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Abstract
The focus of this paper is the question “Can scale-invariant properties of collaborative 
research activities of a complex innovation system be quantified, modeled and used to 
inform decision makers about the effect that cooperation has on the impact of published 
peer-reviewed research?” Over the past few decades cooperative research activities have 
been extensively studied. Presently, encouragement and support for collaborative research 
and training is a cornerstone of many innovation policies and programs. Concurrently, the 
study of complex systems has produced tools and techniques that can be applied to the 
study of innovation systems. They have been shown to be complex systems with scale-
invariant properties that can be measured and modeled providing novel insights to decision 
makers. An important factor contributing to the emergence of scale-invariant properties is 
the inseparable tension between competitive and cooperative activities among actors within 
a complex system. Peer-reviewed papers index in the 1990–2010 Web of Science and cita-
tions to these papers are used as a partial measure of size and impact, respectively. Docu-
ments are classified into 14 natural, health and applied sciences fields. Numbers of authors 
and country information from each paper are used to classify documents into various types 
of cooperation. Scale-invariant correlations between impact and sizes where prepared to 
provide measures and models used to explore the effects of cooperation types. It is shown 
that collaborative research tends to have greater impact and for a longer period of time that 
non-collaborative research. Cooperation in the more applied fields show higher growth of 
impact when compared to the growth of their sizes than cooperation in fields closer to the 
basic or ‘blue sky’ end of the R&D spectrum. Cooperation in a complex innovation system 
can have significant effects on the relative growth of impact with respect to growth of size 
and it enhances the sustainability of the Matthew Effect over time. Cooperative activities 
appear to sustain self-organization in a complex innovation system.
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Introduction

Over the past few decades studies of cooperative activities among scientists, organizations 
and nations has produced an extensive body of peer-reviewed literature. Encouragement 
and support for cooperative research and training has become a foundation property of 
many research and innovation programs and policies. In fact, the recent rapid increase in 
trans- and multi-disciplinary investigations, particularly in the health sciences, with shared 
data, research infrastructures and personnel has become so prevalent that a new research 
area—the ‘science of team science’—has emerged (Stokols et al. 2008).

Significant effort has been devoted to understanding the structure of cooperation net-
works and its impact on innovation and research from the complexity point of view (Bara-
bási et al. 2002; Barabasi and Reka 1999; Kuhn et al. 2014; Newman 2001b; Perc et al. 
2017). Concurrent with these studies methodologies and techniques used in the study of 
complex systems have been used to detect and study scale-invariant emergent properties 
of complex innovation systems (Katz 2006, 2016b). Scale-invariance is a useful property 
because it is recursive. Any smaller system contained within the larger complex system 
will have scale-invariant emergent properties too.

Scale-invariant emergent properties are one of the most often observed real world phe-
nomena in a complex system. Scale-invariant properties cannot be measured using con-
ventional measures but they can be quantified using scale-independent or scale-adjusted 
measures. These properties have self-similar patterns and regularities seen at many levels 
of observation. They frequently arise through interactions among smaller or simpler enti-
ties in a system that themselves do not exhibit such properties.

The question addressed in this paper is “Can scale-invariant properties of collabora-
tive research activities of a complex innovation system be quantified, modeled and used 
to inform decision makers about the effect that cooperation can have on the impact of pub-
lished peer-reviewed research?”

Background

The background section is divided into three general discussions. First the reader is pro-
vided with a general overview of what scale-invariant emergent properties are and how 
they can be identified. Next, a discussion of what is currently known about the scale-
invariant properties of cooperative activities is presented. Finally, it will be shown how a 
scale-invariant relationship can arise from a simple relationship between any pair of cou-
pled exponentially growing parameters. This principle will be used later to build scale-
invariant measures and models of the affect that different types of cooperation can have on 
the impact of published research.

Scale‑invariance and innovation systems

Scale-invariant emergent properties occur throughout nature and society. Scale-invari-
ance may be perfect, as in the case of a deterministic fractal, or it can be statistical, as 
in the case of the jaggedness of an island shoreline or billowiness of clouds. An easy to 
visualize example of a scale-invariant emergent property that can be seen in a Romanesque 
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broccoli.1 It’s a complex biological system that produces an edible flower constructed of 
elegant spiral swirls. The flower is composed of smaller florets that mimic the shape of the 
main flower. Each of the smaller florets is composed of even smaller florets with similar 
spiral swirls. This process repeats itself until near the cellular level. The spiral swirls are 
natural fractals that emerge during the growth of the flower. They are described by a series 
of arcs that follow the well-known recursive Fibonacci series (Rus 2008). These fractal 
arcs are not found at the level of individual cells and molecules. They are an emergent 
property of the collective dynamic activity of these entities.

Other terms synonymous for scale-invariance are cumulative advantage, Matthew 
Effect, Yule process and preferential attachment (Kuhn et  al. 2014; Newman 2005; Perc 
2013, 2014). They have their roots in Gibrat’s law of proportionate effect (Gibrat 1931). 
Merton called this a ‘success-breeds-success’ phenomenon by which the rich get richer 
while the poor get comparatively poorer the “Matthew Effect,” after a well-known verse in 
the Gospel according Matthew (Merton 1968, 1988).

Preferential attachment has been shown to occur in the formation and evolution of 
cooperative research networks (Barabási 2014; Barabási and Albert 1999; Barabási et al. 
2002; Hébert-Dufresne et al. 2015; Ronda-Pupo and Katz 2016b). Preferential attachment 
belongs to a unique kind of stochastic urn process proven to generate scale-invariant distri-
butions (He and Liu 2009; Newman 2005). The degree distributions of these networks are 
usually scale-invariant.

It is important to note that preferential attachment found in data sets does not imply 
that preferential attachment is the active mechanism. It simply implies that past activity is 
correlated with whatever scale-invariant growth mechanism is actually at play. Preferential 
attachment is an effective mechanism but not the only one that reproduces the statistical 
properties of scale-invariant growth (Hébert-Dufresne et al. 2016).

Scale-invariance is mathematically defined as p(bx) = g(b)p(x) for any b (Newman 
2005). That is, if we increase the scale or units by which we measure x by a factor of b, the 
shape of the distribution p(x) is unchanged, except for an overall multiplicative constant. 
Only power law functions which have the general mathematical form shown in equations 
one and two (power law probability distributions and correlations) are scale-invariant. No 
other mathematical function has this characteristic.

There are two general types of scale-invariant relationships—power law probability dis-
tributions, defined in equation one, and power correlations, defined in equation two, where 
k is a constant and α is a constant called the scaling factor (Katz 2016b). The scale-invari-
ant region of a power law distribution is limited to the tail region for x ≥ xmin where xmin is 
the point at which scale-invariance begins.  

There is a degenerate form of a power law distribution called a power law with exponential 
cutoff described by equation three. In this case some entities in the far-right hand tail of the 
distribution do not occur with as high a probability as would be expected of a pure power 
law distribution. However, the scale-invariant region of the tail of the distribution can be 
several orders of magnitude in size. Scale-invariance is a property that can be measured 
and used to provide useful information to policy makers.

(1)p(x) = kx−�

(2)f (x) = cx�

1  Available from https​://cargo​colle​ctive​.com/annab​elkin​g/Fract​al-1-Roman​esco-Brocc​oli.

https://cargocollective.com/annabelking/Fractal-1-Romanesco-Broccoli
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A scale-invariant probability distribution indicates that a cumulative advantage process 
is involved in its evolution. The magnitude of the scaling factor of a distribution provides 
useful information. It tells us when the mean and the variance can be used to characterize 
it and when it cannot. Power law distributions with exponents 𝛼 > 3.0 can be character-
ize by their mean and variance. However, most real-world distributions line in the range 
2 < α ≤ 3 and where the variance is infinite (Newman 2005). Unlike power law distribu-
tions with α < 3.0 they don’t reside in the domain of attraction of Gaussian distributions; 
hence, the Central Limit Theorem no longer applies and population averages cannot be 
used to characterize them (Newman 2011). Also, when � ≤ 2 both the mean and the vari-
ance are infinite.

The population average is only useful for characterizing a distribution when its variance 
is finite. Many conventional indicators used to inform decision makers about properties of 
an innovation system such as research impact (citations/paper) or R&D intensity (GERD/
GDP) are based on population averages. They are not particularly useful for comparative 
purposes when the scaling exponent of the underlying distribution is ≤ 3. For example, the 
evolution of citation distributions to peer-reviewed papers indexed in the Web of Science 
or Scopus tend to be scale-invariant (Katz 2016b). The exponents of these distributions 
became < 3.0 as they evolved over time. However, for small population sizes such as scien-
tific subfields the scaling exponents tended to become < 3.0 very early in their evolution.

Scale-invariant properties are self-similar. That is, they are recursively similar at many 
levels of disaggregation. In other words, when a population with a scale-invariant distribu-
tion is disaggregated into natural groups such as countries, regions, institutions or fields 
then these smaller populations are expected to be scale-invariant too. A natural population 
is one that preserves the clustering, ‘community’ or small world structure of the overall 
population (Girvan and Newman 2002; Palla et al. 2005).

Scale-invariance has important consequence for decision makers (Bettencourt et  al. 
2010; Katz 2016b). It cannot be characterized by conventional measures such as population 
averages. Scale-independent or scale-adjusted measures derived from scale-invariant prop-
erties are dimensionless and independent of size. They can be used to overcome size bias 
that tends to occur in with conventional measures. Examples will be provided later.

Scale‑invariance and cooperation

An important factor contributing to the emergence of scale-invariant properties is the 
inseparable tension between competitive and cooperative activities among actors within 
a complex system (Bar-Yam 2001; Baranger 2001). This factor is the primary focus of 
this paper. Typically, competition at one scale is nourished by cooperation on the scale 
below it. This is readily observable in insect colonies and a glaring example is war between 
nations and the underlying patriotism that supports it. Understanding the interplay between 
cooperation and competition provides useful insights into evolutionary processes that now 
supersede the notion of ‘the survival of the fittest’ (Baranger 2001).

Members of an innovation system invariably compete for finite resources. This competi-
tion fosters the formation of cooperative networks, even among competitors, possessing the 
skills and tools needed to design, develop and disseminate innovative ideas, products and 
processes within given resource constraints (Wang et al. 2013). Numbers of co-authored 
peer-reviewed papers are frequently used as a partial measure of research cooperation 

(3)f (x) = kx−�e−�x



1049Scientometrics (2019) 121:1045–1065	

1 3

between individuals and groups (Katz and Martin 1997). While other sources of data have 
been used they can be difficult to obtain, time consuming to produce and tend to be incom-
plete. Publication data are relatively easy to obtain, they are mostly noise free and their 
properties are well understood. Furthermore, the journals in which papers are published 
can be assigned to such things as domains, fields and subfields allowing for analysis at 
different levels of observation. The citation counts to these papers can be used as a par-
tial measure of the impact a group’s published research has on the rest of community. 
Moreover, the distributions of citations to peer-reviewed papers have been shown to be 
scale-invariant at many levels of observation ranging from the global innovation system to 
domains, fields and subfields (Katz 2016b; van Raan 1990).

In this article publication counts of peer-reviewed papers index in the Web of Science 
and citations to these papers are used as measures of group size and impact, respectively. 
Authors and countries listed on these papers are used to classify papers into various types 
of cooperative research.

Scaling correlations have been previously reported. A scaling correlation between group 
impact and group sizes was reported when peer-reviewed papers when disaggregated into 
fields. The exponent of the scale-invariant correlation can be used as a measure of the Mat-
thew Effect. For example, consider a population of peer-reviewed papers published in a 
given year. At any point in time the evolution of distribution of citations to these papers 
is expected to be scale-invariant indicative of a Matthew Effect. These papers can be dis-
aggregated into natural groups such as fields and the correlation between field sizes and 
impact determined across the fields.

If the scaling exponent 𝛼 > 1.0 then the correlation is super linear and its magnitude is 
a measure of the Matthew Effect or cumulative advantage (Katz 2006; van Raan 2013). 
For example, if � = 1.36 then a doubling in the number of peer-reviewed publications by 
a group would be expected to increase the group’s impact by 21.36 or 2.57 times. When 
α  <  1.0 the correlation is sublinear and its magnitude is a measure of the inverse Mat-
thew Effect or cumulative disadvantage (Katz and Cothey 2006). A doubling of group size 
would be expected to produce less than a doubling in group impact. Finally, when � = 1.0 
linear effects are at play, indicative of random organization rather than self-organization.

Now let’s turn our attention to examine the scale-invariant nature of cooperative 
research activities in a complex innovation system. Cooperation is a key aspect of research 
that facilitates the transfer and improvement of knowledge (Archambault et al. 2014b). It 
has been extensively study over the past few decades. Among the most prominent papers 
on the topic are Katz and Martin (1997), Katz (1994), Persson et al. (2004), Beaver (2001), 
Luukkonen et al. (1993) and Hara et al. (2003). These papers account for 42% of the over-
all impact of this line of research in the last 25 years (Ronda-Pupo and Katz 2016b).

Recently the debate about research on scientific collaboration has changed its focus 
into a discussion about the effect that scientific cooperation has on the impact of published 
research. A body of research exists on the study of the influence that collaboration has on 
impact (Katz and Hicks 1997; Katz and Martin 1997; Kliegl and Bates 2010; Tang and 
Shapira 2010; Zhai et  al. 2014). Recently, Avkiran (1997), Elena Luna-Morales (2012), 
Glänzel (2002), González-Teruel et  al. (2015), Rousseau (2000), Rousseau and Ding 
(2015) and van Raan (1998) published research about the existence or absence of a rela-
tionship between collaboration and the impact of articles.

Relatively few studies of cooperative research activity have investigated their scale-
invariant characteristics. Newman (2001a, 2004) published a detailed examination of coop-
erative research networks and the scale-invariant character of cooperative networks. Gen-
erally speaking, he found that the distribution of the number of authors on co-authored 
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papers was a power law with an exponential cut-off. He speculated that the cut-off might be 
due to the small window of time over which the observations were made.

Internationally co-authored peer-reviewed papers have been reported to have a scale-
invariant distribution (Wagner and Leydesdorff 2005). The probability distribution of num-
ber of links between cities for co-authored papers was shown to be scale-invariant (Pan et al. 
2012). These authors reported that the probability of a link was a scale-invariant function of 
the distance between cities for cooperative and citation networks. Recently, the probability 
distribution of the number of authors per paper (i.e., coauthor team sizes) in three nanosci-
ence subfields were reported to be scale-invariant (Milojević 2010). Also, the topology of the 
cooperative R&D European aerospace research network was shown to be scale-invariant too 
(Biggiero and Angelini 2015).

Frame and Carpenter (1979) were the first researchers to report a scaling correlation in 
published international cooperative research activity. They reported a scale-invariant correla-
tion between numbers of multi-author international papers and the scientific sizes of countries 
measured using number of published papers. The exponent reported had a value of 0.67 indic-
ative of an inverse Matthew Effect. A doubling of country size would be expected to increase 
the number of multi-author papers 1.6 times (20.67). More recently the exponent of the scaling 
correlation between the numbers of internationally co-authored papers and country size was 
reported to be 0.90 (Archambault et  al. 2011). They confirmed the inverse Matthew Effect 
reported by Frame & Carpenter. In addition, the authors showed that collaboration affinity 
maps derived from scale-adjusted measures were intuitively easier to understand than maps 
derived from conventional measures such as the co-authorship preference index.

In 2000 a scaling correlation was reported between the number of UK papers involving 
various types of cooperation and institutional sizes (Katz 2000). The exponent was > 1.0 for 
international and institutional cooperation indicative of a Matthew Effect and it was < 1.0 for 
industrial and domestic cooperation indicative of an inverse Matthew.

Ronda-Pupo and Katz (2016a, b) recently explored the scaling correlations between 
impact and size for various types of collaboration. A scaling correlation was found between 
citations to Management Sciences journals and their sizes that differed between single and 
multi-authored papers. The impact of multi-author papers was expected to increases 21.89 or 
3.70 times while single author papers were only expected to increase 21.35 or 2.55 times when 
the number of collaborative articles published in a journal doubled. The Matthew Effect for 
co-authored papers was stronger for collaborative than for single author papers. In addition, 
the authors reported a scaling correlation between impact and size across 33 natural science 
subfields that differed by cooperation type. They found that the impact of multi-author papers 
was expected to increase 21.20 or 2.30 times while the impact of single author papers was only 
expected to increase 20.85 or 1.89 times for a doubling of subfield size. The Matthew Effect 
was strong for multi-author papers but single author papers exhibited an inverse Matthew 
Effect.

Scale‑invariance and exponential growth

The simplest form of scaling correlation is one that takes place between any pair of coupled 
exponentially or logistically growing parameters (Katz 2005; Sahal 1981). The mathematical 
proof for the logistic function uses a simplification that reduces its form to exponential growth 
by ignoring small x and y values. Both proofs show that the scaling exponent for a power law 
correlation between exponentially growing functions is given by the ratio of the exponential 
exponents in the form:
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where m is the base, t is time and a and b are constants.
Let

where s is a constant. We can rewrite the Eq. 6 as:

or

because,

is a time-dependent variable, and it cannot be equal to

a constant, unless

therefore,

and

This relationship holds even if the two processes are delayed in time with respect to each 
other or if they have different starting values at t = 0 . In other words, the exponent for the 
scaling correlation � = q∕p where p and q are the exponents of the exponentially growing 
processes given by x ≈ ept and y ≈ eqt , respectively.

Recently a study of the relative growth of internationally co-authored papers and domes-
tically co-authored papers in various fields was done using an allometric approach (Coc-
cia and Bozeman 2016). Allometric studies are typically done in biological and ecological 
science investigations that explore the scaling relationship between size and its biological 
consequences (Smith 2009; Warton et  al. 2006; West et  al. 1997). The authors reported 
that the growth of international co-authored papers was faster than the growth of domesti-
cally co-authored papers with scaling exponents ranging from 1.40 in physics to 4.90 in 
the medical sciences indicative of increased growth rates ranging from 2.60 to 29.8 times, 
respectively.

Ordinary least square (OLS) on log transformed data are usually used to determine the 
scaling parameter for scaling correlations. OLS is used particularly if the parameters are 
being used for predictive reasons, there is little error in the measure of the independent 
variable and the slope differs depending upon which variable is x and which is y (Warton 
et  al. 2006). However, other methods such as Major Axis (MA) or Standardized Major 
Axis (SMA), Also known as Reduced Major Axis (RMA) maybe better suited for allo-
metric studies when the correlation is not being used for predictive purposes but to simply 
summarize the relationship between two, perhaps unrelated, variables having the general 
relationship y ≈ x�.

(4)x = ampt

(5)y = bmqt

(6)y = sx�

(7)bmqt = s
(

ampt
)�

(8)b∕s(a)� = m(pa−q)t

(9)m(p�−q)t

(10)b∕s(a)�

(11)p� − q = 0

(12)a = q∕p

(13)s = b∕aq∕p
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Scale-invariant models of the evolution of scientific impact, R&D intensity and national 
wealth have been constructed using scaling correlations (Katz 2006, 2012, 2016a). This 
approach will be used to illustrate how scale-invariant measures and models can inform 
decision makers how the impact of published research in the natural, health and applied 
science domains evolved depending on the type of cooperation involved.

Methodology

9.9 million peer-reviewed documents (article, note, review and conference articles pub-
lished in journals) indexed in the Web of Science between 1990 and 2010, inclusive and 
105.2 million citations to these documents were used as a partial measure of size and 
impact, respectively. Documents were classified into 14 natural, health and applied sci-
ences fields (see Table 1) using the Science Metrix journal classification scheme2 (Archam-
bault et al. 2014a).

This paper focuses solely on the effect of various cooperation types on the scaling corre-
lations between field impact and size. Citations to papers were counted using a fixed 5-year 
time window which included the year of publication plus four additional years. This win-
dow size ensures the cohort of documents for each field will have accumulated the majority 
of their cited half-life citations and it is short enough to build models useful for informing 
decision makers. Papers were classified into five cooperation types using information from 
the country and institutional address fields given in the Web of Science. The definition of 
each cooperation type is given in Table 2.

The Web of Science data are relatively noise free and there is little error in the measure-
ment of the number of papers or citations and given that relationship between papers and 
citations is asymmetrical OLS was used. MA or SMA methods can be used if one was 

Table 1   Total paper and citation counts for fields

Science Field Abbrev. Papers Citation

Applied Agriculture, Fisheries & Forestry AGR​ 438,583 2,559,718
Built Environment & Design BED 46,613 234,670
Enabling & Strategic Technologies EST 710,065 7,147,570
Engineering ENG 559,976 3,629,590
Information & Communication Technologies ICT 283,897 1,993,200

Health Biomedical Research BMR 1,117,429 18,681,299
Clinical Medicine CLM 2,789,904 34,167,809
Psychology & Cognitive Sciences PCS 263,405 2,470,163
Public Health & Health Services PHS 244,282 2,052,170

Natural Biology BIO 581,683 4,857,148
Chemistry CHM 1,065,398 11,224,042
Earth & Environmental Sciences EES 392,805 3,522,265
Mathematics & Statistics M&S 312,792 1,316,683
Physics & Astronomy P&A 1,166,985 11,338,189

2  Available from http://scien​ce-metri​x.com/files​/scien​ce-metri​x/sm_journ​al_class​ifica​tion_106_1.xls.

http://science-metrix.com/files/science-metrix/sm_journal_classification_106_1.xls
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interested in constructing allometric models. A comparison of OLS and SMA for these 
data gave the same results.

Scale‑invariant models of the evolution of impact with size

Scale-invariant models will be constructed for the different types of cooperative activities 
defined in Table 2. The models will be built in two steps. First, the scaling correlation over 
time between the growth of impact and size will be used to build part 1. Next the scaling 
correlations across fields at a point time called, the systemic scaling correlation, will be 
used to complete the model.

Scale‑invariance over time

The scaling correlations between the growth of overall impact and size for peer-reviewed 
papers in 14 natural, health and applied science fields published between 1990 and 2010 
were examine. The total impact and the total size for all fields grew exponentially given by 
citations ≈ e0.108t and papers ≈ e0.0845t , respectively. The mathematics shows that the ratio 
of 0.108

0.085
= 1.27 should be the value of the exponent for the scaling correlation between this 

pair of growth processes. The calculated value seen in Fig. 1 is within the error range of 
the measured scaling exponent 1.26 ± 0.02 determined using OLS on log transformed data. 
The exponent tells us that the impact of the sciences is growing faster than their sizes and 
the impact is expected on average to increase 21.26 or 2.4 times for a doubling in size.

The same approach was used to examine the relative growth of impact and size for each 
of the 14 science fields and for each type of cooperation. The table in Appendix 1 gives 
the scaling exponent of the relative growths, the standard errors (se), R2 and an indication 
if R2 ≥ 0.90 and p < 0.005. Confidence in the values for the scaling exponents is excellent 
for all types of cooperation except for the ‘None’ group. The magnitudes of R2 were less 
than 0.90 for 13 of the 14 fields in the ‘None’ group and 10 of the 14 fields had p values 
greater than 0.025. There is good support for mathematics and statistics (M&S) scaling 
exponent and weak support for Built Environment & Design (BED), Enabling & Strategic 
Technologies (EST) and Information and Communication Technologies (ICT). There was 
a tendency for the scaling exponents in 8 fields in the ‘None’ group to be negative. An 
inspection of the data shows that these cases the growth of impact and size were not expo-
nential and, in some instances, it was flat or slightly declining.

Table 2   Cooperation type 
definitions

Cooperative type Definition

Mixed Single author and multi-author (co-
op and no co-op)

No cooperation Single author
Cooperation Two or more authors
Domestic cooperation Two or more author from a country
International cooperation Authors from more than one country
Domestic and international 

cooperation
Two or more authors from a country 

and more than one country
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The fields in Table 3 were ranked by their scaling exponents in decreasing order of mag-
nitude for each cooperation type except for ‘None’. The ‘Mixed’ group was included for the 
reader’s reference. Scaling exponents with the same value were given the same rank. Ranks 
with values ≥ 5 are in bold.

These data tell us that the growth of impact relative to the growth in size was greatest 
in the applied sciences. These fields had the majority of the highest ranks for all coopera-
tion types. Two health science fields, Psychology & Cognitive Sciences (PCS) and Public 
Health & Health Services (PHS), rank 2nd in the relative growth of the impact of domes-
tic cooperation. In the natural sciences Mathematics & Statistics (M&S), Biology (BIO) 
and Chemistry (CHM) had relative impact growths with ranks > 5. M&S exhibited a high 
rank for international, domestics and international and domestic cooperation types per-
haps indicative of the universal nature of mathematics. Interestingly, Biomedical Research 
(BMR), Physics & Astronomy (P&A), Clinical Medicine (CLM) and Earth & Environ-
mental Sciences showed some of the lowest ranked relative growths of impact irrespective 
of the type of cooperation.

Figure 2 illustrates the first part of a scale-invariant model of the evolution of impact 
with field size for ‘Mixed’ cooperation. Similar models can be constructed for other coop-
eration types. The figure is a log–log plot of impact versus size for each of the 14 fields. 
The exponents found in the table in Appendix 2 give the magnitudes of the upward slopes 
of each line’s trajectory from 1990 to 2010. Collectively, these lines are defined by 14 
scale-invariant functions that model the evolution of the impact of each field as its size 
grew from 1990 to 2010.

Scale‑invariance at points in time

A scaling correlation called the systemic scaling correlation can occur across members 
of a complex innovation system at a point in time (Katz 2006). For example, consider 
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Fig. 1   Scaling correlation for the relative growth of impact and size for 14 natural, health, and applied sci-
ence fields between 1990 and 2010, inclusive. The scaling exponent was determined using Ordinary Least 
Squares on log-transformed data. The exponent 1.27 indicates the presence of the Matthew Effect. A dou-
bling of the size returned more than a doubling of its impact. The interpretation is, when the size of a field 
doubled, its impact was expected to increase 21.27 or 2.41 times
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Fig. 3 which is a log–log plot of the scaling correlation between field impact and sizes 
across the 14 science fields under consideration. The size of each field is the sum of 
the number of papers published in the field between 1990 and 2010. The impact is the 
sum of the 5-year citations to each year’s publications over the same time interval. The 
systemic scaling correlation was found to have a value of 1.26 ± 0.08 indicating that on 
average when the size of a field doubles its impact was expected to increase 21.26 or 2.39 
times.

The systemic scaling correlation is a measure of the average citedness of peer-
reviewed papers published in all fields. It can be used to calculate an expected impact, 
Ie, against which the observed impact, Io, can be compared. The ratio Io

Ie
 is a scale-inde-

pendent relative impact measure. When it is > 1 the observed impact is higher than 
expect, when it is < 1 the impact is less than expected and when it is = 1 observed and 
expected impact are equal.

Scientific impact or average number of citations per paper is a traditional meas-
ure used for such comparison. However it is biased by size while the relative impact 
measure is not size-biased (Katz 2000). For example, from Fig. 3 we see that relation-
ship between impact, C, and size, p, is given by C ≈ P1.26 . Therefore, scientific impact, 
C∕P ≈ P0.26 showing that its magnitude is a function of field size. 8 of the 14 fields 
changed ranks by two or more positions using the relative impact measured compared to 
the conventional measure. The size effect of conventional measures can distort a policy 
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Fig. 2   Scale-invariant model Part I for mixed cooperation. A log–log plot of impact versus size for each of 
the 14 fields. The values of exponents of each field and for all types of cooperation are given in the table 
in Appendix 1. AGR = Agriculture, Fisheries & Forestry, BED = Built Environment & Design, EST = Ena-
bling & Strategic Technologies, ENG = Engineering, ICT = Information & Communication Technolo-
gies, BMR = Biomedical Research, CLM = Clinical Medicine, PCS = Psychology & Cognitive Sciences, 
PHS = Public Health & Health Services, BIO = Biology, CHM = Chemistry, EES = Earth & Environmental 
Sciences, M&S = Mathematics & Statistics, P&A = Physics & Astronomy
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maker’s understanding of the relative performance of groups in a complex innovation 
system. This problem can be alleviated through the use of scale-independent measures. 
For example, the scale-adjusted measures affect field ranks when compared with con-
ventional indicators. 79% of cases scale adjusted measures show different ranks. Five 
fields improved their position; six areas lowered their level and, three remain the same 
place. This model suggests that scale adjusted indicators bring unbiased field rankings.

The table in Appendix  1 gives the annual systemic scaling correlations for each 
cooperation type, standard error, R2 and an indication if R2 ≥ 0.90 and p < 0.05 . R2 
was > 0.95 p < 0.005 for all exponents except those in the ‘None’ cooperation type. All 
but one exponent in the ‘None’ group has 0.70 < R2

< 0.90 with p < 0.005 . The correla-
tion for the ‘None’ type is indicative of a scale-invariant effect but it is not good enough 
to be useful for computing reliable expected impact values.

Figure 4 graphically depicts how the magnitude of the systemic scaling exponent for each 
cooperation type evolved between 1990 and 2010. In every instance it decreased with time. 
However, the scaling factor for the ‘None’ cooperation type decreased more rapidly than 
those publications with some type of cooperation. The Matthew Effect for the ‘None’ group 
approached linearity with increasing time while the other types of cooperation maintained a 
persistent strong Matthew Effect having exponents in the range of 1.18–1.23 at the end of the 
time period.

The trend lines show that at the beginning of the period, the scaling exponents for all types 
of cooperative and non-cooperative publications had exponents in the range of 1.28–1.38. 
The year 2000 marked a milestone, and the impact of solo papers dropped abruptly. Only 
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 1,00,000

 10,00,000

 1,00,00,000

 10,00,00,000

 10,000  1,00,000  10,00,000  1,00,00,000

Im
pa

ct
 

Size 

CLM  (10,2) 

P&A (11,5) 

BMR  (1,1) 

CHM (7,3) 

BIO (9,9) 
ENG (12,11) 

AGR (13,12) 
ICT (8,10) 

BED (5, 13) 

Fig. 3   Systemic scaling correlation—mixed cooperation. The systemic scaling correlation is a measure of 
the average citedness of peer-reviewed papers published in all fields. It can be used to calculate an expected 
impact. The numbers in brackets after the field abbreviations are the field rank determined using (a) relative 
impact measure, Io
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 and (b) scientific impact, citations per paper
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cooperative documents sustained a strong Matthew Effect with exponents in the range 
1.20–1.25 through 2010. Although the exponents show no stability over time, it remained 
above 1.20. Collaborative activities appear to represent a competitive advantage for enhancing 
the impact of complex innovation systems. The exponent for non-cooperative papers dropped 
to nearly 1.0 suggesting a disadvantage.

Figure 5 is the completed scale-invariant model of the evolution of field impact and size 
for the ‘Mixed’ cooperation type. Similar graphs could be constructed for the other types of 
cooperation.

The inset graph in the upper right-hand corner is a plot of the annual value of the system 
scaling exponent. It declined from 1.37 to 1.20 indicating that the expected increase in 
impact for a doubling in field size decreased from 2.59 (21.37) to 2.30 (22.30) times over the 
time period. The completed scale-invariant model illustrates how the impact and size of 14 
science fields involving mixed cooperation evolved with time and at points in time. Similar 
models can be constructed for each cooperative activity.
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Discussion and summary

Contrary  to previous studies that show no agreement to support the hypothesis that col-
laboration is a driver to foster citation impact, the results of the study confirmed that col-
laborative activities appear to represent a competitive advantage for enhancing the impact 
of complex innovation systems. In practical terms, it suggests that solo papers do not con-
tribute to the growth of the citation impact of scientific fields as multi-authored papers do.

The rankings (see Table  3) show applied sciences had higher relative impact growth 
irrespective of cooperation type when compared to the fields closer to the basic end of the 
R&D spectrum. There were some notable exceptions. Domestic cooperation in Psychology 
& Cognitive Sciences and Public Health & Health Services as well as international and 
international + domestic cooperation in Mathematics & Statistics showed strong impact 
growth relative to their sizes. Even these exceptions are fields that tend to be closer to the 
applied than the blue-sky end of the R&D spectrum.

 3.0

 3.5

 4.0

 4.5

 5.0

 5.5

 6.0

 6.5

2.5 3.0 3.5 4.0 4.5 5.0 5.5

lo
g 

im
pa

ct
 

log size 

1990 

2010 

Fig. 5   Scale-invariant model for mixed cooperation. The graph contains the lines plotted in Fig. 3 overlaid 
with the 1990 and 2010 systemic scaling correlation shown as dotted lines. The inset graph in the upper left 
hand corner is a plot of the annual value of the system scaling exponent. The slopes represent the scaling 
exponent for each field overtime. The slopes above the general regression line indicates that the exponent 
of that field is above the exponent considering all fields together. Conversely if it appears below. When the 
field slope crosses the regression line the relative impact is about the same than expected
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Specifically (see Appendix 1), the relative impact for cooperative research publication 
in 9 of 14 natural, health and applied science fields was greater than the relative impact 
for non-cooperative publications. Single author publications in Mathematics & Statistics 
tended to be higher than other fields perhaps reflecting the more solitary and theoretical 
nature of the field (Hicks and Katz 1996; Newman 2004). Single author papers in 4 applied 
science fields (BED, EST, ENG and ICT) had larger scaling exponents that cooperative 
papers however, statistical confidence in the values of these exponents is low.

The effect of cooperative activity on the persistence of the Matthew Effect was explored 
by examining the evolution of the magnitude of the systemic scaling correlation across 
fields at points in time. Figure 4 shows that at the beginning of the time period the scal-
ing exponents for all types of cooperative and non-cooperative publications had scaling 
exponents in the range of 1.28–1.38. However, only cooperative papers sustained a strong 
Matthew Effect with exponents in the range 1.20–1.25 at the end of the period while the 
exponent for non-cooperative papers dropped to nearly 1.0. Cooperative activities appear 
to sustain self-organization in a complex innovation system.

The systemic scaling correlation across entities in a system at a point in time can be 
used as a reference trend against which the impact of individual fields can be compared. 
Figure 3 illustrates the effect that scale-adjusted measures can have on a field ranks when 
compared with conventional measures. For example, Clinical Medicine (CLM) drops 
from 2nd to 10th and Built Environment & Design (BED) increased from 13th to 5th rank 
when the effect of size on field impact was considered. 9 of the 14 fields experienced rank 
changes of 2 or more positions presenting decision makers with a much different view than 
one provides by a conventional measure. The effect of size matters when comparing enti-
ties of vastly different sizes in a complex innovation system.

Scale-invariant emergent properties are a common property of a complex innovation 
system. These properties can be qualified and quantified using the parameters of scale-
invariant distributions and correlations. In turn these parameters can be used to prepare 
measures and models useful for informing public policy about scale-invariant emerging 
properties of a complex innovation system. This paper used a scale-invariant approach to 
show how cooperative activities can affect the evolution of relative growth of impact and 
the sustainability of the Matthew Effect with time. These measures and models give deci-
sion makers novel insights unobtainable using conventional measures.

“Appendix 1, 2” bring practitioners, research evaluation scholars, and policymakers the 
values of the exponents of growth for each type of collaboration and non-collaboration 
peer-reviewed papers for each field. These values can be used as a reference to compare 
the citation-based performance of countries, universities, or research groups in these fields.

Funding  This work was supported, in part, by FONDECYT Chile. Grant # 1180200.
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Appendix 2—Annual systemic correlation scaling exponents

Cooperation type Year

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Mixed α 1.37 1.39 1.33 1.37 1.38 1.38 1.35 1.32 1.33 1.32 1.33
SE 0.08 0.09 0.09 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09
R2 0.96 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95

None α 1.33 1.37 1.30 1.30 1.35 1.34 1.33 1.26 1.28 1.25 1.25
SE 0.16 0.18 0.17 0.17 0.18 0.20 0.19 0.20 0.18 0.18 0.19
R2 0.84 0.84 0.83 0.82 0.83 0.79 0.81 0.78 0.81 0.80 0.78

Coop α 1.33 1.34 1.29 1.34 1.34 1.34 1.31 1.29 1.30 1.30 1.30
SE 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07
R2 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

Intl α 1.30 1.36 1.29 1.30 1.30 1.35 1.32 1.28 1.27 1.29 1.28
SE 0.08 0.09 0.08 0.09 0.09 0.09 0.09 0.09 0.08 0.09 0.09
R2 0.96 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Dom α 1.35 1.33 1.27 1.33 1.35 1.37 1.35 1.31 1.33 1.33 1.32
SE 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.07
R2 0.98 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Dom + Intl α 1.46 1.36 1.28 1.28 1.38 1.36 1.39 1.29 1.29 1.36 1.28
SE 0.05 0.06 0.06 0.07 0.06 0.06 0.06 0.07 0.06 0.06 0.07
R2 0.99 0.98 0.98 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.97

Cooperation type Year

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Mixed α 1.32 1.31 1.28 1.25 1.25 1.24 1.22 1.23 1.22 1.20
SE 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.07 0.08 0.07
R2 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.96

None α 1.28 1.27 1.22 1.17 1.17 1.14 1.10 1.09 1.03 1.04
SE 0.21 0.20 0.20 0.19 0.19 0.18 0.18 0.22 0.19 0.17
R2 0.76 0.77 0.75 0.76 0.76 0.76 0.75 0.67 0.71 0.76

Coop α 1.29 1.27 1.25 1.23 1.23 1.22 1.20 1.21 1.20 1.18
SE 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.07 0.06
R2 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Intl α 1.29 1.29 1.25 1.24 1.22 1.21 1.23 1.24 1.24 1.23
SE 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.08 0.07 0.07
R2 0.95 0.95 0.95 0.95 0.95 0.96 0.95 0.96 0.96 0.96

Dom α 1.31 1.28 1.27 1.25 1.24 1.23 1.21 1.23 1.21 1.20
SE 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
R2 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Dom + Intl α 1.32 1.26 1.25 1.26 1.24 1.18 1.20 1.24 1.24 1.22
SE 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.06 0.06 0.06
R2 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98

Mixed cooperation and no cooperation; None no cooperation (single author); Coop cooperation (multi-
authors); Intl international cooperation; Dom domestic cooperation; α scaling exponent, SE standard error 
of α, bold p < 0.005, italics R2 ≥ 0.90
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