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Abstract
Technological knowledge can be created via R&D investments, but it can also be eroded 
through depreciation. Knowing how fast knowledge depreciates is important for various 
reasons for practitioners and decision makers alike; especially if it comes to questions 
regarding how to “recharge” knowledge production processes within an ever changing 
global system. In this study, we use patent citation data to identify technological knowl-
edge depreciation rates by adjusting for exogenous citation inflation and by disentangling 
the preferential-attachment dynamics of citation growth. Solar photovoltaic (PV) technol-
ogy is employed as a case study. The rates calculated with our method are comparable to 
the few available estimates on technology depreciation rates in the PV industry. One of the 
advantages of the proposed method is that its underlying data are more readily available, 
and thus more replicable for the study of the knowledge depreciation rates in other relevant 
technology fields.
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Introduction

Clean technologies have been generally regarded as the key solution to sustainable 
human development (Johnstone et al. 2012; Perruchas et al. 2020). Emerging technolo-
gies such as solar photovoltaics, wind turbines, and electric cars are at the “frontier” 
of economic development (Binz et al. 2017; Huenteler et al. 2016a; Rosenberg 1963). 
As technological change in such industries often necessitates long-term trial and error 
processes, understanding the evolutionary patterns of clean technologies’ development 
trajectories is thus critical to accelerating technological evolution overall, as well as to 
facilitate the transitions to sustainable systems in the context of climate change.

Technological evolution has long been regarded as the upgrading of designs, that is, 
evolution in the artifact space (Huenteler et al. 2016a), while few research efforts have 
documented the vicissitude of technological knowledge aspects that actually underlie 
artifactual designs. Huenteler et al. (2016a) employ patent citation data in order to dem-
onstrate the trajectory of technological knowledge (TK) generation processes, which in 
turn sheds light on the evolution of knowledge spaces shaped by the artifact space. How-
ever, Huenteler et al. (2016a) focus only on the creation of knowledge, but don’t provide 
further insights on knowledge depreciation caused by obsolescence and forgetting.

The depreciation of TK, just like the depreciation of tangible capital, eroding techno-
logical knowledge stocks (TKS) accumulated through research and development (R&D), 
is an inevitable phenomenon (Grubler and Nemet 2012). The rate of TK depreciation is 
a critical economic parameter that contains information about technological evolution 
and the economic environment, but how to measure it remains an open question (de 
Rassenfosse and Jaffe 2018). In the few available studies associated with TK deprecia-
tion, researchers mainly used R&D expenditure data or patent data to identify the rate, 
but these methods have various drawbacks such as containing too many assumptions 
and data collection difficulties.

To solve this problem, based on the recombinant innovation theory, this study uses 
a new method to identify the TK depreciation rate from patent citation data. Borrowing 
ideas from recent research on scientific and technological document citation behaviors 
(Higham et al. 2017a, b; Yin and Wang 2017), the proposed method offers two relevant 
improvements: rescaling citation data to account for citation inflation and disentangling 
the preferential-attachment dynamic. As a result, purely time-dependent depreciation 
patterns can be obtained via this approach.

To execute our method, we focus on the case of solar PV, one of the most impor-
tant clean technologies. Solar PV systems, which produce energy through converting 
the electromagnetic spectrum of sunlight into electrical power (Binz et al. 2017), have 
the following characteristics. First, the market for solar PV systems has grown exponen-
tially in the last two decades. The global total average installed cost of new utility-scale 
PV systems has decreased by over 50% in the last decade, which is primarily driven by 
PV module cost reduction (IRENA 2017). The rapidly changing market and hardware 
costs reflect the shock in solar PV technology development, which needs to be closely 
monitored for future R&D decisions. Second, the solar PV industry has undergone sev-
eral strong shifts regarding the geographic locations of its key manufacturing areas and 
marketplaces. Its knowledge base has also globalized since the very early industry for-
mation phase (Binz et  al. 2017). The solar PV industry thus can be used to illustrate 
different knowledge production processes around the world. The results presented here 



95Scientometrics (2021) 126:93–115 

1 3

demonstrate that the rates based on the proposed method are comparable to the few 
available estimates on technology depreciation rates in the PV industry.

This paper is structured as follows: “Technological knowledge depreciation and present 
approaches for estimating the depreciation rate” section presents the concept of TK depre-
ciation and provides an overview of prior research on estimating the depreciation rate. 
“Patent citation data and methodological approach ” section presents our method and its 
logic in detail. “Technological knowledge depreciation for solar PV” section demonstrates 
the application of knowledge deprivation rates, while the final section provides discussion 
and concluding remarks.

Technological knowledge depreciation and present approaches 
for estimating the depreciation rate

Defining technological knowledge depreciation

TK has both commercial and technological value. The commercial value is represented as 
providing an entity with the commercial competitive advantage over industry peers, while 
the technological value is its potential for facilitating future inventions (de Rassenfosse 
and Jaffe 2018). The commercial value is always related to private innovation capital, but 
the technological value can also refer to the social and public-good effect (de Rassenfosse 
and Jaffe 2018). Because this study aims to deepen the understanding of the evolution of 
clean technologies, which is associated with social welfare, we focus on the depreciation of 
knowledge’s technological value.

There are two sources of TK depreciation: obsolescence and loss. Regarding obsoles-
cence, and dating back to Schumpeter (1934), although technology invention processes 
have long been recognized as the recombination of existing knowledge, new invention 
always builds on recent technologies rather than old technologies because new technol-
ogies can better meet human needs (Arthur and Polak 2006; Grubler and Nemet 2012). 
Historical cases such as the invention of the locomotive destroying the carriage and black-
smithing industries can also speak the decay of old technologies as well as the obsoles-
cence of underlying knowledge.

In addition to obsolescence, TK can also be lost. For example, as knowledge is embod-
ied in peoples’ minds, staff turnover or forgetting will lead to the loss of knowledge. Both 
knowledge loss and knowledge obsolescence result in the depreciation of TK capital 
(Grubler and Nemet 2012).

Reviewing the available estimation methods

The TK depreciation rate, which reflects the trend of the economy and determines the 
decay of the TKS, is an important economic parameter (de Rassenfosse and Jaffe 2018). 
Scholars are keen to assess it, but among the available estimation methods, there is a sig-
nificant divergence on identifying the actual knowledge input. Some researchers measure 
it with R&D investment data while others use patent data, which in turn leads to two main 
streams of employed methods.

In the first stream, scholars regard R&D investment as knowledge input and its dis-
counted cumulant as the TKS. Some researchers use the accounting approach, in which 
the TKS works as a factor determining private firms’ forward-looking revenues and 
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consequently influences the market value (Griliches 1981; Hall 2005) or firm earnings 
(Ballester et al. 2003). Scholars have also associated R&D investment with firms’ realized 
profits. In this line of inquiry, scholars derive the depreciation rate of knowledge capital by 
estimating production functions (Bernstein and Mamuneas 2006; Hall 2005; Huang and 
Diewert 2011). Both the forward- and backward-looking approaches rely on in-depth tradi-
tional economic theory but frequently at the cost of unreasonable assumptions, such as the 
constant R&D investment growth rate and the complete market. In addition, R&D data are 
not always available in certain technology sectors, which significantly decreases the repeat-
ability and reproducibility of these methods and results.

In the stream based on patent data, the patent renewal model is the main method that 
dates back to the work of Pakes and Schankerman (1984). The basic premise of this model 
is that patentees will renew a patent only if its expected stream of revenue is higher than 
the renewal fees. Although some studies have refined this model (even containing patents’ 
option value) (Baudry and Dumont 2006; Bessen 2008; Pakes 1986), the dependence on 
the assumed renewal fees and value distribution of the patent still need to be considered 
with caution. Another misgiving of the renewal model is subtler. As renewal decisions are 
made by staff, the bounded rationality will inevitably influence the objectiveness of these 
choices.

Park et al. (2006) proposed that the knowledge depreciation rate could be simply cal-
culated as the inverse mean age of the patents cited, which is based on technology cycle 
theory (TCT), and fully assessed using patent citation data. As a consequence, this method 
can be replicated across multiple technology sectors. However, the TCT method doesn’t 
control for the many possible exogenous growth factors in the patent system. The back-
ward-citation setting may also be confusing as we cannot identify which part of the knowl-
edge is depreciated at the calculated rate.

The method proposed in the present study is purely built on patent citation data. We dis-
entangle exogenous patent growth and focus on forward citation distribution. The forward-
looking perspective makes the calculation logic clearer and thus is expected to provide a 
novel and improved methodological approach to the relevant literature.

Patent citation data and methodological approach

Patent citation and knowledge depreciation

During TK production processes, recent and active knowledge serves as an input in the 
generation of knowledge, while other perhaps older and outdated knowledge is disregarded 
(Arthur 2009; Arthur and Polak 2006). The depreciation of knowledge, through obsoles-
cence or forgetting, is a durable process and could be reflected in the decreasing frequency 
of use (Jaffe and Trajtenberg 1996). We believe that patent citation data are superior for 
exploring knowledge depreciation patterns for the following reasons.

First, patent citations are a valid proxy for the technological components that are included 
in inventions (Keijl et al. 2016; Trajtenberg et al. 1997). Tracing patent citation records, we 
can monitor which patent uses the component contained in a focal patent (the forward cita-
tion records), and the origin of components contained in a focal patent (the backward citation 
records) (Trajtenberg et al. 1997). Patent citation data contain detailed information on timing, 



97Scientometrics (2021) 126:93–115 

1 3

e.g., the time a particular invention was developed, which in turn enables an exploration into 
the changes of a patent’s activeness over time, and thus reveal the depreciation pattern.

The second reason is that patent citations’ temporal distribution contains both the knowl-
edge obsolescence and knowledge loss factors, which reflect the two sides of knowledge 
depreciation. For the obsolescence factor, knowledge created to solve old problems tends to 
raise new problems and exogenous shocks. New problems stimulate the invention of new 
knowledge (Arthur 2009). As a result of this evolutionary process, firms and their inventors 
need to use new knowledge, because it represents the solution to the latest problems that may 
not be solved using old knowledge (Kogler 2016). Regarding knowledge loss, inventors also 
have the "temporal local search" nature, because recently created knowledge occupies the 
freshest memory of firms and is embodied in their routines and using old knowledge requires 
extra effort to review it as it has been out of the company and its inventors’ memory (Nerkar 
2003). Besides, the knowledge flow embedded in labor networks can be traced via patent data 
(Almeida and Kogut 1999; Lee et al. 2019), which provides the potential to explore knowl-
edge loss caused by inventor turnover.

Patent citation data is easily available, well codified, and have been generally tested in 
technology production and innovation processes related research (Corredoira and Banerjee 
2015; Jaffe and Trajtenberg 1996; Trajtenberg et  al. 1997). Its temporal distribution prob-
lems have been thoroughly explored for a long time in both physics and knowledge diffusion 
fields (Higham et al. 2017a, b; Jaffe et al. 1993), from which we can borrow ideas to solve our 
problem.

Patent citation temporal distribution: combining growth and depreciation

Scholars have found that the probabilities of a patent being cited increase first and then 
decrease. Usually, patents tend to receive most of their citations within the first 5 years after 
grant (Jaffe and Trajtenberg 1996). To explain this phenomenon, especially while the math-
ematic function remains the subject of intense study, investigators focusing on knowledge dif-
fusion have reached a consensus that there are at least two primary mechanisms dominating 
the patent citation temporal distribution. The first is the growth of the citation network caused 
by knowledge diffusion processes. Patent citation networks follow a preferential-attachment 
dynamic, which means if one patent has already received more citations than others, it tends to 
receive also more later on (Higham et al. 2017a, b).

The second mechanism underlying the patent citation distribution is aging, which captures 
the fact that the novelty of each patent fades over time (Wang et al. 2013). As the value of the 
later works is recognized, old patents gradually become obsolete until it is pointless to use 
or improve the old works through citation. It is apparent that knowledge ages after its birth 
(Higham et al. 2017a, b; Wang et al. 2013).

With the combination of the two aforementioned mechanisms and other potentials, predict-
ing patent citation has long been elusive. Higham et al. (2017a) separated patent citation rates 
into two distinct parts: a potentially time-dependent aging function and a completely time-
independent preferential-attachment-type growth kernel. After controlling for the exogenous 
causes of increasing citations, the citation rate for patents at time t can be expressed as:

where �(t) is the citation rate of one patent at time t, A(t) is an exponent aging function, and 
f (t) ∼ k� corresponds to the preferential-attachment dynamics. To identify the depreciation 

(1)�(t) = A(t)f (k),
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part, we need to separate the preferential-attachment dynamic from the citation temporal 
distribution.

Identifying the depreciation rate in solar PV industry: uncoupling two dynamics

Patent data in solar PV industry

To identify the TK depreciation rate in the solar PV industry, we collected granted patents 
relevant to solar PV applied from 1963 to 2015. The data were derived from the Thom-
son Innovation (TI) global patent database. Patents relevant to solar PV were identified 
using a search string developed byBinz et al. (2017), which resulted in a sample of 199,786 
granted patents.1 In order to prevent double counting of single inventions patented in mul-
tiple countries, all patent applications in the same Derwent World Patent Index (DWPI) 
patent family were recorded as one observation.

There are two available patent families in the TI database (INPADOC2 and DWPI fam-
ilies). In this study, granted patents are gathered in the DWPI families which are more 
restricted. DWPI families are ‘expert-validated families based on novel technical content’ 
and are ‘constructed based on the ‘‘novelty principle”’ (Martínez, 2011, p. 47). In DWPI 
families, ‘a new family member to be added to a given family, it needs to have matching 
technical content with existing members’ (Martínez, 2011, p. 47), which makes sure that 
patents in one family protect the same and new technical content. Thus, it is consistent with 
our objective to trace the depreciation process of new knowledge. After combining patents 
in one patent family, we obtained 53,459 patent families. The analyses that follow in the 
present investigation are all based on this very patent family level.

For each patent family, the earliest priority date is used (referred to as the application 
date of a patent family in following analyses), which essentially is the earliest application 
date of the invention in any patent office of the world (Binz et al. 2017). The aim here is 
to determine the date that is closest to when the invention was actually created (Binz et al. 
2017). We also collect the earliest publication date (referred to as the publication date of a 
patent family in following analyses) in each family, which is the date after which a particu-
lar piece of novel knowledge could be cited by the public, and, thus, this is also the actual 
date from which knowledge depreciation could be observed through citation dynamics.

In order to conduct patent family level citation analysis, we assign patent citations 
received by each granted patent to the corresponding patent family. After omitting the 
citations from patents that are not in our solar PV granted-patent sample, the family self-
citations, and the repeated citations between two patent families, our final citation dataset 
contains 228,322 observations.

To explore the depreciation of knowledge belonging to different countries, we attempt 
to assign patent families to certain countries. In this context, we mainly use the ‘inventor 
criterion’, under which patent families are assigned to inventors’ residence countries, due 

1 The Thomson Innovation (TI) global patent database collects all patents in one family. During the pat-
ent collection process, we first used the specific search string to identify solar PV patents. After that, and 
in order to make the search more comprehensive, we selected all the granted patents that could also be 
assigned to the same INPADOC families that matched our solar PV patent samples.
2 INPADOC families are for applications directly or indirectly linked through priorities, which protect the 
same or related inventions (Martínez 2011).
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to its good match to research and development (R&D) activity location (de Rassenfosse 
et al. 2013).

To be more specific, for each patent family, we assign it to the available geographic 
information of its patent member with the earliest application date because this pat-
ent within the family should be closest to the actual knowledge creation date. During the 
process of assigning patent families to their inventor residence countries, we also include 
inventor information derived from PATSTAT, a worldwide patent statistical database pro-
vided by EPO as well as the information in the TI database in order to maximize the ratio 
of this kind of geo-assignment exercise. For patent families that contain no inventor resi-
dence information, we assign these to patentee countries. If neither inventor nor patentee 
information is available, the patent families would be assigned to the earliest priority coun-
try in each family. 3Eventually, around 72% of the patent families are assigned to the inven-
tor residence countries, around 6% are to patentee countries, and 22% are to the earliest 
priority countries (see Table 1 for a detailed overview).

Rescaling citation records: accounting for citation inflation

We observe that the additional citation curve doesn’t always follow an expected pattern 
showed in Jaffe and Trajtenberg (1996) that patents receive most of their citations in the 
first few years after grant. For example, patents4 in the solar PV industry published in 
1981, 1990, and 1995 all received most of their citations from solar PV patents in around 
2008 (Fig. 1), which is not consistent with many other studies (Jaffe and Trajtenberg 1996; 
Nemet 2009). This is due to a complex interplay of extrinsic and intrinsic factors that need 
to be considered and that raises other important questions regarding the growth patterns 
and dynamics of citation patterns in this particular technology field.

In the solar PV industry, the number of annual patent applications soared to over 
6000 in 2011 from less than 1000 in 2000 (see Fig.  2). As new patents may need to 
cite the current knowledge stock, a sharp increase in the knowledge production output 
will most likely result in an increase of citations to existing, and even older, patents. 
However, an increased knowledge generation speed per se does not necessarily lead to 
a surge in citations to older patents. One also needs to consider how many citations 
new patents make in general, which is associated with the general average number of 

Table 1  The numbers and shares 
of patent families assigned to 
inventor residence, patentee and 
earliest priority countries

Patent families are assigned to: Number of patent 
families

Shares (%)

Inventor residence counties 38,404 72
Patentee countries 3269 6
Earliest priority countries 11,786 22
Total 53,459 100

3 For patent families with both inventor and priority country information, we calculate the ratio of patent 
families with identical inventor residence and priority country information and find that the match-ratio is 
over 90%. In the same way, the ratio of patent families that contain a match between the inventor residence 
and patentee country information is over 96%.
4 In the following analyses, ‘patent’ would indicate ‘patent family’ mentioned in  “Patent data in solar PV 
industry.” section
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citations made by each patent in the respective field. Figure 3 shows that the average 
number of backward citations (from solar PV patents) received by each solar PV patent 
applied in different years. We find that the number increased significantly from less than 
4 in 1981 to over 8 in around 2008. 

Fig. 1  The number of additional patent citations in each 6-month period received by solar PV patents

Fig. 2  The number of annual solar PV patent applications
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The combination of growing patent application numbers along with the additional 
increase in average backward citation numbers results in citation inflation that can obscure 
the real trend in knowledge depreciation (Higham et al. 2017a). To correct for this prob-
lem, one efficient approach is to remove the source of systematic variation in the citation 
behavior over time (Hall et al. 2001; Higham et al. 2017a, b). In the present investigation, 
and following Higham et  al. (2017a, b), we treat patenting increase as a comprehensive 
exogenous factor, which represents the combined effect of various factors like resource 
availability, policy bias, market trends, etc. These exogenous factors are not associated with 
the utility of prior technology and thus should be removed (Higham et al. 2017b). As for 
the average citation numbers among patents, these changes reflect that the linkage between 
new and old knowledge became either weaker or stronger (Chen 2017), which should be 
treated as an intrinsic factor in the knowledge production system (Higham et al. 2017b).

In specific, to deflate the citation inflation, we employed a similar strategy as pursued 
by Higham et al. (2017a, b). All of the citations to each focal patent are binned in 6-month 
periods after the publication year of the focal patent. The citation incoming dates are the 
application dates of citing patents. We “deflate” the additional citations in each 6-month 
period to each focal patent with the inflation-adjusting factor:

where ΔT  is 6 months and N(T ,ΔT) is the number of solar PV patent applications in the 
time interval [T , T + ΔT] . Y indicates January  1st of the publication year of a focal patent.

For instance, if the focal patent is published in the year of 1983, Y denotes January 
1st, 1983. N(Y ,ΔT) denotes the number of solar PV patent applications in the first half of 
1983. If there are twice as many patent applications in the second half of 2010 as the appli-
cations in the first half of 1983, citations to the focal patent incoming in the former period 

(2)c(T;Y ,ΔT) =
N(Y ,ΔT)

N(T ,ΔT)
,

Fig. 3  The number of average backward patent citations to solar PV patents
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would be given a weight of 0.5 to deflate the exogenous growth and to make the citations 
be “equivalent focal time citations”. Figure 4 provides the number of additional inflation-
adjusted patent citations (from solar PV patents) in each 6-month period, which shows that 
this approach can deal with the extreme growth in the PV market in around 2008.

Separating knowledge depreciation from preferential‑attachment dynamics

To make the best use of our data, the cohort of patents published between 1981 and 2000 
was chosen as the focal patents of the investigation. Intra-industry patent citations to a focal 
patent were used to identify the depreciation rate. All citations to each patent are binned in 
6-month periods according to their application dates after the focal patent’s publication 
year. That is, for a patent published in 1981, its citations received after 31 December 1981 
would be binned in 6-month periods, while a citation before that date would be treated as 
an initially accrued citation. All citations to our focal patents are assigned a time t which 
denotes the time lag between the publication of the cited patent and the application of the 
citing patent.

To separate knowledge depreciation from preferential-attachment dynamics, we fol-
lowed the method provided by Higham et al. (2017a, b) after we binned each citation to the 
respective 6-month period:

Step1: we established two time series for each focal patent: one is the number of addi-
tional citations received within each 6-month period. The other is the number of accumu-
lated citations at the beginning of each time period. We denote the accumulated citation 
numbers as k and the additional citations within a 6-month period as Δk . All these cita-
tions, including the accumulated citations, indicate inflation-adjusted citations.

Fig. 4  The number of additional inflation-adjusted patent citations in each 6-month period received by solar 
PV patents
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Step2: we bin the citation count data on each focal patent into groups with similar k and 
t. This process could be explained with an L–t matrix (see Fig. 5), in which L represents the 
smallest integer that is not less than the logarithmic value of k + 1 (in this study, the base 
of the logarithmic value is set to 1.5, with which we can get enough useful bins. We cal-
culate the logarithmic value of k + 1 in case k = 0) and t is the corresponding time lag. For 
example, if a patent received 3.1 (inflation-adjusted) citations in the third 6-month period 
after its publication year, and it had 0.3 (inflation-adjusted) accumulated citations at the 
beginning of the period. Because 0 < log1.5(1 + 0.3) ≤ 1 , and there is 1-year lag from the 
publication to receiving these citations, the number 3.1 will be put into the unit (t = 1 year, 
L = 1) in the L–t matrix. Citations to other focal patents with the same t and similar k would 
also be put into this unit. Citations to patents that have no accumulated citation would be 
set in the bins with L = 0 as - 1 < log1.5(1 + 0) ≤ 0 . The purpose of implementing logarith-
mic binning in the accumulated citation number dimension is to balance the observation 
counts in each bin.

With each fixed L, we could calculate the mean number of additional citations in each 
6-month time period,Δk(t, t + Δt) , and then obtain the respect time series. Each time series 
would reflect the changing of utility (citation rates) across the time of a certain group of 
patents (with a particular range of accumulated citations). We estimate the linear function 
between ln(Δk(t, t + Δt)) and time lag t, using weighted linear least-squares regression and 
the weights are the proportion of patents number in each data point. The coefficient of time 
t ( e(t) ) would reflect the extent of exponential depreciation for patents in certain bins.

To calculate the depreciation rate of the whole solar PV industry, we run the linear 
regression for different L-bins. The regression results are shown in Table 2 and Fig. 6. Fig-
ure 6a explicitly demonstrates that the slopes are similar among L-bins with L = 0, 2,3,4,5. 

Fig. 5  An example of the L–t matrix
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Moreover, we also find a similar pattern as Higham et al. (2017a) that the higher the L is, 
the higher the intercept is, which is in line with the preferential-attachment dynamics of 
citation growth.  

Figure 6b gives the 95% confidence interval of each e(t)(black dash-dot lines) and the 
weighted arithmetic average (red solid line, −0.215) of the coefficients for L-bins with 
L = 0,2,3,4,5. The weights are the inverses of the variance for each e(t) . We find that the 
average is located in the scope of the 95% confidence interval of the five e(t)s , which shows 
the robustness of coefficients for varied L-bins.

For bins with L = 6,7,8, their e(t)s are higher than other bins, which indicates their rela-
tively lower depreciation rates. This phenomenon makes sense because patents with pretty 
high-level citations may imply breakthrough inventions that would profoundly influence 
the evolution of technology (Corredoira and Banerjee 2015), and thus are expected to 
depreciate slowly.

We use the weighted average of e(t)s for bins with L = 0,2,3,4,5, which contain over 
85% citation observations in the L–t matrix when t is between 0 and 12 years,5 to denote 
the deprecation rate of the whole industry. In general, the TK depreciate rate in the solar 
PV industry estimated through the proposed method is around 21.5% per year.

Table 2  The results of the weighted linear least-squares regressions

Note: *p < 0.1; **p < 0.05; ***p < 0.01

ln(Δk(t, t + Δt))

L = 0 L = 2 L = 3 L = 4 L = 5

(1) (2) (3) (4) (5)

t  − 0.218***  − 0.232***  − 0.213***  − 0.210***  − 0.209***

(0.012) (0.013) (0.010) (0.010) (0.011)
Constant  − 2.036***  − 1.613***  − 1.182***  − 0.716***  − 0.236**

(0.061) (0.083) (0.073) (0.070) (0.084)
Observations 24 24 24 24 24
R2 0.939 0.936 0.950 0.953 0.940
Adjusted  R2 0.937 0.933 0.948 0.951 0.937
F Statistic (df = 1; 22) 341.430*** 321.796*** 418.971*** 448.730*** 345.056***

5 Patent applications are declining sharply after 2012 most likely due to the time lag between application 
and publication. Our focal patents are published between 1981 and 2000. Placing t between 0 and 12 avoids 
using data on patents applied after 2012, which in turn circumvents that application-publication lag.
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We also employed this method to calculate the depreciation rates of knowledge from 
three different countries: the USA, Japan, and Germany. The country-level analyses are 

Fig. 6  Regression results for the whole solar PV industry a the fitting lines, b the coefficients of t. Notes: 
In Fig. 6a, ln(Δk(t, t + Δt)) as a linear function of time lag t for fixed citation bins with the log-maximum at 
L = 0, 2, 3, 4, and 5. A logarithmic transformation has been conducted on Δk(t, t + Δt) in this panel, through 
which we could find the significant declining fitting lines showed in solid lines. Hollow circles are cor-
responding citation data. In Fig. 6b, hollow circles indicate coefficients of t (e(t)) estimated with weighted 
linear least-squares regression. Black dash-dot lines show the 95% confidence interval of e(t)s, and the red-
solid line shows the weighted average value of e(t)s for bins with L = 0, 2, 3, 4, 5
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based on the citation data to patents assigned to certain countries in our patent cohort. 
Essentially, when calculating the rate for the USA, patents assigned to the USA and pub-
lished between 1981 and 2000 become our focal patents. Citations on these focal patents 
are then processed in the same way as described above in order to identify the TK depre-
ciation rate for the very country.

The rate in the USA is around 20.1%/year, in Japan is about 22.9%/year, and in Ger-
many is about 21.2%/year. Although not the same, the rate in Japan is comparable to the 
estimate of 20.3%/year in Watanabe, Wakabayashi, and Miyazawa (2000) on technology 
depreciation rates in the PV industry, which identified the rates through a detailed indus-
trial survey. All of the results are shown in Fig. 7.

Technological knowledge depreciation for solar PV

This section documents the remaining TKS building process in different countries with 
the previously calculated depreciation rates and illustrates the significance of knowledge 
depreciation.

First, following a simple assumption that there is a linear relationship between research, 
development, and demonstration (RD&D) investment and knowledge creation, which has been 
employed in the literature (e.g., Grubler and Nemet 2012; Watanabe et al. 2000), we use solar 
PV RD&D expenditures derived from the International Energy Agency(IEA)6 as an indica-
tor of knowledge input (see Table 4 in the Appendix). The work of Kim and Wilson (2019) 

Fig. 7  The regression results for a the USA, b Japan, and c Germany. Notes: Top panels show the fitting 
lines between t and ln(Δk(t, t + Δt)) . A logarithmic transformation has been conducted on Δk(t, t + Δt) in 
these panels, Bottom panels show the coefficients of t (e(t)) for varying L-bins. Figure 7 (a) the USA and 
(b) Japan show the regression results for bins with L = 0,2,3,4, and 5 (the base of logarithmic L-bins is 1.5), 
which is consistent with the setting of analysis for the whole industry. For (c) Germany, we set the logarith-
mic L-bin base as 2 due to the fewer observations, and then we have bins L = 0,1,2, and 3 that could have 
enough observations in each unit

6 In IEA data services website https ://wds.iea.org/WDS/Commo n/Login /login .aspx, the fold Energy Tech-
nology RD&D Budgets(2019 edition) contains the Detailed Country RD&D Budgets report, in which peo-
ple could find the solar PV RD&D expenditures of the three countries.

https://wds.iea.org/WDS/Common/Login/login.aspx
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provides subtler evidence for the rationality of this assumption. According to Kim and Wil-
son (2019), the share of renewable energy RD&D expenditure in the six technology fields 
of the EU’s Strategic Energy Technology (SET) Plan7 is around 27%. The shares of renew-
able energy codified knowledge creation indexes associated with patenting (i.e. patent applica-
tions and citation weighted patent applications) are similar to the share of RD&D expenditure, 
which implies the linear relationship between RD&D investment and technological knowledge 
creation in the renewable energy industry. Solar PV as one of the most important renewable 
technologies may share a similar pattern with the whole of renewable energy technologies.

Figure  8 shows the knowledge input statistics of Germany, Japan, and the USA from 
1974 to 2015. The USA employed a different investment strategy from Japan and Germany. 
Compared with other countries, the USA invested much more in the early stage of the indus-
try (before the 1980s), but then sharply reduced RD&D budgets. Around 2009, the USA 
underwent a second round of investment growth in the PV industry. In contrast to the high 
but erratic investment pattern in the USA, Germany and Japan ’s patterns are low but stable.

To calculate the remaining TKS over time with the corresponding knowledge deprecia-
tion rates obtained in our study, the annual expenditures are discounted and then summed 
up. The mathematical expression of the remaining TKS is:

where TKST ,c denotes the remaining TKS of country c in year T, RD&DT ,c denotes the 
RD&D expenditure of country c in the solar PV industry in year T, ec is the knowledge 
depreciation rate in country c.

Figure  9 shows the calculated results. We can find that without sufficient investment 
to recharge TKS, the USA’ technological advance built through the early boom invest-
ment period eroded quickly. At the end of 2015, only 12.19% of the original RD&D 
remained in the USA PV industry (642.22 million US$2018 out of the total 5,266.96 mil-
lion US$2018), the ratios in Japan and Germany are 14.79% and 13.25% respectively (see 
Table  3). The remaining ratio gap does not purely result from the varying depreciation 
rates. An important finding is that although the USA’s knowledge depreciation rate is lower 
than the rate in Japan and Germany, the remaining ratio in the USA is still lower than 

(3)TKST ,c = RD&DT ,c + (1 − ec)TKST−1,c

Table 3  The remaining and cumulative knowledge expenditures

Notes: Expenditure data converted from current prices in national currencies to US dollars in constant 2018 
prices using GDP deflators and 2018 exchange rate

Remaining TKS(2015, 
in million US$2018)

Cumulative RD&D 
expenditures(2015, in 
million US$2018)

The ratio of remaining TKS

US(e = 20.1%/year) 642.22 5266.97 12.19%
Japan(e = 22.9%/year) 410.69 2776.88 14.79%
Germany(e = 21.2%/year) 328.06 2475.09 13.25%

7 The six technology fields denote: Renewable Energy, Smart Grid, Energy Efficiency, Sustainable Trans-
port, Carbon Capture and Storage, and Nuclear Power.
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Japan’s and Germany’s, which indicates that the expenditure pattern is an important fac-
tor for knowledge stock creation. Consistent RD&D investment is important in a changing 
world with knowledge depreciation because TKS needs continuous recharging.

Existing R&D policy research has dealt with the relationship between policy consist-
ency and technological innovation. Researchers reached a consensus on giving consistent 
signals to economic agents in the early stage of emerging industries to maintain innova-
tion and reduce uncertainty (Yoon et al. 2017). Considering TK depreciation, we provided 
another reason for the importance of R&D policy consistency: sufficient continuous R&D 
input is essential for recharging TKS. Erratic investment patterns make TKS vulnerable to 
erosion, resulting in a substantial waste of R&D expenditures in the long run.

However, the importance of early-stage investment demonstrates some important fac-
tors that have not been previously considered in association with knowledge depreciation: 
the timing of R&D investment and technological learning. Accumulated R&D investment, 
especially in the early stage, induces technological learning to decrease the cost of new 
technology and then stimulate its diffusion (Ma 2010). We thus wonder whether knowledge 
created in different time periods experiences varying decay processes.

While exploring the time-dependent knowledge depreciation rate, an intuitive hypoth-
esis could be that knowledge created in the early stage is important to stimulate follow-
ing inventions and thus would be more durable (with lower knowledge depreciation rates).
Indeed, grouping our whole solar PV patent dataset into five-year periods, beginning in 
1981–1985 and ending in 1996–2000, we find that the depreciation rate for knowledge 
published in the period 1981–1985 is around 21.4%/year, in 1986–1990 and 1991–1995 are 

Fig. 8  Annual RD&D expenditures in the solar PV industry of the three countries
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around 20.3%/year and 19%/year, while in 1996–2000 is around 24.8%/year.8 This result 
cannot justify the importance of early-stage knowledge, because the rate for the period 
1981–1985 is higher than that for the following two periods.

However, it is still too arbitrary to deny the influence of knowledge production period and 
its impact on the knowledge depreciation rate, because we have not considered knowledge 
content change across time. In the case of the solar PV industry, according to Huenteler, 
Schmidt, Ossenbrink, and Hoffmann (2016b, p. 110), “In solar PV the focus shifts over time 
from product innovations, which represent an average of 64% of the weight between 1972 
and 1985, to process innovations with an average 73% of the weight in 1990–2009.” This 
raises the question if a potential shift in inventive focus impacts observed knowledge depre-
ciation rate trends over time; something that should be explored in future research efforts.

Discussion and concluding remarks

The rate of TK depreciation is a critical economic parameter, but its measurement is 
still an open question in the innovation research area. The main purpose of this study 
was to identify the TK depreciation rate with a readily available data source, i.e. pat-
ent citation data, and which can also be applied in other technology domain studies. 

Fig. 9  Remaining solar PV TKS of the three countries

8 These time-variant depreciation rates are calculated based on the whole dataset, which is regardless of 
country of origin.
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Borrowing ideas from recent investigations into citation behavior, we equipped the pat-
ent citation data with an exponential aging function after adjusting for citation inflation 
and after separating the preferential-attachment factor that indicates a certain annual 
depreciation ratio.

In the case of the solar PV industry, the aggregate industry TK depreciation rate is 
about 21.5% per year, but rates vary across different countries. The rate in the USA is 
20.1% per year, while in Japan and Germany it is around 22.9% and 21.2% per year, 
respectively. Using the estimated TK depreciation rates and the knowledge build-up 
rate via RD&D, we calculate the PV industry’s remaining TKS over time. The erratic 
RD&D expenditures that took place in the USA led to a sharp decline in the TKS. In 
contrast, Japan and Germany have lower but more stable RD&D expenditures than the 
USA, which resulted in a more efficient knowledge recharging process. When consider-
ing TK depreciation, it is important to emphasize the need for a continuous recharge 
mechanism, which could be stable R&D efforts and consistent stimulation policies.

We also explore time-varying changes in the TK depreciation rate but have not found 
a significant trend. In our analysis of four five-year periods across 1981–2000, knowl-
edge in the first and last five-year periods experiences a relatively higher depreciation 
rate than the periods in-between. Future research efforts should also consider other 
time-dependent factors, e.g., in the solar PV case, the shift from product to process 
invention in around 1985 should be considered to explain changing trends.

In addition, how a shift in invention focus might reflect the nature of technologies 
themselves could be relevant. Compared to the solar PV case, it could be very well that 
more complex technology, like wind turbine inventions, could experience shifts through 
different product components that comprise the overall technology (Huenteler et  al. 
2016b), which further reflects the difference on technology granularity. Indeed, there 
is some evidence showing that more granular technologies may be less susceptible to 
changes in the overall innovation environment (Grubler and Nemet 2012; Wilson et al. 
2012). Future research efforts should aim to understand the link between TK deprecia-
tion rate and the technological nature of specific technology domains.

Besides the use of patent data to identify the TK depreciation rate, the present investi-
gation has some further limitations that should be noted. First, we find that most citations 
in our dataset come from US patent families (see Table 5 in the Appendix). This bias may 
be relevant to the difference in technological systems across the world (Bacchiocchi and 
Montobbio 2010), which may in turn make our results based on the patent family level 
analyses biased towards the citations to/from US-developed patents and toward the cita-
tions from the USPTO.9 Future research efforts could circumvent this bias by comparing 
the depreciation of TK developed abroad with that of TK developed domestically as well 
as including the effect of patent offices’ practices.

Second, since patents represent codified knowledge, we cannot use it to capture the 
depreciation of tacit knowledge embodied in the staff’s mind, organization, and even 
in institutional memory. In addition, the present method requires a sufficient amount of 
observations over a long period and thus might not be suitable for technologies that have 
emerged only very recently.

9 Bacchiocchi and Montobbio (2010, p. 461) show that for equivalent patents (patent members in one pat-
ent family), these receive many more citations from USPTO than from EPO.
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Table 4  Total Solar PV RD&D 
Expenditure in Million USD 
(2018 prices and exch. rates)

Source: IEA, Energy Technology RD&D Budgets (2019 edition)
Notes: ‘.’ indicates unavailable data. We use the last 5 year moving 
average to fill the missing data. We did not include data for years 
2016, 2017, and 2018 as the US data in these years are estimated by 
IEA Secretariat rather than collected from funding institutes in each 
country documents

Year Germany Japan United States

1974 1.54 2.845 0
1975 14.586 3.411 9.606
1976 24.03 4.21 37.132
1977 5.473 3.07 94.759
1978 8.47 3.562 166.79
1979 116.732 3.568 236.072
1980 92.635 22.138 391.705
1981 29.442 54.985 362.138
1982 128.115 61.524 166.391
1983 57.962 59.994 125.719
1984 68.59 71.792 105.29
1985 60.133 74.802 110.652
1986 57.881 65.437 81.76
1987 59.405 61.174 79.695
1988 68.89 60.592 66.245
1989 77.956 56.187 63.348
1990 83.952 58.334 60.73
1991 92.184 56.603 78.501
1992 93.531 52.169 98.486
1993 91.083 56.091 104.003
1994 52.55 58.147 117.539
1995 44.959 60.02 134.45
1996 56.975 62.224 92.506
1997 38.156 62.574 87.784
1998 51.502 71.03 98.318
1999 55.035 87.701 106.147
2000 55.37 116.143 91.37
2001 41.681 82.704 103.908
2002 34.427 106.582 97.523
2003 42.816 94.242 .
2004 34.802 169.749 .
2005 59.47 134.827 .
2006 54.671 156.129 .
2007 47.243 3.346 .
2008 70.23 0.891 .
2009 61.778 42.526 424.479
2010 66.981 85.542 248.184
2011 74.687 115.113 287.016
2012 83.156 139.821 83.483
2013 70.737 117.887 163.377
2014 63.756 112.737 59.632
2015 81.518 64.461 36.694
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According to IEA: ‘There is a large increase in RD&D spending observed in 2009 due 
to the increased expenditures associated with the American Recovery and Reinvestment 
Act of 2009 (stimulus) spending. This is a one year appropriation (although actual expen-
ditures may go into future years) and so 2010 saw a significant decrease.’ We have not 
specially processed the US 2009 data in the analysis because our main purpose is identify-
ing the depreciation rate, rather than the knowledge stock. Using present US data can also 
show the importance of TKS continuous recharging.
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