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Abstract
Collaboration has been widely investigated as a prevalent research activity. However, no 
consensus has been reached about the relationship between scientific collaboration and 
citation count. Therefore, this study aimed to comprehensively examine the strength and 
consistency of this relationship, using meta-analytic methods and measuring scientific col-
laboration by co-authorship. After the literature search and initial selection, 361 relevant 
papers were found. Based on the inclusion and exclusion criteria, 92 papers involving 340 
effect sizes were included. A random-effect meta-analysis showed a significant positive and 
weak correlation between scientific collaboration and citation count (r = 0.146). Tests of 
publication bias and heterogeneity revealed that the result was reliable. In addition, disci-
plines, countries, document types and citation sources were found to influence the correla-
tion as moderators significantly. Practical recommendations for research administrators and 
researchers were provided, including encouraging collaboration and maintaining a cost-
benefit balance in collaboration.

Keywords  Scientific collaboration · Co-authorship · Citation count · Meta-analysis · 
Moderators

Introduction

Since Gross and Gross (1927) first employed citation count to evaluate scientific work, 
citation-based indicators have played essential roles in research evaluation, as a comple-
ment to peer review (Onodera and Yoshikane 2015). Previous studies have found that cita-
tion count can be influenced by many factors (e.g., Bornmann and Daniel 2008a; Tahamtan 
et al. 2016; Tahamtan and Bornmann 2018; Yu and Yu 2014). The influencing factors are 
divided into three categories: paper-related factors, journal-related factors, and author-
related factors (Tahamtan et al. 2016; Tahamtan and Bornmann 2018). As one of the most 
important author-related factors, scientific collaboration has received increasing attention 
in recent years.
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Scientific collaboration is defined as “the working together of researchers to achieve 
the common goal of producing new scientific knowledge” (Katz and Martin 1997). The 
significant and positive relationship between scientific collaboration and citation count 
has been generally accepted in the academic community (e.g., Asubiaro 2019; Moldwin 
and Liemohn 2018; Frenken et  al. 2005; Sooryamoorthy 2009, 2017; Annalingam et  al. 
2014; Low et al. 2014; Ronda-Pupo et al. 2015). Tahamtan et al. (2016) comprehensively 
reviewed the empirical studies and found out a positive relationship between scientific col-
laboration and citation count. However, there is still a lack of widely-agreed quantitative 
evidence about the strength of the positive relationship. Cohen (1988) divided the strength 
of correlation into four groups: non-correlated (r = 0.00–0.09), weak (r = 0.10–0.29), mod-
erate (r = 0.30–0.49), and strong (r = 0.50–1.00). For example, in Iranian publications, a 
strong correlation (r = 0.685) was found (Hayati and Didegah 2010), whereas there was a 
weak relationship (r = 0.133) in Latin-American management articles (Ronda-Pupo et al. 
2015). Furthermore, some studies have failed to report a significant correlation between 
scientific collaboration and citation count (Bartneck and Hu 2010; Hart 2007; Bornmann 
et al. 2012), and some even reported a negative effect (Ahmed et al. 2016; Fu and Ho 2018; 
Fu et  al. 2018). Therefore, it is necessary to explore a consistent result and investigate 
potential moderators leading to the inconsistency in empirical studies.

Research is a highly complicated activity, with outputs and performance that are influ-
enced by numerous factors. Exploring the contribution of collaboration to the academic 
impact of research can help researchers improve the impact of their research (Haslam et al. 
2008). It can also be a useful reference for administrators and funders designing mecha-
nisms to encourage effective research models (Polyakov et al. 2017). In addition, consid-
ering the time lag between a paper’s publication and being cited, the value of scientific 
collaboration in the early prediction of citation count can be revealed by examining the 
strength and consistency of the relationship (Louscher et al. 2019; Alabousi et al. 2019).

The current study applied a meta-analysis approach to systematically investigate the 
effect between scientific collaboration and citation count. Meta-analysis is a method that 
provides quantitative synthesis of the results from different primary studies and allows a 
statistical comparsion among subgroups to test potiential moderators. Co-authorship is an 
important part of scientific collaboration (Kraut et al. 1987). Moreover, the co-authorship 
indicator is verifiable, stable over time, and easy to use (Bozeman et al. 2013). Thus, as the 
most accepted measurement of scientific collaboration, co-authorship was used in the cur-
rent study.

Data and method

Literature searching

We adopted the following four steps to search for literature targeting the correlation 
between research collaboration and citation count.

1.	 Pre-searching. Based on the key concepts in our research, i.e., scientific collaboration 
and citation count, we formulated the following search strategy: (collaborat* OR coop-
erat*) AND (“number of citation*”). We then searched in the Web of Science by subject 
fields, browsed titles and abstracts, and read the full texts of highly relevant literature. 
The purpose of this step was to explore as many related search terms as possible.
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2.	 Searching. Based on the pre-search results, four bibliographic databases, i.e., the Web 
of Science, Scopus, PubMed and the Library & Information Science Abstracts (LISA), 
were searched in December 2019, using the terms: (collaborat* OR cooperat* OR co-
author* OR multi-author* OR multi-nation* OR multi-institution* OR “number of 
author*” OR “number of institut*” OR “number of countr*”) AND (“citation impact*” 
OR “citation count*” OR “number of citation*” OR “citation rate*” OR “cited time*”). 
We had no limitation on document type, or year of publication. Duplicates and obviously 
irrelevant records were removed by screening the titles and abstracts. Subsequently, 332 
relevant papers were identified and their full texts were downloaded. Five papers were 
excluded due to the lack of full-text.

3.	 Reference tracking. By screening the reference lists of the 327 papers, we found an 
additional 21 relevant ones.

4.	 Updating. A supplementary search was conducted in May 2020 to avoid missing newly 
published literature. Another 13 papers were indentified by re-adopting the second and 
third steps. Finally, we obtained 361 papers that could potentially be included in the 
meta-analysis, as shown in Fig. 1.

Criteria for inclusion and exclusion

The main effect of the current meta-analysis was the relationship between scientific col-
laboration (measured by co-authorship) and citation count, which were both continuous 
variables. Therefore, we used the Pearson correlation coefficient as the effect size. We did 
not distinguish the Spearman correlation coefficient from the Pearson correlation coeffi-
cient because they provided similar information (Morgan et al. 2013). Additionally, several 
statistics, such as t (Rosenthal 1991), F (Rosenthal 1991), Mann–Whitney U (Morgan et al. 
2013), χ2 (Cohen 1988), Kruskal-Walis H (Li and He 2013) and the determination coef-
ficient of univariate linear regression (R2) (Li and He 2013), can be transformed to correla-
tion coefficients. These transformation methods enabled more studies to be included in our 
meta-analysis.

We established the following inclusion criteria, i.e., we included studies (1) using the 
co-authorship indicator (e.g., the number of authors, institutions or countries) as the inde-
pendent variable, and using citation count of papers as the dependent variable; (2) report-
ing correlation coefficients, statistics that can be transformed to correlation coefficients, or 
original data that can be used to calculate these statistics; (3) reporting sample sizes. As a 
result, we excluded 154 papers that failed to meet all three criteria.

Studies would be excluded if they met any of the following criteria: (1) non-empirical 
studies, such as letters to editors and reviews were excluded. Twelve papers were accord-
ingly excluded; (2) our research investigated the relationship between scientific collabora-
tion and citation count at the paper level, so studies exploring the correlation at the paper 
set level were excluded. For example, Bornmann and Daniel (2007) took the applicants of 
the Boehringer Ingelheim Fonds fellowship as research objects, and calculated the influ-
ence of the average number of authors among all papers they published on the total citation 
count. Forty-nine papers were excluded by this criterion; (3) irrelevant studies, including 
bibliometric reports about co-authorship and citation, studies focusing on the methods of 
assigning citations to each co-author, and studies talking about the Matthew effect of cita-
tions in co-authored papers were excluded. Thirty-five papers were accordingly excluded; 
(4) nineteen non-English papers were excluded.



3446	 Scientometrics (2021) 126:3443–3470

1 3

After inclusion and exclusion criteria were applied, 92 papers were finally included in 
our meta-analysis, as shown in Fig. 1. A list of the included papers is provided in "Appen-
dix A".

Coding

Based on the main effect and possibile moderators, we designed the coding schema to 
extract variables from the 92 included papers. For example, correlation coefficients and 
sample sizes reported in these studies were extracted to calculate the main effect.

Moderators possibly affecting the relationship between scientific collaboration and cita-
tion count can be divided into three categories: (1) collaboration types; (2) sample charac-
teristics in primary studies, including disciplines, countries, journals, and document types; 

Fig. 1   Flow chart for literature searching, inclusion and coding
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and (3) citation characteristics in primary studies, including citation sources, citation win-
dows and citation types.

Some previous studies suggested that the relationships between different types of scien-
tific collaboration and citation count are not the same. For instance, Iribarren-Maestro et al. 
(2009) found that institutional and international collaboration were significantly related 
to citation count rather than individual collaboration. Asubiaro (2019) also showed that 
papers from international collaboration were cited more frequently, even though no signifi-
cant difference between local and domestic collaboration was found. However, Gazni and 
Didegah (2011) revealed that the influence of international collaboration on citation count 
was not significant using regression analysis. In terms of the classification of scientific col-
laboration, there are two approaches. One is based on the geographical distribution of col-
laborators (Borrons et al. 1996) by classifying them as local (i.e., collaborators from the 
same institution), domestic (i.e., collaborators from different institutions in the same coun-
try) and international collaboration (i.e., collaborators from different countries). The other 
approach is based on the granularity of collaboration (Didegah and Thelwall 2013) and 
classifying them as individual, institutional, and international collaborations. Since most 
existing studies have quantified scientific collaboration by the number of authors, institu-
tions, or countries, we followed the latter classification and coded the scientific collabora-
tion in primary studies as “Individual,” “Institutional,” and “International.”

Some studies have shown that sample characteristics, such as disciplines (Puuska et al. 
2014; Shehatta and Mahmood 2016; Van Wesel 2014), countries (Leimu and Koricheva 
2005; Chi and Glanzel 2016, 2017; Thelwall and Maflahi 2019), journals (Rousseau 
and Ding 2016; Ibanez et al. 2013; Peclin et al. 2012) and document types (Abramo and 
D’Angelo 2015; Sin 2011; Muniz et  al. 2018), could influence the correlation between 
scientific collaboration and citation count, indicating their moderating effects. The cod-
ing schema of these variables is as follows: (1) disciplines, (2) countries, (3) journals 
and (4) document types. In terms of disciplines, Puuska et  al. (2014), and Shehatta and 
Mahmood (2016) classified disciplines by a single research domain, e.g., Arts & Humani-
ties, Social Sciences, and natural science. Van Wesel (2014) also conducted research in 
some subject areas, e.g., Sociology, General & Internal Medicine, and Applied Physics. 
Since most primary studies in our meta-analysis used Web of Science as the data source, 
and it is feasible to group subject areas into research domains, we referred to the research 
domain categories of Web of Science1 and coded disciplines as Arts & Humanities, Social 
Sciences, Life Sciences and Biomedicine, Physical Sciences, and Technology. This vari-
able was coded as null if a primary study involved more than one research domain. As for 
countries, Chi and Glanzel (2016, 2017) and Thelwall and Maflahi (2019) selected samples 
from individual countries, e.g., Iran, Israel, and Belgium. Leimu and Koricheva (2005) also 
based their search on the geographical positions of countries and collected data from the 
US and Europe. Although the level of economic development is positively correlated with 
the scientific wealth of a country (Kumar et al. 2016; Hatemi-J et al. 2016), the levels are 
always different among countries in the same continent. Thus, we divided the countries 
into developed and developing countries according to the list of advanced economies from 
the International Monetary Fund,2 instead of by continent. This variable was coded as null 
if the primary studies included samples from both developed and developing countries. 

1  Web of Science research domain categories: http://image​s.webof​knowl​edge.com//WOKRS​535R6​9/help/
zh_CN/WOK/hs_resea​rch_domai​ns.html#dsy54​66-TRS.
2  List of advanced economies: https​://www.imf.org/exter​nal/pubs/ft/weo/2005/01/data/group​s.htm#1.

http://images.webofknowledge.com//WOKRS535R69/help/zh_CN/WOK/hs_research_domains.html#dsy5466-TRS
http://images.webofknowledge.com//WOKRS535R69/help/zh_CN/WOK/hs_research_domains.html#dsy5466-TRS
https://www.imf.org/external/pubs/ft/weo/2005/01/data/groups.htm#1
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For the third category, journals, Ibanez et al. (2013) and Peclin et al. (2012) used journal 
impact factor (JIF) quartiles in the Jounal Citation Report (JCR) to characterize their sam-
ples. Rousseau and Ding (2016) also collected samples from three individual journals, i.e. 
PNAS, Science and Nature. We classified journals by JCR’s JIF quartiles since most pri-
mary studies in this meta-analysis used Web of Science as the data source, and individual 
journals could be easily mapped to the JIF quartiles. The version of JCR is the year when a 
papers was published (Ibanez et al. 2013; Peclin et al. 2012) or is designated as a particular 
year (Low et al. 2014; Bales et al. 2014). In the current meta-analysis, a number of pri-
mary studies contained samples published before 1997, when the first version of JCR was 
issued. Therefore, we chose 2018 as the year. The 2018 JCR3 was followed to score 1–4 
for journals belonging to Q4-Q1, respectively. For journals that belong to different subject 
areas (with different JIF quratiles), their subject areas were identified according to the pri-
mary studies. If the samples of primary studies were published in different journals, they 
could be coded by the arithmetic mean score of each journal. In addition, this variable was 
marked as null when the samples were from non-indexed journals. The fourth classification 
is by document type. Most primary studies in our meta-analysis conducted their research 
with articles or reviews in Web of Science (e.g., Abramo and D’Angelo 2015; Sin 2011; 
Muniz et al. 2018). Following their codes of document types, we classified them as “Arti-
cle,” “Review,” and “Both.” Although some primary studies were characterized as jour-
nal papers and conferences (e.g., Ibanez et al. 2013), we considered these samples “Both” 
because both articles and reviews can be published in journals and proceedings.

The variation of effect sizes across studies was also bound up with citation character-
istics, such as citation sources (Garcia-Aroca et al. 2017; Louscher et al. 2019), i.e., data 
sources to collect citation counts, citation windows (Bornmann and Daniel 2008b; Onodera 
and Yoshikane 2015), i.e., the interval between publication and citation observation, and 
citaition types (Clements 2017; Leimu and Koricheva 2005). Citation sources included 
Web of Science, Scopus, Google Scholar, and “Other.” We grouped sources such as CNKI, 
PubMed, and journal websites, into “Other” because few primary studies (N = 8) collected 
samples from these sources. In terms of citation windows, Abramo et  al. (2011) sug-
gested that a citation window of two or three years would be long enough to guarante the 
robustness of citation counts in the impact measurement. Liu et al. (2015) also found that 
papers would reach their citation peak in the third year after publication, which indicated 
the third year was a reasonable cutoff. Therefore, we coded citation windows as: “annual,” 
“1–3 years,” and “ ≥ 4 years.” A citation window could also be coded as null if it is too long 
to be divided. Notablely, the year of citation observation would be counted as the current 
year if the observation occurred after July; otherwise, it would be counted as the last year. 
For example, Muniz et al. (2018) collected the citation counts of papers published between 
2000 and 2015 in April 6, 2017, so the year of citation observation was counted as 2016, 
resulting in a citation window of 2–17 years. Citation types included “peer-citations” and 
“self-citations” (Clements 2017). They can also be coded as “total-citations” when both 
peer-citations and self-citations were considered, or no citation type was reported in the 
primary studies.

All variables except for citation types were coded as null if not reported. Two authors 
independently coded the included papers and compared the results. Disagreements were 

3  JIF quartiles of JCR2018: https​://jcr.clari​vate.com/JCRJo​urnal​HomeA​ction​.actio​n?#.

https://jcr.clarivate.com/JCRJournalHomeAction.action?#
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solved by discussions between the first two authors; the third author joined the discus-
sions, if necessary.

Meta‑analytic method

Since the studies included in our meta-analysis were independent rather than from a 
homogeneous population, it is unreasonable to assume that the true effects of all stud-
ies were the same. Therefore, a random effect model was used to calculate the mean 
effect size. As the effect size (ES), correlation coefficient (r) is suggested to transform to 
Fisher’s z that actually functions in meta-analysis procedures (Formula 1) (Borenstein 
et  al. 2009). Within-study standard error (SE) of Fisher’s z was also calculated using 
Formula 2 (Borenstein et al. 2009). Fisher’s z was transformed back to a summarized 
correlation coefficient when reporting the results (Formula 3) (Borenstein et al. 2009).

To assess the reliability of main effect, we conducted tests of publication bias and 
heterogeneity for the current meta-analysis. Publication bias was examined using a fun-
nel plot, Egger’s regression test, p-curve, and Rosenthal’s fail-safe N. Cochran Q-test, 
I2, funnel plot, and prediction interval (PI) were used to evaluate heterogeneity. In addi-
tion, we divided subgroups according to the potential moderators and investigated their 
effects using between-subgroup analysis of variance (ANOVA) and between-subgroup 
z-tests. Stata 16.0 was used for these analyses, and the level of significance was 0.050.

Results

Coding results

Information about all variables was extracted from 92 papers (see detailed coding 
results in Online Appendix B). Some papers reported multiple individual studies. For 
instance, Thelwall and Sud (2014) examined the difference in citation counts between 
co-authored and single-authored papers in 30 discplines, so 30 correlation coefficients 
were extracted from this paper. Finally, 340 correlation coefficients were included 
(Fig.  1). Effect sizes (i.e., Fisher’s z) transformed by these coefficients ranged from 
− 0.400 to 0.838, and their sample sizes were from 38 to 12,021,209. In addition, the 
included papers were published between 1975 and 2020.

(1)ES =
1

2
ln
(

1 + r

1 − r

)

(2)SE =
1

√

n − 3

(3)r =
e2ES − 1

e2ES + 1
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Main effect

A total of 340 effect sizes were synthesized by a random effect model, and a mean effect 
size of 0.147 was achieved with a confidence interval of [0.136, 0.158] (Online Appen-
dix C). The Z-test of the mean effect size was also siginificant (z = 25.77, p < 0.000). The 
summarized correlation coefficient was 0.146 after transformation, showing a positive and 
weak correlation between scientific collaboration and citation count (Cohen 1988).

Test of publication bias

Publication bias has been a common issue in meta-analyses. This bias shows that stud-
ies with significant results are more likely to be published and these published studies are 
more likely to be included in a meta-analysis. Consequently, studies with smaller effect 
sizes and sample sizes are easily omitted, leading to an overestimated mean effect size. 
The mean effect size will be unreliable if the publication bias is too large (Borenstein et al. 
2009).

A funnel plot can be used for a qualitative examination of publication bias. As shown in 
Fig. 2, the distribution of effect sizes was asymmetric with many on the upper right, indi-
cating a publication bias. In contrast, there was no obvious asymmetry on the bottom, sug-
gesting that few primary studies with small effects and sample sizes were missed and the 
publication bias was small. We also performed Egger’s regression to quantitatively analyze 
publication bias. In Egger’s regression, the bias coefficient was 2.16 (t = 3.56, p < 0.000), 
so we rejected the null hypothesis and accepted the alternative hypothesis that publication 
bias did exist.

We further investigated whether the mean effect size was an artifact of the bias. First, 
we conducted p-curve analysis, a histogram of p-values for individual effect sizes (Fig. 3). 
As shown in Fig. 3a, the number of effect sizes increased as p-values decreased, and the 
p-values of most effect sizes were less than 0.05. Figure 3b also showed that the majority 
of p-values gathered around zero, which indicated the reliability of the mean effect (Simon-
sohn et al. 2014). In addition, the result of Rosenthal’s fail-safe N was 2,755,856.94, far 

Fig. 2   Funnel plot for the effect sizes
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larger than the reference value, 1710 (5 k + 10, with k the number of effect sizes), showing 
that 2,755,857 primary studies were needed to change the significance of the mean effect 
size. To sum up, although there was some publication bias in our meta-analysis, the influ-
ence on the mean effect size was limited.

Tests for heterogeneity

Heterogeneity is usually examined by Cochran Q-test (Q-value) and I2 (Formula 4 and 5). 
Q-values obey χ2 distribution with k − 1 degree of freedom, under the hypothesis that all 
studies share a common effect size (Borenstein et al. 2009). Higgins et al. (2003) also sug-
gested that a I2 of 25%, 50%, and 75% shows a low, moderate, and high extent of heteroge-
neity, respectively, and conducting a meta-analysis was inappropriate when I2 > 75%.

The Q-value of this meta-analysis was 40,271.11 (p < 0.000), and I2 equalled 99.2%, 
suggesting that there was large heterogeneity among the included studies, and that con-
ducting the current meta-analysis might not be reasonable. In the following paragrahs, we 
present reasons why Cochran Q-test and I2 were not applicable to assess the heterogeneity 
of a meta-analysis including studies with large samples.

Fomula 6 is derived from Formula 2 and 4, indicating that Q-values and sample 
sizes (ni) were interrelated. For the included studies, the average sample size was up to 
7,266.71 after excluding the maximum and the minimum, which necessarily resulted in a 
high Q-value. Given that heterogeneity is defined as the variation of the true effect across 

(4)Q =

k
∑

i=1

(ESi − U)
2

Si2

(5)I2 =
Q − k + 1

Q

(6)Q =

k
∑

i=1

(ni − 3) ∗ (ESi − U)2

Fig. 3   P-curve analysis. a The distribution of p-values for all effect sizes, 253 statistically significant effect 
sizes (p < 0.05) compared to 87 insignificant values. b The distribution of p-values for 253 statistically sig-
nificant effect sizes
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studies and with no relation to sample size (Parr et  al. 2019), the large Q-value of this 
meta-analysis resulted from the high statistical power of test.

I2 is essentially the ratio of between-studies variance to total variance, the latter consist-
ing of both between-studies variance and within-study variance (Borenstein et al. 2017). 
Within-study variance approximated zero when the sample size was extremely large 
(Fomula 2), and thus I2 was close to 100%. Xie et al. (2019) also examined this phenom-
enon by simulation analysis, finding that when the sample sizes in primary studies ranged 
from 50 to 100, the I2 of 89% of the simulated meta-analyses were larger than 75%. As the 
sample sizes increased further, almost all I2 exceeded 80%.

Instead, we used a funnel plot to examine heterogeneity. In the current study, when 
within-study standard error decreased, the individual effect sizes tended to converge 
towards the mean effect size, except for a few effect sizes (Fig. 2), suggesting some extent 
of heterogeneity (Wake et al. 2020). We also calculated the prediction interval (PI) to esti-
mate the range of true effects among primary studies (Parr et al. 2019). In our meta-anal-
ysis, the PI of Fisher’s z with a 95% confidence level was [−  0.039, 0.333], and the PI 
of the corresponding correlation coefficient was [− 0.039, 0.321]. This revealed that in a 
universal set of studies investigating the relationship between scientific collaboration and 
citation count, more than 95% of the correlation coefficients were between − 0.039 and 
0.321, showing non-correlation or a weak correlation (Cohen 1988). Therefore, the degree 
of dispersion among studies was small. Based on the funnel plot and PI, although there was 
some heterogeneity in our meta-analysis, the mean effect size was still reliable.

Moderators analysis

In this section, we examine whether moderators could account for the heterogeneity. First, 
we divided the data into subgroups based on the classification of potential moderators to 
indicate their influences on the main effect (Table 1).

We then employed a between-subgroup ANOVA to identify moderators that could sig-
nificantly affect the mean effect size (Fomula 7). In the fomula, Q is the Q-value of the 
overall meta-analysis, Qi is the Q-value of the ith subgroup, and j is the number of sub-
groups. With no heterogeneity across subgroups, Qbet follows χ2 distribution with a j − 1 
degree of freedom (Borenstein et al. 2009).

Due to limited data availability in the primary studies, the numbers of the effect sizes 
among moderators were different (Table 2). As shown by the Qbet and p values, disciplines, 
countries, document types, and citation sources exerted a significant effect on the rela-
tionship between scientific collaboration and citation count, whereas other potential mod-
erators did not. It is noteworthy that the results of the between-subgroup ANOVA could 
be influenced by the primary studies within the individual subgroups. For example, the 
insignificant moderating effect of journals might be influenced by the fourth subgroup 
(value = 1) whose between-study variance was large (T2 = 0.1323) and the number of effect 
sizes was small (n = 7) (Table 1).

The between-subgroup ANOVA revealed whether the mean effect sizes among the sub-
groups were significantly different. To further explore the relationship of the mean effect 
sizes among the subgroups, between-subgroup z-tests (Fomula 8) were performed for 

(7)Qbet = Q −

j
∑

i=1

Qi
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significant moderators that could be divided into more than two subgroups, i.e., disciplines, 
document types, and citation sources. The moderator “countries” only had two subgroups, 
and thus no between-subgroup z-test was conducted. In formula 8, ESa and ESb were the 
mean effect sizes of the two subgroups, while Va and Vb were their variances, respectively 
(Borenstein et al. 2009).

Countries. The mean effect sizes of developed countries and developing countries 
(Table 1), as well as the difference between them (Table 2) were all significant. The rela-
tionship between scientific collaboration and citation count was smaller in developed coun-
tries (r = 0.112), while it was stronger for developing countries (r = 0.180). This result sup-
ports the findings in Chi and Glanzel (2016, 2017).

Disciplines. Scientific collaboration was significantly positively related to citation count 
in all research domains (Table 1). Table 3 also shows that the correlation in Life Sciences 
& Biomedicine is siginificantly larger than the correlations in Technology, Physical Sci-
ences, and Arts & Humanities. Although Technology and Physical Sciences rely more on 
expertise and skills, the correlations in these two domains were siginificantly smaller than 
that in Social Science. There was also no significant difference among Technology, Physi-
cal Sciences, and Arts & Humanities, between Life Sciences & Biomedicine and Social 
Science.

(8)z =
ESa − ESb
√

Va + Vb

Table 2   The result of the 
between-subgroup ANOVA

“*”Shows statistical significance

Moderators Number of 
effect sizes

Qbet df p

Disciplines 297 17.91 4 0.001*
Countries 181 5.01 1 0.025*
Journals 117 1.53 3 0.676
Document types 277 6.01 2 0.050*
Citation types 340 5.68 2 0.058
Citation sources 336 37.89 3  < 0.000*
Citation windows 214 0.85 2 0.654
Collaboration types 340 4.55 2 0.103

Table 3   The results of between-subgroup z-tests for “Disciplines”

P-values are in parentheses; “*”shows statistical significance

Discipline Physical 
sciences

Technology Arts & humanities Life sciences 
& biomedi-
cine

Social sciences

Physical sciences – 0.11 (0.910) 0.04 (0.972) 3.29 (0.001)* 2.65 (0.008)*
Technology – – 0.06 (0.952) 2.42(0.015)* 2.15 (0.031)*
arts & humanities – – – 2.18 (0.029)* 1.97 (0.049)*
Life sciences & biomedicine – – – – 0 (0.999)
Social sciences – – – – –
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Document types. Scientific collaboration and citation count were significantly and posi-
tively related in each subgroup, with the highest correlation coefficient in “Article” sub-
group (r = 0.171) (Table 1). As shown in Table 4, the correlation coefficient between sci-
entific collaboration and citation count in “Article” was significantly higher than that in 
“Both” (r = 0.136). Although “review” had a lower mean effect size than “article,” the dif-
ference between them is not significant (p = 0.279).

Citation sources. As shown in Table  1, scientific collaboration exerted no relation to 
citation count for Google Scholar sources (p = 0.502). For Web of Science and Scopus as 
citation sources, the correlations are significantly higher than those in Google Scholar and 
other sources (Table 5). Although the correlation coefficient in Web of Science (r = 0.146) 
was smaller than that in Scopus (r = 0.173), the difference was not significant (p = 0.148), 
and the same result is found between Google Scholar and other sources.

Discussion

Main effect

We quantitatively summarized the extant studies about the relationship between scientific 
collaboration and citation count using meta-analysis and found that the correlation coeffi-
cient between them was 0.146, showing a positive and weak correlation. The results of the 
funnel plot, Rosenthal’s fail-safe N, and prediction interval supported the reliability of this 
result.

The positive correlation between scientific collaboration and citation count suggested 
the benefits of collaboration.Three aspects of benefits have been reported by previous stud-
ies. For researchers, scientific collaboration allowed the sharing and transferring of knowl-
edge, skills, or techniques to promote their academic competence (Katz and Martin 1997). 
As for research teams, collaboration played a critical role in developing scientific and 
technical human capital and in raising more funds (Bozemana and Corley 2004). It could 

Table 4   The results of between-
subgroup z-test for “document 
types”

P-values are in the parentheses; “*” shows statistical significances

Document types Article Review Both

Article – 1.08 (0.279) 2.41 (0.016)*
Review – – 0.18 (0.853)
Both – – –

Table 5   The results of between-subgroup z-test for “citation sources”

P-values are in parentheses; “*” shows statistical significance

Citation sources Web of Science Scopus Google Scholar Other

Web of Science – 1.45 (0.148) 4.88 (0.000)* 3.29 (0.001)*
Scopus – – 5.10 (0.000)* 3.73 (< 0.001)*
Google Scholar – – – 1.55 (0.122)
Other – – – –
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also create rigorous internal reviews for team building (van Wesel et al. 2014). In terms 
of research outputs, the clash of views and cross-fertilization of ideas brought by scien-
tific collaboration contributed considerably to knowledge recombination and ouput innova-
tion (Katz and Martin 1997; He et al. 2009; Talke et al. 2011). These benefits have been 
essential for scholars and their teams to conduct superior research and produce high-qual-
ity publications that would be cited widely. Some studies have also supported the advan-
tages of co-authored papers, compared to non-co-authored papers, in peer-review scores 
(Franceschet and Costantini 2010), acceptance rates of journals (Tregenza 2002), JIF (Sahu 
and Anda 2014), and methodological quality (Cartes-Velasquez and Manterola 2017). In 
addition to quality, the increased opportunities of self-citation (Lin and Huang 2012) and 
visibility through larger social networks in the community (Katz and Martin 1997; Gold-
finch et al. 2003; van Wesel et al. 2014) might contribute to more citations of co-authored 
papers.

The weak correlation found in this study resonated with the inverted “U” relationship 
between scientific collaboration and citation counts (Lariviere et al. 2015; Hsiehchen et al. 
2015; Quan et al. 2019; Acedo et al. 2006). The inverted “U” relationship suggests an opti-
mal team size in collaboration activities, which can be caused by the cost of scientific col-
laboration. For example, various differences (including favorable differences to underpin 
the collaboration, and incidental differences undermining its achievement) were found to 
exist among collaborators; thus, it was necessary to manage these differences with coor-
dination costs (Bammer 2008). Moreover, the coordination costs have been found to be a 
statistical mediation in the negative influence of scientific collaboration (Cummings and 
Kiesler 2007). When team size increased, both favorable and incidental differences pos-
sibly increased. To manage these differences, more coordination costs were needed. In a 
word, an oversize team could probably receive limited profits or even deficits from scien-
tific collaboration. In addition, scientific collaboration required time and resources from 
researchers (Godin and Gingras 2000), and introduced challenges in the allocation of credit 
and responsibilities (Wray 2006), which might reduce the efficiency and motivation of 
collaborators.

Moderating effects

The between-subgroup ANOVA indentified the significant moderating effects of disci-
plines, countries, document types, and citation sources on the main effect. The moderat-
ing effect of disciplines possibly resulted from the diverse research practices in different 
domains. For example, the higher mean effect size in Social Science might be because that 
Social Science research was often multi-paradigmatic and produced arguments and inter-
pretations; thus, the perceived credibility could increase when there were several authors 
(Puuska et  al. 2014). The correlation between scientific collaboration and citation count 
was also higher in Life Sciences & Biomedicine, which might be explained by two rea-
sons. First, Life Sciences & Biomedicine research required more instruments, ideas, analy-
ses and interpretations, calling for even more collaboration among researchers to improve 
research quality (Shehatta and Mahmood 2016). Second, Chinchilla-Rodriguez et  al. 
(2012) found that biomedical publications accounted for around 30% of the outputs world-
wide, far more than other research domains. Therefore, papers were more likely to be cited 
with higher frequency due to a large number of potential citing papers within the domain. 
In addition, the weaker correlation between scientific collaboration and citation count in 
Arts & Humanities was possibly because the fact that they had the lowest extent of scientic 
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collabotation among all domains (Franceschet and Costantini 2010; Wuchty et al. 2007). 
Finally, since the team sizes in Physical Sciences and Techology were generally large 
(Wuchty et  al. 2007), the profits of scientic collaboration could be limited by excessive 
coordination costs, which might lead to the lower correlation between scientific collabora-
tion and citation count.

This study revealed that the mean effect size of developed countries was lower than 
that of developing countries. The level of economic development of a country was posi-
tively correlated with its scientific wealth (Kumar et al. 2016; Hatemi-J et al. 2016). For 
instance, developed countries could invest more money and resources into research activi-
ties, to increase the quality of their scientific outputs (Allik et  al. 2020). Therefore, the 
reason why  papers from developed countries were cited frequently was more likely the 
perceived quality of the research rather than scientific collaboration. In addition, the mod-
erating effect of countries indicated some cultural differences. Hofstede (2011) found that 
individualism was prevalent in developed and Western countries, and collectivism was 
more dominant in developing countries. Researchers from countries with a high degree of 
individualism might be less willing to achieve common goals through scientific collabora-
tion (Thelwall and Maflahi 2019).

Document types reflected the nature of studies. For example, reviews aimed at review-
ing the scientific literature on a particular topic, wheras articles presented new results 
(Abramo and Angelo 2015). Therefore, the benefits of knowledge recombination and 
output innovation from scientific collaboration might be more significant in articles than 
reviews. Additionally, the higher mean effect size of articles possibly related to citation 
practices. As Lachance et al. (2014) suggested, researchers tended to cite the correspond-
ing original papers instead of the current (secondary) source when some content that was 
worthy of being cited was found in a review.

Various citation sources provided different coverage of scholarly publications, lead-
ing to different citation counts for the same paper (Bakkalbasi et  al. 2006), which pos-
sibly explained the moderation effect of citation sources. For example, Web of Science 
and Scopus covered publications from multiple disciplines (Mongeon and Paul-Hus 2015), 
and thus papers could achieve higher citation counts when collecting citations from these 
databases. Moreover, Scopus provided broader coverage of publications than Web of Sci-
ence in all fields, especially in Social Science and Arts & Humanities (Mongeon and Paul-
Hus 2015), which could result in the larger correlation coefficient of Scopus than that of 
Web of Science. In contrast, other citation sources often had narrow and limited coverage 
of the literature. For instance, PubMed mainly included academic publications from Life 
Sciences & Biomedicine. Although Google Scholar included broader coverage (Harzing 
and Alakangas 2016), compared to Web of Science and Scopus, the mean effect size was 
siginifcantly lower, which might result from the unreliability and lack of transparency of its 
citation data (Mingers and Lipitakis 2010).

The current study found that all types of scientific collaboration correlated positively 
with citation counts, and there were no significant differences among them. This result 
addressed the inconsistency in previous studies with two possible reasons (Iribarren-Maes-
tro et al. 2009; Gazni and Didegah 2011; Didegah and Thelwall 2013; Fu and Ho 2018; 
Sud and Thelwall 2016). On the one hand, although the classification for scientific col-
laboration of this study has been commonly applied (e.g. Didegah and Thelwall 2013; Fu 
and Ho 2018), different types of collaboration are overlapped. For example, Didegah and 
Thelwall (2013) and Sud and Thelwall (2016) found that, for publications, the correlations 
are moderate between the number of authors with the number of institutions and the num-
ber of countries. Bordons et al. (2013) further proved that the increase in the number of 
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institutions was the main reason for rise in the number of authors. On the other hand, the 
comparable effect sizes of coarse-granularity collaboration (i.e., institutional collaboration 
and international collaboration) with individual collaboration might be due to coordination 
costs. Members from different institutions and countries constituted a potential source of 
collaboration diversity (Bordons et al. 2013), and more investments of coordination costs 
were thus required (Bammer 2008). Some empirical studies have also revealed the negative 
effects of coordination costs in institutional and international collaboration (e.g. Cummings 
and Kiesler 2007; Wagner et al. 2019).

Although it is generally accepted that scientific collabotation increases the number of 
self-citaions, whether self-citation plays a main role in improving citation counts remains 
controversial (Smart and Bayer 1986; Herbertz 1995; Van Raan 1998; Aksnes 2003). In 
our study, citation types did not have a significant moderating effect. In particular, we 
failed to demonstrate that the correlation between scientific collaboration and self-citation 
counts were higher than that of peer-citation counts. Therefore, the current study did not 
support the main role of self-citation in increasing the citation count of co-authored papers.

Reasons for publication bias

Although Egger’s regression analysis and the funnel plot showed some publication bias in 
the current study, the reasons for publication bias might be different from previous meta-
analyses. These differences were related to the characteristics of bibliometrics studies. On 
the one hand, traditional publication bias resulted from less visibility of publications with 
fewer samples and insignificant effect sizes (Borenstein et al. 2009). However, bibliomet-
rics studies generally had large sample sizes. For example, in this meta-analysis, the aver-
age sample size of the included studies was 7266.71, and even the minimum sample size 
(N = 38) met the criterion of a large sample in statistics (N > 30) (Li and He 2013). There-
fore, it is less possible for bibliometrics studies to remain unpublished due to the insig-
nificant results from the insufficient power of tests. On the other hand, the diverse research 
methods in the primary studies probably contributed to the main reason for publication 
bias. Although many papers were included after transforming their statistics to correla-
tion coefficients, others were excluded because their results could not be transformed. For 
instance, multivariate linear regressions and generalized regressions were widely employed 
to investigate the influencing factors of citation counts in primary studies, but there are few 
applicable approaches to transform their results to correlation coefficients.

Conclusion and implications

Using a meta-analysis method to explore the relevant primary studies, we found that there 
was a positive and weak correlation between scientific collaboration and citation count. 
The correlation in Life Sciences & Biomedicine and Social Science was higher than that 
in other research domains. The correlation is also higher in articles and publications from 
developing countries. In addition, when choosing the Web of Science and Scopus as the 
citation sources, scientific collaboration is more closely associated with citation count.

The results of this study provide practical implications for both research administrators 
and researchers. As for research administrators, especially those from developing coun-
tries, incentives for scientific collaboration to improve the level of knowledge and skills 
of domestic scholars and to expand their academic impact are recommended. Since the 
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significant and positive effect sizes existed in all research domains, administrators should 
not only pay particular attention to Life Sciences & Biomedicine and Social Science with 
the highest mean effect sizes, but also provide the same support or even more resources for 
other disciplines. For example, collaboration in Physical Sciences and Techology should be 
encouraged because of a heavy reliance on expertise and skills. For citation-based evalua-
tion, the Web of Science and Scopus should be used as the citation sources to avoid under-
estimating the performance of scientific collaboration. In addition, reasonable self-citations 
of researchers are acceptable, and it is unnecessary to eliminate self-citations in evalua-
tions. In terms of researchers, actively participating in scientific collaboration is encour-
aged among all disciplines and countries, particularly when conducting exploratory and 
innovative research. Researchers should also pay close attention to the efficiency of scien-
tific collaboration, e.g., choosing competent partners and avoiding blind pursuit of large 
teams or international collaboration.

This study also offers guidelines for assessing heterogeneity in meta-analyses. Indica-
tors providing different information should be reported together to comprehensively reveal 
heterogeneity. For example, Q-value (i.e., the ratio of the dispersion of effect sizes to the 
within-study variance), I2 (i.e., the ratio of between-studies variance to total variance), and 
prediction interval (i.e., the dispersion of effect sizes in a universal set of relevant studies) 
are recommended.

The quality of this meta-analysis was restricted by the availability and quality of the 
data in primary studies (Ellis et al. 2011). For instance, only 92 of 361 papers obtained by 
a systematic search reported the required data, resulting in publication bias. Although the 
significances of the mean effect sizes in each “journals” subgroup were different, the result 
of the between-studies ANOVA for this moderator was insignificant. Future studies are 
needed to explore the moderating effect of journals. Furthermore, this meta-analysis was 
a secondary research based on the results of extant studies. Although a positive and weak 
correlation between scientific collaboration and citation counts and some moderators have 
been identified, more detailed and qualitative analysis will be required to draw stronger 
conclusions on the reasons behind.
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