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Abstract
Percentiles are statistics pointing to the standing of a paper’s citation impact relative to 
other papers in a given citation distribution. Percentile Ranks (PRs) often play an important 
role in evaluating the impact of researchers, institutions, and similar lines of study. Because 
PRs are so important for the assessment of scholarly impact, and because citations differ 
greatly across time and fields, various percentile approaches have been proposed to time- 
and field-normalize citations. Unfortunately, current popular methods often face significant 
problems in time- and field-normalization, including when papers are assigned to multiple 
fields or have been published by more than one unit (e.g., researchers or countries). They 
also face problems for estimating citation counts for pre-defined PRs (e.g., the 90th PR). 
We offer a series of guidelines and procedures that, we argue, address these problems and 
others and provide a superior means to make the use of percentile methods more accu-
rate and informative. In particular, we introduce two approaches, CP-IN and CP-EX, that 
should be preferred in bibliometric studies because they consider the complete citation dis-
tribution and can be accurately interpreted. Both approaches are based on cumulative fre-
quencies in percentages (CPs). The paper further shows how bar graphs and beamplots can 
present PRs in a more meaningful and accurate manner.
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Introduction

Since the 1980s, various methods have been introduced (Tahamtan and Bornmann 2018) 
to time- and field-normalize citations. Ioannidis et al. (2016) discuss the pros and cons of 
the different methods for normalizations. In one of the most frequently used methods—the 
relative citation rate (Schubert and Braun 1986)—expected values are calculated for every 
combination of publication year and subject category in databases such as Web of Science 
(WoS, Clarivate Analytics) or Scopus (Elsevier). These expected values are mean numbers 
of citations. Then, the citation impact of every focal paper in the combination of publica-
tion year and subject category is normalized by dividing the citation counts (CCs) of the 
focal paper by the corresponding expected value (Schubert and Braun 1986; see also the 
review of Waltman 2016).

This approach of generating normalized citation impact values which can be used for 
cross-time and cross-field comparisons has been frequently criticized, since it is based on 
arithmetic averages of citations and citations as a rule are skewed distributed. In case of 
skewed distributions, the arithmetic average should not be used as a measure for the central 
tendency of the distribution. As an alternative to this normalization approach, various per-
centile approaches (plotting positions, PPs, and percentile ranks, PRs) have been proposed. 
PPs are quantiles of an empirical (or theoretical) distribution whereby quantiles are defined 
as specific cut points partitioning distributions into subsets.

Since a percentile is defined as “a statistic that gives the relative standing of a numerical 
data point when compared to all other data points in a distribution” (Lavrakas 2008), PPs 
can be interpreted as percentiles. Suppose various publication sets from a database that 
each contain all papers published in a specific combination of publication year and subject 
category. PR x is defined then as the CC (at or) below which x% (e.g., 90%) of the papers in 
a certain combination of publication year and subject category falls. Two papers from dif-
ferent combinations of subject category and publication year with exactly the same PR may 
have different CCs. The advantage of PRs (and PPs) is that they are not strongly affected 
by outliers (highly cited papers) and their interpretation is simple and clear: if a focal paper 
has a PR of 90, then 90% of the papers in the publication year and subject category have a 
citation impact which is (at or) below the impact of the focal paper. This interpretation of 
PRs makes their use in citation analysis attractive, since it clearly shows the position of the 
paper in the combination of subject category and publication year which can be compared 
with the position of other papers.

It is not only possible to calculate PPs and PRs for every single paper in a database 
such as WoS. It is popular in bibliometrics (Bornmann 2014) to identify in every combi-
nation of publication year and subject category the papers which belong to the 10% most 
frequently cited papers (Bornmann et al. 2012; Narin 1987; Waltman et al. 2012). These 
are the papers in the citation distribution at (around) or above the 90th PR. The number of 
these papers can be counted for various units (e.g., for a journal, researcher, university, or 
country). P(top 10%) is the number of top-10% papers and PP(top 10%) is the proportion 
of top-10% papers published by a unit.

In recent years, various percentile approaches have been introduced in bibliometrics. 
In this study, the different approaches are presented, and their advantages and especially 
disadvantages explained (see “Widely used percentile measures and their disadvantages” 
section). Our discussion will show that widely used percentile measures are problematic in 
some fairly common situations. In “Cumulative frequencies in percentages as an optimized 
percentile approach” section, we offer an optimized PR approach that maintains most of 
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the advantages of percentile measures while overcoming or minimizing their most serious 
weaknesses. In “Presenting cumulative frequencies in percentages” section, we pay atten-
tion to an appropriate presenting of percentiles such as bar graphs and beamplots that can 
make the presentation of PR results more meaningful and accurate.

Datasets used

For discussing the different percentile approaches, two datasets are used: (1) a fictitious 
small dataset including 21 papers with various CCs, and (2) all papers published between 
2000 and 2005 with the document type “article” and their CCs until the end of 2018. The 
publication and citation data are from the Max Planck Society’s in-house database which 
is based on the WoS. WoS subject categories, which are sets of similar journals, have been 
used to compute field-normalized citation impact values (PPs and PRs). The publication 
set consists of 6,973,937 articles. However, these are more papers than have been pub-
lished between 2000 and 2005, since papers which have been assigned to more than one 
subject category have been considered multiple times (for calculating PPs and PRs in 
every combination of publication year and subject category). Without multiple counting of 
papers, the publication set consists of 4,416,554 articles. The articles received between 0 
and 67,582 citations until the end of 2018 (median = 14, mean = 31.76).

Widely used percentile measures and their disadvantages

Counting highly cited papers

Let us start the discussion of the various percentile approaches with the family of P(top 
x%) indicators: the number of papers belonging to the x% most-frequently cited papers. 
The use of P(top x%) in research evaluation might be interpreted as unsatisfying, since 
the diverse citation impact of a unit’s papers (e.g., the papers published by a researcher) is 
transformed into a binary information: one part of the papers belong to the top x% and the 
other part not. Imagine researcher A has published many papers which are all in the range 
of P(top 11%) and P(top 31%) and another researcher B who has published all papers in 
the range of P(top 71%) and P(top 91%). Based on these numbers, one can conclude that 
researcher A has a better performance than researcher B. However, if only the number of 
P(top 10%) are counted, both researchers would receive the same assessment with P(top 
10%) = 0.

Furthermore, the calculation of P(top x%) is affected by the problem of citation ties at 
the threshold for separating the x% most frequently cited papers from the rest: suppose five 
papers with 20 citations, 20 papers with 10 citations, and 75 papers with 1 citations. It is 
not clear with this citation distribution whether the 20 papers with 10 citations should be 
assigned to the P(top 10%) or the bottom 90%. Although Waltman and Schreiber (2013) 
found an elegant solution for that problem (leading to a fractional assignment of papers 
at the threshold to the group of highly cited papers), it leads to data which are no longer 
binary: the papers at the threshold are counted with a value less than 1. The consequence 
is, for instance, that the data can no longer be analyzed with logistic regression analyses, 
although the nature of the indicator (papers belonging to the top x% or not) would suggest 
that this is the appropriate method.
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As the example above with researchers A and B reveal, it is desirable to have a per-
centile solution which is able to reflect the whole range of citation impact received by the 
papers in a certain publication set. With the integrated impact indicator (I3), Leydesdorff 
and Bornmann (2011, 2012) proposed a solution going beyond the binary classification of 
impact. Here, the papers in a set (of a journal or a university) are assigned to more than two 
impact classes based on PRs [e.g., six classes; P(top 1, 5, 10, 25, 50, 75%]. The formula for 
calculating I3 is

whereby y is the number of PR classes (PCs) i considered (e.g., six classes as mentioned 
above) and Wi denotes the weight of PCi . xi is the number of papers published by a unit in 
PCi . As Eq. 1 suggests, I3 is basically an instruction for the aggregation of PCs. The PC 
including the papers with the most citation impact should receive the maximum weight. 
The equation can be used very flexible. For example, papers in the highest impact class can 
be given little more (e.g., six in the case of six classes) or significantly more weight than 
lowly cited papers. For example, Leydesdorff et al. (2019) proposed to weight the number 
of papers in P(top 1%) with 100 and the number of papers in P(top 10%) with 10. For the 
purpose of notifying the number of PCs and weights used for calculating I3 in a study, 
Leydesdorff et al. (2019) proposed to use the general notation

whereby PC is the lower threshold of the PC, e.g. 99 in case of P(top 1%), and W the corre-
sponding weight (e.g., 100). n defines the number of classes and weights, respectively. The 
flexibility in the use of PCs and weights might be an advantage of I3, since the user can 
adapt the indicator to certain evaluation tasks (see here Bornmann and Marewski 2019). 
The disadvantage of this flexibility is, however, that there is no standardized use of I3 (and 
the results may not be comparable). Another problem is that the indicator is still based on 
classes—P(top x%) actually is an I3 indicator which can be expressed with the I3 notation: 
I3(90 − 1)—and does not consider the complete information of citation impact distribu-
tions. It is a decisive disadvantage of I3 that it can be calculated only on the aggregated 
level, i.e. for groups of papers. That means, it is not possible to calculate I3 for all papers 
included in a database such as the WoS and to use the preprocessed data for citation analy-
ses of various units later.

Plotting positions (PPs)

Bornmann et al. (2013) discussed several possibilities to calculate PPs for receiving time- 
and field-normalized citation impact values on the single paper level. They preferred the 
calculation of PPs based on the rule proposed by Hazen (1914) using the formula

For calculating the PPs, the papers (published in one publication year and subject cat-
egory) are sorted in decreasing order of CCs and ranking positions are assigned, whereby 
i is the rank of the paper and n is the total number of papers in the set. As the example 
in Table  1 shows, the formula returns values which are between 0 and 1; for receiving 

(1)I3 =

y∑
i=1

(xi ∗ Wi)

(2)I3
(
PC1 −W1,PC2 −W2 …PCn −Wn

)

(3)PP =
i − 0.5

n
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percentages, the values can be multiplied by 100. Ties in citation data do not pose a prob-
lem for the calculation, since the corresponding papers simply receive the same (mean) 
rank and PP. PPs can be calculated for the papers in all subject categories and publication 
years in a database such as WoS, whereby one receives comparable time- and field-normal-
ized citation impact values. For example, the results by Bornmann and Marx (2015) reveal 
favorable results of PPs based on the rule proposed by Hazen (1914) compared to other 
time- and field-normalization methods (e.g., methods based on mean citations, see above).

Cox (2005) outlined that it is an important advantage of PPs based on the rule proposed 
by Hazen (1914) that the formula leads to a value of 0.5 (or 50 as percentage) for the single 
middle value in the citation distribution. However, this is not always the case: since there 
are several papers with 7 citations in Table 1, a single middle value does not exist. Another 
problem of the PPs concerns their interpretation: a usual definition of a PR x is that it rep-
resents the CC at or below which x percent of the papers falls. Four papers in Table 1 have 
zero citations and a PP of 9.52. Thus, one could assume that around 10% of the papers 
in the table have zero citations; however, there are around 20% of the papers with zero 
citations. PPs have been initially proposed and are calculated for the comparison of two 
empirical distributions (or an empirical distribution with a theoretical distribution), but 
not for using them for relative assessments. However, the problem with the interpretation 
of PPs especially concerns small publication sets with only a few papers (fewer than 100 
papers). Suppose that there are 100 papers in a set with different CCs each. Then, the PPs 
correspond approximately to the percentage of papers at or below the citation impact of the 
focal paper. For example, the paper with the 10th rank position will have the PP of 0.095.

Table 1   Example set of papers 
for calculating plotting positions 
(PPs) (21 papers)

Paper Citation count Rank Hazen In percent

A 20 20.5 0.95 95.24
B 20 20.5 0.95 95.24
C 13 18.5 0.86 85.71
D 13 18.5 0.86 85.71
E 10 17 0.79 78.57
F 9 16 0.74 73.81
G 8 14.5 0.67 66.67
H 8 14.5 0.67 66.67
I 7 11.5 0.52 52.38
J 7 11.5 0.52 52.38
K 7 11.5 0.52 52.38
L 7 11.5 0.52 52.38
M 3 9 0.40 40.48
N 2 8 0.36 35.71
O 1 6 0.26 26.19
P 1 6 0.26 26.19
Q 1 6 0.26 26.19
R 0 2.5 0.10 9.52
S 0 2.5 0.10 9.52
T 0 2.5 0.10 9.52
U 0 2.5 0.10 9.52
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Figure 1 shows a Q–Q plot of quantiles which have been calculated based on the rule 
proposed by Hazen (1914). Q–Q plots are two-way scatterplots of one variable against 
another after both variables have been sorted into ascending order (StataCorp. 2017). For 
all papers published between 2000 and 2005 and assigned to six subject categories in WoS 
(n = 6070 papers), the quantiles are shown resulting from the first and sixth subject cat-
egory. In other words, the figure shows the quantiles for two subject categories of one and 
the same paper. Since the general trend of the Q–Q plot is on the line y = x which follows 
the 45° line, the quantiles in both subject categories 1 and 6 are similar. Thus, most of the 
papers seem to have the same citation impact relative to other papers in the corresponding 
subject categories.

Several other rules have been proposed in the past which can be used instead of Hazen 
(1914) which lead, however, to similar PPs (Cox 2005, discusses some rules).

Approaches based on size‑frequency distributions

In recent years, some other approaches have been proposed for citation analyses which 
might lead to time- and field-normalized citation impact values. Since these approaches are 
not used for calculating PPs, they are explained in this section based on the size-frequency 
distribution (Egghe 2005). This distribution shows the frequencies of papers with certain 
CCs in a set of papers (see the first two columns in Table 2).

The column “InCites” in Table 2 refers to the approach used in the InCites tool which 
is a citation-based evaluation tool to analyze institutional performance provided by Clari-
vate Analytics (see https​://clari​vate.com/webof​scien​cegro​up/solut​ions/incit​es). InCites 
percentiles are cumulative percentages of the size-frequency distribution starting with 

Fig. 1   Q–Q plot of quantiles based on the rule proposed by Hazen (1914). For all papers published between 
2000 and 2005 and assigned to six subject categories, the quantiles are shown resulting from the first and 
sixth subject category

https://clarivate.com/webofsciencegroup/solutions/incites
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the percentage of papers with the highest citations. For example, 19.05% of the papers in 
Table 2 have 13 or more citations; 9.52% of the papers have at least 20 citations. Clari-
vate Analytics defines InCites percentiles as the “percentage of papers at each level of cita-
tion, i.e., the percentage of papers cited more often than the paper of interest” (see https​
://clari​vate.libgu​ides.com/incit​es_ba/alpha​-indic​ators​). Other than the Hazen approach, the 
InCites approach provides normalized values which can be interpreted as an exact percent-
age of papers. It is another advantage of the InCites approach that the number (percentage) 
of top x% papers in a paper set can be quickly identified. The problem, however, with the 
InCites approach is that one does not immediately know, how good a focal paper is com-
pared to the other papers in the set. Only the subtraction from 100, i.e. (100 − x), reveals 
the percentage of papers performing worse than the focal paper.

Bornmann et al. (2013) introduced the P100 approach which does not use the size-fre-
quency distribution as the InCites approach, but the distribution of unique citation values 
(see Table 2). Thus, the frequencies of papers with certain CCs are not considered. The 
formula is

whereby i is the rank of the citation in the distribution of unique citation values (see 
Table 2). According to Bornmann and Mutz (2014) P100, however, “has undesirable prop-
erties which should be avoided … [for example,] the scale value of a paper can increase as 
a result of the fact that another paper receives an additional citation” (p. 1940). Another 
problem with this approach is similar to that of the Hazen approach: a P100 value does not 
refer to the CC at or below which x percent of the papers in the combination of publication 
year and subject category falls. Thus, Bornmann and Mutz (2014) introduced P100′ as an 
alternative to P100 which is calculated using the formula

(4)P100 =
i

imax
∗ 100

(5)P100� =
j

jmax
∗ 100

Table 2   Example set of papers for calculating various time- and field-normalized values based on size-fre-
quency distributions (based on the same 21 papers as in Table 1)

Citation count Number of 
papers

Rank k InCites Rank i P100 Rank j P100′

0 4 21 100.00 0 0.00 0 0.00
1 3 17 80.95 1 11.11 4 21.05
2 1 14 66.67 2 22.22 7 36.84
3 1 13 61.90 3 33.33 8 42.11
7 4 12 57.14 4 44.44 9 47.37
8 2 8 38.10 5 55.56 13 68.42
9 1 6 28.57 6 66.67 15 78.95
10 1 5 23.81 7 77.78 16 84.21
13 2 4 19.05 8 88.89 17 89.47
20 2 2 9.52 9 100.00 19 100.00

https://clarivate.libguides.com/incites_ba/alpha-indicators
https://clarivate.libguides.com/incites_ba/alpha-indicators
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whereby j are ranks based on the size-frequency distribution (see Table 2). It is a decisive 
advantage of P100′ that the indicator always has the maximum value 100 and the minimum 
value 0. However, it remains the problem (as with the P100 and PP indicators) that it can-
not be interpreted properly: P100′ = 21.05 does not mean that 21.05% of the papers in the 
publication set are below 1 citation (or equal to that CC).

Cumulative frequencies in percentages as an optimized percentile 
approach

The problem of proper interpretations of percentiles can be solved by calculating cumu-
lative frequencies in percentages (CPs) as demonstrated in Table  3 (and by the InCites 
approach). The table includes two variants: CP-IN is the cumulative percentage of the size-
frequency distribution of papers. For CP-EX, the first possible percentage is set at 0 rather 
than considering its actual cumulative percentage. Then, the calculation of the cumulative 
percentage starts with the percentage of the lowest CC. In this way, CP-EX reveals exactly 
the percentage of papers with lower citation impact: for example, CP-EX = 90.48 means 
that 90.48% of the papers in the set received a citation impact which is below 20 citations; 
19.05% of the papers received less than one citation. CP-IN has a slightly other interpreta-
tion: 90.48 means that 90.48% of the papers in the set received a citation impact which is at 
or below 13 citations; 19.05% of the papers received zero citations.

CP-IN and CP-EX have been calculated for all articles in the dataset of this study pub-
lished between 2000 and 2005. Figure 2 (upper left side) shows the distribution of CCs for 
the 6 years using boxplots. It is clearly visible that the distributions are very skewed and 
characterized by outliers (by a few highly cited articles).

The boxplots of CP-INs and CP-EXs in Fig.  2 (left side) show that the distributions 
changed compared to CCs: they are not characterized by outliers and are in the range 
between about 0 and 100. The median CP-IN is between 51 (in 2005) and 52 (in 2000); 
the median CP-EX is approximately 46.6 (in all publication years). Figure 2 (right side) 
shows histograms of CP-INs and CP-EXs for articles published between 2000 and 2005. 

Table 3   Cumulative percentages including (CP-IN) or excluding (CP-EX) the number of papers in the row 
(based on the same 21 papers as in the previous tables)

Citation count Number 
of papers

Percent (including 
papers in row)

Cumulative per-
centage (CP-IN)

Percent (exclud-
ing papers in row)

Cumulative per-
centage (CP-EX)

0 4 19.05 19.05 0.00 0.00
1 3 14.29 33.33 19.05 19.05
2 1 4.76 38.10 14.29 33.33
3 1 4.76 42.86 4.76 38.10
7 4 19.05 61.90 4.76 42.86
8 2 9.52 71.43 19.05 61.90
9 1 4.76 76.19 9.52 71.43
10 1 4.76 80.95 4.76 76.19
13 2 9.52 90.48 4.76 80.95
20 2 9.52 100.00 9.52 90.48
Total 21 100.00
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Both figures reveal that the CP-INs and CP-EXs are uniformly distributed between val-
ues from around 10 to 100. CP-INs and CP-EXs below 10 are significantly less frequent 
than the other PR values. The reason is that low values are underrepresented, because the 
subject categories usually include a lot of papers with zero or only a few citations. The 
exception, however, is the PR zero which is the most frequent value for CP-EX. Since the 
lowest citation impact value in every subject category receives the PR zero, this result can 
be expected for CP-EX.

PRs such as CP-IN and CP-EX can be calculated for all papers in every combination of 
subject category and publication year in databases such as WoS. Then, these papers receive 
time- and field-normalized citation impact values which can be used for various cross-time 
and cross-field comparisons (e.g., for the comparison of universities or countries). For 
these and other practical uses of PRs (CP-IN and CP-EX), however, three problems have to 
be solved.

Solution to the problem of missing comparability

The first problem is that the PRs which have been calculated for different combinations of 
publication years and subject categories are frequently not comparable: certain PRs cannot 
be calculated based on the data of a certain combination. As the results in Table 2 demon-
strate, we know the CCs for the PRs 90.48 and 42.86, but we do not know the CCs for the 
PRs 90 and 50. In other tables, the CCs for other PRs might be available (e.g., for 82.34 
and 23.45). However, for comparing the impact differences between two subject categories, 
it is necessary to know these CCs for predefined PRs (e.g., 90 and 50). In this section, 
we present two approaches which can be used to solve this problem of comparability. The 

Fig. 2   Boxplots showing the distributions of citation counts (CCs), CP-INs, and CP-EXs (left side) as well 
as histograms of CP-INs and CP-EXs (right side) for articles published between 2000 and 2005
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approaches cannot only be used to estimate CCs from pre-defined PRs, but also to estimate 
PRs from pre-defined CCs.

Point‐estimates of hypothetical intervals

The approach by Barrett (2003) requires that one takes into account the lower and upper 
bounds for every CC in a citation distribution assuming that “each exact integer score is 
actually the middle score of an interval extending 0.5 either side” (p. 6). Furthermore, the 
observable list of CCs between the minimum and maximum value in a publication set is 
complemented by the missing CCs (with zero numbers of papers).

Table 4 includes CP-IN and shows the same dataset as in the previous tables but consid-
ers the lower and upper bounds for each CC. Furthermore, the missing CCs (between two 
observable CCs) with corresponding zero numbers of papers are added. Thus, a complete 
list of CCs beginning with the minimum and ending with the maximum CCs from the ini-
tial publication set with the corresponding numbers of papers is available now. In Table 4, 
the observed CCs from the previous tables are expanded to citation-intervals with equal 
sizes (i.e., 1 citation).

One potential problem with any system using percentiles is measurement error. Barrett 
(2003) implicitly refers to a measurement error concept with the concept of intervals. Every 
unit of measurement can have some kind of random variability. For example, with the removal 

Table 4   Expanding the set of papers for calculating “theoretical” citation counts (CCs) for certain PRs (CP-
IN, based on the same 21 papers as in the previous tables)

Citation count Lower and upper bounds Number of 
papers

Cumulative 
frequencies

Percent CP-IN

0 [− 0.5 to 0.5[ 4 4 19.05 19.05
1 [0.5 to 1.5[ 3 7 14.29 33.33
2 [1.5 to 2.5[ 1 8 4.76 38.10
3 [2.5 to 3.5[ 1 9 4.76 42.86
4 [3.5 to 4.5[ 0 9 0.00 42.86
5 [4.5 to 5.5[ 0 9 0.00 42.86
6 [5.5 to 6.5[ 0 9 0.00 42.86
7 [6.5 to 7.5[ 4 13 19.05 61.90
8 [7.5 to 8.5[ 2 15 9.52 71.43
9 [8.5 to 9.5[ 1 16 4.76 76.19
10 [9.5 to 10.5[ 1 17 4.76 80.95
11 [10.5 to 11.5[ 0 17 0.00 80.95
12 [11.5 to 12.5[ 0 17 0.00 80.95
13 [12.5 to 13.5[ 2 19 9.52 90.48
14 [13.5 to 14.5[ 0 19 0.00 90.48
15 [14.5 to 15.5[ 0 19 0.00 90.48
16 [15.5 to 16.5[ 0 19 0.00 90.48
17 [16.5 to 17.5[ 0 19 0.00 90.48
18 [17.5 to 18.5[ 0 19 0.00 90.48
19 [18.5 to 19.5[ 0 19 0.00 90.48
20 [19.5 to 20.5[ 2 21 9.52 100.00



1467Scientometrics (2020) 124:1457–1478	

1 3

or inclusion of journals in a citation index, citations of papers in the database can change again 
and again. One can use smaller or wider intervals for this uncertainty. However, intervals have 
to be set at some size, and any choice is going to be somewhat arbitrary. When in doubt, we 
think it is best to use common practices, which in this case is using intervals that result in 1 
(± 0.5). Anyone using our methods could, of course, use different-sized intervals if they so 
wished.

In the table, each exact CC is the middle value of an interval extending 0.5 either side. 
Using the formula

the CC for a certain PR i can be calculated, where CCi = the CC for the ith PR, lbi = the 
exact lower bound of the interval containing the CC for the ith PR, n = the total number of 
papers in the publication set, p = the proportion corresponding to the desired PR (between 
0 and 1, instead of 0 and 100), cfi−1 = the cumulative frequency of papers in the interval 
containing the i − 1th PR, fi = the frequency of papers in the interval containing the ith PR, 
w = the width of the class interval.

The resulting CCs for pre-specified PRs are “estimates of hypothetical real-valued con-
tinuous numbers” (Barrett 2003, p. 9). These estimates can be calculated for PRs which are 
between the minimum and maximum CP-IN in Table 4 (i.e., 19.05 and 100). Thus, the CC for 
the 4th PR cannot be estimated.

Using the frequency distribution in Table 4, the CCs for the 90th, 75th, and 50th PRs are 
exemplarily calculated in the following. Let us start with the 90th PR. Looking at CP-IN in the 
table, one can see that the 90th PR is positioned between 12 citations (CP-IN = 80.95) and 13 
citations (CP-IN = 90.48). We can expect that the 90th PR is in the interval between 12.5 and 
13.5 citations in the table; 13 citations refer to the PR 90.48 which is close to 90. The lower 
bound of the interval is 12.5, i.e. lb = 12.5. We are interested in the 90th PR, thus p = 0.9, and 
there are 21 papers in the publication set (n = 21). The width of the class interval is 1 cita-
tion (w = 1). The frequency and cumulative frequency of papers containing the PR is f = 2 and 
cf = 17. Filling these values in the formula leads to an estimate of 13.45 citations. Since 13 
citations correspond to the PR 90.48 (empirically) and the upper bound of the interval con-
taining this PR is (around) 13.5, 13.45 citations seems to be a realistic value.

The calculation of the estimated CC for the 75th PR is similar. This PR is between 8 and 
9 citations in Table 4. Thus, lb = 8.5. The interval, in which 8.5 is the lower bound, refers to 
the PR 76.19. The other values for the formula are n = 21, f = 1, cf = 15, w = 1, and p = 0.75. 
The estimated result for the 75th PR is 9.25 which is close to the upper bound of the interval 
(around 9.5). This upper bound is from the PR 76.19 which is somewhat higher than 75. The 
last example is the 50th PR which is between 6 and 7 citations. Thus, the values for the for-
mula are lb = 6.5, n = 21, f = 4, cf = 9, w = 1, and p = 0.5. The estimated CC is 6.875—a realis-
tic value with around 7.5 as upper bound for the PRs 61.9 and 5.5 as lower bound for the PR 
42.86.

Using the formula

(6)CCi = lbi +

(
n ∗ p − cfi−1

fi

)
∗ w

(7)PRx =

⎡⎢⎢⎢⎣

�
cfi +

�
x−lbi

w

�
∗ fi

�

n

⎤⎥⎥⎥⎦
∗ 100
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and the values as specified above, the corresponding PRs (PRx) can be calculated. The only 
new parameter is x. This is the CC for which the PR is calculated. Filling in lb = 6.5, n = 21, 
f = 4, cf = 9, w = 1, and x = 6.875 (for the corresponding PR i in case of lb, f, and cf), we 
receive the PR 50. The formula can be used to determine (estimate) the different PRs for 
the same CC in different combinations of publication year and subject category. Thus, dif-
ferences in CCs between two combinations of publication years and subject categories can 
be made visible based on estimations: what is the PR for the same CC in two different 
combinations of publication years and subject categories?

The same calculations as with CP-IN can be done with CP-EX but with slightly differ-
ent formulas. Table 5 shows the same dataset as in Table 4 but it includes CP-EX instead 
of CP-IN.

The formula for calculating the CC for PR i is

where CCi =  the CC for the ith PR, lbi = the exact lower bound of the selected interval 
containing the CC for the ith PR, n = the total number of papers in the publication set, 
p = the proportion corresponding to the desired PR (between 0 and 1, instead of 0 and 100), 
cfi = the cumulative frequency of papers in the ith PR, fi = the frequency of papers in the 
selected interval, w = the width of the class interval.

(8)CCi = lbi + 1 +

(
n ∗ p − cfi

fi

)
∗ w

Table 5   Expanding the set of papers for calculating “theoretical” citation counts (CCs) for certain PRs (CP-
EX, based on the same 21 papers as in the previous tables)

Citation count Lower and upper bounds Number of 
papers

Cumulative 
frequencies

Percent CP-EX

0 [− 0.5 to 0.5[ 4 0 19.05 0.00
1 [0.5 to 1.5[ 3 4 14.29 19.05
2 [1.5 to 2.5[ 1 7 4.76 33.33
3 [2.5 to 3.5[ 1 8 4.76 38.10
4 [3.5 to 4.5[ 0 9 0.00 42.86
5 [4.5 to 5.5[ 0 9 0.00 42.86
6 [5.5 to 6.5[ 0 9 0.00 42.86
7 [6.5 to 7.5[ 4 9 19.05 42.86
8 [7.5 to 8.5[ 2 13 9.52 61.90
9 [8.5 to 9.5[ 1 15 4.76 71.43
10 [9.5 to 10.5[ 1 16 4.76 76.19
11 [10.5 to 11.5[ 0 17 0.00 80.95
12 [11.5 to 12.5[ 0 17 0.00 80.95
13 [12.5 to 13.5[ 2 17 9.52 80.95
14 [13.5 to 14.5[ 0 19 0.00 90.48
15 [14.5 to 15.5[ 0 19 0.00 90.48
16 [15.5 to 16.5[ 0 19 0.00 90.48
17 [16.5 to 17.5[ 0 19 0.00 90.48
18 [17.5 to 18.5[ 0 19 0.00 90.48
19 [18.5 to 19.5[ 0 19 0.00 90.48
20 [19.5 to 20.5[ 2 19 9.52 90.48
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Based on Table 5, the CCs for the 90th PR is exemplarily calculated. This PR is posi-
tioned between 13 citations (CP-EX = 80.95) and 14 citations (CP-EX = 90.48). We select 
the interval in the table with the exact upper bound value (around) 13.5. The lower bound 
of the interval is 12.5, i.e. lb = 12.5. The other values are p = 0.9, n = 21, w = 1, f = 2, and 
cf = 17. Filling these values in the formula lead to an estimate of 14.45 citations. Since 
14 citations corresponds to the PR 90.48, which is very close to the 90th PR, and the 
upper bound of the interval containing this PR is around 14.5, 14.45 citations seems to be 
reasonable.

Using the formula

and the values from above, the corresponding PR (PRx) can be calculated. Filling in 
lb = 12.5, n = 21, f = 2, cf = 17, w = 1, and x = 14.45 in the formula (for the corresponding 
PR i in case of lb, f, and cf), we receive the PR of 90.

Linear interpolation

The second approach of estimating certain CCs or PRs is linear interpolation. If one is 
interested in the CC for a specific PR of the (non-existent) paper i (e.g., the exact CC for 
the 90th percentile) and the values cannot be derived from the citation and percentile data 
of a certain publication year and subject category combination, linear interpolation can be 
applied (as an alternative to the approach in the previous section). For a certain PRi (e.g., 
90%), CCi can be estimated based on adjacent values with the equation

Thus, CCi is estimated based on two observed combinations of existent paper values: 
(CCi−1; PRi−1) and (CCi+1; PRi+1). Using a similar formula, it is also possible to estimate 
PRi based on the same observed combinations of values

Figure 3 shows a scatterplot of CCs and CP-EXs that are derived from Table 3. Two 
data points are signed with a black cross as examples for illustrating the linear interpola-
tion approach: at the one point, we are interest in PRi for 5 citations and at the other, we are 
interested in CCi for a PR of 80%. For both data points, each adjacent combination (CCi−1; 
PRi−1) and (CCi+1; PRi+1) is indicated in the figure. Filling these values in Eqs. 10 and 11, 
result in 12.4 citations for the 80th PR and a PR of 40.48% for 5 citations. These are plausi-
ble estimated values given the observed values in the figure.

Solution to the problem of multiple field‑specific assignments of papers

Using two different approaches, the first problem—certain PRs cannot be calculated based 
on the citation data of a certain combination of publication year and subject category—can 

(9)PRx =

⎡⎢⎢⎢⎣

�
cfi +

�
x−lbi−1

w

�
∗ f

�

n
∗ 100

⎤⎥⎥⎥⎦

(10)CCi = CCi−1 +
(
PRi − PRi−1

)CCi+1 − CCi−1

PRi+1 − PRi−1

(11)PRi = PRi−1 +
(
CCi − CCi−1

) PRi+1 − PRi−1

CCi+1 − CCi−1



1470	 Scientometrics (2020) 124:1457–1478

1 3

be solved. Let us go on with the second problem. Many papers in the WoS and Scopus 
databases (and in other databases) are assigned to more than one subject category. Between 
2000 and 2005, the 4,416,554 articles in the dataset of this study are assigned to up to six 
subject categories (which leads to 6,973,937 articles including multiple occurrences).

Table  6 shows that 58.49% of the articles are assigned to one subject category. For 
around 40% of the articles, more than one PR is calculated, and it is not clear how these 
PRs can be aggregated into one value for a single article. For the InCites tool (see above), 
the minimum value is used: “the category in which the percentile value is closest to zero is 
used, i.e. the best performing value” (see https​://clari​vate.libgu​ides.com/incit​es_ba/under​
stand​ing-indic​ators​). This approach, however, leads to an overestimation of performance 
if papers are assigned to more than one subject category and the resulting PRs are (very) 
different. For example, 1,833,224 articles in the dataset of this study are assigned to at least 
two subject categories. The minimum of the differences between two PRs of an article is 0, 
the maximum is 82.9; the mean difference is 7.84 and the median is 5.77.

Another solution for the aggregation into one value could be the median of the PRs. A 
challenge to this calculation is that subject categories have different numbers of papers. In 
the dataset of this study, there are 1528 different combinations of subject category and pub-
lication year, with a minimum number of papers of 1 and a maximum number of 43,456 
(median = 4564.1, mean = 7394.94). We can assume that the same PR has a higher value in 
a combination of publication year and subject category with many papers than in a com-
bination with only a few papers. Suppose a paper is assigned to two subject categories 
with 10 and 3000 papers. To be at the 50th PR in these subject categories would have very 

Fig. 3   Scatterplot of citation 
counts (CCi) and CP-EXs (PRi). 
The presented values are from 
Table 3

Table 6   Frequency and 
percentage of articles with 
different numbers of subject 
categories

Number of subject 
categories

Frequency Percent Cumulative 
frequencies

1 2,583,330 58.49 58.49
2 1,257,957 28.48 86.97
3 456,562 10.34 97.31
4 94,588 2.14 99.45
5 18,047 0.41 99.86
6 6070 0.14 100.00
Total 4,416,554 100.00

https://clarivate.libguides.com/incites_ba/understanding-indicators
https://clarivate.libguides.com/incites_ba/understanding-indicators
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different meanings: in one case, the paper would be better than five other papers and in the 
other case, it would be better than 1500 other papers. A good estimation of an aggregated 
PR might be to find the median of PRs where each subject category’s PR is reflected sev-
eral times proportional to the number of papers in that subject category. Thus, the solution 
might be the PR which is weighted by the number of papers in the subject categories. This 
weighted (w) PR can be calculated using the formula

whereby PRSCx is the PR of SCx (i.e., the SC to which a paper is assigned) and n is the total 
number of papers in these subject categories.

Tables  7 and 8 show the size-frequency distributions (CP-EX) of two different sub-
ject categories. Two papers A and B are assigned to both subject categories. For exam-
ple, paper A has 100 citations which means that the paper has CP-EX = 98.53 in subject 
category 1 and CP-EX = 90.75 in subject category 2. The calculation of a mean PR with 
(98.53 + 90.75)/2 = 94.64 gives the PR from subject category 1 too much weight, since this 
subject category has significantly fewer papers than subject category 2. Thus, the wPR is 
91.86 [((98.53 * 68) + (90.75 * 411))/(68 + 411)] which is lower than the unweighted mean 
PR. The wPR of paper B is 77.45 [((82.35 * 68) + (76.64 * 411))/(68 + 411)] which is also 
lower than the unweighted mean PR with 79.5.

Solution to the aggregation problem of percentiles

The third problem which must be solved with the use of PRs is their aggregation if an 
‘average’ PR is desired for a certain publication set (e.g., of a researcher, university or 
country). Suppose one is interested in an ‘average’ PR of paper A (CP-EX = 91.86) and 
paper B (CP-EX = 77.45) from Tables 7 and 8, since these are two papers from a certain 
unit. In these cases, where the aggregation of PRs is desired for a unit, the mean weighted 
(mw) PR can be calculated using the formula

(12)wPR =
(PRSC1 ∗ nSC1) + (PRSC2 ∗ nSC2) +⋯ + (PRSCx ∗ nSCx)

nSC1 + nSC2 +⋯ + nSCx

Table 7   Size-frequency 
distribution of papers in subject 
category 1 with two focal papers 
(A and B)

Selected focal paper Citation count Number 
of papers

Rank i CP-EX

Paper A 100 1 67 98.53
98 3 64 94.12
90 1 63 92.65
88 1 62 91.18
40 1 61 89.71

Paper B 20 5 56 82.35
8 7 49 72.06
7 5 44 64.71
6 9 35 51.47
4 13 22 32.35
1 22 0 0.00

Total 68
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whereby wPR1 to wPRy are the sums of the wPRs for paper 1 to paper y published by the 
unit which are divided by the number of papers published by the unit (y). Thus, for the two 
papers A and B, the mwPR is 84.65 [(91.86 + 77.45)/2].

The formula

extends the calculation by another weight besides the number of subject categories: 
if papers have been published by more than one unit (e.g., researchers, institutions or 
countries), the papers should be fractionally assigned to these units (see Waltman and 
van Eck 2015; Waltman et al. 2011). For example, if a paper was published by authors 
from two countries, the paper is weighted by 0.5 (Gauffriau et  al. 2008, provides an 
overview of various counting methods). The fractional assignment (weighting) is 
included by the notation FRi for paper i = 1 to paper y.

(13)mwPR =

(
wPR1 + wPR2 +⋯ + wPRy

y

)

(14)mwPR(F) =

�
(wPR1 ∗ FR1) + (wPR2 ∗ FR2) +⋯ + (wPRy ∗ FRy)∑y

i=1
FRi

�

Table 8   Size-frequency 
distribution of papers in subject 
category 2 with two focal papers 
(A and B)

Selected focal paper Citation count Number 
of papers

Rank i CP-EX

1100 1 410 99.76
980 1 409 99.51
465 3 406 98.78
200 5 401 97.57
145 7 394 95.86
120 19 375 91.24

Paper A 100 2 373 90.75
90 4 369 89.78
67 6 363 88.32
55 5 358 87.10
34 8 350 85.16
34 1 349 84.91
23 4 345 83.94
23 5 340 82.73
21 12 328 79.81

Paper B 20 13 315 76.64
11 15 300 72.99
10 22 278 67.64
10 34 244 59.37
1 45 199 48.42
1 55 144 35.04
0 67 77 18.73
0 77 0 0.00

Total 411
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Presenting cumulative frequencies in percentages

The publication set used in this study consists of 4,416,554 articles published between 
2000 and 2005. In this section, based on this dataset, some graphs are presented how PRs 
can be presented for enabling meaningful interpretations of empirical findings. Authors’ 
country information has been added to the articles in the dataset of this study to enable 
exemplary analyses and comparisons of units. Instead of countries, any other units could 
have been used (e.g., researchers or institutions).

The first proposal for presenting PRs is to show mwPR(F)s as bar graphs. Using the 
formula in “Solution to the aggregation problem of percentiles” section, the mwPR(F) has 
been calculated for some countries (by considering two weights: number of papers in a 
subject category and number of countries). The results are shown in Fig. 4: the USA and 
Switzerland are the best performing countries in this group with mwPR(F)s of 57.7 (CP-
IN) and 54.39 (CP-EX) for the USA and 57.67 (CP-IN) and 55 (CP-EX) for Switzerland. 
Thus, the articles from these countries performed (equal to or) better than about 58% (55%) 
of the articles published in the same publication year and subject category. China achieved 
mwPR(F)s of 44.59 (CP-IN) and 41.04 (CP-EX) which is below the expected value for an 
‘average’ citation level (50). Thus, China’s performance is better than around 41% of the 
articles published in the same publication year and subject category.

The second proposal for presenting PRs integrate the distribution of PRs besides 
mwPRs. Bornmann and Marx (2014a, b) and more recently Bornmann and Haunschild 
(2018) proposed to visualize percentiles using beamplots (Doane and Tracy 2000). The 
proposal has been taken up by Adams et al. (2019)—members of the Institute for Scientific 

Fig. 4   Mean weighted (mw) PR(F)s (CP-IN and CP-EX) for articles published between 2000 and 2005 by 
six countries: USA (n = 1,395,809), Switzerland (n = 73,344), UK (n = 370,227), Germany (n = 343,571), 
Japan (n = 372,581), and China (n = 255,379). Because of large sample sizes the standard errors of the esti-
mates are too small for presentation in the figure
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Information (ISI) which is part of Clarivate Analytics: the authors recommend to use beam-
plots instead of single numbers aggregating percentile distributions (such as in Fig. 4). It 
is an advantage of beamplots that not only annual distributions of percentiles can be pre-
sented, but also summary statistics (annual and overall medians). However, it should be 
considered in the use of beamplots that they are especially suitable for small publication 
sets (i.e., publication sets of single researchers), since beamplots become unreadable for 
large sets with many publications.

Figure 5 shows the beamplot of CP-EXs for articles published between 2000 and 2005 
by Libyan authors. Libya has been selected for this analysis, since there are only 294 arti-
cles in our publication set from this country. This number is in that range of paper numbers 
published by single authors. In the figure, the PR of every individual article is visualized 
using grey diamonds; the annual mwPRs (by considering two weights: number of subject 
categories and number of countries; see “Solution to the problem of multiple field-specific 
assignments of papers” and “Solution to the aggregation problem of percentiles” sections) 
are displayed with increased diamonds (that are black). The vertical black line in Fig. 5 
shows the mwPRs (CP-EX = 28.63) across all articles published between 2000 and 2005 by 
Libyan authors (by considering the two weights mentioned above). The grey dashed line in 
the figure marks the value 50—the expected value for an ‘average’ citation level.

As the mwPRs demonstrates, Libyan authors achieved a citation impact which is sig-
nificantly below 50: on average, only around 29% of the articles published between 2000 
and 2005 in the corresponding subject categories and publication years received a citation 
impact which is below the impact of the Libyan authors’ articles. The distributions of the 
PRs in all publication years demonstrate that the PRs are especially concentrated in the low 
citation impact area (below the 20th PR). Highly cited papers—papers which belong to the 
10% most frequently cited articles—exist, but they are rare.

As Figs.  4 and 5 demonstrate, percentiles can be visualized very differently. Further 
possibilities of presenting and statistically analyzing percentiles can be found in Bornmann 
(2013) and Williams and Bornmann (2014).

Discussion

In a recent study on landmark publications in scientometrics, Tahamtan and Bornmann 
(2018) worked out that the first method used for time- and field-normalizing citation data 
was based on percentiles. The introduction of the percentile method to bibliometrics is 
associated with the name Francis Narin (retired president of CHI Research Inc.). Already 
at the beginning of the 1980s, McAllister et al. (1983) explained citation percentiles as fol-
lows: “the pth percentile of a distribution is defined as the number of citations Xp such that 
the percent of papers receiving Xp or fewer citations is equal to p. Since citation distribu-
tions are discrete, the pth percentile is defined only for certain p that occur in the particular 
distribution of interest” (p. 207). Evered et al. (1989) used the percentage of papers belong-
ing to the 10% most frequently cited papers (named as ‘top decile citation performance’) 
to evaluate the citation impact of various institutional units. About 30 years later, Hicks 
et al. (2015) published ten principles to guide research evaluation (using bibliometric data) 
in Nature. According to these authors, “normalized indicators are required, and the most 
robust normalization method is based on percentiles: each paper is weighted on the basis of 
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Fig. 5   Percentile ranks (PRs) beamplot (based on CP-EXs) for articles published between 2000 and 2005 by 
Libyan authors



1476	 Scientometrics (2020) 124:1457–1478

1 3

the percentile to which it belongs in the citation distribution of its field (the top 1%, 10% or 
20%, for example)” (p. 430).

In this study, various approaches have been presented for using percentiles in research 
evaluation. A very popular approach today is to present the percentage of papers for a unit 
(e.g., an institution) which belong to the 10% most frequently cited papers: PP(top 10%) 
(see Bornmann 2014). This indicator comes under the family of I3 indicators which com-
bine the number of papers in different PCs with specific weights. P(top 10%) counts the 
number of papers belonging to the PCs of the 10% most frequently cited papers with a 
weight of 1. Other I3 indicators have used up to six PCs to measure the citation perfor-
mance of units with various weights. In “Counting highly cited papers” section, it has been 
argued that I3 has the disadvantage that information of citation distributions is lost when 
the data are grouped into (PR) classes. Approaches which consider the complete distribu-
tion of data should be preferred. Bornmann et al. (2013) proposed to use PPs which apply 
the rule by Hazen (1914) to consider the complete citation distributions. The problem with 
this approach is, however, that PPs cannot always be (exactly) interpreted as the percentage 
of papers (at or) below a certain CC (especially when the PPs are calculated based on only 
a few papers).

In recent years, some other percentile approaches have been introduced based on 
size-frequency distributions with varying advantages and disadvantages—as outlined 
in “Approaches based on size-frequency distributions” section. In this study, two further 
approaches (CP-IN and CP-EX) are introduced which are oriented towards the usual per-
centile rank definition: PR x is defined as the CC (at or) below which x% of the papers in 
the combination of publication year and subject category falls. Both approaches can be 
used very flexible by computing (1) PRs for certain CCs in distributions and (2) estimated 
CCs for pre-defined PRs (e.g., the 90th PR). It is one problem for the use of PRs in cita-
tion analyses that papers in databases such as WoS are frequently assigned to more than 
one subject category. This problem has been solved by wPRs with the consideration of 
the number of papers in corresponding subject categories. Other problems with PRs con-
cern their aggregation: how should PRs for papers of various units (e.g., institutions) be 
aggregated? In “Solution to the problem of multiple field-specific assignments of papers” 
and “Solution to the aggregation problem of percentiles” sections, it has been proposed to 
use mwPR and mwPR(F)s whereby weights are applied to consider that a paper has been 
assigned to more than one subject category and/or has been published by more than one 
unit (e.g., more than one country).

“Presenting cumulative frequencies in percentages” section addresses the presentation 
of PRs: bar graphs and beamplots can be used to present the results for various units. These 
graph types are only two examples and other options for visualizing results based on PRs 
exist. Some other options can be found in Bornmann (2013) and Williams and Bornmann 
(2014). Since the percentile approach has significant advantages over other time- and field-
normalizing approaches especially those which are based on mean citation rates, it would 
be desirable that the percentile approach is more frequently used in bibliometric studies. 
Although I3 indicators such as the popular PP(top 10%) are robust indicators compared 
to other time- and field-normalized indicators, they have the important disadvantage that 
information is lost from the citation distribution. Since CP-IN and CP-EX consider the 
complete citation distribution, they should be preferred in bibliometric studies.
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