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Abstract
In this paper, we present the outer product decomposition of a product of compatible linked 
networks. It provides a foundation for the fractional approach in network analysis. We dis-
cuss the standard and Newman’s normalization of networks. We propose some alternatives 
for fractional bibliographic coupling measures.

Keywords  Social network analysis · Linked networks · Bibliographic networks · Network 
multiplication · Fractional approach · Newman’s normalization · Bibliographic coupling

Mathematics Subject Classification  01A90 · 91D30 · 90B10 · 65F30 · 65F35

JEL Classification  C55 · D85

Introduction

The fractional approach was proposed by Lindsey (1980). For example in the analy-
sis of coauthorship the contributions of all coauthors to a work has to add to 1. Usually 
the contribution is then estimated as 1 divided by the number of coauthors. An alterna-
tive rule, Newman’s normalization, was given in Newman (2001, 2004) which excludes 
the selfcollaboration. Recently several papers (Batagelj and Cerinšek 2013; Cerinšek and 
Batagelj 2015; Perianes-Rodriguez et al. 2016; Prathap and Mukherjee 2016; Leydesdorff 
and Park 2017; Gauffriau 2017) reconsidered the background of the fractional approach. 
In this paper we propose a theoretical framework based on the outer product decomposi-
tion to get the insight into the structure of bibliographic networks obtained with network 
multiplication.

The paper starts with basic notions: collections of linked networks in “Linked net-
works” section and network multiplication in “Network multiplication” section. In “Outer 
product decomposition” section we formalize, using the outer product decomposition, an 
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observation from our paper (Batagelj and Cerinšek 2013) that the product of two compat-
ible networks is a sum of complete two-mode networks. Their contributions to the product 
can be different (“Derived networks” section). To equalize their impact we have to nor-
malize both networks (fractional approach, “Fractional approach” section). We extend the 
result to the linking through a network (“Linking through a network” section) and discuss 
different implications of the decomposition (“Some notes” section). The standard fractional 
approach works well for co-citation. Not all normalizations make sense—we can not apply 
the standard fractional approach to bibliographic coupling. In “Bibliographic coupling and 
co-citation” section we discuss this problem and show that the Salton cosinus and the Jac-
card index are among the options.

Linked networks

Linked or multi-modal networks are collections of networks over at least two sets of nodes 
(modes) and consist of some one-mode networks and some two-mode networks linking dif-
ferent modes. For example: modes are Persons and Organizations. Two one-mode networks 
describe collaboration among Persons and among Organizations. The linking two-mode 
network describes membership of Persons to different Organizations.

Linked networks are the basis of the MetaMatrix approach developed by Krackhardt 
and Carley (Krackhardt and Carley 1998; Carley 2003). For an example see the Table 3 in 
Diesner and Carley (2004, p. 89).

Another example of linked networks are bibliographic networks. From special bibliog-
raphies (BibTeX) and bibliographic services (Web of Science, Scopus, SICRIS, CiteSeer, 
Zentralblatt MATH, Google Scholar, DBLP Bibliography, US patent office, IMDb, and 
others) we can construct some two-mode networks on selected topics: authorship on works 
× authors ( �� ), keywordship on works × keywords ( �� ), journalship on works × jour-
nals/publishers ( �� ), and from some data also the classification network on works × clas-
sification ( �� ) and the one-mode citation network on works × works ( �� ); where works 
include papers, reports, books, patents, movies, etc. Besides this we get also the partition 
of works by the publication year, and the vector of number of pages (WoS 2018; Batagelj 
2007).

An important tool in analysis of linked networks is the use of derived networks obtained 
by network multiplication.

Network multiplication

Given a pair of compatible two-mode networks NA = (I,K,AA,wA) and 
NB = (K,J,AB,wB) with corresponding matrices �I×K and �K×J  we call 
a product of networks NA and NB a network NC = (I,J,AC,wC) , where 
AC = {(i, j) ∶ i ∈ I, j ∈ J, ci,j ≠ 0} and wC(i, j) = ci,j for (i, j) ∈ AC . The product matrix 
� = [ci,j]I×J = � ⋅ � is defined in the standard way

In the case when I = K = J  we are dealing with ordinary one-mode networks (with 
square matrices).

ci,j =
∑

k∈K

ai,k ⋅ bk,j
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In the following we will often identify networks by their matrices.
In the paper Batagelj and Cerinšek (2013) it is shown that ci,j is equal to the value 

of all two step paths from i ∈ I  to j ∈ J  passing through K . In a special case, if all 
weights in networks NA and NB are equal to 1 the value of ci,j counts the number of 
ways we can go from i ∈ I  to j ∈ J  passing through K : ci,j = |NA(i) ∩ N−

B
(j)| ; where 

NA(i) is the set of nodes in K linked by arcs from node i in the network NA , and N−
B
(j) is 

the set of nodes in K linked by arcs to node j in the network NB.
The standard matrix multiplication has the complexity O(|I| ⋅ |K| ⋅ |J|)—it is too 

slow to be used for large networks. For sparse large networks we can multiply much 
faster considering only nonzero elements. 

for k in K do
for (i, j) in N−

A (k)×NB(k) do
if ∃ci,j then ci,j := ci,j + ai,k · bk,j
else new ci,j := ai,k · bk,j

In general the multiplication of large sparse networks is a ’dangerous’ operation since 
the result can ’explode’—it is not sparse. If for the sparse networks NA and NB there are 
in K only few nodes with large degree and no one among them with large degree in both 
networks then also the resulting product network NC is sparse.

From the network multiplication algorithm we see that each intermediate node k ∈ K 
adds to a product network a complete two-mode subgraph KN−

A
(k),NB(k)

 (or, in the case 
� = �T , where �T is the transposition of � , a complete subgraph KN(k) ). If both degrees 
degA(k) = |N−

A
(k)| and degB(k) = |NB(k)| are large then already the computation of this 

complete subgraph has a quadratic (time and space) complexity—the result ’explodes’. 
For details see the paper Batagelj and Cerinšek (2013).

Outer product decomposition

For vectors x = [x1, x2,… , xn] and y = [y1, y2,… , ym] their outer product x◦y is defined 
as a matrix

then we can express the previous observation about the structure of product network as the 
outer product decomposition

For binary (weights) networks we have �k = KN−
A
(k),NB(k)

.

Example A  As an example let us take the binary network matrices �� and �� (Fig. 1): 

x◦y = [xi ⋅ yj]n×m

� = � ⋅ � =
∑

k

�k where �k = �[k, ⋅]◦�[k, ⋅]
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WA =





a1 a2 a3 a4

w1 1 0 1 0
w2 1 1 0 0
w3 1 0 1 1
w4 0 1 0 1
w5 1 0 1 1




, WK =





k1 k2 k3 k4

w1 1 1 0 0
w2 1 0 1 0
w3 0 1 1 1
w4 0 0 1 0
w5 0 1 0 1

and compute the product � = ��T
⋅�� . We get a network matrix � which can be 

decomposed as 

Fig. 1   ��T
⋅��





H k1 k2 k3 k4

a1 2 3 2 2
a2 1 0 2 0
a3 1 3 1 2
a4 0 2 2 2



 =





H1 k1 k2 k3 k4

a1 1 1 0 0
a2 0 0 0 0
a3 1 1 0 0
a4 0 0 0 0



+





H2 k1 k2 k3 k4

a1 1 0 1 0
a2 1 0 1 0
a3 0 0 0 0
a4 0 0 0 0

+





H3 k1 k2 k3 k4

a1 0 1 1 1
a2 0 0 0 0
a3 0 1 1 1
a4 0 1 1 1



+





H4 k1 k2 k3 k4

a1 0 0 0 0
a2 0 0 1 0
a3 0 0 0 0
a4 0 0 1 0



+





H5 k1 k2 k3 k4

a1 0 1 0 1
a2 0 0 0 0
a3 0 1 0 1
a4 0 1 0 1
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Derived networks

We can use the multiplication to obtain new networks from existing compatible two-mode 
networks. For example, from basic bibliographic networks �� and �� we get

a network relating authors to keywords used in their works, and

is a network of citations between authors.
Networks obtained from existing networks using some operations are called derived net-

works. They are very important in analysis of collections of linked networks.
What is the meaning of the product network? In general we could consider weights, 

addition and multiplication over a selected semiring (Cerinšek and Batagelj 2017). In 
this paper we will limit our attention to the traditional addition and multiplication of real 
numbers.

The weight ��[a, k] is equal to the number of times the author a used the keyword k in 
his/her works.

The weight ��[a, b] counts the number of times a work authored by the author a is cit-
ing a work authored by the author b; or shorter, how many times the author a cited the 
author b.

Using network multiplication we can also transform a given two-mode network, for 
example �� , into corresponding ordinary one-mode networks (projections)

The obtained projections can be analyzed using standard network analysis methods. This is 
a traditional recipe how to analyze two-mode networks. Often the weights are not consid-
ered in the analysis; and when they are considered we have to be very careful about their 
meaning.

The weight ��[p, q] is equal to the number of common authors of works p and q.
The weight ��[a, b] is equal to the number of works that author a and b coauthored. In a 

special case when a = b it is equal to the number of works that the author a wrote. The net-
work �� is describing the coauthorship (collaboration) between authors and is also denoted 
as ��—the “first” coauthorship network.

In the paper Batagelj and Cerinšek (2013) it was shown that there can be problems with the 
network �� when we try to use it for identifying the most collaborative authors. By the outer 
product decomposition the coauthorship network �� is composed of complete subgraphs on 
the set of work’s coauthors. Works with many authors produce large complete subgraphs, thus 
bluring the collaboration structure, and are over-represented by its total weight. To see this, let 
Sx =

∑
i xi and Sy =

∑
j yj then the contribution of the outer product x◦y is equal

In general each term �w in the outer product decomposition of the product � has different 
total weight T(�w) =

∑
a,k(�w)ak leading to over-representation of works with large values. 

In the case of coautorship network �� we have S(��[w, .]) = outdeg ��(w) and therefore 
T(�w) = outdeg ��(w)

2 . To resolve the problem we apply the fractional approach.

�� = ��T
⋅��

�� = ��T
⋅ �� ⋅��

�� = �� ⋅��T and �� = ��T
⋅��

T =
∑

i,j

(x◦y)ij =
∑

i

∑

j

xi ⋅ yj =
∑

i

xi ⋅
∑

j

yj = Sx ⋅ Sy
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Fractional approach

To make the contributions of all works equal we can apply the fractional approach by nor-
malizing the weights: setting x� = x∕Sx and y� = y∕Sy we get Sx� = Sy� = 1 and therefore 
T(��

w
) = 1 for all works w.

In the case of two-mode networks �� and �� we denote

(and similarly S��
w

 ) and define the normalized matrices

In real life networks �� (or �� ) it can happen that some work has no author. In such 
a case S��

w
=
∑

a ��[w, a] = 0 which makes problems in the definition of the normal-
ized network ��� . We can bypass the problem by setting S��

w
= 1 , as we did in the above 

definition.
Then the normalized product matrix is

Denoting �w =
1

S��
w

S��
w

�w the outer product decomposition gets form

Since

we have further

where W+ = {w ∈ W ∶ ( outdeg ��(w) > 0) ∧ ( outdeg ��(w) > 0)}.
In the network ��� the contribution of each work to the bibliography is 1. These contri-

butions are redistributed to arcs from authors to keywords.

Example B  For matrices from Example A we get the corresponding diagonal normalization 
matrices 

S��
w

=

�∑
a ��[w, a] outdeg ��(w) > 0

1 outdeg ��(w) = 0

��� = diag

(
1

S��
w

)
⋅��, ��� = diag

(
1

S��
w

)
⋅��

��� = ���T ⋅���

��� =
∑

w

�w

T(�w) =

{
1 ( outdeg ��(w) > 0) ∧ ( outdeg ��(w) > 0)

0 otherwise

∑

a,k

�[a, k] =
∑

a,k

∑

w

�w[a, k] =
∑

w

T(�w) = |W+|
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diag(
1

SWA
w

) =





w1 w2 w3 w4 w5

w1 1/2 0 0 0 0
w2 0 1/2 0 0 0
w3 0 0 1/3 0 0
w4 0 0 0 1/2 0
w5 0 0 0 0 1/3

diag(
1

SWK
w

) =





w1 w2 w3 w4 w5

w1 1/2 0 0 0 0
w2 0 1/2 0 0 0
w3 0 0 1/3 0 0
w4 0 0 0 1 0
w5 0 0 0 0 1/2





 compute the normalized matrices 

WAn =





a1 a2 a3 a4

w1 1/2 0 1/2 0
w2 1/2 1/2 0 0
w3 1/3 0 1/3 1/3
w4 0 1/2 0 1/2
w5 1/3 0 1/3 1/3




, WKn =





k1 k2 k3 k4

w1 1/2 1/2 0 0
w2 1/2 0 1/2 0
w3 0 1/3 1/3 1/3
w4 0 0 1 0
w5 0 1/2 0 1/2




,

 outer products such as 

F1 =





k1 k2 k3 k4

a1 1/4 1/4 0 0
a2 0 0 0 0
a3 1/4 1/4 0 0
a4 0 0 0 0



 F5 =





k1 k2 k3 k4

a1 0 1/6 0 1/6
a2 0 0 0 0
a3 0 1/6 0 1/6
a4 0 1/6 0 1/6

 and finally the product matrix 
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AKt = WAnT ·WKn =
5∑

w=1

Fw =





k1 k2 k3 k4

a1 0.50000 0.52778 0.36111 0.27778
a2 0.25000 0.00000 0.75000 0.00000
a3 0.25000 0.52778 0.11111 0.27778
a4 0.00000 0.27778 0.61111 0.27778

Linking through a network

Let a network � links works to works. The derived network ��T
⋅ � ⋅�� links authors to 

authors through � . Again, the normalization question has to be addressed. Among different 
options let us consider the derived networks defined as:

It is easy to verify that:

•	 if � is symmetric, �T = � , then also � is symmetric, �T = � ; 

•	 if W+ = {w ∈ W ∶ outdeg ��(w) > 0} = W , the total of weights of � is redistributed 
in � : 

 Since 
∑

a∈A

wa[p, a] = outdeg ��(p) and wan[p, a] =

{
wa[p,a]

outdeg��(p)
outdeg ��(p) > 0

0 otherwise
 

we get 

 and finally, if W+ = W

As special cases we get for normalized author’s citation networks with W+ = W : for 
� = ��

� = ���T ⋅ � ⋅���

�T = (���T ⋅ � ⋅���)T = ���T ⋅ �T ⋅ (���T )T = �

T(�) =
∑

e∈L(�)

c(e) =
∑

e∈L(�)

s(e) = T(�)

T(�) =
∑

e∈L(�)

c(e) =
∑

a∈A

∑

b∈A

c[a, b]

=
∑

a∈A

∑

b∈A

∑

p∈W

∑

q∈W

wan[p, a] ⋅ s[p, q] ⋅ wan[q, b]

=
∑

p∈W+

∑

q∈W+

s[p, q]

outdeg ��(p) outdeg ��(q)

∑

a∈A

wa[p, a]
∑

b∈A

wa[q, b]

=
∑

p∈W+

∑

q∈W+

s[p, q]

∑

p∈W+

∑

q∈W+

s[p, q] =
∑

e∈L(�)

s(e) = T(�)
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and for � = ���

Some notes

A. Instead of computing the normalized network ��� from the network �� we could 
collect the data about the real proportion wan[w, a] of the contribution of each author a to 
a work w such that ��� is normalized: for every work w it holds

Unfortunately in most cases such data are not available and we use the computed normal-
ized weights as their estimates. Most of the results do not depend on the way the normal-
ized network was obtained.

B. In general a given network matrix �� can be normalized in two ways: by rows, as 
used in this section, and by columns

In the context of bibliographic networks its meaning does not make much sense.
C. The network �� is symmetric: coab = coba . We need to compute only half of values 

coab , a ≤ b . The resulting network is undirected with weights coab.
D. In the paper Batagelj and Cerinšek (2013) the “second” coauthorship network 

�� = ��T
⋅��� is considered. The weight cnab is equal to the contribution of an author a to 

works that (s)he wrote together with the author b. Using these weights the selfsufficiency of an 
author a is defined as:

and collaborativness of an author a as its complementary measure Ka = 1 − Sa.
E. In the “third” coauthorship network �� = ���T ⋅��� the weight ctab is equal to the 

total fractional contribution of ‘collaboration’ of authors a and b to works. Each work w with 
S��
w

> 0 contributes 1 to the total of weights in �� . This is the network to be used in analysis 
of collaboration between authors (Batagelj and Cerinšek 2013; Leydesdorff and Park 2017; 
Prathap and Mukherjee 2016). To identify the most collaborative groups we can use methods 
such as PS-cores and link islands (Batagelj et al. 2014).

The product �� is symmetric. Note C applies. We transform it to the corresponding undi-
rected network—pairs of opposite arcs are replaced by an edge with doubled weight. In analy-
ses we usually analyze separately the vector of weights on loops (selfcontribution) and the 
network �� without loops.

∑

a∈A

∑

b∈A

c[a, b] =
∑

p∈W

∑

q∈W

ci[p, q] = |��|

∑

a∈A

∑

b∈A

c[a, b] =
∑

p∈W

∑

q∈W∶ ��������(q)>0

ci[p, q]

outdeg ��(p)
=

∑

q∈W∶ ��������(q)>0

1 = |W+
��
|

∑

a∈A

wan[w, a] ∈ {0, 1}

���� = �� ⋅ diag

�
1

S��
a

�
where S��

a
=

�∑
w ��[w, a] indeg ��(a) > 0

1 indeg ��(a) = 0

Sa =
cnaa

indeg ��(a)
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F. An alternative normalization ���′ of a binary autorship matrix �� was proposed in 
Newman (2004)

in which only collaboration with coauthors is considered—no selfcollaboration. Note that 
using the network construction proposed on p. 5 of Newman (2001) we get a network in 
which works with many coauthors are still over-represented. The same idea is used in the 
fractional counting co-authorship matrix �∗ proposed in equation (5) in Perianes-Rodri-
guez et al. (2016).

To treat all works equally using the Newman’s normalization the “fourth” coauthorship 
network was proposed in Cerinšek and Batagelj (2015). To compute it we first compute

The weight ct′
ab

 is equal to the total contribution of “strict collaboration” of authors a and 
b to works. The obtained product is symmetric. Again note C applies. We transform it to 
the corresponding undirected network—pairs of opposite arcs are replaced by an edge with 
doubled weight. The loops are removed. The contribution of each work with at least two 
coauthors is equal to 1. A kind of the outer product decomposition exists also for the net-
work ��′ with a diagonal set to 0.

Bibliographic coupling and co‑citation

Bibliographic coupling occurs when two works each cite a third work in their bibliog-
raphies, see Fig. 2, left. The idea was introduced by Kessler (1963) and has been used 
extensively since then. See figure where two citing works, p and q, are shown. Work p 
cites five works and q cites seven works. The key idea is that there are three works cited 
by both p and q. This suggests some content communality for the three works cited by 
both p and q. Having more works citing pairs of prior works increases the likelihood of 
them sharing content.

We assume that the citation relation means p �� q ≡ work p cites work q . Then the 
bibliographic coupling network ���� can be determined as

The weight bicopq is equal to the number of works cited by both works p and q; 
bicopq = |��(p) ∩ ��(q)| . Bibliographic coupling weights are symmetric: bicopq = bicoqp:

Co-citation is a concept with strong parallels with bibliographic coupling (Small 
1973; Marshakova 1973), see Fig. 2, right. The focus is on the extent to which works are 
co-cited by later works. The basic intuition is that the more earlier works are cited, the 
higher the likelihood that they have common content. The co-citation network ���� can 
be determined as

wan�
wa

=
wawa

max(1, outdeg ��(w) − 1)

��� = ���T ⋅����

���� = �� ∗ ��T

����T = (�� ⋅ ��T )T = �� ⋅ ��T = ����

���� = ��T ⋅ ��.
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The weight cocipq is equal to the number of works citing both works p and q. The network 
���� is symmetric cocipq = cociqp:

An important property of co-citation is that ����(��) = ����(��T ):

Therefore the constructions proposed for bibliographic coupling can be applied also for 
co-citation.

What about normalizations? Searching for the most coupled works we have again 
problems with works with many citations, especially with review papers. To neutralize 
their impact we can introduce normalized measures. The fractional approach works fine 
for normalized co-citation

where ��� = � ⋅ �� and � = diag (
1

max(1,outdeg(p))
) . �T = � . In the normalized network 

every work has value 1 and it is equally distributed to all cited works.
The fractional approach can not bi directly applied to bibliographic coupling—to get the 

outer product decomposition work we would need to normalize �� by columns—a cited 
work has value 1 which is distributed equally to the citing works—the most cited works 
give the least. This is against our intuition. To construct a reasonable measure we can pro-
ceed as follows. Let us first look at

we have

For ��(p) ≠ � and ��(q) ≠ � it holds

����T = (��T ⋅ ��)T = ��T ⋅ �� = ����

����(��T ) = ��T ⋅ (��T )T = ��T ⋅ �� = ����(��)

����� = ���T ⋅ ���

��� = ��� ⋅ ��T

��� = (� ⋅ ��) ⋅ ��T = � ⋅ ����

���T = (� ⋅ ����)T = ����T ⋅ �T = ���� ⋅ �

���pq =
|��(p) ∩ ��(q)|

|��(p)|
and ���qp =

|��(p) ∩ ��(q)|
|��(q)|

= ���T
pq

Fig. 2   Bibliographic coupling (left) and Co-citation (right)
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and ���pq ∈ [0, 1] . ���pq is the proportion of its references that the work p shares with the 
work q. The network ��� is not symmetric. We have different options to construct normal-
ized symmetric measures such as

or, may be more interesting

All these measures are similarities.
It is easy to verify that biCoXpq ∈ [0, 1] and: biCoXpq = 1 iff the works p and q are refer-

encing the same works, ��(p) = ��(q).
From m ≤ H ≤ G ≤ A ≤ M and J ≤ m , ( |P∩Q||P∪Q| ≤ min(

|P∩Q|
|P| ,

|P∩Q|
|Q| ) ) we get

The equalities hold iff ��(p) = ��(q).
To get a dissimilarity we can use transformations dis = 1 − sim or dis = 1

sim
− 1 or 

dis = − log sim . For example

where ⊕ denotes the symmetric difference of sets.
Bibliographic coupling and co-citation networks are linking works to works. To get 

linking between authors, journals or keywords considering citation similarity we can apply 
the construction from “Linking through a network” section to the normalized co-citation or 
bibliographic coupling network.

Conclusions

In the paper we presented an attempt to provide a foundation of fractional approach to bib-
limetric networks based on the outer product decomposition of product networks. We also 
discussed the fractional approach to bibliographic coupling and co-citation networks. The 
results of application of the proposed methods to real bibliographic data will be presented 
in separate papers.

All described computations can be done efficiently in program Pajek (De Nooy et al. 
2018) using macros such us: norm1—normalized 1-mode network, norm2—nor-
malized 2-mode network, norm2p—Newman’s normalization of a 2-mode network, 

�����pq =
1

2
(���pq + ���qp) Average

�����pq = min(���pq, ���qp) Minimum

�����pq = max(���pq, ���qp) Maximum

�����pq =
�

���pq ⋅ ���qp =
���(p) ∩ ��(q)�

√
���(p)� ⋅ ���(q)�

Geometric mean

Salton cosinus

�����pq = 2 ⋅ (���−1
pq

+ ���−1
qp
)−1 =

2���(p) ∩ ��(q)�
���(p)� + ���(q)�

Harmonic mean

�����pq = (���−1
pq

+ ���−1
qp

− 1)−1 =
���(p) ∩ ��(q)�
���(p) ∪ ��(q)�

Jaccard index

�����pq ≤ �����pq ≤ �����pq ≤ �����pq ≤ �����pq ≤ �����pq

�����pq = 1 − �����pq =
|��(p)⊕ ��(q)|
|��(p) ∪ ��(q)|

Jaccard distance
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biCo—bibliographic coupling network, and biCon—normalized bibliographic coupling 
network, available at GitHub (Batagelj 2018).
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