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Abstract
A mathematical, axiomatic definition for the hitherto vague notion of “impact measure” 
is proposed. For this four conditions are defined on a given set of (rank-frequency) func-
tions (of which the aim is to measure impact). The most typical condition explains how an 
impact measure should behave on the most productive sources appearing in this function 
(i.e. in the left side of this rank-frequency function). An overview of “classical” impact 
measures is provided and it is proved (in most but not in all cases) that they satisfy these 
conditions for impact measures. This approach can be compared with (but is different 
from) the approach in econometrics where one defines what concentration is for a (rank-
frequency) function. In this way I embed the important notion of impact into the important 
Lorenz theory.

Keywords Impact · Axiomatic approach · h-Index · g-Index · Pointwise defined measures · 
Truncated average · Truncated number of items · A-index

Introduction

Most scientists have some idea about what is meant by “impact” and “impact measures” 
but few can give a precise definition. Harter and Nisonger (1997) published one of the 
few attempts to define an impactful journal, namely one that publishes many articles and 
receives many citations. This idea was made concrete as follows: the journal impact factor 
in the year 1994 (their example) is equal to the number of citations received by the journal 
in 1994 to articles published in 1992 and 1993. They keep the same publication window 
as the standard Garfield–Sher impact factor (JIF), not to give an undue advantage to older, 
established journals. This definition was mainly given to argue that the famous Journal 
impact factor (JIF) was a misnomer as it is a relative indicator, which ‘punishes’ a journal 
for publishing many articles.

In my opinion, bibliometricians, preferring a strictly logical and mathematical definition 
of impact and, of an impact measure, have not yet come up with a suitable definition. That 
is precisely what I will try to do.
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In this contribution, I define a measure m as a function defined on a set of functions 
(its domain) with values in the positive real numbers R+ (its codomain). These functions 
represent source-item relations (Egghe, 2005) such as publications as sources and number 
of received citations over a given period as items. Which type of functions m can be said to 
measure impact?

To tackle this problem, I present the following plan of attack:

• First I describe characteristic properties of concentration measures. Although these are 
not the same as impact measures, they are used as a source of inspiration for thinking 
toward impact measures.

• Then I show similarities and—especially—differences between the two notions.
• I elaborate on these proposed “axioms” for impact measures.
• I continue by examining well-known measures which have been used to measure 

impact and investigate if they meet these conditions. It is shown that most of them, but 
not all, are indeed acceptable impact measures in the framework of my conditions.

• I finally present my conclusions and suggestions for further research.

As stated above, I first consider a somewhat similar idea as the notion of impact, namely 
that of concentration or inequality, leading to concentration measures. In the discrete case, 
both theories consider arrays (vectors) X =  (x1,  x2, …) ranked in decreasing order, i.e., X is 
a decreasing function. Here  xj is a non-negative number representing the number of items 
‘produced’ by the source at rank j. In the continuous case, one considered continuous func-
tions y = Z(x), with x ∈ [0, T] or x ∈ R+. In the two cases, one assumes that the functions X 
or Z are monotone. I will moreover assume that they are decreasing. In this way, the most 
productive sources come first.

Now a function m is a concentration measure if it meets the following three require-
ments (Allison, 1978).

 (i) m(C) = 0, with C a constant array or a constant function;
 (ii) m(aX) = m(X), with a > 0;
 (iii) If Y is derived from X via an elementary transfer (see further), then m(Y) > m(X).

Condition (i) is evident as a constant has no inequality. Condition (ii), known as scale 
invariance, expresses that only the distribution function matters. Finally, condition (iii) 
states that if X =  (x1,  x2, …,  xN) and Y =  (x1, …,  xi−1,xi + a,  xi+1, …,  xj−1,  xj − a,  xj+1, …, 
 xN) with a > 0, then m(Y) > m(X). Expressed in terms of monetary units, it states that if 
one takes from a poorer one and gives to an already richer one, then concentration (here 
of wealth) increases. I note that array Y must be decreasing and hence Y might have to be 
re-arranged.

What can be learned from this example? When studying impact measures condition (i) 
becomes

(I) m(X) = 0 if and only if X = 0.

This already is a difference with concentration measures as a strictly positive, constant sit-
uation must have a positive impact.

Condition (ii) makes no sense for impact measures. If a > 1 then, at least intuitively, aX 
must have a higher impact than X. More generally I will require for an impact measure m 
that
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(II) Y ≥ X ⇒ m(Y) ≥ m(X) and Y = X ⇒ m(Y) = m(X).

Here Y ≥ X means:  yj ≥  xj, for all j = 1, …, N. Hence, when the situation in Y is more pro-
ductive than the situation in X, one should also have a higher value for the impact measure 
m: m(Y) ≥ m(X). In the sequel I will refine the order ≥ to be able to describe impact in a 
finer way (it will be denoted as ≪), see next section. Clearly, conditions (I) and (II) are 
necessary conditions for impact, but these conditions are certainly not sufficient, otherwise, 
the constant function zero, m(X) = 0 would be a valid impact measure.

In concentration theory the third condition provides sufficiency. I will formulate a third 
condition for a measure to be an impact measure in the next section. Next it is checked if 
well-known indicators such as the h-index, the g-index, the R-index, the average, and the 
total number of items (Rousseau et al., 2018) meet these three conditions and hence can be 
considered to be bona fide impact measures.

Development and statement of the third condition for impact 
measures

Point (iii) from concentration provides a start in the direction of what I want to hold for an 
impact measure. Point (iii) considers sources with a high number of items. These receive 
even more items at the expense of a lower-ranked source. Impact measures should, in my 
opinion, concentrate on sources with a high number of items, and may neglect sources 
with a low number. The exact meaning of the words ‘high’ and ‘low’ will depend on the 
used measure. Representing mentally a source-item relation as a graph the sources with a 
high number of items are situated in the lower ranks (because arrays X or functions Z are 
decreasing).

In the following, only continuous functions will be used, omitting the discrete case 
(arrays). This provides nice and pure arguments omitting possible discrete aberrations. For 
the moment, the number of sources is kept fixed as T. Hence functions are defined on the 
interval [0, T]. Note though that the theory works equally well for functions defined on ]0, 
T].

Let UT = {Z ║ Z: [0, T] → R+, continuous and decreasing}; different subsets ZT ⊂ UT 
will be considered.

Inequality between functions Y, Z in UT is expressed in the following two ways:

For a given set B ⊂ [0, T] I say that Y ≫ Z on B if Y(x) > Z(x) on B.
Note that in the context of the first inequality Y > Z means that Y ≥ Z and there exists a 

point  x0 such that Y(x0) > Z(x0). Inequality ≫ is different and much more demanding since I 
require a strict inequality in every element of B. For this reason, I used a double inequality 
sign, ≫. Finally, the standard notations ≤ and < for the inequality between numbers will be 
used, trusting the reader to make a distinction between inequality of functions and inequal-
ity of numbers.

From now on in this section I keep T fixed and hence simply write Z for ZT. I propose 
now the following requirement for impact measures:

(III.1) ∀Z ∈ Z, ∃aZ ∈ ]0, T[ such that (Y ∈ Z and Y ≫ Z on [0,  aZ] implies that 
m(Y) > m(Z)).

Y ≥ Z, if for all x in [0, T] ∶ Y(x) ≥ Z(x)
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The following requirement can also be formulated:

(III.2) ∀Z ∈ Z, ∃bZ ∈ ]0, T[ such that (Y ∈ Z and Y ≪  Z on [0,  bZ] implies that 
m(Y) < m(Z)).

I already note that the h-index and the g-index meet requirements (I), (II), (III.1), and (III.2), 
and this with  aZ =  bZ =  hZ for the h-index and  aZ =  bZ =  gZ for the g-index. This follows from 
their definitions and the continuity of Z. I return to this point later and will give complete 
proofs of these statements.

I observe that the coefficient of variation V, defined as the standard deviation divided by 
the mean is a concentration measure, but it is not an impact measure as it does not meet the 
second requirement (II). For a constant function Y = K > 0, defined on an interval [0, T], V = 0, 
but any non-constant continuous, decreasing function X for which 0 < X(x) < Y(x) on [0, T] 
has a V-value strictly larger than 0. Conversely, the h-index meets the requirements (I), (II), 
(III.1), and (III.2) but it is not a concentration measure because adding an item to the richest 
source never changes the h-index (except for the null case), see also (Egghe, 2009).

It may be said that (III.1) and (III.2) express the distinguishing power, i.e., evaluating power 
of impact, of the functions m with respect to the lower abscissa values of the functions in Z.

Proposition 1 If Z ∈ Z meets requirement (III.1) or (III.2) then

Proof This is clear as Y ≫ Z on [0, T] implies that Y ≫ Z on [0,aZ] and similarly on [0,bY]. 
□

Although (III.1) and (III.2) seem to be equivalent, this is actually not the case. Concretely, 
it is not true that for any Z and any m, meeting (III.1) implies meeting (III.2) or meeting (III.2) 
implies meeting (III.1). I will provide an example of a function m which meets (III.1) and not 
(III.2), and similarly, another function, on another Z, which meets (III.2) and not (III.1).

A. An example of a function m that meets (I), (II), and (III.1) but not (III.2).
Let T > 0 be fixed and consider the function y = Z(x) ⟺ x

T
+

y

T
= 1 , for x ∈ [0, T].

For 0 < R < S < T I define the functions y = YR,S ⟺

Function Z and functions  YR,S are illustrated in Fig. 1.
The set Z is defined here as {Z, 0} ∪

{
YR,S

}
 , where the second set refers to all functions 

YR,S as defined above. I consider the measure m defined on Z as

It is clear that this function m meets requirements (I) and (II) on Z. I first determine R such 
that m

(
YR,S

)
> m(Z) =

T2

2
 (this property will be needed further on). It is easily seen 

that m
(
YR,S

)
 = (T − R)(S − R) + R(S + S − R)/2 = TS − TR +  R2 –  R2/2 = TS − TR +  R2/2, 

which I require to be larger than  T2/2. Defining the quadratic function  fS(R) as  R2  −  2 
TR + 2TS −   T2, I have to determine for which R this function is larger than or equal to 

Y ≫ ZonB = [0, T] ⟹ m(Y) > m(Z).

{ x

S
+

y

S
= 1, if x ∈ [0, R]

y = S − R, if x ∈ ]R, T]

m(Y) = ∫
T

0

Y(s)ds
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zero. This function is zero if R =
2T±

√
4T2−4(2TS−T2)

2
 . Only the minus sign is meaningful as 

R < T. Taking the minus sign yields: R = T −
√
2T(T − S) , where I note that the expres-

sion under the square root sign is strictly positive. In order to have a strict inequality, I take 
R somewhat smaller, namely: R =

�
T −

√
2T(T − S)

�
S

T
 . This is the R-value I will use fur-

ther on. Note though that I have to check if 0 < R < S because every valid R must meet this 
inequality.

(a) R > 0 if T − 
√
2T(T − S) > 0 ⟺  T2 > 2 T(T − S) ⟺ S > T/2.

(b) R < S if 
�
T −

√
2T(T − S)

�
S

T
 < S which is clearly correct if S < T.

Now I consider a subset of Z, denoted Z# and defined as: Z# = {Z, 0} ∪
{
YS;

T

2
< S < T

}
 , 

where  YS is short for  YS,R, with R as determined above. I prove now that m meets the 
requirement (III.1) on Z#.

Requirement (III.1) is checked for the functions 0, Z and  YS.
For the null function 0 I take, for example,  a0 = T/2 and from Y ≫ 0 on [0, T/2] I find 

that m(Y) > m(0) = 0.
For the function Z I see that there never exists a function Y and a point a such that 

Y ≫ Z on [0,a] (because  YS(0) = S < T = Z(0)). Hence for Z requirement (III.1) is void and 
hence logically always correct.

Now I take a fixed value S, denoted as  S1 and hence the corresponding  R1. I define 
a1 = T −

S1−R1

2
 < T. Then, cf. Fig. 1, the abscissa of the intersection of y =  S1 −  R1 with Z.

 = the abscissa of the intersection of YS1 with Z.
 = T –  (S1 −  R1) <  a1 = T −

S1−R1

2
.

Fig. 1  Graphs of the func-
tions Z and  YR,S for the values 
0 < R < S < T, with T fixed
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The functions 0 and Z are not larger than YS1 on [0,  a1] so I do not have to check any-
thing for them.

Consider now a function YS2 ≫ YS1 on [0,  a1]. Then, by the construction of the functions 
 YS,  S2 >  S1. As  a1 is strictly larger than the abscissa of the intersection point of YS1 with Z, 
YS2 ≫ YS1 in that point. As  S2 >  S1 and  S2 < T, I see that the function YS2 is horizontal in that 
intersection point. From this, I derive that  S2 −  R2 >  S1 −  R1 and hence YS2 ≫ YS1 on [0, T]. 
I conclude that m(YS2

) > m(YS1
) proving that m meets condition (III.1) on Z#.

Next, I prove that m does not meet the requirement (III.2).
Consider again the function Z ∈ Z#. Then for all a in]0, T[ there exists a function  YS ≪ Z 

on [0,a]. Indeed, it suffices to take T – S + R > a, which is possible as a < T and 
limS→T (T − S + R) = limS→T

�
T − S +

�
T −

√
2T(T − S)

�
S

T

�
= T  . Now, for this function 

 YS, I have m(YS) >  T2/2 = m(Z). This shows that m on Z# does not meet the requirement 
(III.2).

B. An example of a function m which meets (I), (II) and (III.2) but not (III.1).
Fix T > 0 and let 0 < R < S < T, 0 < P < Q ≤ 2P+T

3
 < T. Then I take 

Z = 
{
ZS, 0

}
∪
{
ZP,Q,R,S;for allP,Q,R, S as defined below

}
.

For x ∈ [0, T]: I set  ZS(x) = S, and

The function ZP,Q,R,S is illustrated in Fig. 2.
The measure m is again defined as m(Z) = ∫ T

0
Z(t)dt , with Z ∈ Z.

It is obvious that m meets requirements (I) and (II). I show now that m on Z meets 
requirement (III.2).

ZP,Q,R,S(x) =

⎧⎪⎨⎪⎩

S, if x ∈ [0,P]�
S−R

P−Q
x +

RP−SQ

P−Q

�
, if x ∈ [P,Q]

R, if x ∈ [Q, T]

Fig. 2  An illustration of a func-
tion ZS′ and a function ZP,Q,R,S
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For Z = ZP,Q,R,S I take 0 <  bZ = (P + T)/2 < T. Then I have for all functions Y ∈ Z, with 
Y ≪Z on [0,  bZ] that Y ≪Z on [0, T], as (2P + T)/3 <  bZ, and hence m(Y) < m(Z).

For Z =  ZS I take  bZ = T/2 < T and note that for Z = 0 the condition is void.
Next, I show that m on Z does not meet requirement (III.1).
Let Z =  ZS and for every a ∈]0, T[: consider Ya = ZP�,Q� ,R�,S� with P′ = a, Q′ = P′ + δ, 

S′ = S + δ, R′ = δ, with δ > 0 (to be determined). It is clear that  Ya ≫  ZS on [0,a]. 
In order to obtain m(Ya) < m(ZS) I need: (S + δ)·a + Sδ/2 + δ2 + (T-a-δ).δ < ST, or: 
aS + δ(T + S/2) < ST, or 0 < δ < 2S(T−a)

S+2T
 , what is possible as a < T.

Proposition 2 (i) If supZ∈�
(
aZ
)
< T , and if a measure m on Z meets requirement (III.1) 

then it also meets requirement (III.2) on Z.

(ii) If supZ∈�
(
bZ
)
< T , and if a measure m on Z meets requirement (III.2) then it also 

meets requirement (III.1) on Z.

Proof (i) Let a = supZ∈�
(
aZ
)
 , with 0 < a < T. Then I take, for all Z in Z:  bZ = a. If then Y, Z 

∈ Z, with Y ≪ Z on [0,bZ] = [0,a] ⊃ [0,aY], I conclude by property (III.1) that m(Y) < m(Z), 
proving property (III.2). The proof of part (ii) is similar.

I further note that the requirements in Proposition 2 are always met if Z is a finite set. □

Proposition 3 If for a measure m, requirements (III.1) and (III.2) hold, then I can take for 
every Z in Z:  aZ =  bZ.

Proof It is obvious that if requirement (III.1) holds on [0,aZ] and if  aZ ≤ a < T, then require-
ment (III.1) also holds on [0, a]. Similarly, if requirement (III.2) holds on [0,bZ] and if 
 bZ ≤ b < T, then requirement (III.1) also holds on [0,b]. Hence taking, for every Z in Z: 
 cZ = max(aZ,bZ) I see that requirements (III.1) and (III.2) both hold on [0,  cZ].□

Requirement (III.1) as well as (III.2) can both be considered as very natural proper-
ties for an impact measure. Hence, I am now looking for a property that includes both.

I use the following properties:

(III) ∀X ∈ Z, ∃aX ∈ ]0, T[ such that: for all Y, Z in Z, (Y ≫ Z on [0, min(aY,aZ)]) 
implies that m(Y) > m(Z).

This expression is trivially equivalent with:

(IIIa) ∀X ∈ Z, ∃aX ∈ ]0, T[ such that: for all Y, Z in Z, (Y ≪ Z on [0, min(aY,aZ)]) 
implies that m(Y) < m(Z).

Besides (III) I also consider (III′):

(III′) ∀X ∈ Z, ∃aX ∈ ]0, T[ such that: for all Y, Z in Z, (Y ≫ Z on [0, max(aY,aZ)]) 
implies that m(Y) > m(Z).

The purpose is that I want to find out which of the two, (III) or (III′), is the most appro-
priate to characterize the notion of impact. The answer is given in the next theorem.
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Theorem 1 (III) ⟺ (III.1) ∧ (III.2) ⇒ (III.1) ∨ (III.2) ⇒ (III′), and (III′) ⇏(III.1) ∨ (III.2)

Proof (III) ⇒ (III.1) ∧ (III.2).
This follows immediately as, by (III) and (IIIa): [0,aZ] ⊃ [0, min(aY,aZ)] and [0,aY] ⊃ [0, 

min(aY,aZ)].

I know already that, for all Z in Z I may take  aZ =  bZ (in (III.1) and (III.2)) let now 
Y ≫ Z on [0, min(aY,aZ)]. Then I have either Y ≫ Z on [0,  aZ] or Y ≫ Z on [0,aY]. In the 
first case (III.1) leads to m(Y) > m(Z), in the second case (III.2) yields m(Y) > m(Z). This 
proves this part and hence the equivalence of the first two expressions.

(III.1) ∧ (III.2) ⇒ (III.1) ∨ (III.2) is just a logical implication.

Take  cZ =  aZ or  bZ depending on which of the two requirements holds. Now, ∀Y , Z ∈ 
Z, with Y ≫ Z on [0, max(cY,cZ)] I have that Y ≫ Z on [0,cY] as well as on [0,  cZ]. In case 
(III.1) holds I conclude from the first case that m(Y) > m(Z), if (III.2) holds the second case 
leads to the same conclusion.

I provide a counterexample. The impact function is still m(Z) = ∫ T

0
Z(s)ds . I already con-

sidered a case for which (III.1) holds and (III.2) does not hold. This case is defined in the 
square [0, T] x [0, T]. I also have an example where (III.2) holds and (III.1) does not, this 
time defined in [0, T] x]0, T[.

Let Y be the set of functions used for the first case, and Z the set of functions used for 
the second case. I add the value T to each function Z in Z, leading to Z(+T) = {Z + T: Z 
∈ Z}. Then m still meets (III.2) while it does not meet requirement (III.1) on Z(+T). Put 
Z* = Y ∪ Z(+T). I note that every function in Z(+T) is situated above every function in Y. 
Then m meets (III.1) hence (III′) on Y and m meets (III.2) hence (III′) on Z(+T). Hence m 
meets (III′) on Z*.

Now, m does not meet (III.2) on Y, hence also not on Z* and m does not meet (III.1) on 
ZT, hence also not on Z*. This ends the proof of part (e), and hence of Theorem 1. □

From Theorem 1 I conclude that (III) is the property I am after. Hence I conclude that 
an impact measure m on the set U = {Z ║ Z: [0, T] → R+, continuous and decreasing}, or a 
subset Z of U is a function.

m: Z ⊂ U → R+: Z → m(Z).
which meets the following three requirements:

 (I) m(Z) = 0 if and only if Z = 0.
 (II) Y ≥ X ⇒ m(Y) ≥ m(X) and Y = X ⇒ m(Y) = m(X).
 (III) ∀X ∈ Z, ∃aX ∈ ]0, T[ such that: for all Y, Z in Z, (Y ≫ Z on [0, min(aY,aZ)] implies 

that m(Y) > m(Z)).

A simple example: the continuous equivalent of the number of items, e.g. citations, of the 
largest source, e.g. article, namely m(Z) = Z(0).

I check the three requirements:

(III.1) ∧ (III.2) ⇒ (III)

(III.1) ∨ (III.2) ⇒
(
III�

)

(
III�

)
⇏(III.1) ∨ (III.2)
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 (I) m(Z) = 0 if and only if Z = 0, obviously;
 (II) Y ≥ X ⇒ m(Y) = Y(0) ≥ m(X) = X(0) and Y = X ⇒ m(Y) = Y(0) = X(0) = m(X).
 (III) ∀X ∈ Z, ∃aX ∈ ]0, T[ such that: for all Y, Z in Z (Y ≫ Z on [0, min(aY,aZ)] implies 

that m(Y) > m(Z)). Taking all  aX = T/2, I see that Y ≫ Z on [0, T/2] implies that 
Y(0) > Z(0), or m(Y) > m(Z). Obviously, here I may take  aX equal to any number 
strictly between 0 and T. Then inf(aX) = 0.

Proposition 4 If Z consists of functions ending with an interval where the function is zero, 
then requirements (III) and (III.1) are equivalent.

Proof I have to show that these situations always meet requirement (III.2). Consider a 
function Z in Z such that Z = 0 on  [nZ,T] (0 ≤  nZ < T). Now I take  bZ = (T +  nZ)/2 and con-
sider a function Y in Z such that Y ≪ Z on [0,  bZ]. As such a function Y does not exist 
(III.2) is valid. □

A similar observation can be made related to (III.1). Let M be a fixed strict positive 
number. If Z consists of functions Z for which Z(0) = M then all these functions Z meet 
requirement (III.1). Indeed, given Z, take any  aZ with 0 <  aZ < T. Then I need a function 
Y ≫ Z on [0,  aZ], but such functions do not exist as Y(0) = Z(0) = M.

These observations show that (III.1) as well as (III.2) are important.
I stated earlier that I want to focus on the left-hand side of the function graph. That 

is what requirement (III) does. In this context, I note that if two different functions Y 
and Z in Z have the same value in zero, Y(0) = Z(0) = n (let us assume that Z = {Y,Z}), 
then condition (III) becomes empty and hence such functions always meet the require-
ment (III). Yet, such functions do not necessarily meet requirement (II). Assume that 
0 <  cZ <  cY <  TZ <  TY < T and define the functions Y and Z as follows:

and

Then clearly Y ≥ Z on [0, T]. Yet, with m(X) = X(0)
TX

 , X in {Y,Z} I have m(Y) = n
TY

<
n

TZ
 = 

m(Z), contradicting requirement (II). Of course, (II) does not imply (III). To see this it suf-
fices to take m(X), X in {Y,Z}, equal to a constant C > 0.

Y(x) =

⎧⎪⎨⎪⎩

n x ∈
�
0, cY

�
−

n

(TY−cY)

�
x − TY

�
x ∈

�
cY , TY

�

0 x ∈
�
TY , T

�

Z(x) =

⎧⎪⎨⎪⎩

n x ∈
�
0, cZ

�
−

n

(TZ−cZ)

�
x − TZ

�
x ∈

�
cZ , TZ

�

0 x ∈
�
TZ , T

�
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Condition (IV) for a variable number of sources

Until now I have kept T > 0 fixed, working on subsets of UT. I now consider the union U 
= UT>0 UT

= UT>0

{
Z|| Z: [0, T] → R

+, continuous and decreasing
}
 .

Assume that I take W > T and I extend functions Z defined on [0, T] and with Z(T) = 0, 
on]T, W] by taking the value zero on this interval. Now I will require that a measure m 
does not increase strictly. More precisely: consider U and let a measure m be defined on Z 
⊂ U. Then I formulate requirement (IV):

(IV). Let Z ∈ U, with dom(Z) = [0, T] and Z(T) = 0. Then I take W > T, and define the 
function  YZ as

It is clear that  YZ ∈ U. Then I require that m(YZ) ≤ m(Z).
I first give an example of a measure m that does not meet requirement (IV). Let 

m(Z) = T·Z(0), defined for any function Z in U. For fixed T this is an impact measure, as it 
meets requirements (I), (II), and (III). Yet, with  YZ as defined above I have:

Condition (IV) leads to a simple classification of impact measures. A distinction can be 
made between:

Type (IV.1): functions that meet the requirement m(YZ) = m(Z), for all Z in U.
Type (IV.2): functions that meet the requirement m(YZ) ≤ m(Z) and for which 
m(YZ) < m(Z) for at least one Z in U.

Note that for Z = 0, m(Z) = m(YZ) = 0.
Intuitively (details follow later) it can be said that the h-index is of type IV.1, while an 

average is of type IV.2.
I conclude this investigation by recalling the definition of an impact measure m defined 

on U = UT>0 UT
= UT>0

{
Z||Z: [0, T] → R

+, continuous and decreasing
}
.

The function m: U → R+ is an impact measure if it meets the following four 
requirements.

Restricted to any ZT ⊂ UT it meets the following three requirements:

 (I) m(Z) = 0 if and only if Z = 0.
 (II) Y ≥ X ⇒ m(Y) ≥ m(X) and Y = X ⇒ m(Y) = m(X)
 (III) ∀X ∈ ZT ⊂ UT, ∃aX ∈ ]0, T[ such that: for all Y, Z in ZT, (Y ≫ Z on [0, min(aY,aZ)]) 

implies that m(Y) > m(Z).
   Moreover, on U it meets the extra requirement:
 (IV) Let Z in U, with dom(Z) = [0,T ] and Z(T) = 0. If now W > T, then for  YZ defined 

as

YZ(x) =

{
Z(x), for x ∈ [0, T]

0, for x ∈ [T ,W]

m
(
YZ

)
= W ⋅ YZ(0) = W ⋅ Z(0) =

W

T
m(Z) > m(Z).

Y
Z
(x) =

{
Z(x), for x ∈ [0, T]

0, for x ∈ [T ,W]

m
(
YZ

) ≤ m(Z).
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Similarly, I defined measures  mT which are only defined on subsets ZT of UT. Such 
measures are required to meet (I), (II), (III) on a given domain [0, T].

I note that if a measure m is an impact measure on a set Z then it is, trivially, also an 
impact measure on any subset of Z. Similarly if a measure is an impact measure on a set 
Z, consisting of functions defined on [0, T], then it is also an impact measure on the set Z* 
which consists of the functions in Z, restricted to the interval [0,T0], with  T0 < T.

This ends my introduction of the definition of an impact measure. In the next part, I will 
study some examples.

A study of well‑known measures and their impact properties

Before I consider some well-known measures I introduce another tool for my study.
Given an impact measure m and a set Z I known that the set of all numbers a ∈]0,T[ (I 

omit the index Z) for which (III.1) is valid is an interval, open on the right-hand side, end-
ing in T. This interval, to which I now add T, is denoted as C(mZ). I set inf(C(mZ)) = c(mZ). 
Here inf(C(mZ)) denotes the infimum of the set C(mZ), being the greatest element in R+ 
that is less than or equal to all elements of C(mZ)). Since 0 is a lower bound, this infimum 
clearly exists.

Similarly, I know that the set of all numbers b ∈]0,T[ (again the index Z is omitted) for 
which (III.2) is valid is an interval, open on the right-hand side, ending in T. This interval, 
to which too I add T, is denoted as D(mZ). I set inf(D(mZ)) = d(mZ).

I next show that these infima are actually minima.
Before starting the proof I recall that earlier I observed that it is possible to develop 

my theory for functions Z defined on]0,T] (and not [0, T]). In that case it is possible that 
inf(C(mZ)) = 0, leading to C(mZ) =]0,T]. Then the infimum is not a minimum.

Proposition 5 C(mZ) = [c(mZ), T].

D(mZ)) = [d(mZ), T].

Proof I already know that

If c(mZ) does not belong to C(mZ) then there exists Y in Z, such that Y≫Z on [0, c(mZ)] 
and m(Y) ≤ m(Z). As Y and Z are continuous and c(mZ) < T (by (III.1)) I know that there 
exists a ∈

]
c
(
mZ

)
, T

[
 such that Y ≫ Z on [0,a], with m(Y) ≤ m(Z). This is in contradiction 

with (III.1), hence c(mZ) ∈ C(mZ) and thus C(mZ) = [c(mZ), T].
Similarly, the second equation can be proven.
The value T is included in these intervals because, if (III.1), resp. (III.2), are valid then 

Y ≪Z on [0, T] implies that m(Y) < m(Z).
Next I wonder if (III) implies c(mZ) = d(mZ). Surprisingly, this equality does not always 

hold as shown by the following example.
Example. An example of a measure m defined on a set Z such that for all Z in Z (III.1) 

and (III.2) hold, but c(mZ) ≠ d(mZ).□

]
c
(
mZ

)
, T

]
⊂ C

(
mZ

)
⊂
[
c
(
mZ

)
, T

]
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Remark I note that this example is not in contradiction with Proposition 3.

For 0 < R < S < T, T fixed I define the function y = Z(x), see Fig.  3, with { x

S
+

y

S
= 1, if x ∈ [0, R]

y = S − R, if x ∈ ]R, T]

The function Z as defined above, actually depend on R, S, and T, leading to infinitely 
many functions Z. For simplicity I do not mention these parameters but keep in mind that T 
is fixed, but R and S are variable with 0 < R < S < T.

Now I set Z = {Z; y = Z(x)} and m(Z) = ∫ T

0
Z(x)dx  = (S − R)T +  R2/2.

(a) For all Z in Z, (III.2) holds with d(mZ) ≤ R.
  Proof of (a): for all Z in Z and Y in Z with Y ≪ Z on [0,R], I see that Y ≪ Z on [0, 

T] and hence m(Y) < m(Z). This shows that R plays the role of  bZ so that (III.2) holds 
and clearly d(mZ) ≤ R.

(b) For all Z in Z, (III.1) holds and R < c(mZ) ≤ T − S + R.
  Proof of the first inequality in (b). I take one function Z in Z (parameters R < S) and 

take Y in Z (with parameters R′ and S′) with Y≫Z on [0,R] and m(Y) ≤ m(Z) such 
that (III.1) does not hold for a = R. Note that as Y≫Z on [0,R], Y(0) = S′ > Z(0) = S. I 
write S′ = S + δ, where I will determine δ later. Take R′ = S < S′. Then m(Y) = (S′ − R′) 
T + (R′2)/2 = (S + δ − S)T +  S2/2 = δT +  S2/2. I now require that this expression is 
strictly smaller than (S − R)T +  R2/2.

Hence I need: 0 < δ < (S−R)T+(R2−S2)∕2
T

 = (S−R)T−(S−R)(S+R)∕2
T

  = (S−R)(2T−S−R)
2T

 . As 
0 < R < S < T this expression is strictly positive. So I take � =

(S−R)(2T−S−R)

4T
 > 0.

Proof that (III.1) holds and of the second inequality in R < c(mZ) ≤ T − S + R.
Let Z in Z with parameters R and S as above and consider any function Y in Z (with 

parameters R′ and S′) such that Y ≫ Z on [0, T − S + R]. As S′ < T the graph of such a 

Fig. 3  The function y = Z(x) 
(bold), used in the example 
showing that c(mZ) > d(mZ)
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function Y must be horizontal in T  −  S + R. As now Y(T  −  S + R) > Z(T  −  S + R) I 
see that Y ≫ Z on [0, T] and thus that m(Y) > m(Z). This shows that (III.1) holds and 
c(mZ) ≤ T − S + R.

From parts (a) and (b) I see that for all Z in Z: c(mZ) > d(mZ). This completes this first 
example. Now I give another example where d(mZ) > c(mZ).

An example for which for all Z in Z: d(mZ) > c(mZ).
For 0 < R < S = (R + T)/2 < T, T fixed I define the function y = Z(x), see Fig. 4, with 

y =

⎧
⎪⎨⎪⎩

S − R, 0 ≤ x ≤ R

S − x, R ≤ x ≤ S

0, S ≤ x ≤ T

As for the previous example, I note that the function Z depends on R and T, leading 
to infinitely many functions Z. For simplicity I do not mention these parameters but 
keep in mind that T is fixed, but R is variable 0 < R < T and S = (R + T)/2.
Now I set Z = {Z; y = Z(x)} and m(Z) = ∫ T

0
Z(x)dx  = R(T − R)/2 + (T − R)2/8.

(a) For all Z in Z: (III.1) holds with c(mZ) ≤ R.
  If  ZR′ is in Z with  ZR′ ≫  ZR on [0,R] then  ZR′ (0) = (T − R′)/2 >  ZR(0) = (T − R)/2. 

Hence R′ < R. Yet, then also S′ = (R′ + T)/2 < (R + T)/2 = S, which implies that it is 
impossible that  ZR′ ≫  ZR on [0,R]. This implies that (III.1) holds with c(mZ) ≤ R.

(b) For all Z in Z: (III.2) does not hold with  bZ = R.
  For  ZR (Z with parameter R) I choose  ZR′ such that  ZR′ ≪  ZR on [0,R] (their existence 

is shown further). Then R′ > R. I denote R′ as R + δ (δ > 0). Then m(ZR′) = R′ (T − R′
)/2 + (T − R′)2/8 = (R + δ)(T − R − δ)/2 + (T − R − δ)2/8. I require that this is strictly 
larger than m(ZR) = R(T − R)/2 + (T − R)2/8.

  This holds if − δR/2 + δ(T − R)/2 − δ2/2 − δ(T − R)/4 + δ2/8 > 0.

or: − R + T − R − δ − T/2 + R/2 + δ/4 > 0.
or: 0 < δ < 2(T-3R)/3.

Fig. 4  The function y = Z(x) 
used in the example showing that 
d(mZ) > c(mZ)
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  This means that I have to take R < T/3. In that case  ZR and  ZR′ exist with  ZR′ ≪  ZR 
on [0,R] and m(ZR′) > m(ZR).

(c) (III.2) holds for  bZ = S ∈ ]0,T[ and hence there exists d(mZ) ≤ S such that d(mZ) > R (by 
(a)) ≥ c(mZ) (by (b)).

Indeed, for all Z in Z, Z(S) = 0. Hence there does not exist Y in Z such that Y ≪ Z on 
[0,S] so that I do not have to check anything.

This ends the proof of the example for which for all Z in Z: d(mZ) > c(mZ).
If m is a measure on Z then I have the following result.

Proposition 6 Condition (III) ⟺ for all Z in Z: C
(
mZ

)
∩ D

(
mZ

)
∩ ]0, T[ ≠ ∅.

Proof a. ( ⇒) Let Z ∈ Z, and let  aZ ∈]0,T[ for which (III.1) holds. Let similarly let  bZ ∈]0,T[ 
for which (III.2) holds. Then  cZ = max(aZ,bZ) ∈ C

(
mZ

)
∩ D

(
mZ

)
∩ ]0, T[.

b. ( ⇐ ) Let Z ∈ Z, and let  cZ ∈ C
(
mZ

)
∩ D

(
mZ

)
∩ ]0, T[ . Then (III.1) holds with  aZ =  cZ 

and (III.2) holds with  bZ =  cZ. Hence (III) holds. □
In the sequel, I will investigate some well-known measures to determine if they meet the 

requirements for an impact measure. From now on I set Z = U.
Case (i): The h-index.
Recall the definition of the h-index of a continuous, decreasing function Z, denoted as 

 hZ:
x = h(Z) (further denoted as  hZ) ⟺ Z(x) = x.
I note that the h-index of a continuous function Z is well-defined (the definition above is 

not valid if a function Z would have discontinuities). Moreover, if Z(T) > T, I say that the 
h-index of Z is not defined. Saying that in this case  hZ = T—as is sometimes done—does 
not lead to an impact measure in my sense. Yet, a generalized h-index,  hθ, see (Egghe & 
Rousseau, 2019), is defined for θ ≥ 

(
Z(T)

T

)
 , the classical h-index being the case θ = 1.

It is clear that the h-index meets the requirements (I) and (IV.1). Consider now require-
ment (II). Let Y and Z be functions in Z, such that Y ≥ Z. Then Y(hZ) ≥ Z(hZ) and hence, as 
Y is decreasing  hY ≥  hZ. This proves (II).

Now, for (III.1): consider Y and Z functions in Z, such that Y≫Z on [0,  hZ]. Then 
Y(hZ) > Z(hZ) =  hZ, and hence, as Y is decreasing,  hY >  hZ. This shows that h meets require-
ment (III.1) and c(hZ) ≤  hZ. I next show that c(hZ) ≥  hZ.

I take the number a such that 0 < a <  hZ and a number δ such that 0 < δ. Then the func-
tion Y is defined as follows:

The middle part of the definition of Y(x) is the line connecting the points (a, Z(a) + δ) and 
 (hZ,  hZ/2). This function Y is decreasing and continuous and hence belongs to U. It can be 
seen that Y≫Z on [0,a]. Now I show that  hY ≤  hZ which will lead to the conclusion that 
(III.1) does not hold in a. Assume that  hY >  hZ, then

Y(x) =

⎧⎪⎨⎪⎩

Z + �, x ∈ [0, a]

Z(a) + � +
hZ

2
−Z(a)−�

hZ−a
(x − a), x ∈ [a, hZ]

hZ

2
, x ∈ [hZ , T]

Y
(
hY

) ≤ Y
(
hZ
)
= Z

(
hZ
)
∕2 < Z

(
hZ
)
= hZ < hY.
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which contradicts the definition of  hY. From this result I see that c(hZ) =  hZ and C(hZ) =  [hZ, 
T].

Now I show that the h-index also meets condition (III.2). Let Y, Z in Z with Y ≪ Z 
on [0,hZ]. Then Y(hZ) < Z(hZ) =  hZ and hence  hY <  hZ. This shows that h meets require-
ment (III.2) and hence taken together with (III.1) h meets requirement (III). I know that 
d(hZ) ≤  hZ. I next consider a function Z which is strictly decreasing, take a number a such 
that 0 < a <  hZ and define Y as follows:

Now, Y belongs to U, because this function is decreasing, continuous, and positive. I fur-
ther see that Y ≪Z on [0,a] as a <  hZ and Z is strictly decreasing (so that Z(a) >  hZ). I show 
that  hY ≥  hZ and hence (III.2) does not hold for a. Assume that  hY <  hZ then Y(hY) ≥ Y(hZ) 
= (Z(a) +  hZ)/2 >  hZ >  hY, which is a contradiction. Hence I conclude that d(hZ) =  hZ = c(hZ) 
and D(hZ) =  [hZ, T].

Case (ii): Pointwise defined measures (Egghe, 2021).
I recall the definition from (Egghe, 2021).
A measure m defined on Z is pointwise defined if there exists a function y = f(θ,x), θ > 0 

such that x =  mθ(Z), denoted as  mθ,Z, ⟺ Z(x) = f(θ,x).
Taking, with θ = 1, f(θ,x) = x I obtain the h-index as studied above. Taking f(θ,x) = θx I 

obtain the generalized h-index,  hθ, see (Egghe & Rousseau, 2019) and taking f(θ,x) = θxp 
(p > 0) I find the generalized Kosmulski-indices, with for θ = 1, the original Kosmulski-
indices (Kosmulski, 2006).

For pointwise defined measures m the following theorem can be proved.  □

Theorem  3 Let m be a pointwise defined measure where f(θ,x) is increasing in 
x, meets all the requirements to be an impact measure (I), (II), (III) and (IV) and 
c(mθ,Z) =  mθ(Z) ≥ d(mθ,Z), with equality if Z is strictly decreasing.

The proof follows the lines of the proof for the h-index with y = f(θ,x) replacing f(x) = x.

Remark I have shown that for a pointwise defined measure m, and Z strictly decreas-
ing, c(mZ) = d(mZ), while for Z decreasing, c(mZ) ≥ d(mZ). Strict inequality for e.g., m = h 
occurs if, for all x in [a,  hZ], Z(x) =  hZ, with 0 < a <  hZ. If a is the minimum value with this 
property then c(hZ) =  hZ > d(hZ) = a, as follows from the previous proof where I replace  hZ 
by a and a by b, with 0 < b < a in the definition of the function Y (*).

Case (iii): The g-index.
I recall the definition of the g-index for the continuous case. For Z ∈ Z:

Theorem 4 The g-index is an impact measure, with c(gZ) =  gZ ≥ d(gZ), hence C(gZ) =  [gZ, T] 
and, for Z strictly decreasing d(gZ) =  gZ, and hence D(gZ) =  [gZ,T].

Proof It is obvious that the g-index meets conditions (I) and (IV.1). Now I consider 
requirement (II). Let Y,Z ∈ Z, with Y ≥ Z. Then:

(*)Y(x) =

{
Z(x) −

Z(a)−hZ

2
; x ∈ [0, a]

Z(a)+hZ

2
; x ∈ [a, T]

x = g(Z)(denoted as gZ) ⟺ ∫
x

0

Z(s)ds = x2
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This means that  gY ≥  gZ, showing that g meets requirement (II). Next, I consider (III.1). 
Let Y,Z ∈ Z, with Y≫Z on [0,gZ]. Then, using continuity, I have:

and hence, by the definition of the g-index,  gY >  gZ. Hence, I also have c(gZ) ≤  gZ. The 
g-index also meets the requirement (III.2), hence (III) and d(gZ) ≤  gZ. Indeed, let Y,Z ∈ Z, 
with Y ≪Z on [0,gZ]. Again using continuity, I have:

and thus  gY <  gZ. This also leads to d(gZ) ≤  gZ.
The proofs that c(gZ) =  gZ and that for strictly decreasing Z, d(gZ) =  gZ follows in a simi-

lar way as for h. The latter will be shown now.
Let 0 < a <  gZ and define for 0 < δ < Z(a) (δ will be determined further on):

Then Y ∈ U and Y ≪Z on [0,a]. I will show that there exists δ such that  gY >  gZ, hence 
d(gZ) ≥  gZ (leading to equality). As Z is strictly decreasing I have  hZ <  gZ, I may obviously 
assume that a >  hZ. Now, for x > a, I have:

Then x =  gY ⟺ ∫ a

0
Z(s)ds + xZ(a) − aZ(a) − �x = x2

Solving this quadratic equation yields:

Z is strictly decreasing and continuous, hence ∫ a

0
Z(s)ds > aZ(a) , so that only the plus-

sign is meaningful  (gY > 0). The problem is now reduced to finding δ > 0 such that

This inequality is equivalent with:

�
gZ

0

Y(s)ds ≥ �
gY

0

Z(s)ds =
(
gZ
)2

∫
gZ

0

Y(s)ds > ∫
gY

0

Z(s)ds =
(
gZ
)2

∫
gZ

0

Y(s)ds < ∫
gY

0

Z(s)ds =
(
gZ
)2

Y(x) =

{
Z(x) − �, x ∈ [0, a]

Z(a) − �, x ∈ [a.T]

∫
x

0

Y(s)ds = ∫
a

0

Y(s)ds + ∫
x

a

Y(s)ds = ∫
a

0

(Z(s) − �)ds + ∫
x

a

(Z(a) − �)ds = ∫
a

0

Z(s)ds + xZ(a) − aZ(a) − �x.

⟺ x2 + x(� − Z(a)) + aZ(a) − ∫
a

0

Z(s)ds = 0

gY = x =
(Z(a) − �) ±

√
(Z(a) − �)2 − 4

(
aZ(a) − ∫ a

0
Z(s)ds

)

2

gY = x =
(Z(a) − 𝛿) +

√
(Z(a) − 𝛿)2 − 4

(
aZ(a) − ∫ a

0
Z(s)ds

)

2
> gZ

√
4

(
∫

a

0

Z(s)ds − aZ(a)

)
+ (Z(a) − 𝛿)

2

> 2gZ + 𝛿 − Z(a)
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I first show that the right-hand side of this inequality is positive. I know that 
Z(a) <  hZ < a <  gZ. Hence  2gZ + δ – Z(a) is certainly positive. This allows us to square the 
above inequality, leading to:

From this inequality I see that I can find the required δ > 0 if the following inequality 
holds:

As a <  gZ, this inequality holds if:

This inequality follows from the fact that Z is continuous and strictly decreasing. So, 
with such a δ I have  gY >  gZ which contradicts (III.2) for a =  gZ and hence d(gZ) ≥  gZ. I con-
clude that d(gZ) =  gZ. □

A similar proof shows that the generalized g-index  gθ (Egghe & Rousseau, 2019) is a 
valid impact measure.

Case (iv): The R-index.
For Z in U, the continuous R-index, R > 0, is defined as (Egghe & Rousseau, 2008; Jin 

et al., 2007):

where  hZ is the h-index of Z.

Theorem 5 The R-index is an impact measure and c(RZ) =  hZ ≥ d(hZ); hence C(RZ) =  [hZ, T]. 
For Z strictly decreasing I have d(RZ) =  hZ and hence D(RZ) =  [hZ, T]. This is the first case 
of a measure m for which c(mZ) ≠  mZ.

Proof The R-index clearly meets requirements (I) and (IV.1). To prove (II) I consider Y, Z 
in Z, with Y ≥ Z and hence  hY ≥  hZ, using the fact that h is an impact measure. Hence:

For (III.1) I again take Y,Z in Z, now with Y ≫ Z on [0,hZ]. As h meets (III) it follows that 
 hY >  hZ. Hence, using the continuity of Y and Z I have:

4

(
∫

a

0

Z(s)ds − aZ(a)

)
+ (Z(a) − 𝛿)2 >

(
2gZ + 𝛿 − Z(a)

)2

⇔ ∫
a

0

Z(s)ds − aZ(a) >
(
gZ
)2

+ 𝛿gZ − gZZ(a)

∫
a

0

Z(s)ds − aZ(a) >
(
gZ
)2

− gZZ(a) = ∫
gZ

0

Z(s)ds − gZZ(a)

∫
gZ

a

Z(s)ds <
(
gZ − a

)
Z(a)

R2(Z) =
(
RZ

)2
= ∫

hZ

0

Z(s)ds

R2
Y
= �

hY

0

Y(s)ds ≥ �
hZ

0

Z(s)ds = R2
Z

R2
Y
= ∫

hY

0

Y(s)ds > ∫
hZ

0

Y(s)ds > ∫
hZ

0

Z(s)ds = R2
Z
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Hence (III.1) holds for R and c(RZ) ≤  hZ.
To prove (III.2) I take Y, Z in Z, and Y ≪ Z on [0,  hZ]. As h satisfies requirement (III) I 

obtain  hY <  hZ and hence, using the continuity of Y and Z:

This shows that (III.2) holds and d(RZ) ≤  hZ. This proves (III). To finish the proof The-
orem  5 I still have to show that c(RZ) =  hZ and, for strictly decreasing functions Z, that 
d(RZ) =  hZ. This can be done using the same functions as those used in the proof for h and 
will not be repeated here. □

Similar results hold for the generalized R-index  Rθ defined as:

This is left to the reader.
Next, I study the truncated average.
Case (v): The truncated average μθ.
Given Z in Z, I define the θ-truncated average, with 0 < θ ≤ T, as.
��(Z) , denoted as ��,Z =

1

�
∫ �

0
Z(s)ds . If θ = T then I have the usual average on the 

interval [0, T].

Theorem 6 The truncated average is an impact measure if θ < T. If θ = T (the usual aver-
age) it only meets requirement (I), (II) and (IV.2). For θ < T I have c(μθ,Z) = θ ≥ d(μθ,Z) and 
hence C(μθ,Z) = [θ,T], while C(μZ) = {T}. If θ < T and Z is strictly decreasing then d(μθ,Z) = θ 
and hence D(μθ,Z) = [θ, T]. If θ = T, then D(μZ) = {T}.

Before starting the proof I like to point out that all c- and d-values are independent of 
the function Z.

Proof It is clear that all μθ, 0 < θ ≤ T meet requirements (I) and (IV.2). Also (II) is satisfied: 
for Y,Z in Z, Y ≥ Z I have:

For the proof that the truncated average meets requirement (III.1) I take Y,Z in Z, with 
Y ≫ Z on [0, θ]. Then, by the continuity of Y and Z I have that

showing that (III.1) holds for 0 < θ < T and hence c(μθ,Z) ≤ θT < T. If θ = T I only have 
𝜇Y > 𝜇Z for  aZ = T, which is not sufficient to prove (III.1). To prove (III.2) I take Y,Z in Z, 
with Y ≪ Z on [0, θ]. Then, again using continuity I have

R2
Y
= ∫

hY

0

Y(s)ds < ∫
hZ

0

Y(s)ds < ∫
hZ

0

Z(s)ds = R2
Z

R2
�
(Z) = ∫

h�,Z

0

Z(s)ds

��,Y =
1

��
�

0

Y(s)ds ≥ 1

��
�

0

Z(s)ds = ��,Z

𝜇𝜃,Y =
1

𝜃∫
𝜃

0

Y(s)ds >
1

𝜃∫
𝜃

0

Z(s)ds = 𝜇𝜃,Z
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Showing that (III.2) holds for 0 < θ < T and d(μθ,Z) ≤ θT. Again, if θ = T I only have 𝜇Y < 𝜇Z 
for  bZ = T, which is not what is needed for (III.2).

In a similar way as for the other measures I can show that c(μθ,Z) = θ, for 0 ≤ θ ≤ T, lead-
ing to C(μθ,Z) = [θ,T] for 0 < θ < T and C(μZ) = {T}. Moreover, for Z strictly decreasing, 
d(μθ,Z) = θ (a proof follows), hence D(μθ,Z) = [θ,T] for 0 < θ < T and D(μZ) = {T}.

Proof that for Z strictly decreasing, d(μθ,Z) = θ.
Assume that 0 < a < θ. Then I define, for all Z in Z, Z strictly decreasing a function Y as 

follows:

with 0 < δ < Z(a) to be determined further on. It can be seen that Y ∈ Z and Y ≪Z on 
[0,a]. Then

I require that this expression is strictly larger than ��,Z =
1

�
∫ �

0
Z(s)ds.

This inequality holds if ∫ 𝜃

a
Z(s)ds < (𝜃 − a)Z(a) − 𝛿𝜃 . I can find such a δ > 0, actually 

infinitely many, because Z is strictly decreasing and continuous and hence

This shows that d(μθ,Z) ≥ θ, and conclude that d(μθ,Z) = θ.  □

I have shown that μθ, with 0 < θ < T is an impact measure, while this is not true for the 
classical average μ. This average does not even meet requirement (III′) as c(μZ) = d(μZ) = T.

I realize that this is a rather surprising result. Hence I provide a simple discrete example.
Let X = (10, 10, 10, 5) and Y = (11, 11, 11, 1) then Y ≫ X on the index set {1, 2, 3}. 

The role of T is here played by the number 4. Yet μY = 34/4 < 35/4 = μX. Such an example 
cannot be given for μθ, 0 < θ < T, θ a natural number, because for such θ I always have 
μθ,Y = 11 > 10 = μθ,Z.

I recall that in my view, the notion of impact always relates to what happens on the left-
hand side and never on the complete interval [0, T].

Case (vi): The truncated total number of items.
The truncated total number of items is defined, for 0 < θ < T and Z in Z as:

𝜇𝜃,Y =
1

𝜃∫
𝜃

0

Y(s)ds <
1

𝜃∫
𝜃

0

Z(s)ds = 𝜇𝜃,Z

Y =

{
Z − �, on[0, a]

Z(a) − �, on[a, T]

��,Y =
1

� ∫
�

0

Y(s)ds =
1

�

(
∫

a

0

Y(s)ds + ∫
�

a

Y(s)ds

)

=
1

�

(
∫

a

0

(Z(s) − �

)
ds + ∫

�

a

(Z(a) − �)ds)

=
1

�

((
∫

a

0

Z(s)ds

)
− �a + (� − a)Z(a) − (� − a)�

)

∫
𝜃

a

Z(s)ds < (𝜃 − a)Z(a)

I�,Z = ∫
�

0

Z(s)ds
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This is the total number of items in the θ most important sources. For θ = T I have the 
total number of items, denoted as I.

Theorem 7 If 0 < θ < T, then  Iθ,Z is an impact measure. If θ = T then it only meets require-
ments (I), (II) and (IV.1). For 0 < θ < T I have: c(Iθ,Z) = θ ≥ d(Iθ,Z) and hence C(Iθ,Z) = [θ, T]. 
Yet, C(IZ) = {T} so that  IZ is not an impact measure. If Z is strictly decreasing and 0 < θ < T, 
then d(Iθ,Z) = θ and D(Iθ,Z) = [θ, T], while for θ = T, D(IZ) = {T}.

The proof follows completely the proof of Theorem 6 and hence is omitted.
The example after Theorem  6 can also be used here. I showed that while Y ≫ X 

on {1,2,3} and with {1,2,3,4} in the role of [0, T]:  IY = 34 < 35 =  IZ, yet with θ = 1 I 
have  Iθ,Y = 11 > 10 =  Iθ,Z, with θ = 2 I have  Iθ,Y = 22 > 20 =  Iθ,Z, and for θ = 3 I have 
 Iθ,Y = 33 > 30 =  Iθ,Z.

Case (vii): Percentiles.

Definition Let Z be in Z defined on [0, T], then a 100 θ% percentile (0 < θ < 1) for Z is 
defined as:

Theorem 8 The 100 θ% percentile  Pθ,Z is an impact measure and c(Pθ,Z) = θT ≥ d(Pθ,Z) and 
hence C(Pθ,Z) = [θT, T]. If Z is strictly decreasing then also d(Pθ,Z) = θT and D(Pθ,Z) = [θT, 
T].

Proof Clearly  Pθ,Z always meets requirements (I), (II), and (IV.2). To show (III.1) I con-
sider Y, Z in Z with Y ≫ Z on [0, θT]. Then Y(θT) =  Pθ,Y >  Pθ,Z = Z(θT), which proves 
(III.1) with c(Pθ,Z) ≤ θT. For (III.2) I take Y,Z in Z with Y ≪ Z on [0, θT]. Then, clearly, 
Y(θT) =  Pθ,Y <  Pθ,Z = Z(θT), which proves (III.2) with d(Pθ,Z) ≤ θT. Similarly, as for the pre-
vious measures, I have that c(Pθ,Z) = θT and, if Z is strictly decreasing, d(Pθ,Z) = θT. This 
equality is shown now. Let Z be given and let 0 < a < θT. Then I define for 0 < δ < Z(a):

As a < θT and Z is strictly decreasing I have Z(a) > Z(θT). Next, I choose δ such that

Then, as θT > a: Y(θT) = Z(a) – δ = (Z(a) + Z(θT))/2 > Z(θT), and hence  Pθ,Y >  Pθ,Z. This 
proves that (III.2) does not hold for a. Consequently d(Pθ,Z) ≥ θT, leading to the required 
result that d(Pθ,Z) = θT. □

Case (viii): The A-index.
The A-index.
For Z in Z, the A-index (Egghe & Rousseau, 2008; Jin, 2006), denoted as  AZ is in the 

continuous case defined as:

Pθ,Z = Z(θT).

Y(x) =

{
Z(x) − �, x ∈ [0, a]

Z(a) − �, x ∈ [a, T]

Z(a) > 𝛿 =
Z(a) − Z(𝜃T)

2
> 0

AZ =
1

hZ ∫
hZ

0

Z(s)ds
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It is known (Egghe & Rousseau, 2008) that in the discrete case this is not a good index 
because it is possible that for the arrays  X1 and  X2 h(X1) > h(X2), while A(X1) < A(X2). 
A simple example given in (Egghe & Rousseau, 2008) consists of taken  X1 = (10,2) and 
 X2 = (10,1). I will next show that its continuous version is not a good measure either, i.e., is 
not an impact measure in my sense. □

Theorem 9 For all strictly decreasing Z in Z, C(AZ) = D(AZ) = Ø, hence c(AZ) and d(AZ) do 
not exist. Hence the A-index does not meet requirements (II) and (III) and cannot be con-
sidered an impact measure in my sense.

Proof It suffices to show that T ∉ C(AZ) and T ∉ D(AZ) Indeed, consider Z in Z, strictly 
decreasing, and 0 < δ <  hZ (where the exact value of δ is determined further on). Then I 
define Y as follows:

I see that Y ≪Z on [0,  hZ] and hence  hY <  hZ. Now 
AY =

1

hY
∫ hY

0
Y(s)ds =

1

hY
∫ hY

0
(Z(s) − �)ds =

1

hY
∫ hY

0
Z(s)ds − �.

Now I note that the function J: x → 1

x
∫ x

0
Z(s)ds (Z > 0 fixed) is continuous and strictly 

decreasing. This implies that the expression 1
hY
∫ hY

0
Z(s)ds −

1

hZ
∫ hZ

0
Z(s)ds is strictly positive. 

Now I define δ as min
(

1

2

(
1

hY
∫ hY

0
Z(s)ds −

1

hZ
∫ hZ

0
Z(s)ds

)
, hZ

)
 . Then I have:

where I have again used the fact that the function I is strictly decreasing. Thus 
T ∉

(
C(AZ

)
∪ D(AZ)) and hence C(AZ) = D(AZ) = Ø. This proves that the A-index does not 

meet the requirement (III).
The A-index does not even meet requirement (II). Indeed, I know that Y ≤ Z on [0, 

T] because, for x ∈]hZ,T], max(Z(x) − δ,0) is equal to Z(x) − δ < Z(x) if Z(x) > δ, and if 
Z(x) ≤ δ, then Y(x) = 0 < Z(x), unless possibly for x = T, as Z is strictly decreasing and then 
Y(x) = Z(x). In any case Y ≤ Z while  AY >  AZ, contradicting (II). □

Conclusions and suggestions for further research

In this article, I defined natural properties for a measure m to be considered an impact 
measure. Essentially these requirements are:

(a) m must have distinguishing power on the left-hand side of the graph of the functions 
Z in Z (the sources with the most impact) for which it is assumed to measure impact. 
In this I keep the domain [0, T] fixed.

(b) Increasing the domain for functions by empty sources may never lead to an increase in 
impact.

Y(x) =

{
Z(x) − �, x ∈

[
0, hz

]
max (Z(x) − �, 0), x ∈

[
hZ , T

]

AY ≥ 1

hY �
hY

0

Z(s)ds −
1

2

(
1

hY �
hY

0

Z(s)ds −
1

hZ �
hZ

0

Z(s)ds

)

=
1

2

(
1

hY �
hY

0

Z(s)ds +
1

hZ �
hZ

0

Z(s)ds

)
>

1

hZ �
hZ

0

Z(s)ds = AZ ,
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I showed that most well-known functions used to measure impact are also impact meas-
ures in my sense, be it with some restrictions. For the average, only a truncated version 
meets my requirements and a similar remark holds for the number of items.

Our investigations lead to two classifications of impact measures. The first classifica-
tion makes use of the property (III). Let m and n be two impact measures in my sense and 
assume that for a certain function Z in Z, c(mZ) ≠ c(nZ). I assume that c(mZ) < c(nZ) then 
for a in]c(mZ), c(nZ)[ there exists Y≫Z on [0,a] with m(Y) > m(Z) and n(Y) ≤ n(Z). In this 
case, m and n cannot be considered to be “equivalent” (in the sense of not acting in the 
same way on all functions). I suggest as a topic for further research an investigation of the 
equivalence (or not) of well-known measures such as the h, g, and the R index.

The second classification uses (IV). Property (IV.1) refers to those measures which stay 
invariant when adding empty sources, while property (IV.2) refers to measures that may 
become smaller when adding empty sources. This property too may be investigated further.

I am convinced that my approach solves a problem that was not fully recognized before. 
Yet, as this is the first time an attempt is made to define the meaning of an impact measure, 
I admit that it is always possible to propose another set of conditions.

Acknowledgements The author thanks Ronald Rousseau for helpful discussions, and Li Li (National Sci-
ence Library, CAS) for making the figures.

References

Allison, P. D. (1978). Measures of inequality. American Sociological Review, 43(6), 865–880.
Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Elsevier. ISBN: 

0-12-088753-3.
Egghe, L. (2009). An econometric property of the g-index. Information Processing & Management, 45(4), 

484–489.
Egghe, L. (2021). A theory of pointwise defined impact measures. Journal of Informetrics (to appear)
Egghe, L., & Rousseau, R. (2008). An h-index weighted by citation impact. Information Processing & Man-

agement, 44(2), 770–780.
Egghe, L., & Rousseau, R. (2019). Solution by step functions of a minimum problem in  L2 [0, T], using 

generalized h- and g-indices. Journal of Informetrics, 13(3), 785–792.
Harter, S. P., & Nisonger, T. E. (1997). ISI’s impact factor as misnomer: A proposed new measure to assess 

journal impact. Journal of the American Society for Information Science, 48(12), 1146–1148.
Jin, B. H. (2006). H-index: An evaluation indicator proposed by a scientist. Science Focus, 1(1), 8–9. (in 

Chinese).
Jin, B. H., Liang, L. M., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: Complementing the 

h-index. Chinese Science Bulletin, 52(6), 855–863.
Kosmulski, M. (2006). A new Hirsch-type index saves time and works equally well as the original index. 

ISSI Newsletter, 2(3), 4–6.
Rousseau, R., Egghe, L., & Guns, R. (2018). Becoming Metric-wise: A Bibliometric Guide for Researchers. 

Chandos (Elsevier).


	Impact measures: What are they?
	Abstract
	Introduction
	Development and statement of the third condition for impact measures
	Condition (IV) for a variable number of sources
	A study of well-known measures and their impact properties
	Conclusions and suggestions for further research
	Acknowledgements 
	References




