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Abstract
We study whether humans or machine learning (ML) classification models are better at 
classifying scientific research abstracts according to a fixed set of discipline groups. We 
recruit both undergraduate and postgraduate assistants for this task in separate stages, and 
compare their performance against the support vectors machine ML algorithm at classi-
fying European Research Council Starting Grant project abstracts to their actual evalua-
tion panels, which are organised by discipline groups. On average, ML is more accurate 
than human classifiers, across a variety of training and test datasets, and across evaluation 
panels. ML classifiers trained on different training sets are also more reliable than human 
classifiers, meaning that different ML classifiers are more consistent in assigning the same 
classifications to any given abstract, compared to different human classifiers. While the 
top five percentile of human classifiers can outperform ML in limited cases, selection and 
training of such classifiers is likely costly and difficult compared to training ML models. 
Our results suggest ML models are a cost effective and highly accurate method for address-
ing problems in comparative bibliometric analysis, such as harmonising the discipline clas-
sifications of research from different funding agencies or countries.

Keywords  Discipline classification · Text classification · Supervised classification

Introduction

The classification of science is a fundamental research question in scientometrics (De 
Bruin and Moed 1993). Proper evaluation of the quantity and impact of scientific out-
put must take into account differences in the distribution of citations across disciplines 
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(Radicchi et al. 2008). This is a central concern when measuring the performance of indi-
vidual researchers (Piro et  al. 2013), journals (Moed 2010), universities (Moed 2006), 
funding bodies (Robitaille et  al. 2015), or even countries (King 2004). Moreover, when 
comparing performance across units of evaluation such as universities, funding agencies 
or countries, differences in disciplinary profiles between them require mapping research 
output onto a common classification.

The most straightforward method for classifying research publications into disciplines 
is to have researchers or assistants do so but this is very time-consuming and manpower-
intensive. Recent advances in natural language processing (NLP) machine learning (ML) 
techniques (Wei and Croft 2006; Aggarwal and Zhai 2012) have made automatic clas-
sification of disciplines possible (Yau et  al. 2014; Freyman et  al. 2016) but no study to 
date has analysed the relative performance of ML versus human classification of research 
into pre-existing schemes. Classification into existing discipline schemes applies to con-
texts where scientific research is evaluated and administered according to a framework or 
agenda specified in advance by policymakers or administrators. For example, in the con-
text of the current COVID-19 virus pandemic, policymakers might want to evaluate the 
strength of a country’s research capabilities in specific biomedical areas relating to virol-
ogy and immunology.

Our study shows that ML classification algorithms trained on an existing mapping of 
abstracts onto fixed discipline groups outperform human research assistants at classifying 
new abstracts into these discipline groups. The accuracy, measured by F1 score, of ML 
classifiers is 2–15 standard errors higher than that of human classifiers, with reliability, as 
measured by Fleiss’ κ, also being consistently higher for ML than for humans.

Literature review

One of the central questions in the bibliometric measurement of the quantity and impact 
of research output is how to properly account for differences across disciplines. The real-
world implications of this question range from career outcomes and funding allocation to 
national and supranational research policy. For example, individual researchers’ tenure and 
promotion evaluations should take into account differences in the average number of pub-
lications and citations per researcher across disciplines (Piro et al. 2013), while rankings 
of universities (Moed 2006) and comparisons of funding agencies (Robitaille et al. 2015) 
should take into account differences in disciplinary profiles and priorities.

The classification of science is also referred to as discipline clustering and discipline 
mapping in the literature, both referring to the use of statistical algorithms to automati-
cally classify research. The two approaches used in this literature are termed supervised 
and unsupervised classification. While both supervised and unsupervised classification are 
concerned with the automated classification of large corpora of texts based on a statistical 
analysis of the words used (Lee and Yang 2009), their methods and interpretation differ 
fundamentally. Supervised classification models are trained on a ground truth, which could 
be an existing classification carried out by subject-matter experts. The supervised ML clas-
sifier learns parameters based on the distribution of words in the ground truth that is used 
later to classify unclassified texts. Hence, accuracy has the natural interpretation of how 
well the classifier replicates the ground truth.

On the other hand, unsupervised classification, does not require any pre-existing 
ground truth. Instead, unsupervised classification depends on model parameters given 
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by the researcher to determine how to score document similarity and compute clus-
ter delineations. Because a natural ground truth does not exist, it has to be separately 
defined and justified by researchers to measure the accuracy of their unsupervised 
classifier.

Unsupervised classification has a longer history in bibliometrics. The earliest stud-
ies developed co-citation clustering (Small 1973) which uses the weighted network 
graph of citations to determine clusters of authors working in similar fields. This 
assumes that authors in similar fields cite similarly. In response to epistemic concerns 
(Oberski 1988), Callon et  al. (1983) introduced co-word analysis. Co-word cluster-
ing calculates the semantic similarity of documents to determine clusters of papers in 
similar fields. This assumes that papers in similar fields use similar lexica to convey 
membership in a scientific community and efficiently transmit ideas. Co-word cluster-
ing also faces serious epistemic issues (King 1987).

Later, Braam et al. (1991a, b) use a hybrid of both methods to cluster 3400 publica-
tions in the Chemical Abstracts database and 1384 publications in the BIOSIS data-
base. This line of research was further taken up in Liu et al. (2009, 2010, 2012), and 
others.

More recent studies use unsupervised ML algorithms. Examples are Yau et  al. 
(2014) and Nichols (2014), who use latent Dirichlet allocation (LDA) to extract 
topic clusters. Freyman et  al. (2016) used topic co-clustering to classify 277,818 US 
National Science Foundation (NSF) project abstracts. These studies update the dis-
cipline mapping literature by showing that well-studied unsupervised ML algorithms 
from the information retrieval literature also perform well for classifying scientific 
text, and benchmarking the classification performance of these algorithms.

The distinction between supervised and unsupervised classification is important 
because, for many policy applications, supervised classification is more relevant. For 
example, funding agencies such as the NSF and ERC require applications for fund-
ing to be mapped into their pre-existing disciplinary classifications. Such disciplinary 
classifications reflect policymakers’ and administrators’ funding priorities (including 
funding uniformity across disciplines) and administrative processes that are external to 
the research to be classified. The way such classification is currently applied is mostly 
manual, either by applicants or by subject-matter experts at the funding agencies or 
on evaluation panels (Herzog et  al. 2016). Because of the time and manpower costs 
involved, funding agencies such as the NSF are investigating methods for automatic 
classification (Nichols 2014) but so far no study has directly compared the perfor-
mance of ML algorithms to humans in terms of accuracy and reliability.

In other fields, studies that have compared human to automated supervised clas-
sification have found evidence in favour of automated classification methods. These 
studies are in fields as diverse as haematology (Simundic et al. 2009), software engi-
neering (Schumacher et al. 2010), and online opinions mining (Weismayer et al. 2018). 
Automated classification performance is generally shown to be at least as accurate as 
human classification, and significantly more reliable based on inter-rater reliability 
(IRR) analysis. Nevertheless, it is not clear that supervised ML classification meth-
ods can be accurately applied beyond the domains previously studied, such as medical 
specimen assessment and opinions mining, to scientific abstracts. Whether ML per-
forms as well at classification of textual data from scientific abstracts into pre-existing 
schemes is therefore an open question, and our study fills this gap.
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Methodology and data

Research questions

We designed a study to answer three distinct but related questions: (1) Is ML more accu-
rate than humans at classifying scientific abstracts? (2) Is ML more reliable than humans at 
classifying scientific abstracts? (3) To what extent does human classification performance 
improve, relative to ML, through (i) increased task training, (ii) increased prior knowledge, 
(iii) selection on past performance, and (iv) feedback? In this study, accuracy means “clas-
sifying an abstract correctly to its true discipline group”, while reliability means “two clas-
sifiers classifying an abstract to the same discipline group, whether or not this classification 
is correct”. Accuracy and reliability are not necessarily related, although as any group of 
classifiers approach perfect accuracy then trivially they also approach perfect reliability.

Data

We use the abstracts of European Research Council (ERC) Starting Grant (StG) funded 
projects that were accepted between 2009 and 2016 inclusive. The ERC evaluation panel 
structure has been stable since 2008 (European Research Council 2019a). For the pur-
pose of our study, the existing panel classifications are considered the ground truth that 
we do not question. ERC grant applicants initially select the panel they apply to. While 
panel chairs may re-assign an application to a different panel, and may consult members of 
other relevant panels, each application is nevertheless assigned to a single panel (European 
Research Council 2019b).

As we are primarily interested in the classification of natural sciences abstracts, we 
focus on the 19 physical and life sciences panels, comprising 2523 abstracts in total.

Table 1 presents these panel codes and titles.

Study design

Our study has four stages. In the Undergraduates stage, we recruited 63 undergraduate stu-
dent assistants from Nanyang Technological University, a major research university in Sin-
gapore, for a full-day task. We sent out an email to recruit undergraduates for our research 
abstract classification study to all undergraduates via the university’s mailing lists. To 
screen potential classifiers for aptitude, we required applicants to complete a short example 
task to classify two research abstracts. Just over one hundred undergraduates responded 
to the email and completed the example task. While we made every effort to recruit each 
applicant, 63 eventually reported for work on the day of the study. The task was conducted 
at a classroom on campus, where they were given one of four training sets of abstracts in 
the morning. Each training abstract was labelled according to the existing ‘ground truth’ 
ERC evaluation panel, allowing assistants to study how the abstracts ought to be classified. 
In the afternoon, they were given a test set of different abstracts, with the ERC evaluation 
panel labels removed, and were told to assign each abstract to the ERC panel most likely 
to match the ‘ground truth’. To ensure that their performance is due to learning from their 
training set only, we disallowed peer discussion and internet use. To incentivise both per-
formance and completion, they were compensated with a flat rate of Singapore $120 for a 
day of work plus a variable amount of $4 for every 10 abstracts in their test set that they 
correctly classify. In this stage, the average amount paid was $163, which was paid in cash.
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In the second stage, termed the high-performance undergraduates stage, we retained 
eight undergraduates from each training set group with the highest accuracy scores. These 
undergraduates also had to be willing to continue with the study for up to two more stages. 
Over email, we gave these high-performance undergraduates another test set to classify 
without further training. This stage is meant to answer question (3)(iii) above about selec-
tion effects for human classification performance. After they returned the completed test 
sets, we began the third stage, termed the high-performance undergraduates plus feedback 
stage. We gave the high-performance undergraduates feedback on the actual ‘ground truth’ 
classifications of the abstracts they had classified in the previous two stages. Then we gave 
them a third test set to classify. This stage is meant to answer question (3)(iv) above on 
the effect of feedback on human classification performance. As before, we instructed the 
undergraduates to refrain from discussing or using the internet while classifying the test 
sets. The undergraduates were compensated with a flat rate of $150 for completing both 
test sets plus a variable amount of $6 for every 25 abstracts that they correctly classify. In 
this stage, the average amount paid was $207, which was paid in cash.

In the last postgraduates stage, we recruited 26 Ph.D. students and postdoctoral research-
ers in STEM disciplines (postgraduates) from Nanyang Technological University for a half-
day task where they were given a test set to classify without any training or task exposure. 
We sent out an email on our recruitment of postgraduates for our research abstract clas-
sification study to all postgraduates in the College of Engineering through the assistance 
of the administrators in each School in the College. Nearly half of the Postgraduates were 
from the Engineering sciences. The task was conducted in a classroom on campus, and as 
with the undergraduates, discussion and internet use was not allowed. The postgraduates 
were compensated with a flat rate of $80 for completing the test set plus a variable amount 
of $10 for every 50 abstracts that they correctly classify up to a total of $120. The average 
amount paid was $98, and was paid in the form of $10 vouchers (rounded up) for a large 
national supermarket. This stage is meant to answer question (3)(ii) above on the effect of 
prior knowledge on human classification performance. Additional details on the study par-
ticipants are in the “Appendix”.

Test and training sets

Test and training sets are generated by stratified random sampling where an equal number 
of abstracts were sampled from each panel. From a pilot trial, we found that undergraduate 
classifiers were able to comfortably complete about two to three hundred abstracts in half 
a day. Hence, all our test sets consist of 247 abstracts, or 13 abstracts from each evalua-
tion panel. In the undergraduates stage, all undergraduates were given the same test set 
to classify. In subsequent stages, we designed the test sets so that each human classifier 
would face a unique test set consisting of a common component of 95 abstracts (5 abstracts 
from each panel) and an individual, independently sampled component of 152 abstracts (8 
abstracts from each panel). The common component addresses question (2) above about 
whether human or ML classifiers are more reliable. The individual, independently sampled 
component allows us to ensure the results are robust to idiosyncrasies in the common com-
ponent abstracts. This is especially important for addressing question (1) on comparing ML 
accuracy to that of human classifiers, since any given ML model, once trained, will always 
produce the same classification output in response to the same test set. A variety of test sets 
is necessary to provide a more robust estimate of ML accuracy.
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From the pilot trial we also found that undergraduate classifiers were able to comfort-
ably study several hundred abstracts in half a day. Hence, to address question (3)(i) above 
about the effect of more training on human classification performance, in the Undergradu-
ates stage we generated two large training sets with 380 abstracts, and two small train-
ing sets with 190 abstracts, and randomly assigned undergraduate classifiers to each train-
ing set. To generate the four training sets, we first created 20 randomly sampled sets of 
abstracts—10 small, and 10 large—and trained an ML classifier on each set. We then 
scored each trained ML classifier on the Undergraduates test set, and chose the four train-
ing sets that produced the best and worst performing ML classifiers, in the small and large 
training sets respectively. Table 2 summarizes the number of classifiers and the sizes of the 
training and test sets given in each stage.

ML classification

We use the support vector machines (SVM) algorithm as we found in Khor et al. (2018) 
that it has the best abstract classification performance among the basic supervised classi-
fication algorithms. The SVM algorithm finds the optimal hyperplanes that bisect the data 
to an “In” and “Out” classification for every category using a maximum-residual criterion 
(see Cortes and Vapnik 1995 for a detailed explanation). We combine SVM with bag-of-
words pre-processing of the abstracts and use text frequency-inverse document frequency 
(TF-IDF) as our feature score (see Baeza-Yates and Ribeiro-Neto 1999 for a detailed dis-
cussion about information retrieval). For hyperparameter optimisation, we use grid search 
with cross-validation due to its ease of implementation. For an extended discussion of 
hyperparameter optimisation in machine learning, see Bergstra and Bengio (2012).

For a fair comparison of classification performance between human and ML classi-
fiers for question (1) above, the training for our ML classifiers must be restricted to the 
same amount of training given to the human classifiers as reasonably as possible. In the 

Table 2   Summary of numbers of classifiers and sizes of training and test sets

a Classifiers that are excluded during analysis are not counted (see “Data Exclusions”)

Stage Human 
classifiersa

Training set Test set size

Code Abstracts Common Individual

Undergraduates 16 A 380 247 0
16 B 380
15 C 190
15 D 190

High-performance undergraduates 7 A 380 95 152
8 B 380
7 C 190
8 D 190

High-performance undergraduates 
after feedback

7 A 380 95 152
8 B 380
7 C 190
8 D 190

Postgraduates 26 – – 95 152
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undergraduate stages, we train an ML classifier using each of the four training sets. Under-
graduate classifiers from each training set group are then compared only to the perfor-
mance of the ML classifier that had been given the same training set. In the Postgraduates 
stage, no training sets are given to the postgraduate classifiers as their doctoral training is 
taken to be an extensive period of training in the knowledge and disciplinary boundaries 
of Science. To simulate extensive background training, ML classifiers in the Postgraduates 
stage for each test set are trained using all other abstracts that were left out of the test set 
(2276 abstracts in total).

Measuring performance

While there are many measures of accuracy in classification problems, precision and recall 
are most often reported (Sokolova and Lapalme 2009). Precision is the ratio of true posi-
tives to the sum of true positives and false positives. Recall is the ratio of true positives 
to the sum of true positives and false negatives. Positive and negative refer to whether an 
abstract is classified into a given evaluation panel or not. Intuitively, precision says what 
proportion of our classifications are correct and recall says what proportion of the actual 
abstracts we classify correctly. Because both are important measures of accuracy, their har-
monic mean, the F1 score, is our preferred accuracy metric. As precision, recall and F1 are 
defined only for a 2 × 2 confusion matrix, the overall precision, recall and F1 of a test set is 
the mean of the scores across all evaluation panels.

Measuring reliability

The reliability of a group of classifiers is also known as inter-rater reliability (IRR), which 
measures to what extent different classifiers tend to classify the same abstracts to the same 
evaluation panel. Reliability does not measure whether classifications match the ground 
truth, only whether different classifiers agree on the same classification. Reliability is 
measured with Fleiss’ κ (1971) as our data contains more than 2 classifiers per test set. κ 
has an upper limit of 1, which represents perfect agreement, while 0 implies that the agree-
ment rate is no better than pure chance. Negative values of κ imply disagreement beyond 
what would be expected by chance alone. For interpretation of κ, Landis and Koch (1977) 
proposed the following scale: κ > 0.4 is “Moderate” agreement, κ > 0.6 is “Substantial” 
agreement and κ > 0.8 is “Almost Perfect” agreement. For a detailed discussion of IRR, 
refer to McHugh (2012).

Data exclusions

We exclude sets where the human classifier failed to complete at least 95% of the abstracts 
in their test set. 1 set in the undergraduates stage and 1 set in the high-performance under-
graduates stage were excluded thus. We also excluded one human classifier who had 89% 
and 97% accuracy in the two High-Performance undergraduate stages. The extremely high 
performance of this classifier, both relative to their own prior performance and to that of 
other classifiers, suggested use of the internet (where all ERC abstracts and their evaluation 
panel assignments are searchable). This classifier’s data is retained in the first undergradu-
ates stage, where there was no access to the internet possible.
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Results

Overall performance in all stages

Figure 1 compares the average performance of human and ML classifiers, across each stage 
and by each training set. The 95% confidence intervals for the mean F1 score of human 
classifiers can be interpreted as two-sided t tests against the mean F1 score of the respec-
tive ML classifier at α = 0.05. ML classifiers perform significantly better than human clas-
sifiers at replicating the ground truth panel classifications across all stages and training 
sets. The ML classifiers are 2–15 standard errors better than undergraduate classification 
performance across all stages. In the Postgraduates stage, ML classifiers improves to 26 
standard errors above postgraduate classification performance. This does not mean post-
graduates perform worse than the average undergraduate in classification performance. 
Rather, this is driven by the increased performance of the ML classifiers in the postgradu-
ates stage; recall that the ML training set in the postgraduates stage is the largest, consist-
ing of all left-out abstracts (2276 abstracts), to attempt to match the postgraduate classi-
fiers’ greater expertise.

Performance of high‑performance undergraduate and postgraduate classifiers

We turn to examining in detail high-performance undergraduate classifiers, after feedback 
in the third stage, in Fig. 2. Each undergraduate classifier is matched to an ML classifier 
that was trained on the same training set, and used to classify the same test set as them-
selves. Out of 30 high-performance undergraduate classifiers, 4 outperformed the ML clas-
sifier; 2 of these outperformed by at least 0.05 F1 score points—at least 5% points greater 
accuracy than the corresponding ML classifier. The performance of the top two undergrad-
uates is similar to that of the performance of ML classifiers trained on the substantially 
larger training set of all left-out abstracts (see Fig. 3).

Figure  3 reports the performance of postgraduate classifiers, ranked by performance. 
Each postgraduate classifier is matched to an ML classifier used to classify the same test 
set. There is no matching on training sets, since postgraduate classifiers are assumed by 

Fig. 1   F1 scores for human and ML classifiers across each stage and training set
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design to already possess the requisite knowledge. None of the 26 postgraduates outper-
formed the ML classifier, although in general postgraduates had similar performance to 
that of the high-performance undergraduate classifiers, after feedback. The low correlation 
between the F1 scores of high-performance undergraduate and postgraduate classifiers and 
the corresponding ML classifiers suggest that the different test sets are not systemically 
easier or harder to classify.

We note that postgraduate classifiers outperformed undergraduates as a whole, although 
not significantly, reflecting their greater expertise. We also note that high-performance 
undergraduates (with and without feedback) outperformed postgraduates, although again 
not significantly. This suggests that selecting based on performance that is specific to the 
classification task can offset greater general expertise from more education.

Performance by evaluation panel

Figures 4 and 5 show the mean F1 scores of human and ML classifiers for each panel are 
shown in Fig.  4 for the undergraduates stage, and Fig.  5 for the postgraduates stage. ML 

Fig. 2   F1 scores of high-perfor-
mance undergraduate classifiers 
after feedback and the corre-
sponding ML classifiers

Fig. 3   F1 scores of postgraduate 
classifiers and the corresponding 
ML classifiers
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classifiers perform consistently superior to human classifiers across all evaluation panels. 
There are some exceptions if the comparison is narrowed to selected human classifiers. For 
example, the high-performance undergraduates after feedback outperform ML classifiers in 
PE9 (Universe Sciences), with a mean F1 score of 0.86 compared to 0.78 for ML. This does 
not change the conclusion that ML classifiers broadly outperform, or at least do not underper-
form, human classifiers in each evaluation panel. The F1 scores of human and ML classifiers 
across evaluation panels are highly correlated in all stages (ρ = 0.914 in stage 1; ρ = 0.905 in 
stage 2; ρ = 0.931 in stage 3; ρ = 0.724 in stage 4). Evaluation panels that are difficult for ML 
classifiers to classify also give human classifiers problems.

Fig. 4   Comparison of undergraduate versus ML classification performance by panel

Fig. 5   Comparison of postgraduate versus ML classification performance by panel
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Inter‑rater reliability

Table 3 shows Fleiss’ κ for ML and human classifiers in each stage and within each training 
set group for human classifiers. Fleiss’ κ is calculated over the subset of abstracts in com-
mon across all test sets. We drop any abstract that have missing classifications from any 
classifier as the standard error for Fleiss’ κ is only defined when all abstracts are classified 
by every classifier. A small number of abstracts that were mistakenly assigned to both the 
test set and training sets in the undergraduates stage are excluded.

We observe that the Fleiss’ κ for ML classifiers are uniformly greater than that of human 
classifiers, and the confidence intervals for Fleiss’ κ for human and ML classifiers do not 
overlap. This suggests that ML classifiers are more reliable than human classifiers. The 
reliability of postgraduates is similar to the reliability of high-performance undergraduates, 
and the reliability of high-performance undergraduates is better than for all undergradu-
ates. Further feedback does not seem to improve reliability. While the ML classifiers in the 
postgraduate stage have near-perfect reliability, this is expected because the ML classifier 
for each test set is trained using all left-out abstracts. This results in extensive overlaps in 
the training data across the ML classifiers, so we expect the learned parameters to also be 
similar, leading to similar predictions.

Discussion and conclusion

ML classifiers are better at replicating the ground truth classification than human classifiers 
overall. Although Fig.  2 shows that there are individual human classifiers who perform 
as well as ML models trained on almost the entire corpus, selection and training through 

Table 3   Fleiss’ κ of human versus ML classifiers

Stage Trg. set Human classifiers ML classifiers

κ SE 95% CI κ SE 95% CI

Undergraduates All 0.363 0.000 [0.362, 0.364] 0.515 0.007 [0.501, 0.530]
A 0.375 0.001 [0.372, 0.378]
B 0.373 0.002 [0.370, 0.376]
C 0.371 0.002 [0.368, 0.374]
D 0.376 0.002 [0.373, 0.379]

High-performance undergraduates All 0.395 0.001 [0.393, 0.398] 0.540 0.010 [0.521, 0.560]
A 0.416 0.006 [0.405, 0.427]
B 0.398 0.005 [0.389, 0.407]
C 0.443 0.005 [0.432, 0.453]
D 0.361 0.005 [0.352, 0.370]

High-performance undergraduates 
after feedback

All 0.391 0.001 [0.388, 0.393] 0.513 0.010 [0.493, 0.533]
A 0.381 0.006 [0.370, 0.392]
B 0.377 0.005 [0.368, 0.387]
C 0.396 0.005 [0.385, 0.406]
D 0.407 0.005 [0.397, 0.416]

Postgraduates – 0.405 0.001 [0.402, 0.407] 0.913 0.001 [0.910, 0.915]
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which such performance can be achieved require extensive resources. Only three human 
classifiers had F1 scores above 0.6 (see Figs. 2, 3), representing the top 5 percentile of per-
formance among our human classifiers.

In contrast, Fig. 3 shows that ML classifiers, given sufficiently large training data sets, 
are consistently and highly accurate. ML performance is robust to variations in the training 
and test data. Furthermore, it is clear from Table 3 that human classifiers are not very reli-
able (κ mostly below 0.4) and are less reliable than ML classifiers.

Besides better classification accuracy and reliability, ML is also more efficient to train 
and use due to modern computing power. Each ML classifier in the Postgraduates stage 
took 1  h to train through multiprocessing on 24 CPU cores. This amount of computing 
power is easily available to most research teams today, and even ordinary personal comput-
ers are now capable of training ML models for many scientometric applications, albeit with 
more time required. After training, the ML classifiers classify 247 abstracts in less than 5 s. 
In contrast, in this study the fastest human classifiers took over 2 h to classify 247 abstracts 
in addition to a morning required for training.

Not only are supervised ML algorithms superior to humans in terms of time, accuracy 
and reliability for given data to train on and data to classify, but they also scale readily 
with more data. ML algorithms can be trained on larger datasets for greater accuracy, as 
was the case in our study, but more importantly, they can be applied to entire agency- or 
country-wide research corpora, even numbering in the hundreds of thousands of texts, to 
enable evaluation of funding agencies or even whole countries using a common classifica-
tion, something that is simply infeasible with humans.

A limitation of our study is that it involves classification into a single panel or field. In 
principle, a research abstract could be classified in multiple fields and ML methods can be 
adapted to this, by assigning probability weights to multiple field classifications. However, 
in our case, the training dataset from the ERC Starting Grant only assigns research to a sin-
gle main panel, as funding is disbursed strictly according to panels. Applying our methods 
using training datasets with multiple field classifications would be an interesting extension 
of our research.
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Appendix: Recruitment and characteristics of study participants

For the undergraduates stages, we recruited 63 undergraduate student assistants from Nan-
yang Technological University, a major research university in Singapore, for a full-day 
task. We sent out an email on our recruitment of undergraduates for our research abstract 
classification study to all undergraduates via the university’s mailing lists. The email 
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included instructions to complete an attached example task requiring them to classify two 
research abstracts. This example task was to screen potential classifiers for aptitude. Just 
over one hundred undergraduates responded to the email and completed the attached exam-
ple task. Of those, 63 ultimately agreed to participate by attending the full-day session. 
Undergraduates were paid S$120 (around 84 USD or 77 EUR) for the full-day session plus 
S$4 (2.80 USD or 2.50 EUR) per abstract correctly classified.

Table 4   Distribution of 
gender, subject area, and level 
of academic experience of 
participants

All undergraduates All post-
gradu-
ates

Gender
Male 34 18
Female 29 8
Subject area
Health sciences – 1
Life sciences 13 3
Physical sciences 46 22
Social sciences 4 –
Year of study
1st 17 4
2nd 27 3
3rd 19 3
4th – 5
5th – 7
Postdoc – 4
N 63 26

Table 5   Distribution of detailed 
subject areas of participants

All undergraduates All post-
gradu-
ates

Scopus subject area
Biological sciences 4 –
Biochemistry 9 1
Business and management 3 –
Chemistry 1 –
Computer science 4 3
Earth sciences – 1
Engineering 25 11
Environmental science 2 –
Material science 3 5
Mathematics 8 1
Medicine – 1
Neuroscience – 2
Physics 3 1
Social sciences 1 –
N 63 26
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For the postgraduates stage, we recruited 26 Ph.D. students and postdoctoral research-
ers in STEM disciplines from Nanyang Technological University for a half-day task where 
they were given a test set to classify without any training or task exposure. We sent out an 
email on our recruitment of postgraduates for our research abstract classification study to 
all postgraduates in the College of Engineering through the assistance of the administrators 
in each School in the College.

Table 4 shows the distribution of participants by gender, subject area, and level of aca-
demic experience. 

Table 5 shows the distribution of participants by detailed subject area according to the 
Scopus classification scheme.
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