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Abstract
Precision medicine means giving patients the right treatment at the right dose at the right 
time with minimum ill consequences and maximum efficacy. It is medicine personalized 
to the individual’s genes, environment, and lifestyle and, ultimately, its widespread use 
will require a deep understanding of the genomic variations that create predispositions or 
resistances to various diseases. Some of the links between genes and diseases are already 
known, and more are being discovered every day. Similarly, much is known about which 
drugs are efficacious for treating which diseases, but there is still more to learn. The issue 
now is how to extract this information from the biomedical literature in way that can keep 
pace with today’s rapid discoveries in medical research. Efforts to assemble an organized 
database of such knowledge to data have focused on mathematical statistic methods, com-
puter-aided methods, etc. Success has been mixed as previous methods usually result in 
false positive or depend on training sample sets, lacking of generality in different research 
fields, which have choked advancements in precision medicine. To break through this bot-
tleneck, we need novel methods that can extract and leverage the valuable information 
locked within the constraints of the data we have. Hence, in this paper, we present a new 
text-based computational framework for extracting full three-way drug-disease-gene triplet 
information related to colorectal cancer from biomedical texts. The framework consists 
of two main steps. The first is to construct an integrated drug-disease-gene network by 
extracting pair-wise associations between diseases, drugs, and genes, and then store unique 
drug-disease-gene triplets for further analysis. Since the constructed network is highly 
likely to be too sparse, the next step is to complete the incomplete links in the network, 
i.e., to predict novel links from genes to diseases to drugs. To validate our framework, 
we conducted a case study on colorectal cancer, mining the literature for drug-disease and 
disease-gene associations. An analysis of the subsequent inferences drawn between the two 
shows that this approach can help to inform novel research hypotheses and identify new 
knowledge triplets about various diseases, both of which are significant for the advance-
ment and implementation of precision medicine.
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Introduction

The concept of precision medicine is to provide prevention and treatment strategies that 
take the individual into account—their genes, their environment, their lifestyle. However, 
advancing the field of precision medicine depends on establishing tools and frameworks 
for regulating, compiling, and interpreting the influx of information, and at a pace that can 
keep up with rapid scientific developments. These frameworks might be drug discovery 
systems, gene sequencing techniques, health care devices, etc. (Mirnezami  et al. 2012). 
Currently, research into precision medicine is proceeding on two main frontiers: a near-
term focus on cancers and a longer-term aim to generate knowledge that applies to a whole 
range of diseases and health issues (Collins and Varmus 2015).

As we know, cancers are fast becoming the world’s leading cause of death. Researchers 
have already revealed many of the molecular lesions that can cause cancer, showing that 
each kind of cancer has its own genomic signature. Although cancers are largely a conse-
quence of accumulating genomic damage over one’s life, inherited genetic variations and 
epigenetics variations do contribute to cancer risk—sometimes profoundly (Egger et  al. 
2004; Cheung and Liu 2009). Hence, recent findings from oncogenic mechanisms have 
begun to influence cancer risk assessments, diagnostic categories, and therapeutic strate-
gies, with the increasing use of drugs and antibodies designed to counter the influence of 
specific molecular drivers. A recent study, using a panel of commonly implicated genes, 
suggested that a genomic alteration could be identified in 96% of undiagnosed primary 
tumors. And, in 85% of those cases, the tumor was potentially treatable by a known drug 
(Ross et  al. 2015). Studies such as this demonstrate that comprehensive association pat-
terns do exist between drugs, diseases, and genes, and, if these drug-disease-gene patterns 
could be discovered and profiled, we may be able to identify novel treatment paradigms for 
genetic-based diseases, especially cancers. These are the types of advancements needed to 
promote the development of precision medicine.

With the explosion in biomedical texts, much scholarly effort has been expended in 
developing approaches to mine the relationships discovered between biomedical enti-
ties, e.g., drugs to treat diseases, genes linked to proteins. These associations are scattered 
across the literature and, while not always easy to find and extract, they are a valuable 
source of supplementary data for domain knowledge discovery. Moreover, the ability to 
systematically analyze the heterogeneous data, would provide biomedical researchers with 
unprecedented opportunities to infer novel associations among different biomedical enti-
ties in the context of precision medicine and translational research studies. The majority 
of the current approaches focus on relationships between only two kinds of entites, such 
as drug-drug interactions (Duke et al. 2012; Bui et al. 2014), protein–protein interactions 
(Mason and Verwoerd 2007), protein-gene relations (Fundel et  al. 2007), disease candi-
date genes (Hristovski et  al. 2005, Ozgur et  al. 2008), and drug repositioning (Christos 
et  al. 2011). Usually these analysis methods can be divided into  two types: mathemati-
cal statistic method and computer-aided method. Almost all of the mathematical statistic 
methods follow a similar paradigm, but their methods for identifying biomedical entities in 
a text and extracting the relationships between them are diverse. Another method depends 
on computer techniques, such as natural language processing (NLP), machine learning, 
deep learning, text mining and Bayesian statistics. The mathematical statistic method based 
on criteria like word co-occurrence or word frequency, which frequently results in false 
positives. Computer-aided approach is heavily reliant on a good training sample set, and 
most models cannot be generalized to different research fields. Additionally, both these 
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approaches depend on existing datasets, and neither considers the semantic relationships 
between entities.

Given these shortcomings, what is needed now is a broad research program to encourage 
creative approaches to precision medicine with a focus on novel ways to extract effective 
domain knowledge from the plethora of data we have available. This knowledge gained, in 
the form of definitive relationships between biomedical entities, must then be used to build 
the evidence base needed to guide clinical practice. This is the goal of the second research 
frontier. Ultimately, precision medicine should ensure that patients get the right treatment 
at the right dose at the right time, with minimum ill consequences and maximum efficacy.

In this paper, we demonstrate how to fully integrate our prior knowledge on drugs, dis-
eases, and genes, and then how to use that knowledge in a systematic framework to infer 
the incomplete links between them through association rules. To showcase the framework, 
we used it to analyze the biomedical literature for drug-disease-gene links associated with 
three diseases—ulcerative colitis, Chron’s disease, and ileitis, then verified our findings 
with a manual review of the relevant texts. The results show that the framework has the 
potential to: (1) identify potential disease relationships; (2) prioritize candidate disease 
genes; (3) predict novel options for drug repurposing; (4) provide insights that could help 
to formulate novel research hypotheses; and (5) identify new triplet associations for various 
diseases. Each of these contributions is significant to the implementation and advancement 
of precision medicine.

The rest of the paper is organized as follows: "Literature review" section introduces 
the related work. "Methods and data" section presents the research methodology and data 
sources. "Results" section contains the case analyses and results. "Conclusion" section con-
cludes the paper with a discussion on the limitations of this study and opportunities for 
future works.

Literature review

Text‑based knowledge discovery

Many genetic mutations predispose individuals to disease (Greenman et  al. 2007). The 
practice of precision medicine involves identifying such mutations in patients and mod-
ifying patient treatments to reflect each person’s different physiology risks (Collins and 
Varmus 2015). Databases of drug-disease-gene relationships play an important role in this 
process by acting as a reference for providers to refer to determine the significance of their 
patient’s mutations. From this information, practitioners can prescribe the optimal drug to 
treat the individual (Ashley et al. 2010; Dewey et al. 2014). However, there are many more 
associations scattered across the biomedical literature that have not yet been included in 
these databases, and, as the pace of medical discoveries increases, it is becoming harder 
and harder to keep these databases up-to-date.

Hence, many researchers are turning to data analytics as a relationship mining tool. For 
instance, Ozgur et  al. (2008) collected an initial set of known disease-related genes and 
introduced an automatic approach based on text mining and network analysis to predict 
gene-disease associations. They used the degree, eigenvector, betweenness, and closeness 
centrality metrics to rank the genes in the network, all based on the assumption that the 
central genes in that disease-specific network were likely to be related to the disease. Hu 
and Agarwal (2009) constructed a large-scale disease-drug network for drug repositioning 
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as well as a drug target/pathway identification system based on disease and drug expression 
profiles using GEO datasets. Finally, they extracted 170,027 significant interactions from 
7000 publicly-available transcriptomic profiles, including 645 disease-disease, 5008 dis-
ease-drug, and 164,374 drug-drug relationships. Zhou and Fu (2018) integrated the MeSH 
database with term weights and co-occurrence methods to predict gene-disease associa-
tions based on the cosine similarity between gene vectors and disease vectors. They evalu-
ated the performance of cosine similarity in predicting the links between genes and disease 
by using the gene-disease association data in the OMIM database as golden standard. In 
the research of Roy et al. (2019), graph theory was utilized for quantitative analysis of the 
epigenetic network of hepato-cellular carcinoma (HCC). They evaluated the the essenti-
ality of the node in the epigenetic network by using topological parameters like cluster-
ing coefficient, eccentricity, degree, etc. and the important vertices represented the genes 
involved in the epigenetic mechanism of HCC. To systematically analyze drug-disease-
gene relationships, Simone et al. (2012) integrated data from structural and chemical data-
sets and created a drug-target-disease network for 147 promiscuous drugs, 553 protein tar-
gets, and 44 disease indications. The key contribution of their research is that novel links 
from drugs to targets and diseases can be predicted by completing incomplete bi-cliques.1 
Zhang et al. (2014) proposed a novel network-based method to identify statistically over-
expressed subnetwork patterns (network motifs) in an integrated disease-drug-gene net-
work extracted from Semantic MEDLINE. Out of the heterogeneous networks, they con-
structed association data on FDA-approved drugs and analyzed five significant network 
motifs. Sun et al. (2016) introduced a new data fusion model based on n-cluster editing as 
a novel multi-source triangulation strategy, which was further combined with semantic lit-
erature mining. They also confirmed that utilizing drug-disease-gene triangulation coupled 
with sophisticated text analysis is a robust approach for identifying new candidates for drug 
repurposing.

However, there are three common limitations with the above approaches. These are: 
(a) Word-based mathematical statistic approaches, such as word co-occurrence, frequently 
result in false positives because the semantic relationships between entities are not taken 
into consideration; (b) Most existing computer-aided methods for predicting causal disease 
genes rely on a specific type of evidence and are therefore limited in their applicability 
(Natarajan and Dhillon 2014); (c) None of the above approaches explicitly focus on extract-
ing three-way relationships from texts, e.g., drug-disease-gene, for specific diseases. There 
is work that captures links from drugs to diseases or diseases to genes but not directly 
among all three. Additionally, studies by Simone et al. (2012), Zhang et al. (2014), and Sun 
et al. (2016) involve building integrated disease-drug-gene networks, but their analysis is 
still limited to a series of relationship pairs—drug-disease, drug-gene/protein, drug-drug 
associations, etc.

An investigation of all pair-wise plus three-way associations among these entities is nec-
essary to understand the complexity of these interplays and to infer possible interactions 
within the context of the whole knowledge. Yet developing an efficient, robust, and flexible 
approach to extract a drug-disease-gene triplet from free text is still problematic for several 
reasons. First, correctly mining complex bio-entities from biomedical literature has been 
a long-standing challenge. Second, mining three-way relationships is obviously exponen-
tially more complicated than mining two-way relationships (Singhal et al. 2016). Third, the 

1  A bi-clique is a network motif in which two sets of nodes all mutually interact with each other (Simone 
et al. 2012).
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associations among different entities are typically very sparse, giving rise to cold-start and 
other problems (Zhang et al. 2014).

Natural language processing in the biomedical domain

Several research groups are developing and applying NLP methodologies in biomedi-
cal informatics. The complexity of natural language dictates that semantic interpretation 
be focused in scope, typically by the domain of discourse. The majority of this work is 
knowledge-based, and the specific domain guides the type and amount of knowledge used. 
Often this is drawn from existing resources, such as the Unified Medical Language Sys-
tem (UMLS), but several systems rely solely on locally-developed knowledge bases. One 
example is SemRep, which is a semantic interpreter that uses underspecified syntactic 
analysis and UMLS knowledge sources to provide a partial semantic interpretation of the 
biomedical research literature (Rindflesch et al 2000a, b, c). Specifically, UMLS consists 
of three modules: the Metathesaurus, Semantic Network,2 and SPECIALIST Lexicon. The 
results of these text-driven assertions is a UMLS semantic network relationship, expressed 
as a subject-action /predicate/verb-object triple (SAO), in which the action is the rela-
tion (Rindflesch and Fiszman 2003). The subject and object arguments are drawn from 
the UMLS Metathesaurus, where each argument is assigned a semantic type according to 
its properties. This module comprises over 100 controlled vocabularies, such as MESH 
and SNOMED-CT. Combined with the UMLS Semantic Network, all concepts contained 
in Metathesaurus, including synonyms, are assigned a semantic type according to their 
properties, e.g., Clinical Drug (clnd), Disease or Syndrome (dsyn), and Gene or Genome 
(gngm). In addition, the UMLS Semantic Network contains a range of semantic relations, 
such as TREATS, PART OF, CANSES, among others. From Fig. 1, we can see that under-
specified syntactic analysis relies on the UMLS SPECIALIST Lexicon. After input and 
tokenization, the text is submitted to an underspecified parser. Part-of-speech ambiguities 
are resolved with the Xerox part-of-speech tagger (Cutting et al. 1992) and a parser that 
identifies simple noun phrases, verbs, and appositives are selected from the text. MetaMap 
then maps these noun phrases to concepts in the UMLS Metathesaurus. To be interpreted 
as a semantic prediction, the semantic types of the UMLS Metathesaurus concepts that the 
syntactic arguments are mapped to must match the semantic types allowed in the Seman-
tic Network. The semantic information defined in the UMLS can be further leveraged to 

Fig. 1   General overview of SemRep to the extraction of semantic predictions

2  UMLS Semantic Network has 54 semantic types and 133 semantic relations.
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extract associations in specific domains and to identify domain patterns for specific studies 
through advanced computational methods. Researchers can also choose different semantic 
types to meet the specific needs of their research. For instance, for the purposes of this 
research, we selected clnd, dsyn, and gngm.

As an example to more clearly illustrate how SemRep works, consider the following 
sentences:

1.	 Association between the interleukin 23 receptor and ankylosing spondylitis is confirmed 
by a new UK case–control study and meta-analysis of published series (Karaderi et al. 
2009);

2.	 One is SNP rs11209026 in exon 9 of IL23R for association with Crohn’s disease, which 
is predicted to be probably damaging by PolyPhen2 (Huang et al. 2012);

From these sentences, SemRep suggested the following disease-gene relations:

1.	 C1537403|IL23R gene|gngm, aapp|gngm|ASSOCIATED_WITH|C0038013|Ankylosing 
spondylitis|dsyn|dsyn||.

2.	 C1537403|IL23R gene|gngm, aapp|gngm|ASSOCIATED_WITH|C0010346|Crohn 
Disease|dsyn|dsyn||.

Our proposal for a novel computational framework to extract drug-disease-gene tri-
plets from biomedical literature leverages SemRep’s semantic predictions of drug-disease 
and disease-gene but goes a step further to complete the incomplete links between these 
pair-wise relationships; the end results are drug-disease-gene triplets. Notably, with this 
approach, false positives and non-universal cease to be a problem.

In summary, the main contributions of this work are as follows:

1.	 A novel computational framework for extracting full three-way drug-disease-gene triplet 
information from biomedical texts.

2.	 Predictions of novel links from drugs to diseases and genes based on completing the 
incomplete links in network from potential associations between diseases.

3.	 A corpus containing 11,889 drug-disease-gene triplets related to colorectal cancer with 
their corresponding CUIs. The corpus may be used by relevant researchers, providing 
new ideas for future researches.

Methods and data

Data

Noncommunicable diseases (NCDs) are now responsible for the majority of global deaths, 
and cancer is expected to rank as the leading cause of death and the single most important bar-
rier to increasing life expectancy in every country of the world in the twenty-first century. Bray 
et al.’s (2018) status report on the global burden of cancer forecast an estimated 18.1 million 
new cancer cases and 9.6 million cancer deaths in 2018 (17.0 m/9.5 m excluding nonmela-
noma skin cancer). For both sexes combined, lung cancer is the most commonly diagnosed 
cancer, accounting for the most cancer deaths at 18.4%. This incidence of cancer is closely fol-
lowed by female breast cancer (11.6%), colorectal cancer (10.2%), and prostate cancer (7.1%) 
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and, for death, by colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%). 
However, the incidence of colorectal cancer is increasing (Ahnen et al. 2014), especially in 
China where it is threatening the lives and health of many (Zhu et al. 2017). Although our 
framework could be applied to any disease, this need makes colorectal cancer a worthy test 
case to analyze.

We assembled our corpus by collecting biomedical literature from PubMed using the 
following query: “intestinal diseases"[MeSH Terms] OR ("intestinal"[All Fields] AND 
"diseases"[All Fields]) OR ("intestinal diseases"[All Fields]) AND ("1900/01/01"[PDAT]:"20
19/07/29"[PDAT]) AND "humans"[MeSH Terms] AND English[lang]”.

The initial search returned 422,621 relevant biomedical texts, for which we collected the 
PubMed PMID, the title and abstract as our local dataset.

Fig. 2   Framework for the research
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Our computational framework for extracting drug‑disease‑gene 
triplets

The broad research framework is illustrated in Fig. 2.

Step 1: Data pre‑processing

The challenge in extracting the relationships between biomedical entities with NLP is 
heightened due to several factors. As shown in Fig. 3, a single title and abstract contain 
references to multiple entities; naming conventions for the various entities are complex; 
those conventions tend not be standard; and so on.

Therefore, the purpose of this step is to remove meaningless data and retrieve (only) 
relevant information. Using SemRep (as outlined in “Natural language processing in the 
biomedical domain” section) to provide semantic interpretations between the different 
biomedical entities, we retrieve 2,336,540 SAO structures in the following format:

e.g., PMID—18,376,247

1.	 C4076075|Infliximab therapy|topp|topp|||TREATS|C2931133|Pediatric Crohn’s 
disease|dsyn|dsyn||.

2.	 C0004482|Azathioprine|hops,orch,phsu|hops|||ASSOCIATED_WITH|C0010346|Crohn 
Disease|dsyn|dsyn||.

3.	 C0004482|Azathioprine|hops,orch,phsu|phsu|||TREATS(INFER)|C2931133|Pediatric 
Crohn’s disease|dsyn|dsyn||.

Fig. 3   An example showing the complexity of mining triplet information from titles and abstracts
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Step 2: Drug‑disease‑gene triplet extraction

This step further narrows the structures according to type. For our purposes, these were 
clnd (drug), dsyn (disease), and gngm (gene). Additionally, we limited the associations 
to drug-drug, drug-disease, drug-gene, disease-disease, disease-gene, and gene–gene. For 
simplicity, all associations are considered to be non-directional. In other words, as long 
as there is an association between two entities, we considered there to be an edge between 
them.

To facilitate the many traversal needs of the local dataset, data should be stored in the 
following format (Drug, Semantic relation, Drug), (Drug, Semantic relation, Disease), 
(Disease, Semantic relation, Disease), (Disease, Semantic relation, Gene), (Gene, Seman-
tic relation, Gene), (Drug, Semantic relation, Gene).

Step 3: Construction of an integrated drug‑disease‑gene network

Constructing this network occurs in two stages:

1.	 Disease-Gene links: First, from over 4081 diseases in the dataset, we selected 688 
diseases which related to genes. From these, given the SAO structures, we added 1582 
genes and 7753 disease-gene links to the network.

2.	 Drug-Disease links: Second, we traversed the local dataset again to mine drug-disease 
links. From this, we added 110 diseases, 116 drugs, and 538 relationships between them 
to the network.

The final result was an integrated three-layer network with 1,321 nodes (105 drugs/69 
diseases/1,148 genes) and 5562 edges, as shown in Fig. 4, along with 11,832 drug-disease-
gene triplets related to colorectal cancer and its associated complications. Those wishing 
to access the full results can visit https​://pan.baidu​.com/s/1OTdR​XjBi2​y7WWC​kVkpp​faw 
(Password: 4mr4).

Fig. 4   An integrated drug-disease-gene network

https://pan.baidu.com/s/1OTdRXjBi2y7WWCkVkppfaw
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With the exception of the disease-disease network, each individual network was, unsur-
prisingly, very sparse (k <  < lnN <  < N; drug-drug, drug-disease, drug-gene, disease-gene, 
gene–gene) (Arenas et al. 2006; Lü et al. 2009), but also too complex to extract valuable 
information. The descriptive statistics are shown in Tables 1, 2.

One method of overcoming this problem is to identify the most likely potential asso-
ciations in the network for further analysis. Therefore, following Agrawal et  al. (1994), 
we introduced association rules for the disease entities, according to the research conclu-
sions in Zhang et al. (2014). As some examples, one rule is: “Diseases that are associated 
with each other are more likely to associate with a group of common genes.” Another is: 
“Similar diseases can be treated by same drugs.” In addition, disease-disease network per-
formance is better than the others, which could provide more value information (Table 2).

The top left of Fig. 5 shows a part of the disease-gene network, which contains one dis-
ease (Disease A) and five genes, all of which mutually interact with each other. Thus, if can 
we can prove that there is a potential association between disease A and B, these five genes 
can be regarded as candidate genes of Disease B. For drug-disease network, the calculation 
principle is the same as we mentioned above.3 Then, we combined the computed results 
from these two parts to obtain the novel links from drugs to diseases and genes. Finally, we 
obtained 498 association rules between diseases. Table 3 lists a few examples, and the 49 

Table 1   Statistics of the three extracted biomedical entities and six association types

Association type Record Unique association Number of unique entities

Disease-gene 7753 3952 688 (Disease)/1582 (Gene)
Disease-drug 538 276 110 (Disease)/116 (Drug)
Drug-gene 3 3 3 (Drug)/3 (Gene)
Disease-disease 49,965 20,129 3991 (Disease)
Gene–gene 9840 6821 3816 (Gene)
Drug-drug 114 58 43 (Drug)
Total 68,229 31,252 4458 (Gene)/4081(Disease)/131 (Drug)

Table 2   Statistical indicators 
of the six kinds of complex 
networks

Node

Data Source Average 
degree (k)

(N) (lnN)

Disease-Disease dataset 1 10.08 3991 8.29
Disease-gene dataset 2 3.48 2270 7.73
Disease-drug dataset 3 2.44 226 5.42
Drug-gene dataset 4 1.00 6 1.79
Drug-drug dataset 5 2.70 43 3.76
Gene–gene dataset 6 3.58 3816 8.24

3  To confirm predicated links from the results, the literature is mined for disease-gene and drug-disease 
links respectively.
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associations with the highest confidence levels are included in the Appendix. The results 
are discussed in more detail in the next section.

Results

Genomic sequencing can be used as a molecular microscope to classify tumors accord-
ing to their specific but abnormal biology. Identifying and targeting diseased pathways 
expressed in a tumor, rather than classifying tumors according to their histological or ana-
tomical tissue of origin, is a revolution in cancer therapeutics that is well underway. As 
Dulbecco (1986) mentions in his research, cancer seems to be locked to the expression of 
some viral genes. If we wish to learn more about their “hit-and-run” attack strategy, con-
centrating on cellular genomes is essential.

According Bray et  al. (2018), there will be an estimated 18.1 million new cancer cases 
and 9.6 million cancer deaths in 2018 (17.0 m/9.5 m excluding nonmelanoma skin cancer). 

Fig. 5   An example of some incomplete networks Adding an A-B edge according to a set of association 
rules complete the links providing a more complete picture of the potential associations between diseases

Table 3   A sample of the novel 
candidate associations predicted 
by the framework

(min_support ≧ 0.01, lift    > 1)

CUI_D CUI_D Support Confidence Lift

C0012634 C0267116 0.19 0.000962052 3.20
C0012634 C0030920 0.19 0.018920363 1.16
C0012634 C0017168 0.19 0.011330839 1.34
C0012634 C0267288 0.19 0.000106895 5.34
C0012634 C0520459 0.19 0.01111705 1.30
C0012634 C0392164 0.19 0.000320684 4.01
C0012634 C0400837 0.19 0.000213789 1.07
C0012634 C2674218 0.19 0.000320684 2.67
C0012634 C0017097 0.19 0.002030999 1.54
C0012634 C0005859 0.19 0.000106895 5.34
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Lung cancer is the most commonly diagnosed cancer across both sexes, and accounts for the 
most cancer deaths at 18.4%. Female breast cancer closely follows for incidence (11.6%), then 
colorectal cancer (10.2%) and prostate cancer (7.1%). For mortality, colorectal cancer leads 
(9.2%) followed by, stomach cancer (8.2%) and liver cancer (8.2%). However, the incidence of 
colorectal cancer is increasing (Ahnen et al. 2014), especially in China where it is threatening 
the lives and health of many (Zhu et al. 2017). Thus, using the computational framework we 
proposed in this paper, the most relevant complications of colorectal cancer (ulcerative coli-
tis, ileitis, Crohn’s disease) are selected from the top 49 association rules (min_support≧0.01, 
lift > 1) after consulting with medical experts.

The next three sections discuss each disease, in turn, beginning with a brief summary of its 
presentation and common symptoms. The links between diseases and genes mined from the 
literature represent potential pathogenic genes. The links between diseases and drugs represent 
candidates for drug repurposing, i.e., drugs that are currently being used to treat one disease 
that may be efficacious for treating another. These discussions conclude each section.

Ulcerative colitis [C0009324]

Background

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by symptoms 
of bloody diarrhea, abdominal cramps, and fatigue. The association between UC and colorec-
tal cancer has been documented, and depends on the extent and duration of UC (Eaden et al. 
2000). Patients are younger in cases of UC-associated colorectal cancer. They also more fre-
quently have multiple cancerous lesions, and histologically show mucinous or signet ring cell 
carcinomas. The prevalence of colorectal cancer with UC is different in various geographic 
regions (Laszlo et al. 2006), and the risk begins to increase 8 or 10 years after the diagnosis of 
UC.

Using our framework, we extracted 14 drugs and 871 genes related to UC, which we cross-
checked in Semantic MEDLINE. These 14 drugs can be divided into four types:

Aminosalicylic acid Mesalamine enema [C1246845]; Mesalamine eEnema [Rowasa] 
[C0307525]; Sulfasalazine enema [C1248060]; Mesalamine in rectal dosage form 
[C0360081]

Anti-inhibitorAnti-inhibitor [C4284262]; Sodium cromoglycate in oral dosage form 
[C0360197]; Nicotine transdermal patch [C0358855]; Nicotine chewing gum [C0599654]

CorticosteroidPrednisolone enema [C1247637]; Hydrocortisone enema [C1246471]; 
Budesonide 3 MG [C1128974]; Budesonide 9 mg [C3531316]; Prednisolone rectal foam 
[C1247642]

Natural therapyAloe vera gel [C0974143]

Discovered disease‑gene candidates

Using the association rules, the framework extracted 11 candidate Disease-Genes links 
from the literature. These appear in Table 4, followed by a brief summary of the main find-
ings from each article.

Steffen et al., (2014) believe that inflammatory bowel disease (IBD) is caused by a 
combination of environmental factors and susceptible genes. Using a candidate gene 
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approach, this group assessed 39 mainly functional single nucleotide polymorphisms 
(SNPs) in 26 genes that regulate inflammation in a clinically homogeneous group of 
severely diseased patients. The results show that NFKBIA [CUI: C1334877] is associ-
ated with risk of UC. Like UC, the loss of intestinal barrier function is a hallmark of 
IBD. The molecular mechanisms are not well understood but likely involve dysregu-
lation of membrane composition, fluidity, and permeability, which are all essentially 
regulated by sphingolipids, including ceramides of different chain lengths and satura-
tion. CERS2 [CUI:C1422392] is crucial for maintaining colon barrier function and epi-
thelial integrity. In this vein, Oertel et al. (2017) find several factors that may weaken 
endogenous defenses against endogenous microbiomes: an increase in long-chain cera-
mides/(dh)-ceramides, sphinganine in the colon, and CERS2 knockdown and its asso-
ciated changes in several sphingolipids, such as a drop in very long-chain ceramides/
(dh)-ceramides.

West et al. (2017) find genetic deletion and/or pharmacological blockades of OSM sig-
nificantly attenuate colitis. Further, high pre-treatment OSM expression is strongly associ-
ated with the failure of anti-tumor necrosis factor (TNF) therapy. OSM is thus a potential 
biomarker and therapeutic target for UC, with particular relevance for anti-TNF resist-
ant patients. Fodil et  al. (2017) reports that CCDC88B [CUI:C1970017] inactivation in 
T-cells may prevent colitis. Further, patients with Crohn’s disease or UC usually present 
with high levels of CCDC88B, CHI3L1 [CUI:C1413387] (Chen et al., 2011), and CCR5 
[CUI:C1332700] (Matsuzaki et  al. 2003). Subsequent studies have provided further evi-
dence that LANCL24 [CUI:C1416796] may be a new molecular target in preventing and 
treating UC-associated colorectal cancer, and CSF1R [CUI:C0879468] hyper-stimulation 
could be involved in hyperproliferative disorders of the small intestine, such as Crohn’s 
disease and UC (Huynh et al. 2009).

In previous research, APN null mice expressed an increase in the APN receptor ADI-
POR1 [CUI:C1540188] at both the protein and RNA level, and knocking down ADIPOR1 

Table 4   Ulcerative colitis—Disease-Gene candidates

8 have direct evidence (high confidence level); 3 have indirect evidence (low confidence)

CUI_Disease CUI_Gene Gene References Confidence

C0009324 C1334877 NFKBIA Steffen et al. (2014) High
C1422392 CERS2 Oertel et al. (2017) High
C1335093 OSM West et al. (2017) High
C1332700 CCR5 Matsuzaki et al. (2003) High
C1970017 CCDC88B Fodil et al. (2017) High
C1413387 CHI3L1 Chen et al. (2011) High
C1416796 LANCL2 https​://www.busin​esswi​re.com/news/

home/20170​92100​5188/en/
High

C0879468 CSF1R Huynh et al. (2009) High
C1540188 ADIPOR1 Obeid et al. (2014) Low
C1334470 SMAD7 Chen et al. (2015) Low
C1423062 SIRT1 Ma et al. (2018) Low

4  https​://www.busin​esswi​re.com/news/home/20170​92100​5188/en/.

https://www.businesswire.com/news/home/20170921005188/en/
https://www.businesswire.com/news/home/20170921005188/en/
https://www.businesswire.com/news/home/20170921005188/en/
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in vitro in the presence of dextran sulphate sodium (DSS) hindered the ameliorating effects 
of APN with respect to proliferative, apoptotic, and inflammatory markers (Obeid et  al. 
2014). Some researchers have also shown that an imbalance between pro- and anti-inflam-
mation is an important mechanism of steroid resistance in UC, and that miRNAs may be 
involved in this process. In vivo miRNA profiles of serum samples have shown that con-
miR-195 is the most obvious influence factor (SMAD7 mRNA [CUI: C1334470], which 
is a potential target of miR-195). Decreases in miR-195 lead to an increase in SMAD7 
expression and a corresponding up-regulation of p65 and the AP-1 (activator protein 1) 
pathway, which may explain cases of steroid resistance in UC patients (Chen et al. 2015).

From a study on the pathogenesis of lung injury in rats with UC, Ma et al. (2018) find 
that a lower-expression of SIRT1[CUI:C1423062] in lung tissue is closely related to oxi-
dative stress and inflammatory injury, which may be the molecular mechanisms of lung 
injury in UC.

Discovered disease‑drug candidates

With the links between diseases-genes established, the next relationship in the triple is 
from diseases to drugs. The links extracted for UC are shown in Table 5.

Methotrexate (MTX) [CUI:C4034144] is used as a second‐line immunomodulator in 
patients with IBD when purine analogs are not tolerated or lack efficacy. High‐level evi-
dence indicates the efficacy of MTX administered in intramuscular form with Crohn’s 
disease, but there are few reports of experiments with subcutaneous delivery. Of these, 
Nathan et  al. (2010) studied 45 patients with Crohn’s disease and 23 with UC (median 
age, 46 years; range, 20–80 years; 54% men), each with an intolerance (69%) or resistance 
(31%) to purine analogs. MTX was initiated in 74% of patients in doses of 25 mg (33) or 
20  mg, administered by subcutaneous self‐injection in 90% of subjects. Subcutaneously 
administered MTX showed apparent efficacy, acceptance, tolerance, and safety in patients 
with Crohn’s disease or UC who were steroid‐dependent and where purine analogs had 
been ineffective or intolerable.

Lee et  al. (2017) conducted research about whether recalcitrant pyoderma gan-
grenosum (PG) with UC can be treated by adalimumab injection [CUI:C4019255]. 
In the research, they reported a case of a patient with UC with recalcitrant PG who 
failed numerous trials of immunosuppressive agents and etanercept but dramatically 
responded to adalimumab. The successful treatment of PG in their patient suggests that 
adalimumab may be a valuable therapeutic option for patients with PG and UC.

Turunen et  al. (1998) evaluated the role of ciprofloxacin [CUI:C1123173] in the 
induction and maintenance of remission in UC in patients responding poorly to conven-
tional therapy with steroids and mesalamine. During the first 6 months, the treatment-
failure rate was 21% in the ciprofloxacin-treated group and 44% in the placebo group 

Table 5   Ulcerative colitis—Candidates for drug repurposing

CUI_Disease CUI_Drug Drug References Confidence

C0009324 C1123173 Ciprofloxacin 500 mg Turunen et al. (1998) High
C4034144 Methotrexate injection Nathan et al. (2010) High
C4019255 Adalimumab injection Lee et al. (2017) High
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(P = 0.02). Endoscopic and histological findings were used as secondary end points and 
showed better results in the ciprofloxacin group at 3 months but not at 6 months. The 
addition of a 6-month ciprofloxacin treatment for UC improved the results of conven-
tional therapy with mesalamine and prednisone.

Crohn’s disease [C0010346]

Background

Crohn’s disease is a chronic and debilitating inflammatory condition of the gastrointes-
tinal tract. Peak incidence is in early adult life, although any age can be affected, and a 
majority of affected individuals progress to relapsing and chronic disease (Stappenbeck 
et al. 2011). Some early studies indicate that patients with IBD, especially those with 
long-standing and extensive UC, have an increased risk of colorectal cancer. Moreo-
ver, other researchers have suggested that patients with Crohn’s disease also have a 
higher risk of colorectal cancer (Freeman 2001). However, part of this increased risk in 
patients may be related to the presence of a rectal stump, rather than to Crohn’s disease 
per se.

We extracted 8 drugs and 360 genes related to Crohn’s disease, which we cross-checked 
in Semantic MEDLINE. The drugs can be divided into four types:

Aminosalicylic acidMesalamine snema [Rowasa] [C0307525];
Anti-inhibitorAnti-inhibitor [C4284262]; Adalimumab injection [C4019255]; Sodium 

cromoglycate (oral) [C0360197]; Methotrexate injection [C4034144]
CorticosteroidBudesonide 9 mg [C3531316];
OthersMethylene blue injection [C4081241]; Ciprofloxacin 500 mg [C1123173]

Discovered disease‑gene candidates

Eight Disease-Genes candidates were extracted for Crohn’s disease as shown in Table 6.
Kyo et  al. (2001) report evidence that MUC3[CUI:C1417495] consists of two genes, 

MUC3A and MUC3B. Additionally, they analyzed SNPs in exonic sequences of the 3′ 

Table 6   Crohn’s disease—Disease-Gene candidates

5 have direct evidence (high confidence); 3 have indirect evidence (low confidence)

CUI_Disease CUI_Gene Gene References Confidence

C0010346 C1417495 MUC3A Kyo et al.(2001) High
C1416961 MADCAM1 Bachmann et al. (2006) High
C1708427 IL17 wt allele McGovern et al. (2010) High
C1413243 CD86 Chen et al. (2009) High
C1415629 HNF4A Marcil et al. (2012) High
C1704807 MLH1 wt allele Pokornyet al.(1997) Low
C1419786 S100A4 Cunningham et al. (2010) Low
C1426212 SOCS3 Li et al. (2018) Low
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portions of these two genes to investigate whether sequence variations in those regions 
could result in differences in IBD susceptibility from person-to-person. Their results show 
that non-synonymous SNPs of the MUC3A gene involving a tyrosine residue could mean a 
genetic predisposition to Crohn’s disease (P = 0.0132). Notably, it has been suggested that 
tyrosine residue may have a role in cell signaling. Their findings suggest that variants of 
MUC3A may have a distinct involvement in the occurrence of both UC and Crohn’s.

Further, the mucosal addressin cell adhesion molecule-1 (MADCAM1) 
[CUI:C1416961] is selectively expressed in the endothelial cells of intestinal mucosa and 
gut-associated lymphoid tissue. Engaging MADCAM1 to its ligand, integrin alpha4beta7, 
on lymphocytes is associated with the homing of gut-associated lymphocytes to normal 
gastrointestinal tract and inflammation sites. Bachmann et al. (2006) was able to explain 
the differences between Crohn’s and UC from the expression patterns of MADCAM1, with 
the results indicating a more extensive expression of MADCAM1 in Crohn’s, which can 
not only contribute to mucosal inflammation but also to transmural inflammation.

McGovern et  al. (2010) results indicate that the IL23/IL17 [CUI:C1708427] pathway 
is pivotal to the development of chronic mucosal inflammation seen in Crohn’s. In their 
study, patients with both active and inactive Crohn’s disease had higher numbers of IL-4-, 
IL-17-, and IL-23(p19)-positive cells in the lamina propria than in the controls. They there-
fore conclude that activation of the IL-23/IL-17 axis is fundamentally connected to the eti-
ology of Crohn’s disease, and that the increasing sensitivity of epithelium to microbial LPS 
may be the basis for the relapsing nature of the disease (Veera et al. 2008).

Chen et  al. (2009) investigated the expression of the co-stimulatory molecule CD86 
[CUI:C1413243] and the inducible co-stimulator (ICOS) in the intestinal mucosa of 
Crohn’s disease to explore its pathologic significance. Their results show an increased 
amount of enterocytes and CD86- or ICOS-positive LPMC in Crohn’s patients, suggesting 
that co-stimulatory molecules may play a role in its pathogenesis. The enterocytes may act 
as non-specific antigen that presents in cells during the process of cellular immunity acti-
vation. Marcil et al. (2012) evaluated the association between genetic variants of HNF4α 
[CUI:C1415629] and Crohn’s in two distinct pediatric cohorts in Canada. This is the first 
report to show that the HNF4A locus may be a common genetic determinant of childhood-
onset Crohn’s.

A significant correlation was found between Crohn’s disease, UC, and MLH1 
[CUI:C1704807] (p = 0.037) in a study by Pokorny et al. (1997) comparing MLH1 exon 
15/D3S1611 haplotypes of Crohn’s colitis in patients with UC. These are novel genetic 
and clinical associations between MLH1 and IBD. Cunningham et al. (2010) examined 
the expression profile of S100A4 in the resected ileum of patients with fibrostenos-
ing Crohn’s disease. The results from knockdown experiments indicate a potential role 
for S100A4 [CUI:C1419786] in mediating intestinal fibroblast migration. In addition, 
identified risk polymorphisms affecting the Jak-STAT3 pathway in patients with Crohn 
disease could affect TGF-β1 and collagen I expression and in the pathway’s negative 
regulator, SOCS3 [CUI:C1426212]. Experiments by Li et al. (2018) show that two fac-
tors cause sustained Jak-STAT3 activity in muscle cells in patients with fibrostenotic 
Crohn’s disease, along with excess TGF-β1 production, Collagen I production, and 
fibrosis. These are autocrine IL-6 production in mesenchymal cells and subepithelial 
myofibroblasts (SEMF). Paradoxically, there are lower levels of SOCS3in these cells. 
From these results, they conclude that decreased SOCS3 protein levels are unique to 
fibrostenotic patients.
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Discovered disease‑drug candidates

Only one Disease-Drug candidate was found for Crohn’s disease, as shown in Table 7.
Emu oil is an animal product used by the Aborigines of Australia to treat inflammation, 

burns, and other similar conditions. In other parts of the world, aloe vera is used in a simi-
lar way. Given that Crohn’s is an inflammatory disease and the relevant therapeutic proper-
ties of these two substances, (Vemu et al. (2015) conducted a study to evaluate the efficacy 
of aloe vera and emu oil alone and in combination as an alternative to sulfasalazine (an 
allopathic drug) for treating Crohn’s disease. The histomorphological changes indicated 
that the combination of aloe vera and emu oil resulted in better protection than sulfasala-
zine by suppressing the oxidative (P < 0.05).

Ileitis [C0020877]

Ileitis is related to the above diseases. For instance, UC patients with pancolitis and back-
wash ileitis, an extension of the inflammatory process into the terminal ileum, may be at 
increased risk of colorectal carcinoma (Yamaguchi et al. 2010). Also, narrowing or con-
striction of the abdomen in cross-sectional imaging at the time of a terminal ileitis diag-
nosis has been correlated to the eventual onset of Crohn’s disease. In turn, this increases 
the risk of colorectal cancer. However, no significant correlation has been found between 
clinical symptoms, endoscopic features, laboratory testing, NSAID use, smoking history, 
or family history of IBD.

According to research by Sundaram et al. (2003), genetic alterations may be one of the 
causes of IBD. In patients with IBD, nutrient absorption is inhibited in the intestine lead-
ing to the most common and disabling symptoms of this disorder: diarrhea, malnutrition, 
weight loss, abdominal pain, and eventually a failure to thrive. However, current medical 
therapy has important limitations. Aminosalicylates are only modestly effective (Suther-
land et  al. 2006); corticosteroids (e.g., glucocorticoids) can cause unacceptable adverse 
events and do not provide a benefit as maintenance therapy; and TNF antagonists, although 
efficacious (Sandborn et  al. 2005), predispose patients to serious infection (Keane et  al. 
2001). Thus, new treatment strategies are needed.

We extracted 0 drugs and 4 genes related to Ileitis using our framework, which we 
cross-checked in Semantic MEDLINE.

Discovered disease‑gene candidates

Table 8 lists the Disease-Gene candidates for Ileitis.

Table 7   Crohn’s disease—Candidates for drug repurposing

CUI_Disease CUI_Drug Drug References Confidence

C0010346 C0974143 Aloe vera gel Vemu et al. (2015) High
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Mitsuyama et al. (2006) demonstrates that the signal transducer and activator of tran-
scription STAT3 [CUI: C1367307] suppresses the cytokine signaling SOCS3 pathway, 
which is pivotal in human IBD. Subsequent research on whether STAT3 activation con-
tributes to ileitis shows that STAT3 signaling is critical in the development of intestinal 
inflammation in SAMP1/ Yit mice, and therefore STAT3 blockade may have a therapeu-
tic effect.

Rivera-Nieves et al. (2006) investigated the expression of CCL25 [CUI: C1332688] 
and CCR9 as a function of disease progression in a spontaneous murine model of 
chronic ileitis (SAMP1/YitFc) using flow cytometry, real-time reverse-transcription 
polymerase chain reactions, an enzyme-linked immunosorbent assay, and immunohisto-
chemistry. They believe these molecules are most influential during the early stages of 
chronic murine ileitis. CCR7 [CUI: C1413191] also acts as a chemokine receptor, and 
an immunoblockade of CCR7 will result in further effector T-cell retention, which exac-
erbates ileitis (Mcnamee et al. 2013). Research by Sovran et al. (2013) shows an asso-
ciation between the MUC2 gene [CUI: C1417494] and ileitis. Moreover, homeostatic 
mechanisms can prevent  ileitis  in mice that have deficient  MUC2 production.

New antitumor immunotherapy strategies for Stage IV metastatic melanoma include 
ipilimumab, which is a monoclonal antibody against CTLA4 [CUI: C1705969]. Assi 
and Wilson (2013) presented two cases of long-duration immune-related responses 
with ipilimumab in a phase II trial. A 66-year-old woman with multiple lung metastases 
from a primary scalp melanoma received 4 doses of ipilimumab with a mixed clinical 
response. However, after the first maintenance dose, she developed severe ileitis and 
colitis that responded to steroid therapy. Venditti et al. (2015) also finds that ipilimumab 
and immune-mediated adverse events could lead to anti-CTLA4 induced ileitis.

Zhou et  al. (2014) explored the change and significance of IL8, IL4, and IL10 [CUI: 
C1334098] in the pathogenesis of terminal ileitis in rata. The results confirm that IL10 
and IL4 can inhibit the inflammatory reaction of terminal ileum and, conversely, that IL8 
can induce the inflammatory reaction in terminal ileitis and chemokines aggregation and 
mediate inflammatory reaction by mediating other inflammatory factors; as a proinflamma-
tory cytokine, IL8 can inhibit IL10, which is a key anti-inflammatory cytokine produced by 
activated immune cells and plays a critical role in the control of immune responses.

The toll‐like receptor TLR4 [CUI: C1336636] and aberrant leukocyte migration to the 
intestinal mucosa are reported to be involved in the pathology of intestinal enteropathy, and 

Table 8   Ileitis—Disease-Gene candidates

8 have direct evidence (high confidence)

CUI_Disease CUI_Gene Gene References Confidence

C0020877 C1367307 STAT3 Mitsuyama et al. (2006) High
C1332688 CCL25 Rivera-Nieves et al. (2006) High
C1413191 CCR7 Mcnamee et al. (2013) High
C1417494 MUC2 Sovran et al. (2013) High
C1705969 CTLA4 wt (allele) Assi and Wilson (2013), 

Venditti et al. (2015)
High

C1334098 IL10 Zhou et al. (2014) High
C1336636 TLR4 Narimatsu et al. (2015) High
C1336637 TLR5 Lopetuso et al. (2017) High
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TLR 2 agonists have been found to evoke hyposensitivity to TLR 4 stimulation in vitro. 
Further experiments by Narimatsu et al. (2015) on toll-like receptor TLR2 agonists show 
that they could ameliorate indomethacin-induced murine ileitis by suppressing TLR4 sign-
aling. Lopetuso et al. (2017) also provide evidence that aberrant, elevated TLR5 expression 
is present in the ileal epithelium of SAMP mice, which is augmented in the presence of gut 
microbiomes, and that TLR5 activation in response to bacterial flagellin results in an ina-
bility to maintain appropriate epithelial barrier integrity. Together, these findings represent 
a potential mechanistic pathway that can exacerbate and perpetuate chronic gut inflamma-
tion in ileitis and, possibly, in patients with Crohn’s disease.

Discovered disease‑drug candidates

The two Disease-Drug candidates found for Ileitis are listed in Table 9.
Budesonide [CUI:C3531316] is used to treat Crohn’s disease. However, in experiments 

by Lombardi et al. (2010), oral budesonide was used to successfully treat localized eosino-
philic ileitis with mastocytosis. Boyd et al. (1995) compared the effects of plain and con-
trolled-ileal-release (CIR) formulations of budesonide on intestinal inflammation, with the 
results suggesting that CIR budesonide is significantly more effective in reducing intestinal 
inflammation than plain budesonide. Additionally, the site of delivery influences its effec-
tiveness, and the local (topical), rather than systemic, action of this compound is primarily 
responsible for its anti-inflammatory effect. Ciprofloxacin [CUI:C1123173] is also used for 
the treatment of Crohn’s disease, but McLaughlin et al. (2008) shows that T1313 combined 
with ciprofloxacin and metronidazole is highly effective for treating of pre-pouch Ileitis fol-
lowing a restorative proctocolectomy.

Conclusion

Many genetic mutations predispose individuals to disease (Greenman et  al. 2007). The 
practice of precision medicine involves identifying such mutations in patients and modi-
fying patient treatments to reflect each person’s different physiological risks (Collins and 
Varmus 2015). A corpus of drug-disease-gene relationships plays an important role in this 
process by acting as a reference for providers to help determine the significance of their 
patient’s mutations and optimize the drugs prescribed on an individual basis (Ashley et al. 
2010; Dewey et al. 2014). However, prescribing a precision course of treatment with full 
knowledge of the medical literature requires an investigation into all known pair-wise and 
three-way associations among bio-entities. Further, the complexity of these existing associ-
ations must be understood if we are to infer novel associations between these entities going 

Table 9   Ileitis—Candidates for drug repurposing

CUI_Disease CUI_Drug Drug Name References Confidence

C0020877 C3531316 Budesonide 9 mg Lombardi et al. 2010; Boyd 
et al. (1995)

High

C1123173 Ciprofloxacin 500 mg McLaughlin et al. (2008) High
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forward. Many studies have explored pair-wise associations, with much knowledge gained. 
However, with this study, we go part of the way to overcoming the challenges associated 
with identifying the three-way associations, which have historically been much harder to 
ascertain.

Hence, in this paper, we present a framework for how to integrate prior knowledge 
regarding drugs, diseases, and genes, and how to use this in a systems approach to com-
plete the incomplete links between them. We also show that introducing association rules 
among disease entities can help to infer new relationships between drugs, diseases, and 
genes. We validated the links predicted from the results with a manual literature review, 
and the results indicate that the proposed computational framework has the potential to: (1) 
identify potential disease relationships (see Table 10 in the Appendix); (2) prioritize candi-
date disease genes (see Tables 4, 6, and 8); (3) predict novel options for drug repurposing 
(see Tables 5, 7, and 9); (4) provide insights that could help to formulate novel research 
hypotheses; and (5) identify new triplet associations for various diseases. Each of these 
contributions is significant to the implementation and advancement of precision medicine.

The major limitation of the method is its requirement for manual external validation. 
Further, additional relevant information might be mined from the full text or supplemen-
tary material, which cannot be found in the title and abstract alone. Overcoming these limi-
tations we leave to future work as the latter limitation in particular has been shown to be an 
important source of biomedical information (Jimeno-Yepes and Verspoor 2014).

Appendix

See Tables 10 and 11.
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Table 10   New associations 
between diseases

CUI_D CUI_D Support Confidence Lift

C0012634 C0267116 0.19 0.000962052 3.2
C0012634 C0030920 0.19 0.018920363 1.16
C0012634 C0017168 0.19 0.011330839 1.34
C0012634 C0267288 0.19 0.000106895 5.34
C0012634 C0520459 0.19 0.01111705 1.3
C0012634 C0392164 0.19 0.000320684 4.01
C0012634 C0400837 0.19 0.000213789 1.07
C0012634 C2674218 0.19 0.000320684 2.67
C0012634 C0017097 0.19 0.002030999 1.54
C0012634 C0005859 0.19 0.000106895 5.34
C0012634 C0679362 0.19 0.000106895 1.34
C0012634 C0041296 0.19 0.004810262 1.01
C0012634 C0022104 0.19 0.039337253 1.31
C0012634 C1142110 0.19 0.000962052 1.72
C0012634 C0080276 0.19 0.000106895 5.34
C0012634 C2931180 0.19 0.000213789 2.14
C0012634 C0003615 0.19 0.019134153 1.28
C0012634 C0342895 0.19 0.001389631 4.96
C0012634 C0024899 0.19 0.000427579 1.53
C0012634 C4284413 0.19 0.000106895 1.34
C0012634 C0012813 0.19 0.005558525 1.04
C0012634 C0034888 0.19 0.002993052 1.02
C0012634 C0008780 0.19 0.000106895 1.78
C0012634 C0018081 0.19 0.000320684 1.07
C0010346 C0020877 0.12 0.00331675 2.15
C0010346 C1290884 0.12 0.033001658 2.01
C0010346 C0949272 0.12 0.015091211 6.39
C0010346 C0267841 0.12 0.000165837 1.38
C0010346 C0030524 0.12 0.013764511 6.14
C0010346 C0025007 0.12 0.001824212 3.14
C0010346 C0030785 0.12 0.0013267 3.01
C0010346 C0000833 0.12 0.006965174 1.63
C0010346 C0029453 0.12 0.005804312 1.61
C0010346 C1290864 0.12 0.00199005 1.88
C0010346 C0003509 0.12 0.00066335 2.37
C0010346 C0243001 0.12 0.005804312 3.05
C0010346 C1960526 0.12 0.000165837 8.29
C0010346 C0009324 0.12 0.089220564 1.16
C0010346 C0042870 0.12 0.003814262 1.51
C0010346 C0020875 0.12 0.070480929 7.83
C0010346 C0341268 0.12 0.108457711 7.46
C0010346 C0021390 0.12 0.143283582 1.42
C0021390 C0406549 0.1 0.000197824 2.47
C0021390 C0263445 0.1 0.000197824 3.29
C0021390 C0010054 0.1 0.002769535 1.41
C0021390 C0009319 0.1 0.029475767 1.63
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Table 10   (continued) CUI_D CUI_D Support Confidence Lift

C0021390 C0009324 0.1 0.137289812 1.78
C0021390 C0010346 0.1 0.170919881 1.42
C0021390 C3495919 0.1 0.004549951 1.06

Table 11   Drug-disease-gene triples

CUI_Drug Drug CUI_Disease Disease CUI_Gene Gene

C3531316 Budesonide 9 mg C0020877 Ileitis C1367307 STAT3
C1332688 CCL25
C1413191 CCR7
C1417494 MUC2
C1705969 CTLA4 wt (allele)
C1334098 IL10
C1336636 TLR4
C1336637 TLR5

C1123173 Ciprofloxacin 500 mg C0020877 Ileitis C1367307 STAT3
C1332688 CCL25
C1413191 CCR7
C1417494 MUC2
C1705969 CTLA4 wt (allele)
C1334098 IL10
C1336636 TLR4
C1336637 TLR5

C1123173 Ciprofloxacin 500 mg C0009324 Ulcerative colitis C1334877 NFKBIA
C1422392 CERS2
C1335093 OSM
C1332700 CCR5
C1970017 CCDC88B
C1413387 CHI3L1
C1416796 LANCL2
C0879468 CSF1R
C1540188 ADIPOR1
C1334470 SMAD7
C1423062 SIRT1

C4034144 Methotrexate injection C0009324 Ulcerative colitis C1334877 NFKBIA
C1422392 CERS2
C1335093 OSM
C1332700 CCR5
C1970017 CCDC88B
C1413387 CHI3L1
C1416796 LANCL2
C0879468 CSF1R
C1540188 ADIPOR1
C1334470 SMAD7
C1423062 SIRT1
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