset II

Dataset Label Class Number of Samples

Dataset I 0 Incidental 389 (85.3%)
1 Important 67 (14.7%)

Dataset II 0 Incidental 2,374 (88.4%)
1 Important 311 (11.6%)
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of citations was actually annotated. Thus, one can readily obtain a labeled dataset and an 
unlabeled dataset. However, all citations in Dataset II were labeled manually by the result-
ing authors. Therefore, to reserve a data subset as unlabeled one, multi-division ratio is 
implemented on Dataset II for the follow-up Experiment II.

Experiment I

The first experiment is based on Dataset I, which contains 456 labeled citing-cited paper 
pairs and 8,085 unlabeled ones. As two state-of-the-art discriminative models, SVM and 
RF are utilized here as our base classifiers. First of all, these two models are trained on the 
labeled dataset. To tune the parameters of these two classifiers, grid search with fivefold 
cross-validation (Xu et al., 2007) is used in this study. Figure 4 shows the PR curves and 
ROC curves of SVM and RF models. As one can see, the area under the ROC curve (AUC-
ROC) of SVM and RF models are 0.9287 and 0.9798 respectively, and the areas under 
the PR curve (AUC-PR) are 0.7628 and 0.9056 respectively. The RF model outperforms 
the SVM model, which is in accordance with most of previous studies (An et al., 2021a; 
Hassan et al., 2017, 2018a; 2018b; Qayyum & Afzal, 2019; Valenzuela et al., 2015; Wang 
et al., 2020; Zhu et al., 2015).

Then, a semi-supervised self-training on the unlabeled dataset is conducted. After learn-
ing the training set of each fold, the labels of the unlabeled dataset are predicted. We select 
the samples with 95%, 90%, 85%, 80%, 75%, and 70% confidence levels to rejoin the train-
ing set. Table 5 lists the number of new samples of each fold at different confidence level. 
After that, for each fold, the resulting model is retrained on new combined dataset and 

Table 4  Statistics of disciplines in Dataset II

Discipline #of authors #of papers Discipline #of authors #of papers

Computer Science 29 82 Signal Processing 1 4
Genetics 2 6 Mathematics 1 2
Biophysics 2 6 Physics 1 1
Ecology 1 5 Chemistry 1 1
Geophysics 1 4 Translation 1 1

Fig. 3  Experimental framework on identifying important citations
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evaluated on the test set. Similarly, grid search is also used to tune the involved parameters. 
Table  6 reports the results of mean AUC-ROC and AUC-PR of 5 folds under different 
confidence level. It can be seen that the AUC-PR and AUC-ROC for the SVM model reach 
the maximum at the 75% confidence level, which are 0.8102 and 0.9622 respectively. The 

Fig. 4  The PR curves (a) and ROC curves (b) of SVM and RF models on labeled dataset with supervised 
learning strategy

Table 5  Number of new samples 
under different confidence levels

Fold Model Confidence Level

95% 90% 85% 80% 75% 70%

1 SVM 4,444 5,977 6,714 7,067 7,334 7,533
RF 1,002 2,406 3,670 4,709 5,368 5,909

2 SVM 3,538 5,863 6,567 6,999 7,279 7,502
RF 944 2,462 3,674 4,663 5,387 6,054

3 SVM 3,993 5,913 6,649 7,025 7,306 7,517
RF 925 2,462 3,620 4,624 5,369 6,086

4 SVM 4,362 5,940 6,688 7,040 7,319 7,521
RF 944 2,462 3,674 4,663 5,387 6,054

5 SVM 3,411 5,853 6,555 6,994 7,271 7,499
RF 944 2,462 3,674 4,663 5,387 6,054

Table 6  Performance of SVM 
and RF models with semi-
supervised strategy under 
different confidence levels

Confidence level SVM RF

AUC-PR AUC-ROC AUC-PR AUC-ROC

95% 0.7380 0.9217 0.9248 0.9841
90% 0.7290 0.9078 0.9015 0.9804
85% 0.7525 0.9225 0.8811 0.9759
80% 0.7545 0.9248 0.8463 0.9702
75% 0.8102 0.9622 0.8331 0.9674
70% 0.7522 0.9292 0.8374 0.9666
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RF model has the highest AUC-PR and AUC-ROC at 95% confidence level (0.9248 and 
0.9841). These two models outperform the supervised learning counterparts and several 
benchmark methods in Table 7, including Valenzuela et al. (2015), Hassan et al. (2017), 
Hassan et al. (2018a) and Wang et al. (2020). That is, our semi-supervised methodology 
with the SVM and RF as base classifiers performs best in terms of PR and ROC.

Further, to find out the contribution of each group of features, we perform an additional 
experiment to observe the changes of mean AUC-PR and mean AUC-ROC. Table 8 shows 
the scores of mean AUC-PR and AUC-ROC of the SVM model under 75% confidence 
level and the RF model under 95% confidence level and their rankings (in parentheses) as 
well as the average rank using different groups of features under fivefold cross validation 
by controlling for structure features (G2). For each combination, the resulting parameters 
are optimized separately. As we can observe, the baseline model based on the structure 
features can achieve the mean AUC-PR of about 0.7600 and 0.7903, and AUC-ROC of 
about 0.8906 and 0.4743. The author-overlap based features (G4) ranks first, which pro-
motes respectively the AUC-PR to 0.9462 and 0.8145, AUC-ROC to 0.8145 and 0.4798. 
The CIM (Citation Influence Model) (Xu et  al., 2019) model based features (G1) rank 
the second, which demonstrates that the features generated from the generative model 
can improve the performance of important citations identification. This observation is in 
accordance with previous work (An et al., 2021a).

Experiment II

For purpose of checking the generalizability of the proposed method, the second experi-
ment is conducted on Dataset II, which consists of 2,685 author-labeled citing-cited paper 

Table 7  Performance of 
benchmark methods on the 
dataset in Valenzuela et al. 
(2015)

Benchmark methods SVM RF

PR ROC PR ROC

Valenzuela et al. (2015) 0.80 – 0.80 –
Hassan et al. (2017) 0.78 0.85 0.84 0.91
Hassan et al. (2018a) 0.88 0.91 0.89 0.95
Wang et al. (2020) – 0.94 – 0.92

Table 8  The performance of semi-supervised SVM and RF models with different groups of features in 
terms of mean AUC-PR, AUC-ROC, and their ranks

Feature SVM RF Average_rank

PR ROC PR ROC

G2 0.7600(3) 0.8906(6) 0.7903(5) 0.4743(5) 4.75
G2 + G1 0.7558(4) 0.8935(5) 0.9035(1) 0.4968(1) 2.75
G2 + G3 0.7448(5) 0.8971(4) 0.8183(2) 0.4885(3) 3.50
G2 + G4 0.9462(1) 0.9875(1) 0.8145(3) 0.4798(4) 2.25
G2 + G5 0.7822(2) 0.9065(3) 0.7065(6) 0.4604(6) 4.25
G2 + G6 0.6947(6) 0.9181(2) 0.7997(4) 0.4889(2) 3.50
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pairs. First of all, similar to Experiment I, the SVM and RF models with supervised learn-
ing strategy are conducted on all 2,685 labeled instances with 6 groups of features under 
fivefold cross-validation procedure. Figure 5 shows the PR curves (a) and ROC curves (b) 
of the SVM and RF models on Dataset II with supervised learning strategy. The SVM and 
RF models can obtain 0.7458 and 0.7480 in term of AUC-ROC respectively, and 0.3131 
and 0.3366 in term of AUC-PR respectively. It is very easy to see that these two models 
perform worse on Dataset II than on Dataset I (cf. Subsection Experiment I). Main reasons 
can be attributed to two points: (1) different disciplines of Dataset II follow different cita-
tion patterns; (2) it is very possible that the authors in Dataset II only annotated the most 
essential references, but ignored the less essential ones. The annotation guideline for Data-
set II is very different from that for Dataset I. Hence, the patterns for important citations 
may vary between in Dataset II and in Dataset I. Further verification will be discussed in 
the following subsection "Discussion".

To conduct semi-supervised learning task, 10%, 15%, 20%, 25%, 30% of Dataset II are 
randomly divided as labeled dataset and the rest as pseudo-unlabeled dataset. In order to 
ensure the consistency of the data characteristics, the labeled dataset and unlabeled dataset 
follow approximately the same category distribution. Table 9 lists the statistics of labeled 
dataset and pseudo-unlabeled dataset under different division ratios.

According to Experiment I, SVM model reaches the maximum at the 75% confidence 
level and RF model performs best at 95% confidence level. Therefore, SVM model under 

Fig. 5  The PR curves (a) and ROC curves (b) of SVM and RF models on the Dataset II with supervised 
learning strategy

Table 9  Statistics of labeled 
data and pseudo-unlabeled data 
under different division ratios in 
Dataset II

Division ratio Number of labeled 
citations

Number of pseudo-unla-
beled citations

Total Important 
Class

Total Important Class

10% 268 31 2,417 280
15% 402 47 2,283 264
20% 537 62 2,148 249
25% 671 78 2,014 233
30% 805 93 1,880 218
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75% confidence level and RF model under 95% confidence level are deployed in this exper-
iment. That is to say, after learning the training set of labeled instances of each fold and 
predicting the unlabeled instances, samples above 75% confidence level of SVM and above 
95% confidence level of RF are rejoined to the training set. It is noteworthy that we also try 
other confidence levels in our experiments, but no performance improvement is observed. 
Figure 6 shows the trends of PR and ROC of SVM and RF with semi-supervised strategy 
under different division ratios. The red lines denote the supervised learning counterparts.

From the perspective of PR curves, similar trends can be observed for the SVM and 
RF models. In more details, the overall trend rises first, reaches the peak at 15% division 
ratio, and then falls below the corresponding curve of supervised learning counterpart at 
30% division ratio. To say it in another way, the models with semi-supervised strategy are 
slightly better than their resulting counterparts in term of AUC-PR when the division ratio 
is less than 20%. However, as the proportion of labeled instances further increases, the 
performance of semi-supervised learning shows a downward trend. We ascribe the trend 
to the mixed disciplines in Dataset II. From Section  "Datasets", it is not difficult to see 
that Dataset II covers about 10 different disciplines, and the distribution of the number of 
documents in each discipline is extremely skewed. When the proportion of labeled dataset 
is expanded, more and more citations from other disciplines would be added to the train-
ing set. This means that more outlier instances would appear in the training set. Further-
more, too few instances in a certain discipline may make a machine learning model to be 
under-fitting. In this situation, the predicted labels for pseudo-labeled instances may differ 
greatly from the ground-truth labels. Consequently, the performance of classifiers tends to 
be worse. Therefore, for this type of mixed dataset, it should be better to ensure that there is 
a sufficient amount of instances in each discipline.

In addition, the ROC curves of both SVM and RF models fluctuate around the result-
ing curves of the supervised learning counterparts. Since a large change in the number of 

Fig.6  The PR and ROC of SVM under 75% confidence level and RF under 95% confidence level with 
semi-supervised strategy under different division ratios
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false positives can only lead to a small change in the false positive rate when the dataset is 
highly skewed, the ROC is not sensitive to the highly skewed datasets (Davis & Goadrich, 
2006). Therefore, the ROC curve may not be suitable for this highly skewed dataset. That 
is, the PR curve can provide a more informative picture than the ROC curve for our Data-
set II.

Then, the semi-supervised learning strategy is conducted separately on the discipline of 
Computer Science. When the RF model serves as the base classifier, too few new samples 
are rejoined to the training dataset. Hence, the experiment is only implemented with SVM 
model as the base classifier. Table 10 shows the performance of SVM model under 75% 
confidence level. The performance is not satisfactory when the division ratio is lower than 
25%. As the proportion of training instances increases, the performance tends to get better 
and exceeds the supervised learning counterpart at 25% division ratio. But overall, the per-
formance is far from our expectation. Different annotation guideline for important citations 
in Dataset II should result in un-satisfactory performance on this dataset.

Finally, similar to Experiment I, the contributions of each group of features are further 
analyzed. By controlling for structure features (G2), Table 11 shows the performance of 
SVM and RF models with different groups of features in terms of mean AUC-PR, AUC-
ROC and their rankings (in parentheses) as well as the average rank. The baseline model 
based on the structure features (G2) can achieve the mean AUC-PR of about 0.2294 and 
0.3010, and AUC-ROC of about 0.7136 and 0.3653. The CIM model based features (G1) 
rank first, which confirms again its effectiveness on identifying important citations. Sepa-
rate citation based feature (G3) and the author-overlap based features (G4) rank the second. 
Nevertheless, semantic relevancy based feature (G6) performs even worse than the baseline 
model. Compared with Dataset I, the features generated from the generative model have 

Table 10  Performance of SVM 
model with semi-supervised 
strategy on the discipline of 
Computer Science 

Division ratio SVM-under 75% confidence level

PR ROC

10% 0.1760 0.6264
15% 0.1730 0.5958
20% 0.2737 0.7248
25% 0.3514 0.7375
30% 0.3179 0.7267

Table 11  The performance of SVM and RF models with different groups of features in Dataset II in terms 
of mean AUC-PR, AUC-ROC, and their ranks

Feature SVM RF Average_rank

PR ROC PR ROC

G2 0.2294(5) 0.7136(6) 0.3010(2) 0.3653(3) 4
G2 + G1 0.3093(1) 0.7384(1) 0.2741(6) 0.3685(1) 2.25
G2 + G3 0.3082(2) 0.7264(4) 0.3236(1) 0.3651(4) 2.75
G2 + G4 0.3013(3) 0.7326(2) 0.2989(4) 0.3661(2) 2.75
G2 + G5 0.3010(4) 0.7323(3) 0.2836(5) 0.3537(6) 4.5
G2 + G6 0.2218(6) 0.7235(5) 0.2996(3) 0.3650(5) 4.75
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more contributions in Dataset II, and the contribution of the author-overlap based features 
drop slightly. As we can observe, the features have different contributions on the classifica-
tion performance of important citations in the two datasets. Again, this may be caused by 
the differences in the criteria that determine important citations.

Discussion

To validate our speculation about different citation patterns across different disciplines, 
top four disciplines are chosen according to data volume (cf. Table 4): Computer Science, 
Genetics, Biophysics, and Ecology. In each discipline, the number of citing papers is over 
5 and the number of pairs of citing-cited papers is more than 200. Table 12 lists the distri-
bution of important and incidental citations in these four disciplines. Table 13 shows the 
PR and ROC values of SVM and RF in each discipline. Two interesting phenomena can 
be observed as follows. (1) The performance varies between different disciplines, and the 
performance on Computer Science and Biophysics disciplines outperforms that on the oth-
ers as well as the whole Dataset II. (2) The larger the ratio of important citations, the better 
the performance (cf. Tables 12, 13). In more details, these four disciplines can be sorted in 
term of performance as follows: Biophysics > Computer Science > Genetics > Ecology. As 
a matter of fact, compared to Computer Science discipline, the ratios of important citations 
in the other three disciplines are very close, but their performance varies greatly in term 
of AUC-PR. Hence, different citation patterns across different disciplines should be very 
closely related to different performance.

Though, the performance on Computer Science discipline is far from that in Dataset I. 
Now, let us further check the different annotation guideline for these two datasets. More 
specifically, we want to determine whether or not there exits several references that are 
non-essential for the resulting authors, but are actually very important for knowledge diffu-
sion. For this purpose, an article with id = Z002 is randomly selected from Dataset II. For 

Table 12  Statistics of citations for disciplines of Computer Science, Genetics, Biophysics and Ecology in 
Dataset II

Discipline #of important 
citations

#of incidental 
citations

#of total citations #of proportion of 
important citations

Computer Science 218 1,374 1,592 13.7%
Genetics 21 300 321 6.5%
Biophysics 18 230 248 7.3%
Ecology 12 190 202 5.9%

Table 13  The performance of 
supervised learning strategy 
on the disciplines of Computer 
Science, Genetics, Biophysics 
and Ecology in Dataset II

Discipline SVM RF

PR ROC PR ROC

Computer Science 0.3261 0.7335 0.3787 0.7493
Genetics 0.1764 0.5689 0.1107 0.6300
Biophysics 0.4067 0.7712 0.4428 0.7675
Ecology 0.1150 0.6542 0.0650 0.5566
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convenience, this article’s title and its partial references are reported in Table 14. In total, 
this article cited 18 documents, among which [14] is annotated the most essential one by 
its author. Hence, important class is attached to [14] under our framework, leaving other 
references into incidental class. However, after analyzing the citation contexts and citation 
features of other references, [2] and  [8] are also very important to the citing paper Z002. 
Table 15 shows the citation features of references in Z002. [2] and [8] are mentioned sev-
eral times and appear in more sections. From the citation contexts, it is not difficult to see 
that the citing paper Z002 actually uses or refers to the method proposed in  [2] and [8]. 
Therefore, [2] and [8] are also very meaningful to the citing paper Z002. To summarize, 
due to different annotation guideline in Dataset II from that in Dataset I, non-essential ref-
erences in Dataset II are actually made up of important and non-important citations.

Conclusions

Effectively identifying important citations has great practical significance in the bibliomet-
rics, which can contribute to fair distribution of academic resources and fair evaluation of 
talents. The supervised learning methods are the most commonly used for this task, which 
rely on large amount of labeled instances to maintain the performance. However, only 
a small volume of instances have been annotated manually with the labels in real-world 
applications, which greatly limit the generalizability of the supervised learning techniques 
for this task.

In this paper, a semi-supervised self-training strategy is proposed to identify impor-
tant citations by leveraging labeled instances and unlabeled instances to promote the per-
formance and generalization ability of supervised learning models. To demonstrate the 
effectiveness of our proposed strategy, two different types of datasets are utilized here: (1) 
an expert-labeled dataset from one domain (Valenzuela et  al., 2015), and (2) an author-
labeled dataset from multiple disciplines (Zhu et al., 2015). Through the semi-supervised 
self-training on the unlabeled dataset of the expert-labeled dataset from one domain, the 
performance of the SVM model can be promoted from 0.9287 to 0.9622 and from 0.7628 
to 0.8102 and that of the RF model from 0.9798 to 0.9841 and from 0.9056 to 0.9248 in 
terms of mean AUC-ROC and mean AUC-PR. This outperforms the benchmark methods 
proposed by Valenzuela et al. (2015), Hassan et al. (2017), Hassan et al. (2018a) and Wang 
et al. (2020). This demonstrates the effectiveness of our semi-supervised self-training strat-
egy for important citations identification. Additionally, the CIM model based features, 
structural based features and author-overlap based features contribute greatly on important 
citations identification.

As for the author-labeled dataset from multiple disciplines, the semi-supervised learn-
ing model can perform better than the resulting supervised learning counterpart in term of 
AUC-PR when the rate of labeled instances is less than 20%. The performance of semi-
supervised learning models may decline as the proportion of labeled instances further 
increases. The main reason may be ascribed to the various citation patterns in different 
disciplines and different annotation guideline followed by this dataset. These speculations 
have been verified by our further experiments on four main disciplines and in-depth analy-
sis on citation contexts of non-essential references. Furthermore, the difference in the cri-
teria that determine important citations causes the different contributions of each group of 
features in the classification performance in the two datasets. In addition, we argue that the 
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AUC-PR curve should be preferred to when the dataset from multiple disciplines has an 
extremely skewed distribution.

In our next work, the potential of deep learning models with semi-supervised strategy 
should be exploited for identifying important citations. Additionally, a scientific verifica-
tion of our semi-supervised framework still needs to be further investigated on the dataset 
from multiple disciplines in the near future.
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