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Abstract
Finding statistical models for citation count data is important for those seeking to under-
stand the citing process or when using regression to identify factors that associate with 
citation rates. As sets of citation counts often include more or less zeros (uncited articles) 
than would be expected under the base distribution, it is essential to deal appropriately with 
them. This article proposes a new algorithm to fit zero-modified versions of discretised 
log-normal, hooked power-law and Weibull models to citation count data from 23 different 
Scopus categories from 2012. The new algorithm allows the standard errors of all param-
eter estimates to be calculated, and hence also confidence intervals and p-values. This algo-
rithm can also estimate negative zero-modification parameters corresponding to zero-defla-
tion (fewer uncited articles than expected). The results find no universal best model for the 
23 categories. A given dataset may be zero-inflated relative to one model, but zero-deflated 
relative to another. We suggest circumstances in which one of the models under considera-
tion may be the best fitting model.

Keywords Zero-modified models · Discretised log-normal distribution · Hooked power-
law distribution · Weibull distribution

Introduction

It is important to identify models that fit citation distributions well for several reasons. A 
good model can be used to identify anomalous sets of articles that are not fitted well by 
the model, suggesting indexing or classification errors, can help with the design of effec-
tive impact indicators and confidence intervals, and is important when performing regres-
sion analyses to identify factors that influence citations. A common problem when fitting 
statistical models to citation data is that the number of uncited articles (0 s) differs from 
that expected by the best fitting model, perhaps due to citation indexing policies selecting 
the wrong balance of high and low impact journals. This problem might be remedied by 
fitting a zero-inflated or a zero-deflated (i.e., a zero-modified) distribution that allows the 
predicted number of zeros to more closely approximate the number of zeros in a dataset.
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A previous study fitted zero-inflated versions of the discretised log-normal and hooked 
power law distributions to citation count data from 23 Scopus categories, finding that zero-
inflation occurred in nearly all cases (Thelwall 2016). The zero-inflation was hypothesised 
to be a consequence of “inherently unciteable articles”, such as magazine articles. Zero-
counts due to unciteability are an example of “perfect” or “structural” zeros: data that are 
constrained to be zeros due to some feature of the data generating process. In contrast, 
other zeros are referred to as non-perfect or count zeros. In this context, a non-perfect zero 
would be a paper that is citeable but has not been cited. In essence, zero-inflated models 
seek to estimate the proportion of perfect zeros present in data and fit a count distribution 
to the remaining data.

A less well-studied phenomenon is zero-deflation, where data is well-fitted by a given 
count distribution, but there are less zeros present in the data than would be expected 
under the distribution. Zero-deflation may arise for citation counts from the Web of Sci-
ence (WoS), Scopus or any other citation database with selective inclusion criteria because 
uncited articles may be less likely to be indexed. WoS and Scopus have poorer coverage of 
non-English journals than of English journals so the absence of non-English journals may 
contribute to zero-deflation. This may be particularly relevant for fields containing nation-
specific agricultural, legal, culture, or politics research.

Whilst previous scientometric studies have fitted zero inflated distributions to citation 
count data, none have fitted zero-deflated or zero-modified distributions. This paper intro-
duces zero-modified versions of the hooked power law and discretized log-normal distribu-
tions previously shown to fit citation data well (Thelwall 2016), and also zero-modified 
version of the discrete Weibull distribution. The discrete Weibull distribution is capable of 
modelling highly skewed count data with more zeros and thus is a good candidate model 
for citation counts (Brzezinski 2015). Discrete Weibull distributions may be fitted to data 
using the R-Package DWreg (Vinciotti 2016). The pure power law distribution is not con-
sidered because it usually requires low cited articles to be ignored for fitting and therefore 
is not a credible citation distribution. This paper also introduces an algorithm that fits both 
negative and positive zero-modification parameters and determines the standard errors of 
the zero-modification (and other) parameters, which in turn enables the calculation of con-
fidence intervals for these parameters, and the performance of statistical tests on them. The 
algorithms are tested on a sample set of citation data from 23 fields to assess the extent to 
which the new distributions fit citation count data. The circumstances in which one of the 
models under consideration may be the best fit are also discussed.

Distributions

Hooked power law

The hooked power law is a generalised version of the power law model (Pennock et  al. 
2002). The hooked power law has probability mass function:

where B and � are model parameters, and A is a constant chosen so that 
∑∞

x=0
f (x;B, �) = 1.

f (x;B, �) =

{
A(B + x)−� x = 0, 1, 2,…

0 otherwise



995Scientometrics (2020) 125:993–1010 

1 3

Discretized log‑normal

A (continuous) random variable is log-normally distributed if its logarithm is normally 
distributed. It has probability density function:

To discretise the distribution, (i.e., convert it into a form that models the situation where x 
is a positive integer), integrate f (x;�, �) over unit intervals about positive integer values of 
x , and divide by K =

∞

∫
0.5

f (x;�, �)dx , where f  is as at (1) above. Thus, the probability mass 

function of the discretised log-normal distribution is:

Discrete Weibull

The discrete Weibull distribution has probability mass function:

where 0 < q < 1 and 𝛽 > 0.

Zero‑modified models

A zero-modified model (see, for example, Dietz and Böhning 2000) has the probability 
mass function:

where � is a set of parameters and f ∗(x;�) is a probability mass function. For negative � 
the distribution is known as a zero-deflated distribution and for positive �, it is known as 
a zero-inflated distribution. For � = 0 the model reduces to the non-modified model, f ∗ , if 
� = 1 the model is a “zero-model’’, i.e. one where all data are zero. Zero-inflated models 
are used to model data that has excess zeros (more zero counts than expected under the 
model f ∗ ). For example, if 100 data points/observations follow a Poisson distribution with 
parameter 1, we would expect to observe about 100 × e−1 = 36.8 zeros. Substantially more 
zeros would therefore indicate possible zero-inflation. Zeros may stem from two distinct 
processes, “Non-excess’’ zeros where zeros occur by chance, in the same manner as 1 s, 

(1)f (x;𝜇, 𝜎) =
1

x𝜎
√
2𝜋

exp

�
−
(ln (x) − 𝜇)

2

2𝜎2

�
, x > 0, 𝜎 > 0,𝜇 ∈ (−∞,+∞).

g(x;�, �) =

⎧
⎪⎨⎪⎩

1

K

x+0.5

∫
x−0.5

f (x;�, �)dx x = 1, 2, 3,…

0 otherwise

f (x;q, �) =

{
qx

�

− q(x+1)
�

x = 0, 1, 2, 3,…

0 otherwise

(2)f (x;�,�) =

⎧
⎪⎨⎪⎩

� + (1 − �)f ∗(x;�) x = 0

(1 − �)f ∗(x;�) x = 1, 2, 3,…

0 otherwise
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2  s,…; and another process by which some data are constrained to be zeros (perfect or 
structural zeros).

For a zero-deflated model, 𝜔 < 0 , but may take values < −1 . To see this, note that

For example, if f ∗ is a Poisson distribution with parameter 0.5 then 
f ∗(0;0.5) = exp(−0.5) = 0.6065 and hence � is valid provided

The interpretation of negative values of � is not as straightforward as those of positive val-
ues. The most straightforward interpretation is to regard 1 − � as the proportionate increase 
in the expected number of observed positive values. For example, if � = −1.5 , then we 
would expect to observe approximately 1 − (−1.5) = 2.5 times more 1  s, 2  s, 3  s etc. in 
the data than we would in the non-modified model. Zero-deflation in data can be a conse-
quence of some zero-counts not being included (e.g., Mendonca 1995).

Data and methods

The data analysed in this article consist of citation counts for journal articles published in 
2012 from 23 Scopus categories, with up to 5000 journal articles for most of the catego-
ries. The citation counts were downloaded from Scopus in November 2017. If there were 
greater than 5000 articles in a category the most recent 5000 articles were selected. This 
provides a coherent collection of articles with 5–6 years of citations (see “Appendix 1”).

A previously published algorithm fits zero-inflated discrete log-normal and zero-inflated 
hooked power law models to covariate-free data (the zero-inflation parameter is estimated 
to two decimal places) (Thelwall 2016). This model is easily extended to zero-inflated ver-
sions of any count model but is unable to fit negative zero-modification parameters. In this 
article, we propose an algorithm that will enable the fitting of negative (and positive) val-
ues of � , will estimate the value of � to many decimal places, and is much faster. R code to 
fit the models discussed in this paper is available online.1

This algorithm is based upon maximization of the log-likelihood of the relevant zero-
modified models via the optim command of R. The optim function offers different opti-
misation algorithms, including conjugate gradient, quasi-Newton, Nelder–Mead and simu-
lated annealing. The default method is a derivative-free Nelder–Mead algorithm that does 
not require the computation of the gradient. It also is a method for solving high-dimen-
sional linear optimisation problems with constraints that is non-sensitive and robust to dis-
continuities in the likelihood surface, and generally requires relatively few function evalua-
tions to achieve convergence.

The above-mentioned algorithms have several advantages over techniques such as New-
ton–Raphson and Fisher Scoring. In particular, they optimise the log-likelihood function 

(3)
f (0;𝜔,𝛩) ≥ 0 ⇔ 𝜔 + (1 − 𝜔)f ∗(0;𝛩) ≥ 0

⇒ 𝜔(1 − f ∗(0;𝛩)) + f ∗(0;𝛩) ≥ 0

⇒ 𝜔 >
−f ∗(0;𝛩)

1−f ∗(0;𝛩)

� ≥ −
0.6065

1 − 0.6065
= −1.54

1 The R source code is available at https ://doi.org/10.6084/m9.figsh are.76430 93.v1.

https://doi.org/10.6084/m9.figshare.7643093.v1
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of the parameters simultaneously as opposed to individually. Consequently, the estimators 
obtained are better than those obtained by maximising the likelihood with respect to each 
parameter. Such techniques have been around a long time but have only become practical 
in recent years due to improved computing power.

An advantage of the optim command is its output. It includes the parameter estimates 
(including the estimate of the zero-modification parameter), the value of the likelihood 
of the model, and the Hessian matrix (Faraway 2005). The diagonal entries of the matrix 
inverse are proportional to the standard errors of the parameter estimates. The issue of 
whether there is zero inflation or deflation is dealt with by the sign of the estimate of the 
zero-modification parameter. The log-likelihood of the model is also outputted, which ena-
bles the calculation of corresponding Akaike Information Criterion (AIC) introduced by 
Akaike (1974), and thus enables the model fits to be compared. The model usually consid-
ered “best” is the one with the lowest AIC. The AIC is essentially an adjusted version of 
the log-likelihood, with the adjustment being to account for differing numbers of variables 
between models. The models corresponding to the discrete lognormal, hooked power law, 
and Weibull have to be fitted independently and the comparison carried out manually. The 
code supplied is easily modified for other distributions.

As is mentioned above, the standard errors of the parameter estimates can be computed 
from the Hessian matrix. This is especially useful for the calculation of confidence inter-
vals for the zero-modification parameter (as well as any other parameters). For the compu-
tation of the confidence intervals related to the zero-modification parameter � the formula 
�̂� ± Z1−

𝛼

2

∗ Se(�̂�) is used where Se is the standard error of the maximum likelihood esti-
mate of � and Z1−

�

2

 is the 
[(

1 −
�

2

)
× 100

]
-th percentile of a standard normal distribution. 

Thus, for � = 0.05,Z1−
�

2

 = 1.96, values of � between the interval’s limits are compatible 
with the data.

Having the estimates of the standard deviations of the parameters also enables the per-
formance of hypothesis tests related to the parameters. In particular it enables the test 
H0 ∶ � = 0 to determine whether there is statistical evidence of zero-modification in the 
data. Whilst American Statistical Association (Wasserstein and Lazar 2016) guidelines 
concerning the misuse of p-values and confidence intervals has led to debate about their 
use, the guidelines are primarily concerned with the misuse use of p-values and confidence 
intervals and do not advise their abandonment. Indeed, the guidelines state that “P-values 
can indicate how incompatible the data are with a specified statistical model’’.

Several tests exist to test for zero-modification, including likelihood ratio tests, score 
tests, and the Wilson–Einbeck test (Wilson and Einbeck 2019). Note that whilst the Vuong 
test for non-nested models has been used as a test of zero-inflation, this is erroneous (Wil-
son 2015). This paper uses the Wald test (Wasserman 2006) to test: H0 ∶ � = 0 against the 
alternative: H1 ∶ � ≠ 0 with W =

�̂�

Se(�̂�)
 . We employ the Wald test as it directly tests the 

significance of the estimate of the zero-modification parameter without necessitating the 
fitting of the non-zero-modified model.

Finally, as it was mentioned for assessment of the fitted model, the AIC is used to show 
whether one model fits the data set better than another when the models in question contain 
differing numbers of parameters or predictor. Because there isn’t any information about 
the distribution of the AIC values, the non-parametric bootstrap method is used to com-
pute confidence intervals for the AIC values of the mentioned models for all 23 categories, 
using the R package “Boot’’ (Canty and Ripley 2019). The bootstrap method (Efron 1979) 
is a resampling technique used to estimate statistics on a population by sampling a dataset 
with replacement. For example, in our case for one subject, a sample with size n from the 
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data was drawn with replacement, and this was replicated B times. Each re-sampled sample 
of the data is considered as a bootstrap sample, so there are B bootstrap samples. For each 
bootstrap sample, the model is fitted, and AIC value is computed. There are B values of 
AIC and choosing the 2.5% and 97.5% percentiles gives a 95% percent confidence interval 
for AIC related to each zero-modified versions of the count distributions. This uses the R 
package “Boot’’.

Results

Proportions of uncited articles

Uncited articles are far more common is some disciplines than in others (Fig. 1). Cultural 
Studies, Economics & Econometrics, Health Social Science, and Pharmaceutical Science 
have the greatest proportions of zero counts. In subjects such as Pharmaceutical Science 
large numbers of uncited articles might arise from publications which are not fully peer 
reviewed that might be regarded as magazines rather than journals being included in the 
database.

Zero‑modified discretised log‑normal distribution

The zero-modification parameter estimates for the discretised log-normal distribution 
are all positive, the largest estimates being for Health Social Science and Economics 
and the smallest for Filtration & Separation and Global & Planetary Change (Fig. 2, see 
also “Appendix 2”). There is almost universal zero-inflation relative to the discretized 

Fig. 1  The proportions of uncited articles (zeros) in citation data from 23 Scopus categories. Circle areas 
are proportional to proportions of zeros
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log-normal distribution. The zero-inflation parameter estimates for 22 of the 23 subjects 
are significant at a level of significance of α = 0.05, with only Health Information Man-
agement returning a non-significant estimate: its confidence interval includes zero and 
its p value is also 0.07 which is larger than α = 0.05 (it is clear that the confidence inter-
vals and the p-values related to the parameter estimates are compatible, i.e. 0 is outside 
of the confidence interval when p = 0.05, and inside otherwise).

Zero‑modified hooked power law distribution

Relative to a hooked power law distribution both significant positive (13 subjects) and 
significant negative (6 subjects) estimates of the zero-modification parameter occur, as 
well as 4 non-significant estimates (Fig. 3, see also “Appendix 3”). There is both zero-
inflation and zero-deflation, and possibly no zero-modification relative to the hooked 
power law distribution.

Zero‑modified discretised Weibull distribution

Relative to a discrete Weibull distribution only one estimate of the zero-modification 
parameter is significantly positive, 15 being significantly negative and 7 non-significant 
(Fig. 4, see also “Appendix 4”). There is both zero-inflation and zero-deflation and pos-
sibly no zero-modification relative to the discretise Weibull distribution.

Fig. 2  Zero-modification parameters and 95% confidence intervals relative to a zero-modified discretised 
log-normal distribution for 23 Scopus categories
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Fig. 3  Zero-modification parameters and their confidence intervals relative to a zero-modified hooked 
power law distribution for 23 Scopus categories

Fig. 4  Zero-modification parameters and their confidence intervals relative to a zero-modified discrete 
Weibull distribution for 23 Scopus categories
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Assessment of the models based on AIC

None of the models under consideration fits best in all cases (Table 1), the zero-modi-
fied hooked power law being best (under the AIC criterion) in 13 cases, the zero-mod-
ified Weibull in 6 cases and the zero-modified discrete log-normal in 4 cases. Table 1 
suggests the best of the models under consideration for a given subject area. For 21 
out of the 23 categories the estimate of the zero-modification parameter for the model 
with the lowest AIC is in the interval (− 0.04, 0.08). Given the maturity of Scopus, it 
seems reasonable that there will be few categories for which more than 8% of articles 
are unciteable for the reason previously outlined, or for which more than approximately 
4% of relevant articles with zero-citations are missing from the database. It is there-
fore reasonable to speculate that if the value of the fitted zero-modification parameter is 
substantially outside of (− 0.04,0.08) then there are doubts about the suitability of the 
model. The two exceptions to this for the models under consideration here are Health 
and Social Science and Cultural Studies. For the former, the best fitting model was the 

Table 1  AIC values and the estimates of zero-modification parameter for zero-modified version of discre-
tised log-normal, hooked power law and Weibull for 23 Scopus categories

Best fitting distributions are in bold

Subjects AIC ZMDLN � AIC ZMHPL � AIC ZMWeibull �

Food science 31,450.58 0.09 31,395.14 0.04 31,400.72 − 0.02
Cancer research 37,463.12 0.12 37,427.02 0.08 37,536.54 0.04
Marketing 32,368.34 0.08 32,350.92 0.04 32,453.12 − 0.07
Physical and theoretical chemistry 36,178.02 0.04 36,157.1 − 0.01 36,202.76 − 0.02
Management science and opera-

tions research
34,601.58 0.09 34,578.70 0.04 34,636.12 − 0.01

GeoChemistry and petrology 36,669.80 0.04 36,663.82 − 0.01 36,740.60 − 0.03
Computational mechanics 15,566.98 0.03 15,561.42 − 0.02 15,593.68 − 0.16
Control and optimization 18,377.46 0.05 18,371.88 0.00 18,422.50 − 0.18
Developmental neuroscience 14,552.92 0.04 14,528.48 − 0.01 14,581.18 − 0.08
Nuclear and high energy physics 35,598.62 0.08 35,556.86 0.04 35,787.94 − 0.09
Neuropsychology and physiologi-

cal psych
20,238.10 0.04 20,221.0 − 0.01 20,268.78 − 0.04

Health social science 27,140.34 0.20 27,119.98 0.16 27,185.22 0.01
Health information management 6774.30 0.04 6770.46 0.00 6813.52 − 0.23
Economics and econometrics 26,955.04 0.19 26,972.90 0.19 26,935.90 − 0.04
Energy engineering and power 

technology
31,843.10 0.13 31,815.28 0.10 31,750.70 0.01

Metals and alloys 31,546.04 0.12 31,528.70 0.10 31,514.86 − 0.04
Critical care and intensive care 

medicine
35,469.04 0.13 35,434.32 0.11 35,430.70 0.02

Pharmaceutical science 29,747.64 0.13 29,723.02 0.09 29,717.20 − 0.02
Cultural studies 16,747.46 0.12 16,752.88 0.16 16,746.14 − 0.59
Filtration and separation 13,471.5 0.02 13,537.42 − 0.03 13,555.32 − 0.03
Computer science application 31,556.04 0.05 31,564.34 0.04 31,596.68 − 0.21
Global and planetary change 29,961.92 0.03 29,988.90 − 0.02 30,091.84 − 0.04
Virology 37,268.22 0.05 37,371.72 − 0.01 37,450.60 − 0.02
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zero-modified hooked power law with a zero-modification parameter estimate of 0.16, 
and for the former the zero-modified Weibull with a zero-modification parameter of 
− 0.59.

Further insights may be gained by examining the nature of the distributions. As is clear 
from its probability mass function, the hooked power law distribution is a decaying distri-
bution, that is zeros have the greatest probability of being observed, followed by a 1, fol-
lowed by a 2 etc., (hence a hooked power law distribution has a zero-mode), the probability 
of observing a zero being increased if zero-inflation is present. In contrast, a Weibull distri-
bution may have a mode at a positive value. This requires a beta parameter > 1, which is not 
the case for all such estimates for the data being considered here. A discretised log-normal 
distribution does in general have a positive mode but may have a zero mode if the values 
of its two parameters are close. Of course, while zero-inflation may result in a zero-inflated 
discretised log-normal distribution having a mode at zero, a secondary mode will usually 
occur at a positive value. Two of the four subject areas for which the discrete log-normal is 
the best fitting model have an observed mode greater than zero; whilst the observed cita-
tion counts for Computer Science Applications have a zero mode, from “Appendix 2” the 
estimates of the parameters of the non-zero part of the model are 1.56 and 1.29, and hence 
the data are consistent with a zero-modified discrete log-normal distribution. The remain-
ing subject area that is best fitted by a zero-modified discrete log-normal distribution is 
Virology, whilst here the observed mode is at zero, there is a secondary mode at 4.

For all other categories the observed citation counts follow a descending pattern and 
thus are candidates for being best fitted by a zero-modified hooked power law or a zero-
modified Weibull, (for Neuropsychology & Physiological Psychology the number of 
observed 0 s and 1 s are 207 and 213 respectively, but for this subject area there is zero-
deflation relative to a hooked power law distribution, and once this deflation has been taken 
into account the observed distribution decays). For the data considered, in four of the six 
subject areas for which the zero-modified Weibull is the best fitting distribution, the esti-
mate of the zero-modification parameter is non-significant, the exceptions being Metals and 
Alloys, which is significant at a level of 0.05, but not at 0.02, and Cultural Studies. Whilst 
the estimated zero-modification parameter of − 0.594 relative to a zero-modified Weibull 
distribution is significant, as discussed above such a parameter estimate does not seem fea-
sible. The same is true for the estimates of 0.117 and 0.161 relative to the hooked power 
law and discrete log-normal, indicating that this subject area should be further investigated.

Fig. 5  Example of observed data with non-zero-mode: global and planetary change (best fitted by the zero-
modified discrete log-normal in blue). (Color figure online)
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Figures 5, 6, and 7 contain examples of the observed distribution of citation counts for sub-
ject areas best fitted by zero-modified versions of discrete log-normal, hooked power law, and 
Weibull distributions.

“Appendix 5” presents (bootstrapped) confidence intervals for the AIC values for the vari-
ous subject areas under the three distributions considered. If confidence intervals for the AICs 
of two different models overlap, then there is not significant evidence that one model is better 
than the other. For any given subject area considered in this paper the confidence intervals of 
the AICs of all three distributions overlap, and thus it may not be claimed that the “best fit-
ting distribution” fits significantly better than the remaining two. Whilst, say a zero-inflated 
hooked power law distribution might fit the observed data from a given category best, it is not 
possible to claim with certainty that this distribution will always be the best fitting model for 
that category.

Fig. 6  Example of data with a zero-mode: computational mechanics (best fitted by the zero-modified 
hooked power law in blue). (Color figure online)

Fig. 7  Example of data with a zero-mode: energy engineering and power technology. Here the number of 
zeros is much greater than the number of any other count, but there is no evidence of zero inflation relative 
to a Weibull distribution (best fitted by the zero-modified Weibull in blue). (Color figure online)
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Discussion

The principal purpose of this paper is to introduce the concept of zero modified models 
that admit both zero-deflation and inflation, rather than to discuss the implications of the 
fitted distributions and estimated parameters for the fields under analysis. Some results 
are included that are of interest in themselves, however. It is clear from the results that 
zero-modification is not an absolute concept but occurs relative to a given distribution. For 
example, the estimated value of the zero-modification parameter for Neuropsychology and 
Physiological Psychology is 0.044 relative to the discretised log-normal distribution, but 
− 0.040 relative to a hooked power law distribution, both estimates being significant. Thus, 
with the former distribution as the base-model there is statistical evidence of zero-inflation 
and hence “unciteable articles” within the field, but with the latter as the base distribu-
tion there is no such evidence of unciteable articles; instead there is evidence that some 
uncited articles may have been excluded. It is thus important to determine the best fitting 
base distribution to accurately determine the presence of zero-inflation or zero-deflation 
(or the absence of either), the presence of zero inflation/deflation relative to one model is 
insufficient to prove that there are perfect or omitted zeros. It is also important to consider 
the reality of a model, and not just rely on statistics. If for example an estimate of 0.50 for 
the zero-inflation parameter occurs, is it feasible that half of the articles in the field under 
consideration are unciteable?

The zero-modified hooked power law distribution is the best fitting model for 13 subject 
areas, the zero-modified Weibull best fitting for 6 subject areas, the other 4 being best fitted 
by the zero-modified discrete log-normal (Table 1). A zero-modified discrete log-normal 
tends to be the best fitting model when there is a positive mode or secondary mode, the 
zero-modified Weibull tends to be the best fitting model when there is no evidence of zero-
modification  relative to this distribution, and the zero-modified hooked power law when 
the observed citation counts follow a decaying distribution with evidence of zero-modifi-
cation. These results are not clear-cut, however, and the incorporation of independent vari-
ables such as individual, institutional and international collaboration, journal and reference 
impacts, abstract readability, reference and keyword totals, paper, abstract and title lengths 
may lead to more precise conclusions. The results comparing distributions are limited to 
small samples of Scopus categories. Other years and categories may give differing results. 
The citation count distributions may also be affected by articles published in January hav-
ing almost a year longer to be cited than articles published in December.

Conclusion

This article introduces zero-modified distributions for citation count data, focussing on 
zero-modified hooked power law, discrete log-normal and Weibull distributions. The 
new fitting method allows the estimation of both positive and negative zero-modification 
parameters, enabling the determination of confidence intervals for and statistical tests of 
parameter estimates. The results showed that each distribution fits citation count data bet-
ter than the others for some Scopus categories, and so it seems unlikely that there is a sin-
gle best distribution for citation count data. The results also show that both zero-inflation 
and zero-deflation occur for citation count data but changing a base model can alter one 
type to another. As a consequence of this, it is important to be wary of making definitive 
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statements concerning zero-inflation or zero-deflation. The nature of the distribution of the 
observed citation counts is also an indicator of the most likely candidate of the mentioned 
distributions that has the best fit. For cases with the existence of a positive mode or sec-
ondary mode, a zero-modified discrete log-normal tends to have the best fit, but for the 
cases with no evidence of zero-modification relative to the distribution, the zero-modified 
Weibull is the candidate with the best fit. For the cases with a decaying distribution accom-
panied by evidence of zero-modification, the zero-modified hooked power law provides the 
best fit.

Overall, based on the previous research related to the modelling of citation count data, 
it seems that the non-zero-modified and more zero-modified versions of the mentioned dis-
tributions are more compatible with the initial characteristics of citation count data (mass 
point at zero, highly-right skewness, and heteroskedasticity). The incorporation of inde-
pendent variables such as individual collaboration,  journal internationality, and reference 
impacts may lead to more precise conclusions.

Appendix 1

See Table 2.

Table 2  The information on the data related to 23 Scopus categories used in this article

Subject Number of 
articles

Number of zeros Percentage 
of zeros

Food science 4999 799 0.159
Cancer research 5000 712 0.142
Marketing 4762 676 0.141
Filtration and separation 1728 50 0.028
Physical and theoretical chemistry 4999 326 0.065
Computer science application 4999 970 0.194
Management science and operations research 4999 674 0.134
GeoChemistry and petrology 4997 325 0.065
Economics and econometrics 4999 1706 0.341
Energy engineering and power technology 4995 1047 0.209
Computational mechanics 2525 351 0.139
Global and planetary change 3844 172 0.044
Virology 5000 291 0.058
Metals and alloys 4997 1065 0.213
Control and optimization 3059 504 0.164
Critical care and intensive care medicine 4998 917 0.183
Developmental neuroscience 2006 163 0.081
Pharmaceutical science 5000 1122 0.224
Nuclear and high energy physics 4999 644 0.128
Neuropsychology and physiological psych 2827 207 0.073
Health social science 5000 1519 0.303
Cultural studies 5000 2637 0.527
Health information management 993 137 0.137
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Appendix 2

See Table 3.

Table 3  Parameter estimates: zero-modified discretised log-normal for 23 Scopus categories

Subjects � SE� CIL� CLR� p Value � �

Food science 0.090 0.0075 0.075 0.105 0.00000 1.82 1.02
Cancer research 0.119 0.0054 0.108 0.13 0.00000 2.43 1.06
Marketing 0.078 0.0071 0.064 0.092 0.00000 1.98 1.10
Filtration and separation 0.021 0.0042 0.013 0.029 0.00000 2.58 0.90
Physical and theoretical chemistry 0.043 0.0040 0.035 0.051 0.00000 2.28 0.94
Computer science application 0.051 0.0114 0.029 0.073 0.00001 1.56 1.29
Management science and operations research 0.089 0.0061 0.077 0.101 0.00000 2.10 1.05
GeoChemistry and petrology 0.043 0.0040 0.035 0.051 0.00000 2.31 0.96
Economics and econometrics 0.190 0.0136 0.163 0.217 0.00000 1.34 1.29
Energy engineering and power technology 0.125 0.0087 0.108 0.142 0.00000 1.82 1.15
Computational mechanics 0.034 0.0126 0.009 0.059 0.00697 1.65 1.06
Global and planetary change 0.027 0.0037 0.020 0.034 0.00000 2.49 1.00
Virology 0.045 0.0035 0.038 0.052 0.00000 2.41 0.91
Metals and alloys 0.116 0.0094 0.098 0.134 0.00000 1.75 1.18
Control and optimization 0.046 0.0129 0.021 0.071 0.00036 1.57 1.08
Critical care and intensive care medicine 0.128 0.0070 0.114 0.142 0.00000 2.16 1.20
Developmental NEUROSCIENCE 0.037 0.0081 0.021 0.053 0.00000 2.18 1.07
Pharmaceutical science 0.128 0.0096 0.109 0.147 0.00000 1.66 1.09
Nuclear and high energy physics 0.076 0.0063 0.064 0.088 0.00000 2.13 1.13
Neuropsychology and physiological psych 0.044 0.0059 0.032 0.056 0.00000 2.21 0.98
Health social science 0.201 0.0108 0.180 0.222 0.00000 1.54 1.07
Cultural studies 0.117 0.0431 0.033 0.201 0.00664 0.10 1.20
Health information management 0.035 0.0193 − 0.003 0.073 0.06976 1.83 1.24
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Appendix 3

See Table 4.

Table 4  Parameter estimates: zero-modified hooked power law for 23 scopus categories

Subjects � SE� CIL� CLR� p Value B �

Food science 0.040 0.0067 0.027 0.053 0.00000 40.21 6.37
Cancer research 0.079 0.0055 0.068 0.090 0.00000 61.35 5.34
Marketing 0.036 0.0064 0.023 0.049 0.00000 27.28 4.18
Filtration and separation − 0.031 0.0048 − 0.040 − 0.022 0.00000 190.92 12.52
Physical and theoretical chemistry − 0.014 0.0042 − 0.022 − 0.006 0.00086 121.18 10.90
Computer science application 0.042 0.0084 0.026 0.058 0.00000 11.31 2.96
Management science and operations 

research
0.042 0.0059 0.030 0.054 0.00000 40.78 5.15

GeoChemistry and petrology − 0.013 0.0042 − 0.021 − 0.005 0.00197 93.37 8.47
Economics and econometrics 0.191 0.0101 0.171 0.211 0.00000 10.05 3.06
Energy engineering and power technology 0.103 0.0073 0.089 0.117 0.00000 26.56 4.38
Computational mechanics − 0.018 0.0103 − 0.038 0.002 0.08054 20.28 4.39
Global and planetary change − 0.022 0.0039 − 0.030 − 0.014 0.00000 79.88 6.37
Virology − 0.013 0.0039 − 0.021 − 0.005 0.00086 127.17 10.26
Metals and alloys 0.095 0.0076 0.080 0.110 0.00000 19.76 3.77
Control and optimization − 0.001 0.0102 − 0.021 0.019 0.92190 17.34 4.14
Critical care and intensive care medicine 0.105 0.0064 0.092 0.118 0.00000 31.22 3.86
Developmental neuroscience − 0.007 0.0075 − 0.022 0.008 0.35065 45.73 5.21
Pharmaceutical science 0.092 0.0080 0.076 0.108 0.00000 23.23 4.66
Nuclear and high energy physics 0.038 0.0058 0.027 0.049 0.00000 31.67 4.15
Neuropsychology and physiological psych − 0.014 0.0060 − 0.026 − 0.002 0.01963 70.08 7.30
Health social science 0.162 0.0091 0.144 0.180 0.00000 17.89 4.33
Cultural studies 0.161 0.0260 0.110 0.212 0.00000 4.25 3.47
Health information management 0.004 0.0155 − 0.026 0.034 0.79636 13.47 2.94
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Appendix 4

See Table 5.

Table 5  Parameter estimates: Zero-modified Weibull for 23 scopus categories

Subjects � SE� CIL� CLR� p Value q �

Food science − 0.022 0.0121 − 0.046 0.002 0.06904 0.82 0.80
Cancer research 0.044 0.0076 0.029 0.059 0.00000 0.90 0.81
Marketing − 0.068 0.0133 − 0.094 − 0.042 0.00000 0.80 0.70
Filtration and separation − 0.026 0.0064 − 0.039 − 0.013 0.00005 0.95 1.00
Physical and theoretical chemistry − 0.023 0.0059 − 0.035 − 0.011 0.00010 0.91 0.94
Computer science application − 0.211 0.0273 − 0.265 − 0.157 0.00000 0.67 0.56
Management science and operations research − 0.014 0.0098 − 0.033 0.005 0.15313 0.85 0.78
GeoChemistry and petrology − 0.029 0.0062 − 0.041 − 0.017 0.00000 0.91 0.90
Economics and econometrics − 0.036 0.0303 − 0.095 0.023 0.23479 0.64 0.57
Energy engineering and power technology 0.008 0.0142 − 0.020 0.036 0.57318 0.80 0.72
Computational mechanics − 0.156 0.0256 − 0.206 − 0.106 0.00000 0.74 0.70
Global and planetary change − 0.044 0.0063 − 0.056 − 0.032 0.00000 0.91 0.86
Virology − 0.016 0.0052 − 0.026 − 0.006 0.00209 0.93 0.95
Metals and alloys − 0.040 0.0172 − 0.074 − 0.006 0.02004 0.76 0.66
Control and optimization − 0.178 0.0275 − 0.232 − 0.124 0.00000 0.71 0.66
Critical care and intensive care medicine 0.021 0.0113 − 0.001 0.043 0.06311 0.83 0.70
Developmental neuroscience − 0.077 0.0146 − 0.106 − 0.048 0.00000 0.85 0.76
Pharmaceutical science − 0.017 0.0167 − 0.050 0.016 0.30870 0.76 0.72
Nuclear and high energy physics − 0.091 0.0126 − 0.116 − 0.066 0.00000 0.80 0.66
Neuropsychology and physiological psych − 0.040 0.0095 − 0.059 − 0.021 0.00003 0.89 0.87
Health social science 0.012 0.0211 − 0.029 0.053 0.56955 0.70 0.67
Cultural studies − 0.594 0.1712 − 0.930 − 0.258 0.00052 0.30 0.49
Health information management − 0.229 0.0501 − 0.327 − 0.131 0.00000 0.70 0.56
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Appendix 5

See Table 6.
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