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Abstract
Automated literature reviews have the potential to accelerate knowledge synthesis and pro-
vide new insights. However, a lack of labeled ground-truth data has made it difficult to 
develop and evaluate these methods. We propose a framework that uses the reference lists 
from existing review papers as labeled data, which can then be used to train supervised 
classifiers, allowing for experimentation and testing of models and features at a large scale. 
We demonstrate our framework by training classifiers using different combinations of cita-
tion- and text-based features on 500 review papers. We use the R-Precision scores for the 
task of reconstructing the review papers’ reference lists as a way to evaluate and compare 
methods. We also extend our method, generating a novel set of articles relevant to the fields 
of misinformation studies and science communication. We find that our method can iden-
tify many of the most relevant papers for a literature review from a large set of candidate 
papers, and that our framework allows for development and testing of models and features 
to incrementally improve the results. The models we build are able to identify relevant 
papers even when starting with a very small set of seed papers. We also find that the meth-
ods can be adapted to identify previously undiscovered articles that may be relevant to a 
given topic.

Keywords Citation networks · Scholarly recommendation · Big scholarly data · 
Autoreview

Introduction

Conducting a literature review, or survey, is a critical part of research. As the literature 
continues to grow and as scholars continue to move across disciplines, synthesizing and 
highlighting existing findings becomes increasingly important. At the same time, it has 
become increasingly difficult to identify even a slice of the relevant papers for a given topic 
(Tsafnat et al. 2013). The problem is that this curatorial process does not scale well. It is 
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expensive in both time and human effort. The advent of Big Scholarly Data—the availabil-
ity of data around published research and the techniques and resources to process it—has 
led to a flurry of activity in finding automated ways to help with this problem (Ammar 
et al. 2018; Beel et al. 2016; Kanakia et al. 2019; Ronzano and Saggion 2015; Williams 
et al. 2015; Zitt et al. 2015}.

Many methods have been developed to recommend relevant papers, using features 
related to textual similarity, keywords, and structural information such as relatedness in 
a citation network (Beel et  al. 2016). However, a common problem in developing and 
evaluating these methods is a lack of ground truth. We don’t know whether our methods 
are actually selecting relevant papers or topics. This is a general problem in recommender 
research, but especially so for scholarly papers, given the specialized knowledge needed to 
evaluate quality and relatedness.

In this paper, we present an approach to this problem that leverages the references in 
existing review papers as an approximation to ground truth. We assume that references in 
a review represent at least a subset of papers relevant to a given topic. Using this abundant 
labeled data within the thousands of reviews in the literature, we are able to frame the 
collection of a literature survey as a supervised learning problem. Within this supervised 
framework, we are able to evaluate, at least to some degree, the quality of methods aimed 
at automatically synthesizing scientific knowledge.

With this framework in place, we demonstrate how supervised learning models can be 
used to identify relevant papers for review, deriving features from the metadata associ-
ated with an article. These features include citations and the groups of papers that can be 
derived by clustered citation networks (Fortunato 2010). They also include text features 
derived from the similarity in paper titles. However, any set of related features (authors, 
disciplines, etc.) could be incorporated.

Using the reference list from a single review article as a benchmark, we develop meth-
ods for recapturing those references automatically using the features noted above (“Appli-
cation to a single review article” section). We then extend this method beyond one review 
article and apply the methods to a large group of review articles (Sects. “Large-scale study 
on multiple review papers and Extended analysis” sections). Finally, we apply the meth-
ods to identify relevant papers in the fields of science communication and misinformation 
studies. We invite domain experts to validate our results (“Exploring scientific fields using 
automated literature review” section). We make code and sample data for this project freely 
available at https ://githu b.com/h1-the-swan/autor eview .

The main contribution of this work is a novel framework for constructing and evaluat-
ing automated methods for generating references for literature surveys at a large scale. This 
work builds off of a BIRNDL workshop paper presented at SIGIR 2019 (Portenoy and 
West 2019). We have extended this work in several ways: running thousands of experi-
ments to assess how the methods perform using various review articles, sets of features, 
and data splits; expanding the background literature review; and reporting results from 
expert feedback on our exploration of new fields.

Background

There have been several previous attempts at automated or semi-automated literature sur-
veys (Belter 2016; Chen 2012; Janssens and Gwinn 2015; Jha et al. 2013; Silva et al. 2016). 
These approaches have tended to be smaller scale and rely on more qualitative means of 

https://github.com/h1-the-swan/autoreview
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evaluations, which are difficult to replicate and compare across studies. For example, Chen 
(2012) developed a system to aid in writing literature reviews, which was evaluated by hav-
ing first-year graduate students use it to help them write and submit papers for publication. 
These student-submitted papers had a high acceptance rate, and one student won a best 
paper award. This evaluation approach, while creative and compelling, does not scale well. 
Another study by Silva et al. (2016) applied community detection on citation networks to 
map papers in two different topics and then apply text analytics to generate taxonomies of 
terms. This approach allowed for detailed analysis of how subtopics are related within a 
field, but it relied on keyword searches, which can be an insufficient method of identify-
ing all relevant articles (Greenhalgh and Peacock 2005; Horsley et al. 2011; Larsen et al. 
2019).

Recent work has explored the use of review articles as a way of testing automated lit-
erature review systems. Belter (2016) used a semi-automated technique to retrieve docu-
ments for systematic reviews using citations. Janssens and Gwinn (2015) used co-citation 
and direct citation networks to identify eligible studies for existing biomedical systematic 
reviews, starting from one or two known articles. These methods have begun to be used in 
helping to create new systematic reviews (e.g., Albarqouni et al. 2017). Other studies have 
used active learning approaches to reduce the workload associated with selecting relevant 
articles for systematic reviews in the domains of medicine and public health (Miwa et al. 
2014; Wallace et al. 2010), law (Cormack and Grossman 2014), and software engineering 
(Yu et al. 2018; Yu and Menzies 2019).

Automatically identifying papers for surveys is similar to recommending papers, more 
generally. This topic has been extensively studied within and outside big scholarly data. A 
recent survey paper on research paper recommender systems (Beel et al. 2016) identified 
more than 200 articles on the topic published since 1998. The survey notes that the major-
ity of approaches use keywords, text snippets, or a single article as input. Our approach, 
in contrast, starts with a set of seed papers, which are then expanded upon. Our approach 
also has the distinction of being able to make use of any combination of various features, 
enabling us to use both textual and network-based features. Some previous work has built 
recommender systems which combine text and citation information (Gupta and Varma 
2017; Kong et al. 2018). These take a different approach, using embeddings to characterize 
similarity between articles.

The new research in automated methods for literature reviews is the result of people 
applying newly available data and computational power to a perennial and worsening prob-
lem—that of the need for and difficulty of organizing large bodies of research. This need 
for efficient literature review, and especially systematic review, is strongly felt in medicine, 
but it is also a need for all areas of science (Bastian et al. 2010; O’Mara-Eves et al. 2015; 
Tsafnat et al. 2013). In our work, we aim to provide a framework to help with this research 
by offering a way to develop and test literature review generation and recommendation at a 
large scale.

Data and methods

Data

The network data used in our analysis come from a recent snapshot of the Web of Sci-
ence (WoS) citation index consisting of 1,269,262,278 directed citation links between 
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163,830,918 papers. The data set contains paper-level metadata, such as titles, abstracts, 
publication dates and venues, and authors. We used WoS because it is one of the most 
comprehensive bibliographic datasets, covering a large number of articles across most sci-
entific fields. WoS also identifies certain articles as review papers, which was convenient 
for this project.

We removed some papers from the full data set. In order to reduce the network to a size 
that we could cluster (see “Features” section), we removed all papers that had no outgoing 
citations, and any paper that was only cited once (many of these actually appeared to be 
placeholder data, for which WoS could not fully identify the cited paper). We also removed 
papers which were missing all metadata, such as publication year and title. This cleaned 
data set had 55,271,946 papers, and 1,020,164,414 directed citation links.

Identifying candidate papers and setting up the supervised learning problem

Our procedure is presented in Fig. 1. The first step is to randomly split the papers into a set 
of “seed” papers and a set of “target” papers. We are imagining a researcher who is starting 
with a set of papers relating to a topic (the seed papers). This researcher wants to expand 
this set to find the other relevant and important papers in the topic. The target papers can 
be thought of as the set of papers the researcher has not yet included. Ideally, we would like 
to search for these target papers within the total set of papers in our data set. However, it is 
infeasible to generate features and train models using the total set of 55 million papers. To 
narrow the total set to a more reasonable number of candidate papers, we collect all of the 
papers that have either cited or been cited by the seed papers. We then go one more degree 
out, taking all of the papers that have cited or been cited by all of those. We follow a sec-
ond degree of citations because following direct citations is often not sufficient to identify 
all relevant literature (Janssens and Gwinn 2015; Robinson et  al. 2014). This process of 

a b c d

Fig. 1  Schematic of the framework used to collect data for development and testing of a supervised lit-
erature review classifier. a Start with an initial set of articles (i.e., the bibliography of an existing review 
article). b Split this set into seed papers (S) and target papers (T). c Collect a large set of candidate papers 
(C) from the seed papers by collecting in- and out-citations, two degrees out. Label these papers as positive 
or negative based on whether they are among the target papers (T). d Split the candidate papers into a train-
ing set and a test set to build a supervised classifier, with features based on similarity to the seed papers (S)
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following in- and out-citations imitates the recommended practice for a researcher look-
ing for papers to include in a survey, but at a larger scale (Webster and Watson 2002). 
The resulting set of papers, while large (generally around 500K to 2M), is manageable 
enough to work with. We have found that this method, using different samples for the seed 
papers, reliably generates sets of papers that contain all or nearly all of the target papers 
(see “Results” section and Table  2). We label each candidate paper positive or negative 
depending on whether it is one of the target papers. The goal is to identify the positive (tar-
get) papers among the many candidate papers. At this point, we split the candidate papers 
into training and test sets in order to build classifiers.

Features

Our next step is to generate features to use in a classification model. One feature we use 
involves the use of citation communities. The structure of the citation network, in which 
nodes represent papers and edges are directed citations between them, contains patterns 
about the relatedness of papers. Citation communities are groups of papers that tend to 
have more connections within-community than outside it. To extract these communities, 
we used Infomap to cluster the citation network (Rosvall and Bergstrom 2008). Infomap is 
a well known unsupervised community detection algorithm based on principles of infor-
mation compression. Identifying clusters in a network of tens of millions of documents is 
computationally expensive, so we developed a two-step approach to cluster the full net-
work.1 In the first clustering step, we identified a non-hierarchical clustering of the full net-
work using a parallelized version of Infomap (Bae et al. 2013). This process took 5.3 hours 
on a machine with 32 cores. 5,513,812 clusters were identified in this way. In the second 
step, we further processed these clusters to identify hierarchical structure, which is some-
thing the parallelized version of Infomap cannot do. We wanted to identify this hierarchy 
because the structure of science tends to be hierarchical, with smaller communities nested 
within broader ones. To do this, we used Infomap combined with Apache Spark to further 
cluster all of the top-level clusters with at least 100 nodes into multi-level, non-overlapping 
clusters. This second step took about 30 minutes on the same machine. The final clustering 
had 9,390,263 bottom-level clusters, with a maximum depth of 11, and an average depth of 
2.9 (std 0.77).2

To incorporate the citation clustering information into classification models, we calcu-
late the average cluster distance between a paper and the seed papers. Distance for two 
papers i and j is defined as

where Di and Dj represent the depth in the clustering tree hierarchy of i and j, and DLCA 
represents the depth of the lowest common ancestor of the two papers’ clusters (Djidjev 

(1)
Di + Dj − 2DLCA

Di + Dj

1 For the clustering, we used the cleaned version of the Web of Science network as described in “Data” 
section. We used the network after cleaning for citations, but before removing papers with other missing 
metadata. This version of the network had 73,725,142 nodes and 1,164,650,021 edges.
2 Since every node is in exactly one cluster (even if the cluster is only one node), and the leaves of the 
hierarchy tree represent the nodes themselves, the minimum depth in the hierarchy is 2. In this case, the first 
level is the cluster the node belongs to, and the second level is the node.
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et al. 1991).3 The feature for paper i is the average distance to each of the seed papers. We 
also use PageRank as a measure of citation-based importance (Page et al. 1999).

In addition to these network-based features, we add in a simple text-based feature: the 
average cosine-similarity of the TF-IDF vector of the paper title to those of the seed paper 
titles. The purpose of including this feature is to demonstrate how structural- (network) 
and content- (text) based features can be combined in one model, and can be compared to 
models with only one or the other. In “Extended analysis” section we extend our analysis to 
include GloVe word embeddings, and add publication year as an additional feature of paper 
metadata. There are many other options for features that could be used, including those 
related to citation or coauthorship patterns, paper text, venue of publication, or any other 
paper feature that could help identify similarity to the seed papers. Future work will con-
tinue this approach, exploring all of these features and how they affect the models’ ability 
to reconstruct the review papers’ reference lists. Code and sample data for specifying the 
features used here are available at https ://githu b.com/h1-the-swan/autor eview .

Results

Application to a single review article

To illustrate how the autoreview process works on a single review article, we use a review 
article on community detection in graphs (Fortunato 2010). We chose this paper because 
we are familiar with the topic and could therefore inspect the plausibility of the results. The 
paper represents a comprehensive review of the topic up to the year of publication (2010). 
This paper has 262 linked references in our data. We apply the autoreview method using a 
seed set of 50 papers, randomly sampled from the references. This set of “seed papers” can 
be thought of as the small set of papers that our imagined researcher above starts with. The 
remaining 212 papers are “target” papers that we would like to identify.

Table 1 shows the results from five splits, each using a different random seed. The “ran-
dom seed” is an integer that the sampler uses as a starting point; each different random 
seed leads to a different split of seed and target sets. Running the process multiple times 
allowed us to see how the whole system varied when the initial seed papers changed but 
the review article remained the same. We stopped after five times because generating can-
didate sets and training models is computationally expensive on the large candidate paper 
sets. We also wanted to focus our efforts on learning how the system would perform with 
other review articles ( “Large-scale study on multiple review papers” section).

For each run, we split the 262 papers into a set of 50 seed papers and 212 target papers. 
After collecting candidate papers, we cleaned the data by removing the seed papers, papers 
for which we did not have titles, and papers published after the year the review paper was 
published (2010). Each seed (i.e., each row of Table  1) represents one instance of the 
process in Fig. 1. We report the number of candidate papers in the final set for each run. 
These sets of candidate papers range in size from 500K to 1.4M papers. In each case, only 

3 We divide the standard measure of distance between nodes in a tree by the sum of the nodes’ depth. This 
is because, in the case of hierarchical Infomap clustering, the total depth varies throughout the tree, and the 
actual depth of the nodes is arbitrary when describing the distance between the nodes. For example, a pair 
of nodes in the same bottom-level cluster at a depth of level 5 are no closer together than a pair of nodes in 
the same bottom-level cluster at level 2.

https://github.com/h1-the-swan/autoreview
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(at most) 212 of these papers are in the positive class. This parallels the experience of a 
researcher trying to do an effective survey of a topic—the goal is to find the right papers in 
a large body of literature that can feel overwhelming. With respect to these candidate sets, 
this method achieves very high recall: 98.3% on average (standard deviation 0.00258).

After identifying seed papers, target papers, and candidate papers, we generated features 
for each candidate paper, and labeled them according to whether or not they were among 
the targets. We then split the candidate papers into a training and test set, and trained clas-
sifiers to try to identify the targets. We experimented with a variety of classifiers: logistic 
regression, SVC (support vector classifier), SGD classifier (stochastic gradient descent), 
gaussian naive bayes, random forest, and AdaBoost classifier (Murphy 2008). Many of 
these proved to give poor performance and/or run too slowly, so we proceeded with only 
random forest, logistic regression, and AdaBoost, selecting the best-performing model for 
each data set.4

Table 1 reports evaluation measures for each of these five models, as well as their aver-
ages. These include the Precision at 10, 100, and 1000, the R-Precision, and the Aver-
age Precision. The R-Precision is the fraction of target papers found in the top N papers, 
where N is the total number of target papers—212 in this case (Manning et al. 2008). The 
Average Precision is the sum of the precision at k for each rank k of a correctly identified 
target paper, divided by the total number of target papers. Since the fundamental task is to 
reconstruct the reference list from the original review paper, we focus our analysis mostly 
on the R-Precision scores, which characterize exactly how well the models were able to do 
this (see “Large-scale study on multiple review papers” section for more discussion on the 
evaluation measures).

Using two network-based features—the average distance between a paper’s cluster and 
those of the seed papers, and the absolute difference of a paper’s PageRank score to that of 
the average seed paper5—a random forest classifier identified, on average, 86 of the target 

Table 1  Results for autoreview performed on a single review paper, for five different initial random splits of 
the references into 50 seed papers and 212 target papers

A random forest classifier was trained for each of these splits, for different sets of features. The results 
shown are for network-based features (average cluster distance and PageRank), and network features + text 
features (cosine similarity of TF-IDF vectors of paper titles to those of the seed papers)

Seed Num Network Features Network + Text

Candidates Recall Prec at 10/100/1000 R-Prec Av Prec Prec at 10/100/1000 R-Prec Av Prec

1 633,271 0.986 0.8/0.48/0.13 0.425 0.27 0.9/0.77/0.15 0.509 0.472
2 522,098 0.981 0.5/0.4/0.13 0.415 0.227 1/0.72/0.14 0.505 0.462
3 828,817 0.981 0.8/0.45/0.11 0.387 0.23 1/0.82/0.12 0.5 0.429
4 521,479 0.986 0.7/0.42/0.12 0.415 0.245 0.9/0.76/0.13 0.5 0.438
5 1,405,034 0.981 0.8/0.47/0.11 0.396 0.256 1/0.75/0.14 0.491 0.474
Avg 782,140 0.983 0.72/0.44/0.12 0.408 0.245 0.96/0.76/0.14 0.501 0.455

4 Machine learning experiments were conducted using scikit-learn version 0.20.3 running on Python 3.6.9.
5 Although we only performed ranking and clustering once, it would be ideal to remove all nodes and links 
past the year of the review paper, as well as the review paper itself, and cluster this network. However, 
performing a separate clustering for each review paper would be computationally infeasible. Nevertheless, 
any bias introduced by this should be small, as the clustering method we use considers the overall flow of 
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papers (40.8%). We also ran the same experiments using the text-based feature of aver-
age paper title TF-IDF similarity to the seed paper titles in addition to the network-based 
features (see “Features” section). This improved the results: the random forest classifiers 
then identified, on average, 106 of the target papers (50.1%). In the “Appendix”, we include 
some examples of papers ranked by the classifier.

Large‑scale study on multiple review papers

We now apply these same methods to multiple review papers. The Web of Science, as 
part of its citation index data, identifies a subset of articles as review papers ( ∼ 1.4 mil-
lion papers). We run autoreview on a sample of these reviews to explore how the method 
performs on a variety of review articles, under varying conditions. We first take a random 
sample of 500 review articles with between 200 and 250 references. We chose this sample 
as a starting point in order to hold the number of references relatively constant. We believe 
that review papers of this size represents the type of review for which this method would be 

Table 2  Summary statistics for the 500 review articles, including the number of references per review (i.e., 
the seed papers + the target papers to predict), the publication year, the number of candidates generated 
per initial split of the data, the overall recall for the candidate sets, and precision measures for two sets of 
features—the network features only (cluster distance and PageRank), and network features + TF-IDF simi-
larity of titles

Min Max Mean Std Median

Number of references 200 249 222 14.4 220
Publication year 1939 2016 2001 15.1 2007
Number of candidates 4476 2,152,834 489,418 348,124 453,386
Recall 0.578 1 0.976 0.0469 0.994
Network features
Precision at 10 0 1 0.355 0.248 0.3
Precision at 100 0 0.69 0.199 0.114 0.18
Precision at 1000 0.002 0.16 0.062 0.0294 0.057
Precision at 10000 0.0016 0.0331 0.0109 0.00307 0.011
R-Precision 0.00625 0.635 0.17 0.0985 0.146
Average precision 0.000734 0.522 0.0891 0.0735 0.0676
Network + Text features
Precision at 10 0.2 1 0.827 0.147 0.9
Precision at 100 0.06 0.94 0.506 0.129 0.51
Precision at 1000 0.013 0.173 0.0971 0.0256 0.097
Precision at 10000 0.004 0.0331 0.0129 0.00248 0.013
R-Precision 0.0437 0.792 0.385 0.105 0.384
Average precision 0.00713 0.813 0.306 0.12 0.298

Footnote 5 (continued)
information across multiple pathways, which makes it robust to the removal of individual nodes and links in 
large networks.
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useful—a comprehensive review of a well-defined topic. We also explore results on subsets 
of larger and smaller review articles in “Extended analysis” section.

For each of these 500 review articles, we took the references and split them into seed 
and target sets, and tried to use features of the seeds to predict the targets. Table 2 shows 
summary statistics and results for these papers using the same procedure outlined in the 
previous section (“Application to a single review article” section). The “number of candi-
dates” refers to the number of papers generated from following two degrees of citations in 
and out from the seed papers (5 random splits of seed/target for each review paper; 2500 
candidate sets in total). These candidate sets are highly imbalanced, with the 150-200 target 
papers hidden among hundreds of thousands or millions of candidates; again, this is meant 
to mimic the predicament of the researcher searching for relevant papers in an large pool of 
candidates. The candidate sets have very high recall, generally including all or missing just 
one or two papers (with a few outliers in which the citation-based method failed to capture 
many of the target papers).

For each review article, we gathered the cited papers, and trained models for 5 different 
random seeds, corresponding to 5 different splits of the data into seed and target papers. 
We fixed the size of the seed set at 50 papers (in the following section, we explore the 
effect of varying the size of this seed set). We chose the best-performing model for each 
split—in most cases, this was a random forest classifier; however, in some instances, a 
logistic regression or AdaBoost classifier outperformed the random forest.6

Again, we report the performance of the classifiers as the Precision (at 10, 100, 100, 
and 10,000), the R-Precision, and the Average Precision (Manning et al. 2008). The over-
all goal is to reconstruct the list of held-out target papers from the reference set of the 
original review articles. Within this task, the relative rank of the different predictions is not 
especially important. Because of this, we focus the rest of our analysis on the R-Precision 
scores: the number of correctly predicted target papers among the top N papers, where N 
is the number of target papers, divided by N. However, looking briefly at the precision at k 
scores—the ratio of target papers identified at different ranks—we can see that the models 
do tend to give good performance in terms of ranking relevant papers relatively higher. For 
example, the models given network and text features had, on average, eight papers cor-
rectly predicted among the top ten, and 50 among the top 100. We also report the average 
precision over all target papers as an alternate measure of precision for all relevant docu-
ments. This measure is highly correlated to R-Precision (pearson’s r = 0.97 across all mod-
els), so we focus on R-Precision from this point on for simplicity’s sake.

Figure 2 shows the distribution of R-Precision scores for 2500 classifiers (five classifiers 
for each of the 500 review articles, each one trained and tested on a different split of the 
article’s references). The figure shows the classifiers that were given both network (cluster 
and PageRank) and text (TF-IDF-based similarity of titles) features. The average score was 
0.385 (standard deviation 0.105); the highest score was 0.792.

Some of the worst performing review articles tended to be year-specific reviews, e.g., 
“Germanium : Annual survey covering the year 1972”. These particular reviews have 
temporal constraints that the classifiers did not learn well. Publication date was not even 
among the features available to these classifiers; adding publication year in the set of 

6 We chose to report the best-performing model for each experiment, rather than restricting to a single clas-
sifier type. This decision did not have a large effect on the results. We chose to be flexible in which classi-
fier to use because there are differences among the different review articles. We will continue to explore the 
nature of these differences in future work.
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features available to the classifiers did cause the performance to improve somewhat. 
However, in future analysis, these year-specific reviews should be excluded if possible, 
as they represent a less-typical case with a hard constraint on the potential references. 
Nevertheless, this type of review article only represented a portion of those in the lower 
tail, so it is only a partial explanation for the poor performance on these papers. The 
models tended to perform better with smaller candidate sets (pearson’s r = −0.17 for the 
relationship between candidate size and score). This is likely due to the fact that these 
candidate sets simply had less noise by virtue of them being smaller. However, since the 
candidates are collected based on random splits of the data, it is not possible to exploit 
this in order to improve performance (i.e., by limiting the size of the candidate sets).

The analysis to this point has aggregated all review articles together; however, it 
could be the case that different types of review articles perform differently using these 
methods. One way to explore this is to look at the discipline of the review articles. 
Fig. 3 shows the same distribution of R-Precision scores as above, broken down by sub-
ject. We used the Web of Science subject labels for the review papers (taking the first 
one if there were multiple), and aggregated them into broad categories. Most of the 
reviews analyzed were in Medicine (202), Biology (122), and Natural Sciences (101). 
Most of the subject groups did not perform significantly differently from each other, 
suggesting that it is no more difficult to predict the reviews’ references in, for example, 
medicine as it is for those in the natural sciences. Some of the groups on either extreme 
did show statistically significant differences—e.g., engineering did have higher scores 
than pyschology/social sciences—but in general the differences between groups were 
modest at most (pairwise independent t-tests, Bonferroni corrected � of 0.0024). It is 

Fig. 2  Violin plot showing the distribution of R-Precision scores (number of correctly predicted target 
papers divided by total number of target papers) for 2500 classifiers, each trained on one of 500 different 
review articles. The violin plot shows a box plot in the center, surrounded by a mirrored probability distri-
bution for the scores. The distribution is annotated with the titles of three review articles. The review article 
in the lower tail was one of those which the classifiers did most poorly at predicting references (mean score: 
0.14). The one in the upper tail is an example of a review paper whose classifiers performed best (0.65). 
The one in the middle at the fattest part of the distribution is more or less typical for the review articles in 
our set (0.39)
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interesting that we did not find any major differences between fields, given that in bib-
liometric research, findings often do not generalize across different fields.

Extended analysis

We now extend our analysis to explore how the methods perform under various conditions. 
The three categories of conditions we experiment with are the number of seed/target papers 
in the initial split of the review references, the features used by the models, and the number 
of references in the review papers.

Using the same sample of review papers as in the previous section (“Large-scale study 
on multiple review papers” section), we begin by varying the first two of these: the number 

Fig. 3  Box plots of the R-Precision scores for the 500 review articles by subject. 50 seed papers, network 
and TF-IDF title features. See text for discussion
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of seed papers, and the sets of features. We limit our analysis here to a subset of 100 of the 
previously used 500 articles. This was more computationally tractable, as each combina-
tion of seed size and feature set involve training models for five seed/target splits. Fig. 4 
shows the R-Precision scores for 8 different sets of features and 5 different numbers of seed 
papers.

Varying features Each line in Fig.  4 represents the performance of classifiers using 
different sets of features to rank and identify target papers, with better performing feature 
sets on top. Using only the TF-IDF information for paper titles gave the worst performance 
( ∼ 0.1 ). Using network features alone—either cluster information, or cluster information 

Fig. 4  R-precision scores for autoreview, varying the number of seed/target papers, and the sets of features 
used. Each point represents the mean of the R-Precision scores for 500 models—5 each for different seed/
target splits of the references of 100 review papers. The error bars represent 95% confidence intervals
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combined with the paper’s PageRank scores—resulted in somewhat higher scores than 
TF-IDF features ( ∼ 0.15 , a 50% improvement over TF-IDF). Combining network and text 
features, as we saw in the previous section, gave a large boost in performance, with scores 
around 0.4. Adding another feature from the paper metadata—the publication year—gave 
another boost, with scores around 0.6.7 We believe that this improvement is because topics 
in science tend to be situated in a given period in time. By giving the model information 
about the publication years of papers, it is better able to identify the important papers in the 
field.

In order to test more sophisticated text features, we also explored models using title 
embeddings. For each paper title, we found the average word vector from 300-dimensional 
GloVe embeddings.8 We used as a feature the cosine similarity between this vector and the 
mean of the title vectors for the seed papers. These features tended to perform very well; 
in fact, using embeddings alone absent any other features tended to give scores higher than 
most other sets of features that did not include embeddings. The best performing models 
we tested were ones that combined all types of features—word embeddings, network fea-
tures, and publication year. These models had R-Precision scores around 0.81.9

Varying seed size Each point along the x-axis of Fig. 4 represents results from starting 
with different sizes of seed/target splits. For example, for each leftmost point, the autor-
eview process began for each of the 100 review papers by randomly splitting the 200-250 
references into a seed set of 15 seed papers and 185-235 target papers, with the target 
papers then used to generate the candidate sets.Again, this procedure was done with five 
different random seeds for each review, for each seed size (15, 25, 50, 100, and 150).10

Intuitively, we might expect performance to increase along with the size of the seed set, 
since with more seeds, the classifiers have more knowledge of how similar papers should 
look, and fewer target papers to predict. We do see this trend for some of the feature sets—
for example, with network + TF-IDF, and network + TF-IDF + publication year. Nota-
bly, for each of these, the scores for the smaller seed sets are only modestly lower than 
the largest seed sets, which suggests that this method can perform fairly well even with 
only a handful of seed papers. On the other hand, some of the feature sets do not improve 
with more seed papers. The classifiers using title embeddings alone is the most extreme 
of these: these models actually perform best with the fewest number of seed papers, and 
performance decreases as the number of seed papers increases. While the reason for this is 
not entirely clear, it may due to a tradeoff between having more seed papers—which means 
more information for the classifier to use—but fewer target papers—which means the clas-
sifier has to identify the target papers higher up in the rankings in order to get a high score.

Varying size of review papers Figure  5 shows the average R-Precision scores when 
starting with review articles with reference papers of varying length. The medium size 

7 The actual feature used was the absolute difference between a paper’s publication year and the mean pub-
lication year of the seed papers.
8 We used the spaCy library (version 2.2.3) with a pretrained English language model (core_web_lg 
version 2.2.5).
9 The models that had both network and title embedding features, but not publication year (“Cluster, Pag-
eRank, Embeddings”), performed worse in general than models with embeddings alone, with scores tend-
ing to be between 0.5 and 0.7. The reason for this is unclear.
10 Since the same random seeds (1, 2, 3, 4, 5) were used each time, the smaller seed sets are always subsets 
of the larger ones. For example, for a given review article and a given random seed, the 100 seed papers 
identified are all included in the set of 150; the set of 50 seed papers are all included in both the set of 100 
and 150; and so on.
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articles are the same 100 as above, with a seed size of 50. The small review articles are a 
different set of reviews that have an average of 50 references, with 15 of these references 
used as the seed papers. The large reviews are another set of reviews that have on average 
945 references, with a seed size of 50. These results are largely consistent with those above. 
Models with only network or only TF-IDF features all perform about the same, regardless 
of review paper size. For other feature sets, small review papers tend to perform better than 
larger ones, but this may be a function of the ratio of seed papers to target papers (as seen 
in many of the models in Fig. 4), and not due to any inherent differences between these 
groups of review papers.

Exploring scientific fields using automated literature review

The method we introduce can be adapted as a tool for exploring key papers in an emerging 
field. In this use case, it is the papers the classifier “misses” that we are interested in. The 
classifier, attempting to predict the target papers, assigns a confidence score to each of the 
candidate papers. We are interested in those candidate papers which received a high score, 
yet were not actually target papers. In the classic classification task, these would be con-
sidered misidentified, but in this task we consider the possibility that their similarity to the 
seed papers may make them relevant papers for this field. This is consistent with Belter’s 
suggestion of “supplement[ing] the traditional method by identifying relevant publications 
not retrieved through traditional search techniques” (Belter 2016). As a case study, we 
applied this method to papers in the emerging field of misinformation studies, which pulls 
research from psychology, risk assessment, science communication, computer science, and 
others.

Fig. 5  Average R-Precision scores for different size review articles. The middle (red) bar for each feature 
set represents the average score for the same 100 review articles using the same procedure as in Fig. 4 (seed 
size 50). The other two bars in each group represent a different set of review articles, the left a set of 100 
smaller reviews (50 references on average), the right a set of 100 larger reviews (945 references on average). 
Error bars represent 95% confidence intervals. (Color figure online)
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As part of this case study and in collaboration with the National Academy of Sciences 
(NAS), we curated a collection of important papers in this field11 and used this collection 
as a seed set to identify other related papers that might have been missed by our more 
manual methods. Evaluating these results brings us back to shaky territory where we do 
not have ground truth. However, conversations with domain experts interested in formally 
characterizing these fields have been encouraging, suggesting the utility of these methods 
in identifying relevant papers. The original seed papers and the extended bibliography of 
machine-identified and ranked papers can be found at http://www.misin forma tionr esear 
ch.org.

Leveraging the expertise of the NAS scientists, we are also studying how well these 
methods can identify papers in a somewhat more established field. We used a seed set 
of curated papers in the field of Science Communication to identify and rank additional 
papers. The seed set consisted of 274 papers collected from a 2017 National Academies 
report on science communication (National Academies of Sciences 2017). We performed 
five different splits of these papers into seed and target sets (see Fig. 1). For each of these, 
we generated large sets of candidate papers from Web of Science, and then trained random 
forest models to rank candidates based on the citation- and title-based features described in 
“Application to a single review article” section. For each candidate paper, we aggregated 
the results of the five classifiers by taking the sum of the models’ predicted probabilities. 
We then provided the evaluators with a list of the top 1,000 papers for evaluation that were 
not in the original seed set. Three domain experts have evaluated this data set, one indepen-
dently, the other two working together. They made binary relevance judgments for each of 
the 1,000 papers, with the instructions: “identify any references that the algorithm picked 
up that don’t belong in the field of science communication.” The first rater judged 947 
(95%) of the references to be relevant, while the other two judged 872 (87%) to be relevant 
(moderate inter-rater reliability between the two ratings: Cohen’s � = 0.37 ). We plan to 
make use of expert evaluations to assess how useful this approach could be in other fields, 
including misinformation studies.

Discussion

Our results suggest that it is possible to use automated methods to identify many of the 
most relevant papers for a literature review, starting from a large set of candidate papers. 
We believe that, by trying new features and tuning model parameters, we can increase per-
formance and learn more about what distinguishes these papers. We have also seen prom-
ise in using these methods to build novel surveys of topics from a set of seed papers. An 
important area of future work will be collecting more expert-labeled evaluations to validate 
and improve this approach.

Running these experiments on our samples of review articles required thousands of 
hours of computation on a supercomputing cluster. However, applying the methods to 
a single set of references (as in “Exploring scientific fields using automated literature 
review” section), is much less intensive, and does not necessarily require these resources 
that may not be broadly accessible or scalable to a general audience.

11 See Data and Methods at http://www.misin forma tionr esear ch.org for details

http://www.misinformationresearch.org
http://www.misinformationresearch.org
http://www.misinformationresearch.org
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Previous work on automated methods for literature review have tended to use a small 
number of hand-selected systematic review articles (Belter 2016), or a small number of sci-
entific fields (Silva et al. 2016). The small scale and close qualitative approach can provide 
a lot of insight, but makes it hard to specify benchmarks to generalize and compare differ-
ent methods. Our experimental approach, on the other hand, gathers many review papers 
and applies general techniques, allowing for a much larger pool of labeled data.

We found that we were able to identify many of the references of review articles in a 
variety of research areas. Our methods also missed many references, ranking other arti-
cles more highly than the ones in the original reference list. However, it seems that these 
“incorrect” articles may actually have value: they may be relevant articles that were missed 
by the review papers’ authors. We found some support for this with the help of domain 
experts, who found that many of the “misclassified” articles were in fact relevant to the 
given field. While the precision scores attainable by these methods represent a good goal 
when making improvements, it is worth noting that in many cases, the failures of the clas-
sifiers may actually indicate valuable papers that have been overlooked.

Furthermore, we see potential in using this framework to develop and evaluate methods 
for literature survey generation and related problems such as scholarly recommendation 
and field identification. The objective we propose for our modeling task—accurately find-
ing all of the remaining references from a review paper given a held out sample of seed 
papers from those references—is not a perfect one. We assume that the references in a 
review paper represent domain experts’ best attempt to collect the relevant literature in a 
single research topic; however, there exist several different types of review article (system-
atic review, meta-analysis, broad literature survey, etc.), and our current method ignores 
potential nuance between them. Additionally, we assume that every article in a review 
paper’s bibliography is a relevant article to be included in a field’s survey; in practice, an 
article can be cited for many different reasons, even within a review article. Despite these 
limitations, the large amount of available data allows our framework to provide a means of 
experimenting with and developing methods for automated literature surveys. There are 
many review articles similar to the ones we used that have their bibliographies available 
and so it will be possible to do this development and analysis on a large scale across many 
domains. Using this framework, it will be possible to empirically evaluate novel features 
for their use in identifying papers relevant to a survey in a given topic.
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Appendix

Example of autoreview results

Below is a sample of results (random samples of true positives, false positives, true nega-
tives, and false negatives) from the autoreview classifier using the references from For-
tunato (2010)—a review on Community Detection in Graphs—with a random seed of 5. 
The “Rank” represents the position of the candidate paper when ordered descending by 
the classifier’s score. The false positives, while not in the original reference list, still seem 
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to be relevant to the topic (e.g., “Overlapping Community Search for Social Networks”). 
The true negatives tend to have lower scores than the false negatives, suggesting that the 
assigned score does tend to predict relevant documents, even if they are below the cutoff. 

True Positives

Rank Title Year

10 Role Models For Complex Networks 2007
21 Adaptive Clustering Algorithm For Community Detection In Complex Networks 2008
24 Random Field Ising Model And Community Structure In Complex Networks 2006
50 Bayesian Approach To Network Modularity 2008
58 The Effect Of Size Heterogeneity On Community Identification In Complex Networks 2006
76 Loops And Multiple Edges In Modularity Maximization Of Networks 2010
97 Synchronization Interfaces And Overlapping Communities In Complex Networks 2008
118 The Analysis And Dissimilarity Comparison Of Community Structure 2006
119 Searching For Communities In Bipartite Networks 2008
208 Epidemic Spreading In Scale-Free Networks 2001

False Positives

Rank Title Year

72 Modularity From Fluctuations In Random Graphs And Complex Networks 2004
94 Clustering Coefficient And Community Structure Of Bipartite Networks 2008
98 Detecting Overlapping Community Structures In Networks 2009
106 Size Reduction Of Complex Networks Preserving Modularity 2007
129 Extracting Weights From Edge Directions To Find Communities In Directed Networks 2010
146 Identifying The Role That Animals Play In Their Social Networks 2004
150 Seeding The Kernels In Graphs: Toward Multi-Resolution Community Analysis 2009
159 Overlapping Community Search For Social Networks 2010
162 Modularity Clustering Is Force-Directed Layout 2009
185 Cartography Of Complex Networks: Modules And Universal Roles 2005

True Negatives

Rank Title Year

2967 Graph Models Of Complex Information-Sources 1979
120959 Parallel Distributed Network Characteristics Of The Dsct 1992
322251 Hidden Semantic Concept Discovery In Region Based Image Retrieval 2004
327308 A Multilevel Matrix Decomposition Algorithm For Analyzing Scattering From Large 

Structures
1996

394850 Multiple-Model Approach To Finite Memory Adaptive Filtering 1992
749175 Statistical Computer-Aided Design For Microwave Circuits 1996
943999 Segmental Anhidrosis In The Spinal Dermatomes In Sjogrens Syndrome-Associated 

Neuropathy
1993

1121787 Rheological And Dielectrical Characterization Of Melt Mixed Polycarbonate-Multiwalled 
Carbon Nanotube Composites

2004

1177851 Explaining The Rate Spread On Corporate Bonds 2001
1256866 The Cyanobacterial Cell Division Factor Ftn6 Contains An N-Terminal Dnad-Like 

Domain
2009
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False Negatives

Rank Title Year

259 Heterogeneity In Oscillator Networks: Are Smaller Worlds Easier To Synchronize? 2003
324 Assessing The Relevance Of Node Features For Network Structure 2009
385 The Use Of Edge-Betweenness Clustering To Investigate Biological Function In Protein 

Interaction Networks
2005

6605 A Measure Of Betweenness Centrality Based On Random Walks 2005
19863 On Decomposition Of Networks In Minimally Interconnected Subnetworks 1969
59900 Objective Criteria For Evaluation Of Clustering Methods 1971
139178 Optimization With Extremal Dynamics 2001
250583 The Tie Effect On Information Dissemination: The Spread Of A Commercial Rumor In 

Hong Kong
2002

281952 Compartments Revealed In Food-Web Structure 2003
1203248 Dynamic Asset Trees And Portfolio Analysis 2002
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