
Vol.:(0123456789)

Scientometrics (2019) 121:1239–1268
https://doi.org/10.1007/s11192-019-03246-1

1 3

Analysis of the effect of data properties in automated patent 
classification

Juan Carlos Gomez1 

Received: 4 April 2018 / Published online: 3 October 2019 
© Akadémiai Kiadó, Budapest, Hungary 2019

Abstract
Patent classification is a task performed in patent offices around the world by experts, 
where they assign category codes to a patent application based on its technical content. 
Nowadays, the number of applications is constantly growing and there is an economical 
interest on developing accurate and fast models to automate the classification task. In this 
paper, we present a methodology to systematically analyze the effect of three patent data 
properties and two classification details on the patent classification task: patent section to 
use for training/testing, document representation, patent codes to use for training, use of 
the hierarchy of categories, and the base classifier. For the analysis we create a diversity 
of models by combining different options for the properties. We evaluate the models in 
detail using standard patent datasets in two languages, English and German, considering 
three performance metrics, using statistical tests to validate the results and comparing them 
with other models in the literature. Our research findings indicate that it is important to fol-
low a methodology to properly choose the options for the data properties to build a model 
according to our goal, considering classification accuracy and computational efficiency. 
Some combinations of options build models with good results but with high computational 
cost, whilst other build model that produce slightly worst results but at a fraction of the 
training time.

Keywords  Patent classification · Hierarchical classification · Multilabel classification · 
Document representation · Supervised learning · IPC

Introduction

Patent classification is one of the first tasks performed by experts of patent offices when 
analyzing a patent application to register a new invention. Classification consists in assign-
ing a set of category codes to the document, based on their content, ensuring in this way 
that patents with similar topics or technological areas are grouped under the same codes. 
Accurate classification of patent applications is vital for the inter-operability between 
different patent offices, and for conducting several tasks such as reliable patent search, 
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management and retrieval (Zhang et al. 2015; Abbas et al. 2014); extract relevant content 
(Härtinger and Clarke 2015; Rodriguez-Esteban and Bundschus 2016; Wang et al. 2014); 
and investigate technology characteristics (Arts et al. 2018; Noh et al. 2015).

Nonetheless, the amount of patent application fillings is constantly growing and they are 
overwhelming the experts who analyze the documents. For example, the number of patent 
applications received by the United States Patent and Trademark Office (USPTO) in 2015 
amounted to 629,6471, whilst the European Patent Office (EPO) received approximately 
296,227 patent applications in 20162.

Additional to the great amount of data, patent data have particularities that play a role 
when doing the classification. First, the categories are organized as a hierarchy, and this 
hierarchical structure is large and complex (containing thousands of categories in a tree-
like structure). Second, patents are in turn complex and lengthy documents, composed 
by several pages and divided by sections. Third, patents are usually labelled with several 
categories at the same time, meaning they comprise different technological areas. If we 
additionally consider that experts are costly and vary in capabilities when performing the 
classification, it is clear that there is a necessity for reliable and efficient automatic methods 
to help in the patent classification task.

The automated patent classification task has been tackled along the last decade as a text 
classification problem using several methods and approaches (Benzineb and Guyot 2011; 
Gomez and Moens 2014). Nevertheless, despite the research done it is still an open prob-
lem with several unsolved issues regarding the general low accuracy obtained (Benzineb 
and Guyot 2011; D’hondt et al. 2017; Fall and Benzineb 2002; Gomez and Moens 2014). 
In this paper, we aim to contribute towards gaining more understanding of the problem by 
proposing a methodology to systematically study the effect on classification of three patent 
data properties in combination with two general text classification details. The properties 
we study are the use of: the different sections to extract content from patents, the different 
codes assigned to each patent, and the hierarchy of categories. The two details in classifica-
tion we consider are: the way to represent documents and the base classifier.

Following our methodology, we train and test optimized classification models using dif-
ferent combinations of options for the mentioned properties. We then compare the results 
of applying the models over two standard patent datasets in English and German. We con-
sider classification accuracy and computational efficiency, and conduct statistical tests 
to assert the validity of the comparisons. Additionally, we show comparisons with other 
works in the literature, considering the methodologies, the models and the results. In addi-
tion, we also conduct a statistical characterization of the datasets.

Our contributions for the problem of patent classification are five. (1) A methodology 
that take into account several relevant patent data properties and classification details for 
the study of the problem. (2) A thorough systematic analysis of the effect in classifica-
tion results of different models built using the methodology as combinations of patent data 
properties. (3) The consideration of two important aspects of the problem, the optimization 
of hyper-parameters in the base classifiers and the language independence of the models. 
(4) Introduction of a hierarchical model that train local classifiers and compute the final 
classification as a weighted linear combination of the decisions along the hierarchy. (5) Use 
of our findings as a guideline for the patent classification task, such that other researchers 

1  http://www.uspto​.gov/.
2  https​://www.epo.org/about​-us/annua​l-repor​ts-stati​stics​/stati​stics​.html.

http://www.uspto.gov/
https://www.epo.org/about-us/annual-reports-statistics/statistics.html
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will consider them when making decisions about what options would be more suitable for 
implementing or for testing their hypotheses, considering classification accuracy and com-
putational efficiency. Some combinations of options help to build models that are slow to 
train but produce good classification results, while other produce slightly worst results at a 
fraction of the training time.

In the following sections we first describe the patent data properties (“Patent data prop-
erties” section). Later, we review the relevant related works in the literature of the problem 
(“Relevant related works” section). We then describe in detail our experimental method-
ology (“Experimental methodology” section) with the several options for each property 
and classification detail and the experimental setup. Afterwards, we present the results 
(“Experimental analysis” section). We conclude our work in “Conclusions” section with an 
overall discussion and possible future research directions.

Patent data properties

The first property of patent data is that the categories to classify patents are organized as 
a tree-like hierarchical structure. There exist several structures used by different patent 
offices, but the most widely used and globally agreed is the International Patent Classifica-
tion3 (IPC), used by more that 100 countries with around 95% of all existing patents clas-
sified according to it. The World Intellectual Property Organization (WIPO)4 manages and 
updates annually the IPC, being IPC2018.01 the current version.

Every category in the IPC has a code and a title name. The IPC divides all technological 
fields in eight sections, designated by capital letters from A to H. Each section is subdi-
vided in classes, labeled by the section code followed by two digits (e.g. H01). Each class 
is divided in subclasses, labeled by the class code followed by a capital letter (e.g. H01F). 
Each subclass is broken down in main groups, labeled by the subclass code followed by 
a one to three digits, an oblique stroke and the number 00 (e.g. H01F 1/00). Subgroups 
form subdivisions under the main groups. Each subgroup code includes the main group 
code, but replaces the last two digits by other than 00 (e.g. H01F 1/01). Subgroups are 
ordered in the structure as if their numbers were decimals of the number before the oblique 
stroke. For example, 1/036 is to be found after 1/03 and before 1/04. After subgroup level, 
the hierarchy is organized using dots preceding the title of the category (e.g. H01F 1/03.), 

Table 1   Example of a sequence 
of codes in the IPC

IPC Code Title

Section H Electricity
Class H01 Basic electric elements
Subclass H01F Magnets
Main group H01F 1/00 Magnets or magnetic bodies
Subgroup H01F 1/01 Of inorganic material
Subsubgroup H01F 1/03.. Characterised by their coercivity

3  http://www.wipo.int/class​ifica​tions​/ipc/en/.
4  http://www.wipo.int/porta​l/en/index​.html.

http://www.wipo.int/classifications/ipc/en/
http://www.wipo.int/portal/en/index.html
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where each dot represents a level down. An example of a sequence of category codes along 
the different levels of the IPC is shown in Table 1. The total number of categories per level 
in the IPC is shown in Table 2. 

From a mathematical point of view, the IPC hierarchy is a directed rooted tree graph, 
with every code indicating a node. The nodes are connected by directed edges indicating 
PARENT–OF relationships, where each node has only one parent, meaning two nodes are 
connected by exactly one path. Figure 1 shows a portion of the IPC representing the tree 
graph. The root node is the level 0 and not shown.

The second property of patent data is that patents are complex documents (Zhang et al. 
2015) and present differences with respect to other documents that are classified automati-
cally, such as news, emails or web pages. Patents are long documents of several pages, 
their content is governed by legal agreements and is therefore semi-structured (divided by 
sections and with well-defined paragraphs), and are written using a formal language, with 
many technical words and sometimes fuzzy sentences (in order to avoid infringement of 
other patents or to extend the scope of the invention). The structure of a patent is important 
because it provides different input information to a classification model. The content of a 
patent is generally organized in the following sections (Fall and Benzineb 2002; Benzineb 
and Guyot 2011; Lupu and Hanbury 2013; Gomez and Moens 2014):

•	 Title: indicates a descriptive name of the patent.
•	 Bibliographical data: contains the number of the patent, the names of the inventor and 

the applicant, and sometimes the citations to other patents and documents.

Table 2   Number of categories 
in each level of the IPC (version 
IPC2018.01)

Level Name Categories

1 Section 8
2 Class 131
3 Subclass 642
4 Main group 7461
5 (and below) Subgroup 66454

Fig. 1   Example of a portion of the IPC hierarchy starting at level 1, section B. The root node is level 0 (not 
shown)
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•	 Abstract: includes a brief description of the invention presented in the patent.
•	 Description: contains a detailed description of the invention, including prior work, 

related technologies and examples.
•	 Claims: explains the legal scope of the invention and for which application fields the 

patent is sought.

Most of the sections contain pure text, but in a patent, it is also frequent to find images, 
graphics and links. In this work, we focus exclusively on the textual content, since it is the 
largest component in patents and several other elements in the content are often described 
or explained using text.

The third property of patent data is that patents can have more than one category code 
assigned to it, meaning it encompass several technological areas. The first code assigned 
by the experts corresponds to the most relevant category (main code). Secondary codes are 
related with other categories that are relevant for the patent, but without any specific order 
of relevance. From a machine learning perspective, the task is considered a multi-label 
problem (Tsoumakas et al. 2010).

Relevant related works

There are several works on the automated classification of patents, starting with some sur-
veys about the task (Fall and Benzineb 2002; Krier and Zaccà 2002; Benzineb and Guyot 
2011; Gomez and Moens 2014) where some issues are highlighted, such as model accu-
racy, scalability, use of the hierarchy of categories, patent sections to use, and document 
representations.

Fall et al. introduced the WIPO-alpha and WIPO-de datasets in Fall et al. (2003, 2004) 
respectively, where they performed a comparison of several base classifiers: NB, KNN, 
SVM, SNoW (sparse network of winnows) and LLSF (linear least squares fit), using dif-
ferent patent sections independently. They also introduced a set of performance metrics 
to evaluate the task. In Seneviratne et  al. (2015)  and Tikk et  al. (2005) the authors pre-
sented several hierarchical models, using several base classifiers (such as SVM, KNN and 
HITEC), patent sections and patent codes, which they evaluated using the full WIPO data-
sets with the same performance as defined by Fall et al. We compare one of our models 
with the results in these works.

There are other works that have used the WIPO datasets (specially the WIPO-alpha) for 
experimentation, many of them focusing on kernel classifier methods that take the hierar-
chical structure into account (Bi and Kwok 2014; Cai and Hofmann 2004; Chen and Chang 
2012; Rousu et al. 2006; Tsochantaridis et al. 2005; Zhang 2014). However, most of these 
works focus on assigning a single code to a patent, only conduct experiments on a subset of 
the dataset (normally on the Section D of the IPC), which make it unclear if they are scal-
able to the full dataset, or focus on a specific task, such as preferential classification.

Some works have used models based on neural networks such as back-propagation 
(Trappey et al. 2006) and Winnow (D’hondt et al. 2017; Koster et al. 2003) using different 
features such as phrases and deep learning word representations. The authors found that 
word features produce better results that other features in most of the cases.

Along the years, the NTCIR workshops have organized several patent classification 
tasks (Iwayama et al. 2005, 2007; Kim and Choi 2007; Nanba et al. 2008, 2010) to classify 
Japanese patents by the F-terms, or research publications in English in the IPC, based on 
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training with patent data. In Li and Shawe-Taylor (2007) the authors presented a series of 
methods based on SVM for cross-lingual patent classification between English and Japa-
nase using the NTCIR-3 dataset.

CLEF-IP tracks included a task on patent classification Piroi (2010, 2011). The tasks 
provided a collection of over 1 million patents as training data to classify a test set of 
around 3000 patents at the subclass level of the IPC. Some of the best models were based 
on the Winnow classifier (Guyot et al. 2010; Verberne et al. 2010; Verberne and D’hondt 
2011), using the abstract section and words and triplets features. In Giachanou and Sala-
mpasis (2014) and Giachanou et al. (2015) the authors used the CLEF-IP 2011 dataset to 
evaluate a series of methods based on information retrieval for patent classification, but 
using a subset of the test set of only 300 patents.

Some other works have used the WIPO, NTCIR, CLEF-IP or other patent datasets, but 
they used them as general text/graph datasets to conduct several forms of classification. 
These works had different goals than the particularities of patent classification, such as 
testing the efficiency and/or scalability of their particular methods in general text classifica-
tion (Gomez and Moens 2014), hierarchical classification (Wang et al. 2014), or node clas-
sification in graphs (Dallachiesa et al. 2014); testing methods for extreme machine learning 
(Wang et al. 2014) or dimensionality reduction (Shalaby et al. 2014); quantifying the exist-
ence of concept drift in data (D’hondt et al. 2014); or classifying the data in user-defined 
hierarchies (Zhu et al. 2015). Most of these works used only the title, abstract or claims 
section from patents, used general accuracy and macro and/or micro-F1 as performance 
metrics, did not mention what patent codes they used, and considered or not the hierarchy 
depending on the problem they were studying.

Experimental methodology

Figure 2 shows a graphical depiction of our experimental methodology, which consists of 
several sequential phases composed of several steps or options.

We start with a collection of patents and the first phase of the methodology is preproc-
essing. The step of preprocessing consists in to choose the section (or combination of sec-
tions) to extract information from patents: title (T), inventors (I), abstract (A), claims (C), 
short description (S) (first 30 lines of the description) and long (full) description (L). The 
second step consists in tokenizing the content to extract word features as sequence of let-
ters, numbers and hyphens (to capture chemical compounds) and convert each word to low-
ercase. The third and fourth step consist in removing words that carry little information. By 

Fig. 2   General description of the experimental methodology
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default we remove stop words and words appearing in less than five training documents to 
form a vocabulary.

The second phase of the methodology is the document representation. This phase con-
sists in indexing and transforming all the patent documents to a vector space representa-
tion using the vocabulary extracted in the previous phase. We considered four weighting 
options when vectorizing the patents: term-frequency (tf), term frequency–inverse docu-
ment frequency (tf–idf), entropy and word2vec (w2v), and we normalized the document 
vectors using the L2 norm. The w2v features where computed using the Gensim module 
from Python5 by training a skip-gram model (Mikolov et al. 2013) over the training part 
of each dataset (see next subsection), extracting word embeddings of 300 dimensions. The 
final document representation was computed by averaging all embeddings corresponding 
the its words.

We decided to use word features because in several works it have been pointed out that 
these features outperform other more complex representations in several classification/pre-
diction tasks (Cinar et al. 2015; Basile et al. 2017), including patent classification (D’hondt 
et al. 2017).

In the third phase of the methodology, for training we can choose to include all the 
codes assigned to a patent or only the main code; specially considering that the multiple 
concurrent labels in a dataset could confuse a classification system (Fall et al. 2004; Tsou-
makas et al. 2010).

The fourth phase of the methodology consists in deciding whether or not to use the hier-
archical structure of the IPC. When the hierarchy is ignored (flat approach), for training we 
take all the categories at a defined level (section, class, subclass, main group), aggregates 
all the patents from the categories below, and build a single large multi-label classifier 
(Fig. 3a). During testing, the flat approach takes a test patent and returns all the categories 
from the defined level as a list ranked by probability.

For using the hierarchy (hierarchical approach), we introduce a model that trains a local 
multi-label classifier in each category that contains children categories, aggregating the 
patents from the children categories in the local classifier (Fig.  3b). During testing, our 
hierarchical approach takes a test patent and assigns codes from top to bottom in the hier-
archy, starting at the section level. Each local classifier returns its local categories as a list 

Fig. 3   Approaches of classification with multi-class classifiers in dashed squares. In the flat approach (a), 
the model predicts the local categories, in the hierarchical approach (b), the model predicts the children 
categories

5  Available at: https​://radim​rehur​ek.com/gensi​m/.

https://radimrehurek.com/gensim/
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ranked by probability, and from each list the model takes the top three. It then goes down 
only in the selected categories. When going down, it adds the corresponding probabilities 
for the assigned categories weighted by an importance factor of the category level. When 
classifying to the main group level, we will have 81 ( 3 × 3 × 3 × 3 ) selected codes. Each 
code would have a final probability P as:

where Plevel is the code probability for the given level and a, b, c and d are the level impor-
tance factors. These factors could modify the distribution of errors along the hierarchy. In 
our case, we established importance factors of 1/4 for all the levels. Thus, the final classifi-
cation is a linear combination of the weighted decisions along the hierarchy.

In the fifth phase of the methodology, we choose what base classifier to use for build-
ing the local or global classifiers. We considered four options: Multinomial Naive Bayes 
(NB), a probabilistic classifier; K-Nearest Neighbors (KNN), a instance-based classifier; 
and linear Support Vector Machines (SVM) and Logistic Regression (LR), two discrimina-
tive classifiers. We used the implementation from WEKA (Hall et al. 2009) for NB, Lib-
linear (Fan et al. 2008) for SVM and LR, and for KNN a proprietary implementation that 
takes advantage of the sparseness of the vector representation. For models using SVM and 
LR we use L2 loss and regularization respectively, and for KNN we use 1-cosine similarity 
as the distance metric.

During the training phase, in our methodology we performed a fivefold cross validation 
over the training set for the models using KNN, SVM or LR, to look for the optimal num-
ber K of neighbors or the optimal soft margin parameter C respectively. We considered the 
values of K = 1, 5, 10, 20 and C = 0.1, 1, 10, 100 , and we use the top metric (see below) as 
the optimality criterion. It is worth to mention that most of the works in the literature for 
patent classification do not perform a hyper-parameter optimization, but commonly takes 
the defaults values from the implementation.

For our experiments we trained a diversity of models using different combinations of 
the previous mentioned options: patent section to extract information, document represen-
tation, patent codes to use for training, use or not of the IPC hierarchy, and the base clas-
sifier. During the test phase, for each test patent, the flat models output all the possible 
categories, whilst the hierarchical models output a list of 81 codes, in both cases ranked by 
probability. For a matter of comparison, we choose the three top codes per test patent and 
evaluated each model using the performance metrics defined in Fall et al. (2003). The top 
metric compares the top predicted code with the main code of the test patent. The three 
metric compares the top three predicted codes with the main code of the test patent. The 
all metric compares the top predicted code with all the codes assigned to the test patent. To 
validate the results, we performed paired McNermar’s tests between each pair of models, 
considering a significance level of � = 0.01 and using the Holm–Bonferroni method to cor-
rect for the number of comparisons.

All the code for implementing the methodology was written in Java and Python and will 
be released upon acceptance. We conducted all the experiments using a desktop Linux PC 
with a 3.4 GHz Core i7 processor and 16 GB in RAM.

(1)P = aPsection + bPclass + cPsubclass + dPmaingroup
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Datasets description

We use for our experiments the standard patent collections introduced by Fall and Ben-
zineb (2002),  and Fall et  al. (2004): WIPO-alpha, and WIPO-de. The WIPO-alpha6 col-
lection consists of 75,250 patent documents in English. The WIPO-de7 consist of 110,826 
patent documents in German provided by the German Patent Office and extracted from the 
DEPAROM8 collection. Both datasets are stored in XML format and are already split in 
standard training and a test sets. Patents in both datasets include the sections: title, abstract 
(not present in the WIPO-de dataset), claims and the full description.

Table  3 shows the total number of IPC categories present in the WIPO-alpha and 
WIPO-de datasets, split per level of the IPC. We considered all the codes assigned to each 
patent for the statistics. The numbers in this table are consistent with the ones in Table 2, 
therefore the datasets are a good sub-sample of the whole IPC structure. Table 3 also shows 
the minimum, maximum, average and standard deviation of category codes assigned to 
each patent. The statistics are similar for both datasets, with around 95% of patents con-
taining at most 5 codes.

Table 4 breaks down the number of codes for the training and test parts of each patent 
collection, and shows how the patents are distributed along the categories. The table shows 
that there are more categories in the training part than in the test part in both dataset. The 
columns of Max/Min and Ent contain information about the degree of skewness of the 
category distributions. The former shows the ratio between the major and minor categories; 
higher ratios result in more skewed category distributions. The latter shows the Shannon 
entropy values; higher values of entropy imply more uncertainty in the distribution. From 
the statistics, we observe that such distribution is largely skewed and with a high degree 
of uncertainty (especially at the class and subclass levels). Figure 4a and 4b present the 
distributions of patents per category at the main group level for both patent collections. We 
observe here the skewness of the distributions, for WIPO-alpha 56% of the categories con-
tain at most 10 patents, while only 4% contain more than 100 patents. Similar distributions 
have been observed in other hierarchical structures (Gomez and Moens 2012).

For the experiments, we first extracted independently the content from sections: title, 
inventors, abstract, claims, short description, and full description, and also we extracted 
two combinations of all the sections, one with the short description (TIACS) and one 
with the long one (TIACL). TIACL combination corresponds to the full content of the 
patent. The TIACS and TIACL combinations for WIPO-de does not include the abstract 

Table 3   Number of categories per level of the IPC, and number of codes per patent in the WIPO-alpha and 
WIPO-de patent datasets

Dataset Number of categories per level of IPC Codes per patent

Section Class Subclass Main group Min Max Avg Std

WIPO-alpha 8 131 632 5907 1 25 1.88 1.43
WIPO-de 8 120 604 5627 1 12 2.05 1.27

6  http://www.wipo.int/class​ifica​tions​/ipc/en/ITsup​port/Categ​oriza​tion/datas​et/.
7  See previous note.
8  http://www.depar​om.de.

http://www.wipo.int/classifications/ipc/en/ITsupport/Categorization/dataset/
http://www.deparom.de
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section (it is not present in the documents of the dataset). Table 5 shows the statistics on 
the number of (unique and total) words from the different extracted sections/combina-
tions of both datasets. The full description is the largest individual section by far, fol-
lowed by the claims. These two sections dominate the combinations TIACL and TIACS 
respectively. However, for these sections there is a high degree of repetition for some 
words, as indicated by the number of unique words.

Figure 4c and 4d shows the distribution of words in the TIACL combinations of both 
datasets. As in other large document collections, the word distribution in WIPO-alpha 
and WIPO-de follows the Zipf’s law, with many words appearing in few documents and 
few words appearing in many documents. The number of words appearing in only one 
document (not included in the plots) in WIPO-alpha is 1,758,164 and in WIPO-de is 
1,691,632. This could produce very large uninformative vocabularies, and thus filtering 
uncommon words is recommended. Table 6 shows the vocabulary size for each section/
combination from both datasets (extracting from the training part). 

Fig. 4   Distributions of patents over categories, a, b words over patents, c, d WIPO-alpha and WIPO-de 
datasets
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1 3

Experimental analysis

Use of the hierarchy

In our first experiment we compare the effect of using or not the IPC hierarchy and show 
the results in Table 7. For this, we use the WIPO-alpha dataset and the following setup: 
only the abstract section, a tf document representation, all the codes from patents and 
the four base classifiers. The first four rows in the table correspond to flat models and 
the last four to hierarchical models. Each row corresponds to one base classifier, with 
the optimal parameter (K or C) between parentheses. In the columns appear the results 
per level of the hierarchy (using the three performance metrics), and the training and 
test times (training time includes the cross-validation for finding the optimal parameter). 
We indicate in bold the best results for every metric and level. Letter A in supper index 
indicate values that are not significantly different than the best values in a column.

In this table, we observe that in both cases, with flat and hierarchical approaches, 
the best values are obtained by models that use LR with the same optimal parameter 
C. At the class and subclass levels, the hierarchical approach obtains better or simi-
lar values than the flat approach, but at the main group level, the flat approach obtains 
better results. This is consistent with findings for other hierarchical structures, such as 
web documents (Bennett and Nguyen 2009), since in the hierarchical approach, the 
errors are propagated and accumulated from top to bottom, and there is less informa-
tion to discriminate because of the use of local classifiers. When analyzing the clas-
sification performance of the individual base classifiers, the models could be ranked in 
both approaches from best to worst as: LR, SVM, NB and KNN. Regarding training/
test times for the base classifiers, NB presents almost no difference when using flat or 
hierarchical approaches, whilst for KNN the test time is similar on both approaches, but 
the flat approach is twice as fast as the hierarchical one for training. For KNN its train-
ing time corresponds to the cross-validation to find the optimal K. Most of the time in 
KNN is spent in calculating distances, and in the hierarchical approach, due to the set of 
local classifiers, it computes more distances than with the flat approach. Finally, SVM 
and LR have the biggest difference in training time between approaches, with hierarchi-
cal models being trained around 45 times faster than flat models, whilst their test times 
are comparable between approaches. This makes evident the advantage in efficiency of 
training local classifiers.

A first finding of this experiment is that the hierarchical approach in patent classifica-
tion allows a faster training of models, but the flat approach creates models that have a 
better accuracy at the bottom level of the hierarchy. We could then decide if we want a 
better computational efficiency or a higher accuracy. A second finding is that our hierar-
chical approach, that builds local classifiers and compute the classification as a weighted 
linear combination of the decisions along the hierarchy, is well suited for the problem. A 

Table 6   Number of words in the vocabulary of each section of the WIPO-alpha and WIPO-de datasets

Dataset Vocabulary size

Title Inventors Abst. Claims Desc (S) Desc (L) TIACS TIACL

WIPO-alpha 5469 5711 16,054 31,850 33,451 136,004 53,011 143,928
WIPO-de 9055 17,246 0 98,446 79,416 340,835 155,161 366,773
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third finding is that LR is a consistent good base classifier with both flat or hierarchical 
approaches.

Document representations and patent codes

In the second experiment, we compare the effect of using different document representa-
tions and using all the codes from patents or only the main code during training. In this 
case, because of efficiency, we chose to build only hierarchical models. Tables  8 and  9 
shows the results of this experiment for WIPO-alpha and WIPO-de respectively. In the case 
of WIPO-alpha, we use only the abstract section from patents, with WIPO-de we use only 
the claims section. The first 12 rows of the table correspond to the use of all the codes 
from patents, and the last 12 to the use of only the main code. Each row corresponds to one 
base classifier using a given document representation, with the optimal parameter between 
parentheses, and letter A in super index indicating values that are not significantly different 
than the best values in a column. 

In the results of the second experiment regarding document representations, in both 
datasets we observe that in general tf–idf and entropy representations produce similar clas-
sification results between them, whether using all the codes or only the main code, and bet-
ter than the ones of tf. Both methods also present generally better results than w2v, except 
with WIPO-de for some metrics when combining with LR. Models using tf–idf are gener-
ally the fastest to be trained, due to entropy requiring more processing time for transform-
ing documents, and base classifiers requiring more computation to adjust models for tf and 
word2vec. In the case of w2v the training times are much higher than the other represen-
tations (except when combining with NB) because of the dense representation. The test 
times are similar between the same base classifiers regardless of the used document repre-
sentation; except when using word2vec together with KNN.

Concerning the use of all the codes or only the main code for training, in both datasets 
we observe that generally the use of all codes produces slightly better classification results, 
specially at the subclass and main group levels. The better performance at bottom levels 
of using all the codes is because there are more patents per category at those levels, whilst 
there is less chance of having an overlap between categories, since patents with several 
codes are distributed among more categories, and those categories can be far apart in the 
hierarchy. With respect to the training time, models using only the main code are trained 
two to five times faster than models trained using all the codes, whilst their test times are 
similar.

Regarding the base classifier, with the WIPO-alpha dataset the best classification results 
are from models using LR whether in combination with all the codes or only the main 
code. With the WIPO-de, it is less clear if there is a dominant base classifier, but LR still 
keeps performing on top. The more competitive results among base classifiers in this case 
is because there is more information in the claims section and it helps to build more robust 
classifiers.

A first finding in this experiment is that using either tf–idf or entropy for document rep-
resentation is more convenient than tf or word2vec, since they produce better classification 
results, but tf–idf should be preferred since its training and test processes are faster. A sec-
ond finding is that using all the codes from patents to train models could produce slightly 
best results in some cases, but using only the main code produces good results at a fraction 
of the training time. We could then decide if we want a slightly higher accuracy at a higher 
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computational cost. A third finding is that LR is a consistent good classification model 
along document representations and use of patent codes.

Using different patent sections

In the third experiment, we measure the effect of using the different patent sections/com-
binations for extracting information. Because of efficiency, for this experiment we build 
models using the hierarchical approach, a tf–idf representation and only the main code 
from patents. Tables 10 and 11 show the results of this experiment for WIPO-alpha and 
WIPO-de respectively. Each row corresponds to one base classifier using a given extracted 
section/combination, with the optimal parameter between parentheses and letter A in super 
index indicating values that are not significantly different than the best values in a column 

In this experiment we observe that there exist two general trends in both datasets: the 
more information a section/combination contains (see Table 5), the better the classification 
results of the models that use such section/combination; and the more information a sec-
tion has, the more expensive is to train and test a model, with larger differences observed 
in training times. There are two exceptions for the first trend: first, using the title section 
produces better classification results than using the inventors section, and second, using 
the short description produces better results than using the claims section. We think these 
two cases are due to two different issues, but both of them related with how the words are 
distributed over documents and categories. In the first case, an inventor is usually associ-
ated with a very small amount of patents usually in the same technological field. Never-
theless, there is the issue of synonymy. Different inventors from different fields share the 
same names, and since there are many inventors and they could be associated practically 
with any category, a combination of inventor names as a whole is not a good descriptor 
of a specific category. In the case of the claims section, it uses a combination of technical 
words describing the invention and legal words describing the scope of the patent. The 
legal words are general concepts that are shared by many patents from different catego-
ries, and do not carry much information about a specific category. On the contrary, the 
short description section consists of technical words describing specifically the invention, 
and contain technical words more associated with specific categories. For these issues, an 
interesting research direction would be to apply methods that manipulate word features to 
increase the cohesion between documents from the same category, while at the same time 
increasing the separability between categories (Gomez and Moens 2010).

Regarding the base classifiers, we also observe for both datasets a general trend in clas-
sification results. Independently of the section used, the classifiers sorted in descending 
order of performance are LR, SVM, KNN and NB; although there are some cases where 
the order is switched for SVM and LR.

A first finding of this experiment is that, contrary to what other works in the literature 
have concluded, the full patent description contains relevant and discriminative informa-
tion to built robust classification models, since using it (or a combination that includes it) 
produces the best classification results. A second finding is that the short description could 
be considered a better way to summarize a patent than the abstract section, since the former 
produces better classification results for all the metrics with all the base classifiers at all the 
levels. This section should be preferred over abstract when building general patent classifi-
cation models.

A general finding from all the experiments is that there are not major differences 
between the models’ classification performance regarding the patents’ language, and the 
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existent differences could be due to WIPO-de having less patents in the test set than WIPO-
alpha. This is an indication that classification models are language independent, and their 
performance is more associated with the distribution of word features over documents and 
categories. A second general finding is that discriminative classifiers (LR and SVM) tend 
to perform consistently better than the probabilistic classifier (NB) and the instance-based 
classifier (KNN). A final finding is that hyper-parameter optimization should be preferred 
over using the default parameter values to build consistent models.

Comparison with other methods in the literature

Considering the previous findings, we created a model that uses our hierarchical approach, 
a tf–idf representation, only the main code from patents, LR as the base classifier and the 
full description to extract the content. This model is fast to train because of the hierarchical 
approach and the tf–idf representation, includes enough information from the full descrip-
tion to be able to build robust discriminative classifiers, and uses a base classifier that per-
forms consistently good. In this way, it is expected to reach good classification results with 
a moderate training cost.

In Table 12 we compare the results of our model with the ones obtained by Fall and 
Benzineb (2002) and Seneviratne et al. (2015) (1 and 2 in table) using WIPO-alpha, Fall 
et al. (2004) (3 in table) using WIPO-de, and Tikk et al. (2005) (4 in table) using both data-
sets. In the table we present the best results from the mentioned works.

The results in (1) and (3) were obtained following the same methodology between them: 
a flat approach, use of stemmed words, a tf representation and only the main category from 
patents. The authors experimented with a set of base classifiers: multinomial NB, KNN, 
linear SVM and SNoW in (1), and the same less SNoW plus LLSF in (3); and with dif-
ferent patent sections: title, abstract, claims, full description and the first 300 words of the 
full description. They did not perform optimization over the parameters of the classifiers 
and take a value of K = 30 for KNN and the value of C is not mentioned. For the SVM 
classifier they selected a subset of 20,000 words in (1) and 50,000 in (3) using information 
gain, and limited the amount of document to 500 patents per class. Finally, they trained 
independent models at the class and subclass levels. In both works, the authors concluded 
that using the first 300 words from the description is the best option, whilst using the full 

Table 12   Performance comparison of most relevant works with results obtained by a model created with 
our methodology

Work Structure Rep. Codes Class Subclass Main group

Top Three All Top Three All Top Three All

WIPO-alpha
1 Flat tf Main 0.550 0.790 0.630 0.410 0.620 0.480 – – –
2 Hierarchy Binary – 0.560 0.810 0.630 0.420 0.670 0.500 – – –
4 Hierarchy Entropy All 0.655 0.856 0.734 0.532 0.750 0.623 0.368 0.556 0.464
This Hierarchy tf–idf Main 0.653 0.838 0.735 0.533 0.677 0.631 0.359 0.450 0.459
WIPO-de
3 Flat tf Main 0.650 0.860 0.760 0.560 0.780 0.710 – – –
4 Hierarchy Entropy All 0.650 0.871 0.750 0.554 0.777 0.669 0.380 0.573 0.508
This Hierarchy tf–idf Main 0.687 0.863 0.780 0.599 0.748 0.707 0.419 0.516 0.543
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patent description introduce noise and reduce the models’ performance. The results from 
(1) correspond to different classifiers, at the class level in order of metrics these are: SVM, 
NB and NB, at subclass level: SVM, KNN and SVM; whilst all the results from (3) cor-
respond to LLSF.

The results in (2) were obtained with a modified KNN method using document signa-
tures with a binary representation and a width of 4096 bits. The authors used a hierarchical 
approach, and, similar to (1), a value of K = 30 and the title or the first 300 words from the 
description to extract the content. They do not mention if they use all the patent codes or 
only the main one. They concluded that the first 300 words produce the best results.

The results in (4) were obtained with HITEC (a back-propagation-based model) with 
the following setup: using a hierarchical approach, stemmed word features and a feature 
selection based on frequency, eliminating words appearing in less than two patents or in 
more than 25% of patents. The authors experimented with document representations, com-
binations of patent sections and use of all the codes or only the main code. The best results 
were obtained using an entropy representation, all the codes from patents, and a combina-
tion of the title, inventors and abstract. An additional conclusion they reached is that using 
only the main code, the full description and a tf–idf representation produces poor results.

The results obtained with our model are up to 10% better than the ones in (1) and (2) 
for WIPO-alpha. The improvement come mainly from the selected patent section, (opti-
mized) base classifier and document representation. When comparing with the results in 
(4), we observe that there is little difference in performance with our model. The largest 
differences are at the subclass and main group levels with the three metric. The difference 
in performance seems to come from the different base classifiers and patent sections used. 
Additionally, according to our previous experiments, the flat approach in our model could 
potentially produce better results, but with an increase in computational cost.

With the WIPO-de dataset the results of our model are between 1% and 4% better than 
the ones in (3) and (4) for several metrics at several levels, with the exception of the tree 
metric at the subclass and main group levels. The differences seems to come from the 
selected patent section and base classifier.

Our findings seem to contradict partially what other authors concluded. Our findings 
indicate that the full description contains relevant and discriminative information for train-
ing classification models, the tf–idf representation performs very similar to the entropy, 
and the use of only the main code could perform similar to using all the codes at some lev-
els of the hierarchy, with the advantage of speeding up the training process.

Our experiments show that analyzing the data properties of the patent classification 
problem is important to determine the appropriate model depending on our goal, consid-
ering classification accuracy and computational efficiency. Some options helps to build 
models that are slow to train but produce good classification results, while other produce 
slightly worst results at a fraction of the training time. Thus, the selection of the best 
options should be chosen following an adequate methodology.

Conclusions

In this paper, we have presented a methodology to conduct a systematic experimental 
study on automated patent classification, where we analyzed the effect in classification 
performance of three patent data properties in combination with two general text clas-
sification details. The properties we studied were the use of: the different sections to 
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extract content from patents, the different codes assigned to each patent, and the hier-
archy of categories. The two details in classification we considered were: the way to 
represent documents and the base classifier. In our methodology, we trained and tested 
a diversity of models using different combinations of options for the mentioned proper-
ties. We compared the results of the models over two standard patent datasets consider-
ing classification accuracy and computational efficiency. Additionally, we showed com-
parisons with other works in the literature, considering the methodologies, the models 
and the results.

We could draw several conclusions from our analysis. First, the flat approach produces 
better results than the hierarchical approach at the lowest level, but it is more expensive 
to train, specially for discriminative models such as SVM and LR. Second, the use of all 
the codes assigned to patents could produce better results at the lowest level than using 
only the main code, but it also increases the training time for a model. Third, the tf–idf 
and entropy document representations produce similar results, with both producing better 
results than the tf and w2v representations, whilst tf–idf is computed faster than entropy. 
Fourth, contrary to what several researchers in previous works claim, the full description 
is a good source of discriminative information and yield some of the highest results in 
comparison with other independent sections. The disadvantage of using this section is 
the time and memory requirements for training a model, because of the large number of 
features. Nevertheless, the short description could be a good summary of the patent, and 
even if such section misses some relevant features, this could be alleviated by combining it 
with other sections, such as the abstract or the claims. Fifth, the discriminative classifiers 
(SVM and LR) perform better than probabilistic (NB) and instance-based (KNN) classi-
fiers. Sixth, it is important to perform a hyper-parameter optimization to optimize the per-
formance. Finally, the models are language independent, and they depend more on how the 
words are distributed over documents and categories.

When comparing the results of one model created with our methodology with results 
from some reference works, we observed some details. First, there is extra confirmation 
that tf–idf and entropy perform better than tf and w2v. Second, discriminative classifiers 
(SVM, LR, back-propagation and LLSF) produce the top results and outperform probabil-
istic and instance based classifiers. Third, the hierarchical approach seems to be a better 
option than the flat approach up to a certain level of the hierarchy, especially when using 
the full description and a tf–idf representation. Finally, our model produced generally bet-
ter, or at least at good, results as the other works. This means that an appropriate choosing 
of values for the patent data properties is important to obtain a good classification perfor-
mance, and the best options should be chosen following an appropriate methodology.

It is clear from the results obtained in this work, as well from other works, that the auto-
mated classification of patents is still an open problem. The results at the lowest level of the 
hierarchy are still low to be considered acceptable in a practical setting. Possible research 
directions include using other features besides word features, such as sentences or topic 
model representations, in order to include more semantic information from textual content. 
Some works have already tried using phrases (D’hondt et al. 2013, 2014; Verberne et al. 
2010; Verberne and D’hondt 2011), but the performance obtained is similar or even worse 
than using word features. We thus believe further research is necessary. Another direction 
could be the study of code propagation between documents that are close related in the 
hierarchical structure (Rossi et al. 2016). Finally, it would also interesting to study feature 
selection methods (Lamirel et al. 2015) that find the features that are highly associated with 
specific categories, maximizing the intra document similarity and minimizing the inter cat-
egory similarity (Gomez and Moens 2010).
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