
Vol.:(0123456789)

Scientometrics (2019) 120:661–681
https://doi.org/10.1007/s11192-019-03143-7

1 3

A fast and integrative algorithm for clustering performance
evaluation in author name disambiguation

Jinseok Kim1

Received: 7 December 2018 / Published online: 14 June 2019
© Akadémiai Kiadó, Budapest, Hungary 2019

Abstract
Clustering results in author name disambiguation are often evaluated by measures such as
Cluster-F, K-metric, Pairwise-F, Splitting and Lumping Error, and B-cubed. Although these
measures have different evaluation approaches, this paper shows that they can be calculated
in a single framework by a set of common steps that compare truth and predicted clusters
through two hash tables recording information about name instances with their predicted
cluster indices and frequencies of those indices per truth cluster. This integrative calculation
reduces greatly calculation runtime, which is scalable to a clustering task involving millions
of name instances within a few seconds. During the integration process, B-cubed and K-met-
ric are shown to produce the same precision and recall scores. In addition, name instance
pairs for Pairwise-F are counted using a heuristic, which enables the proposed method to sur-
pass a state-of-the-art algorithm in speedy calculation. Details of the integrative calculation
are described with examples and pseudo-code to assist scholars to implement each measure
easily and validate the correctness of implementation. The integrative calculation will help
scholars compare similarities and differences of multiple measures before they select ones
that characterize best the clustering performances of their disambiguation methods.

Keywords Author name disambiguation · Entity resolution · Clustering · Evaluation
measure · Pairwise-F

Introduction

Author name disambiguation is an entity resolution task to generate clusters of name
instances to refer to unique authors in bibliographic data. It is crucial to research that mines
authorship data because ambiguous names can lead to merging and/or splitting of author
identities and thus flawed knowledge about research production and collaboration (Fegley
and Torvik 2013; Kim and Diesner 2015, 2016; Strotmann and Zhao 2012). As publica-
tions and ambiguous author names such as East Asian names increase in digital librar-
ies (Bornmann and Mutz 2015; Torvik and Smalheiser 2009), various methods for author

 * Jinseok Kim
 jinseokk@umich.edu

1 Institute for Research on Innovation and Science, Survey Research Center, Institute for Social
Research, University of Michigan, 330 Packard Street, Ann Arbor, MI 48104-2910, USA

http://orcid.org/0000-0001-6481-2065
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-019-03143-7&domain=pdf

662 Scientometrics (2019) 120:661–681

1 3

name disambiguation (Hussain and Asghar 2017; Smalheiser and Torvik 2009) have been
proposed.

After a disambiguation method is implemented, its clustering performance is evalu-
ated by measures such as Cluster-F, K-metric, Pairwise-F, Splitting & Lumping Error, and
B-cubed. As there is no consensus on a definitive measure for evaluating author name dis-
ambiguation (Ferreira et al. 2012), one or two measures are chosen at the researcher’s dis-
cretion. The selection is, sometimes, justified by an argument that the selected measure is
frequently used. In many studies, however, a measure is selected without any clarification.

A clustering measure should be selected considering the context of each study. The
choice can, however, change our impression about a disambiguation method if its per-
formance is evaluated high by one measure, but low or mediocre by another. Calculating
diverse measures in a disambiguation study can be a nontrivial task because clustering
measures have distinct evaluation approaches which are not easy to compare their simi-
larities and differences. In addition, the straightforward implementation of a measure like
Pairwise-F can consume too much runtime depending on data size because the number of
instance pairs for comparison can increase quadratically in a worst-case scenario (Men-
estrina et al. 2010).

To help scholars select clustering measures that characterize best their disambiguation
results, this study shows that five commonly used measures for evaluating clustering per-
formance in author name disambiguation can be calculated all-in-one by implementing a
common set of code. This integrative calculation shows intuitively how these measures
are similar and different in evaluating clustering results. Especially, the proposed approach
reduces computation runtime, dramatically for Pairwise-F in particular. In the following
sections, the usage patterns of clustering measures in author name disambiguation are
reviewed. Then, the integration process is explained step-by-step with pseudo-code and
examples.

Literature review

Table 1 shows the list of selected author name disambiguation studies and their measures
for evaluating clustering performance. Note that detailed explanation of each measure will
be provided in the Results section in this paper.

According to the table, Pairwise-F is the most popular measure. It appears in 15 out of 23
studies. This confirms that it is the most frequently used measure in entity resolution in gen-
eral (Maidasani et al. 2012; Menestrina et al. 2010) as well as in author name disambigua-
tion (Levin et al. 2012).1 K-metric is calculated in 8 studies, followed by B-cubed (B3, 7)
and Cluster-F (5). Three studies use the Splitting and Lumping Errors (SE & LE) measure.

In Table 1, 11 out of 23 studies rely on a single measure while others on two or three
measures. In addition, the combinations of co-used measures vary. Figure 1 shows pairs of
co-used measures in Table 1 and their co-usage frequencies. For example, Pairwise-F is
paired with K-metric 7 times. Interestingly, some possible pairs have never been calculated
together. For example, B3 is paired with Pairwise-F twice but not with K-metric, Cluster-F,
and SE and LE.

1 Note that B-Cubed is more frequently used than other measures in person name disambiguation on the
Web [e.g. Delgado et al. (2017)] because the metric has formal properties that can handle evaluation sce-
narios specific to the task. For details, see Amigó et al. (2009).

663Scientometrics (2019) 120:661–681

1 3

The use of Pairwise-F is often justified because it is frequently used in entity resolu-
tion studies. Sometimes, measures are selected to follow the practice of referenced studies
or without any clarification. Although such choices should be understood in each study’s
unique context, they can change our impression about the performance of a disambiguation
method. To illustrate this, the clustering performance of a digital library, DBLP (Ley 2009;
Reitz and Hoffmann 2013), was evaluated on a labeled dataset, KISTI (Kang et al. 2011).
KISTI consists of a set of ambiguous name instances filtered from DBLP and disambig-
uated semi-manually by researchers at the Korean Institute for Science and Technology

Table 1 Clustering performance measures in selected author name disambiguation studies

Studies Cluster-F K-metric SE & LE Pairwise-F B3

Cota et al. (2010) √ √
Fan et al. (2011) √
Ferreira et al. (2014) √ √
Han et al. (2017) √
Huang et al. (2006) √ √
Hussain and Asghar (2018) √ √ √
Kim and Diesner (2016) √ √
Kim and Kim (2018) √
Lerchenmueller and Sorenson (2016) √
Levin et al. (2012) √ √
Liu et al. (2014) √ √
Liu et al. (2015) √
Louppe et al. (2016) √ √
Momeni and Mayr (2016) √
Müller et al. (2017) √
Pereira et al. (2009) √ √ √
Santana et al. (2017) √ √
Shin et al. (2014) √ √ √
Qian et al. (2015) √
Torvik and Smalheiser (2009) √
Wu et al. (2014) √ √
Zhang et al. (2018) √
Zhu et al. (2018) √

Fig. 1 Co-usage frequency of
clustering measures in Table 1

664 Scientometrics (2019) 120:661–681

1 3

Information. Among 41,673 name instances in the original KISTI, a total of 41,358 name
instances are matched to DBLP (2017 September) records.2 Figure 2 shows DBLP’s clus-
tering performance evaluated on KISTI by five measures.

According to the figure, DBLP’s disambiguation is highly accurate: precision, recall,
and F scores of three measures—Pairwise-F, B3, and K-metric—are all above 0.95, cor-
roborating Kim (2018). Cluster-F and SE & LE scores are, however, not so much encour-
aging. Especially, Cluster-F shows that DBLP performs a little worse in recall than in
precision, which contrasts other three measures reporting that DBLP performs better in
recall than in precision. According to SE & LE, DBLP disambiguates names better in
terms of recall than precision, but the recall-precision performance gap (|recall − pre-
cision| = 0.1794) is much pronounced than those by Pairwise-F, K-metric, and B3
(|recall − precision| = 0.0346–0.0487).

This illustrates why we need to consider various clustering measures to evaluate a dis-
ambiguation method. Depending on the choices of measures, the same clustering results
can be evaluated as encouraging or less so. As shown in Table 1, however, the selection of
measures do not seem to be guided by any common practice. But this does not imply that
scholars need to report evaluation results calculated by all available measures, which is
undesirable for efficient communication.

Instead, it should be considered that using diverse measures can illuminate where a dis-
ambiguation method performs well and needs improvement. For example, the low Cluster-
F coupled with high B3 in Fig. 2 indicates that misidentified name instances by DBLP are
not many (high B3 scores) but appear across several truth clusters (low Cluster-F) because
a single misidentified instance in a truth cluster decides the DBLP’s performance for the
whole cluster as a failure. In addition, diverse measures can enable scholars to compare
performances of their disambiguation methods with other studies evaluated by different
measures and thus to find room for improvement or synthesize strengths of each study.

Fig. 2 Performance of DBLP’s author name disambiguation evaluated by five measures on KISTI

2 For details on the matching procedure, see Kim (2018).

665Scientometrics (2019) 120:661–681

1 3

Calculating various measures for a disambiguation study can, however, be a nontrivial
task. Each measure needs to be implemented with a careful validation of accuracy. In addi-
tion, each measure can be implemented using different code snippets which are not often
shared. So, scholars who want to implement a clustering measure usually need to write
code from scratch. Sometimes, a measure may not be easily implementable for a large data-
set. For example, calculating Pairwise-F can consume much computing time and RAM
because the number of instance pairs can increase quadratically “in the worst case” (Men-
estrina et al. 2010).3

To facilitate the efficient use of diverse clustering measures in author name disambigua-
tion, this study proposes an algorithm to calculate the five commonly used measures all-
in-one in an integrative framework. Specifically, although the five measures have different
evaluation approaches, they can be calculated by a common set of code, which will help us
understand better the similarities and differences of the measures. This integrative calcula-
tion is the first attempt of this sort and a novel contribution to the measurement of clus-
tering performance in author name disambiguation. Moreover, during the integration pro-
cess, B3 and K-metric are shown to produce the same precision and recall scores. Within
this framework, especially, Pairwise-F is calculated by a heuristic rather than a brute-force
comparison of instance pairs, reducing greatly computation time from quadratic (at worst)
to linear one. This solution is motivated by Menestrina et al. (2010) in which Pairwise-F
is calculated linearly through a Slice algorithm combined with a cost function. This study
combines the Slice algorithm with a heuristic to calculate Pairwise-F faster than the ‘Slice
algorithm + cost function’ approach. In following sections, the details of integrative calcu-
lation are described with examples and pseudo-code.

Methods

Scholars usually evaluate clustering results in two ways: recall and precision. Here, a clus-
ter consists of name instances that are decided to represent the same authors by a disam-
biguation algorithm (a predicted cluster) or manual labeling (a truth cluster). Recall meas-
ures how many truth clusters are not compromised by merged or split name instances in
predicted clusters, while precision measures how many predicted clusters group correctly
name instances that belong to the same truth clusters.

Incorporating the aforesaid five measures into the same framework is possible because
all of them evaluate disambiguation results by both recall and precision. What makes them
different from one another is that each measure is designed to assess precision and recall at
one of three levels: cluster, instance, or pair of instances, as summarized in Table 2.

Despite such different calculation levels, the measures can be implemented by embed-
ding the instance- and pair-level calculations into the cluster level calculation through a set
of common steps (“skeleton code” hereafter). Algorithm 1 shows the skeleton code.

3 For example, a set of 3964 author name instances can generate over 7.8 M instance pairs (Kim et al.
2017). To address this challenge, a few studies have proposed advanced blocking algorithms. For details,
see Kim et al. (2017).

666 Scientometrics (2019) 120:661–681

1 3

-

A key idea of Algorithm 1 is that truth clusters are not compared cluster by cluster to
predicted ones. Instead, a name instance (p) in a predicted cluster (Pi) is recorded into a
hash table (pIndex) where the instance p (key) is mapped to its cluster membership (= i:
value) (code line 2–7). Next, a name instance (t) in a truth cluster (Tj) is checked for its
index (i) in predicted clusters (P) by referencing pIndex. Then, the count of the index (i)
is recorded into another hash table (tMap) where an index i (key) is mapped to its fre-
quency (value) (code line 10–15). In other words, this code snippet counts the number
of name instances in a truth cluster that appear together in predicted clusters (= sharing
the same i), which corresponds to detecting the intersection of a truth cluster (Tj) and
predicted clusters (P). Note that this procedure adopts part of the Slice algorithm in
Menestrina et al. (2010).

Table 2 Summary of calculation level and recall-precision types per performance measure

Measure Cluster-F K-metric SE & LE Pairwise-F B3

Calculation
level

Cluster Cluster Cluster Pair Instance

Recall Cluster recall AAP Splitting error Pairwise recall B3 recall
Precision Cluster preci-

sion
ACP Lumping error Pairwise preci-

sion
B3 precision

F Score Harmonic Mean Geometric
Mean

Harmonic mean Harmonic mean Harmonic mean

667Scientometrics (2019) 120:661–681

1 3

Within this cluster-level calculation framework, pair- and instance-level measures can be
also calculated. To demonstrate this, each measure is explained in detail below starting from
cluster- to pair- and instance-levels.

Results

Cluster level: Cluster‑F

Cluster-F (cF) is a harmonic mean of cluster recall (cR) and cluster precision (cP) (Menestrina
et al. 2010).

Here, P is a set of predicted clusters, while T is a set of truth clusters. The numerator
|P ∩ T| counts the number of predicted clusters that contain all and the only instances belong-
ing to the same truth clusters. Cluster recall (cR) is the ratio of the numerator over the number
of all truth clusters (|T|). Cluster precision (cP) is the ratio of this numerator over the number
of all predicted clusters (|P|).

Table 3 shows an example from Maidasani et al. (2012, p.17) for calculating Cluster-F. In
the first column, there are three truth clusters (T1, T2, and T3) in which eight name instances
with numeric ids (1, 2, 3…8) are assigned. The second column shows predicted results: eight
instances in the first column are assigned to two clusters (P1 and P2). After instances are com-
pared across predicted and truth clusters, only one case of |P ∩ T| (P1 = T1) is detected. So,
the numerator for cR is 1, while the denominator is 3 (the number of truth clusters), resulting
in cR = 1/3. The numerator for cP is also 1 but its denominator is 2 (the number of predicted
clusters), resulting in cP = 1/2. Their harmonic mean is 0.4.

The calculation of cR and cP can be implemented as follows.

(1)cR =
|P ∩ T|
|T|

(2)cP =
|P ∩ T|
|P|

(3)cF =
2 × cR × cP

(cR + cP)

Table 3 An Illustration of
Cluster-F calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3)
T2 = (4, 5)
T3 = (6, 7, 8)

P1 = (1, 2, 3)
P2 = (4, 5, 6, 7, 8)

cR = 1/3 = 0.3333
cP = 1/2 = 0.5
cF = (2 × 1/3 × 1/2)/

(1/3 + 1/2) = 0.4

668 Scientometrics (2019) 120:661–681

1 3

In Algorithm 2, the code lines added to Algorithm 1 are highlighted in bold. As a result of
running the skeleton code, the hash table tMap records every cluster index i associated with
name instances in T and the frequency of each index. If (1) an index i (key)’s frequency in
tMap is the same as the size of a truth cluster Tj (value = |||Tj

|||) and (2) the size of the cluster Pi
is the same (cSize[key] = |||Tj

|||), this means that all and only name instances in the truth cluster
appear together in the same predicted cluster. This is a case of the intersection (|P ∩ T|) and
increments cMatch, the numerator for cR and cP.

Cluster level: K‑metric

K-metric consists of Average Author Purity (AAP), Average Cluster Purity (ACP), and their
geometric mean (K) (Santana et al. 2017).

(4)AAP =
1

N

|T|∑

j=1

|P|∑

i=1

n2
ij

nj

(5)ACP =
1

N

|P|∑

i=1

|T|∑

j=1

n2
ij

ni

669Scientometrics (2019) 120:661–681

1 3

Here, T and P represent sets of truth and predicted clusters each. N is the total of name
instances to be disambiguated. It is assumed that every name instance in truth clusters is
assigned to one of predicted clusters throughout this paper. nij is the number of Pi name
instances that also appear in Tj; ni and nj represent the numbers of name instances in Pi and
Tj, respectively. AAP measures the fragmentation of truth clusters. In other words, its value
is low when many instances of an author (= a truth cluster) are split into separate predicted
clusters (≈ recall). In contrast, ACP measures the purity of the predicted clusters. The ACP
value decreases if predicted clusters contain name instances that should belong to other
predicted clusters (≈ precision).

Table 4 illustrates the K-metric calculation. AAP starts by counting the number of
name instances in the truth cluster that appear in each predicted cluster. For example, all
instances in T1 appear together in P1, thus n2

11
 = 32 (= 9) and n1 = 3. This repeats over other

truth clusters (T2 = 22/2 and T3 = 32/3). The same procedure is applied for ACP but this
time staring from P1 being compared to each truth cluster.

Equations 4 and 5 can be re-written using a set notation as follows. The order of clus-
ter comparison (truth → predicted or predicted → truth) does not affect the calculation out-
come because the final sets of intersection (Pi ∩ Tj) in AAP and ACP are the same. So,
the summation can be ordered as truth clusters being compared to predicted clusters (i.e.,
truth → predicted) for both AAP and ACP.

The revised equations can be implemented by expanding Algorithm 1.

(6)K =
√
ACP × AAP

(7)AAP =
1

N

|T|∑

j=1

|P|∑

i=1

n2
ij

nj
=

1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||
2

|||Tj
|||

(8)ACP =
1

N

|P|∑

i=1

|T|∑

j=1

n2
ij

ni
=

1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||
2

||Pi
||

Table 4 An Illustration of K-metric Calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3)
T2 = (4, 5)
T3 = (6, 7, 8)

P1 = (1, 2, 3)
P2 = (4, 5, 6, 7, 8)

AAP = (32/3 + 22/2 + 32/3)/8 = 1.0
ACP = (32/3 + 22/5 + 32/5)/8 = 0.7

K =
√
1.0 × 0.7 = 0.8367

670 Scientometrics (2019) 120:661–681

1 3

Algorithm 3 recycles the skeleton code. The added lines to Algorithm 1 are shown in
bold. The re-use is possible because in Eqs. 7 and 8, K-metric is re-formulated using a
single procedure in which truth clusters are compared to predicted clusters for both AAP
and ACP. In contrast, Eqs. 4 and 5 formulate that truth clusters are compared to predicted
clusters for AAP and then predicted clusters to truth clusters for ACP.

As all name instances in truth clusters are assigned to one of predicted clusters, the
value of N can be obtained by counting instances in either truth (instSum, code line 11) or
predicted clusters. In code lines 20–21, |||Pi ∩ Tj

|||
2

∕
|||Tj

||| in Eq. 7 and |||Pi ∩ Tj
|||
2

∕||Pi
|| in Eq. 8

are calculated and summed into aapSum and acpSum, respectively, using the hash values in
tMap. Especially, ||Pi

|| is obtained by referencing a predicted cluster index i (key) to cSize
generated in code line 7.

Cluster level: Splitting and Lumping Error

Several studies have adopted the concept of Lumping (= merging) and Splitting Error (Kim
and Diesner 2016; Lerchenmueller and Sorenson 2016; Li et al. 2014; Liu et al. 2014; Torvik

671Scientometrics (2019) 120:661–681

1 3

and Smalheiser 2009). Splitting Error (SE) and Lumping Error (LE) are defined as follows (Li
et al. 2014):

Here, x means an author name instance. Ta represents the truth cluster of a unique author a,
while Pa means the predicted cluster that contains the largest number of name instances of the
unique author a. SE evaluates how many name instances of a unique author (= a truth cluster)
fail to appear in the predicted cluster that contains the largest number of name instances asso-
ciated with the unique author (≈ recall). LE measures how many name instances in a predicted
cluster belong to other distinct authors, i.e., truth clusters (≈ precision). Note that SE and LE
consider only a predicted cluster that contains the largest number of name instances of a truth
cluster. In contrast, Cluster-F considers only the perfect match of all name instances between
a predicted cluster and a truth cluster. Others (K-metric, Pairwise-F, and B3) consider all inter-
section sets of instances between a truth cluster and predicted clusters.

Table 5 illustrates how to calculate SE and LE. The SE calculation starts by comparing
name instances in T1 with P1 and P2. P1 contains the largest number of T1 name instances. As
there is no name instance in T1 that does not belong to P1, the value for |||

{
x|x ∈ Ta, x ∉ Pa

}|||
in Eq. 9 is zero. Likewise, no splitting error case is detected for T2 and T3 because all name
instances in T2 and T3 are found in P2, the predicted cluster that contains all name instances of
both T2 and T3. Thus, the numerator for SE is 0, while its denominator, sum of all truth cluster
sizes, is 8. For LE, name instances in T1 are all found in P1. But name instances in T2 and T3
are lumped with those from T3 and T2, respectively, in the same predicted cluster P2. Regard-
ing the error for T2, three name instances from T3 are wrongly assigned to P2 (thus, lumping
error = 3), while for T3, two instances from T2 are wrongly assigned to P2 (thus, lumping
error = 2). As both T2 and T3 share the largest predicted cluster, P2, their ||Pa

|| value is 5 (= |P2|).
A key difference between SE & LE and other four measures is that SE & LE counts errors

(split or lumped name instances), while others count correctly predicted name instances. For
comparison across five measures, these error-based measures can be converted into recall
(eR), precision (eP), and F (eF) measures as follows (Lerchenmueller and Sorenson 2016; Liu
et al. 2014; Torvik and Smalheiser 2009):

(9)SE =

∑
a

���
�
x�x ∈ Ta, x ∉ Pa

����∑
a
��Ta��

(10)LE =

∑
a

���
�
x�x ∈ Pa, x ∉ Ta

����∑
a
��Pa

��

(11)eR = 1 − SE

(12)eP = 1 − LE

Table 5 An Illustration of Splitting and Lumping Errors Calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3)
T2 = (4, 5)
T3 = (6, 7, 8)

P1 = (1, 2, 3)
P2 = (4, 5, 6, 7, 8)

SE = (0 + 0+0)/(3 + 2+3) = 0.0
LE = (0 + 3+2)/(3 + 5+5) = 0.3846

672 Scientometrics (2019) 120:661–681

1 3

This conversion scales eR between 0 (all split) and 1 (no splitting), and eP between
0 (all lumped) and 1 (no lumping). In Table 5, for example, eR = 1 – SE = 1–0 = 1 and
eP = 1–LE = 1–0.3846 = 0.6154. Their harmonic mean (= 0.7619) is eF.

Equation 9 and 10 can be re-written using a set notation as follows.

The calculation of SE and LE can be implemented by adding lines to the skeleton code
as follows.

(13)
eF =

2 × eR × eP

eR + eP

(14)SE =

∑
a

���
�
x�x ∈ Ta, x ∉ Pa

����∑
a
��Ta��

=

∑
a(
��Ta�� − ��Ta ∩ Pa

��)∑
a
��Ta��

(15)LE =

∑
a

���
�
x�x ∈ Pa, x ∉ Ta

����∑
a
��Pa

��
=

∑
a(
��Pa

�� − ��Ta ∩ Pa
��)∑

a
��Pa

��

673Scientometrics (2019) 120:661–681

1 3

In Algorithm 4, code lines 17 and 19–22 find the predicted cluster index i (key) with
the largest frequency (value) from tMap. For an author a (= a truth cluster ||Ta||), the max-
Value in tMap is used for counting ||Ta ∩ Pa

|| in Eqs. 14 and 15. In addition, the key for the
maxValue is used to obtain the value for cSize[maxKey] = ||Pa

|| , which is the size of the
predicted cluster that contains the largest number of name instances in the truth cluster ||Ta||.

Pairwise level: Pairwise‑F

This measures clustering performance at a pair-level via pairwise Precision (pP), pairwise
Recall (pR), and pairwise F (pF) as defined below (Menestrina et al. 2010):

Here, pairs(P) and pairs(T) mean name instance pairs generated from the same cluster
in predicted clusters P and truth clusters T. The numerator |pairs(P) ∩ pairs(T)| is the num-
ber of instance pairs that appear both in P and T.

The calculation of pR and pP is illustrated in Table 6. Here, a pair of name instances is
represented by two instance ids separated by a vertical bar. In T1, for example, three name
instances (1, 2, and 3) are paired into three pairs (1|2, 1|3, and 2|3). The list of name pairs
of truth clusters is compared with that of predicted clusters to generate a list of pairs found
in both lists. The count of these intersection pairs constitutes the numerator (1|2, 1|3, 2|3,
4|5, 6|7, 6|8, 7|8; 7 pairs), which is divided by the total of pairs in truth clusters (= 7) for pR
and by the total of pairs in predicted clusters (= 13) for pP.

Calculating pR and pP can be memory- and time-consuming because the number of
pairs in a cluster increases in a quadratic way with the size of name instances (Levin et al.
2012; Louppe et al. 2016). For example, the number of pairs for a cluster with 10 instances
is 45, while that of a cluster with 1000 instances is 499,500. To overcome this problem, the
Pairwise-F measures can be re-written as follows.

Here, the number of pairs in a cluster is counted not by generating all possible pairs in
the cluster but by a heuristic that the number of pairs in a cluster can be calculated from the
number of instances in a cluster via cluster size × (cluster size − 1)/2. Likewise, the number

(16)pR =
|pairs(P) ∩ pairs(T)|

|pairs(T)|

(17)pP =
|pairs(P) ∩ pairs(T)|

|pairs(P)|

(18)pF =
2 × pR × pP

pR + pP

(19)pR =
�pairs(P) ∩ pairs(T)�

�pairs(T)�
=

∑
j∈T

∑
i∈P

���Tj ∩ Pi
��� ×

����Tj ∩ Pi
��� − 1

�
∕2

∑
j∈T

���Tj
��� ×

����Tj
��� − 1

�
∕2

(20)pP =
�pairs(P) ∩ pairs(T)�

�pairs(P)�
=

∑
j∈T

∑
i∈P

���Tj ∩ Pi
��� ×

����Tj ∩ Pi
��� − 1

�
∕2

∑
i∈P

��Pi
�� ×

���Pi
�� − 1

�
∕2

674 Scientometrics (2019) 120:661–681

1 3

of pairs in an intersection can be obtained using the number of instances in it. Algorithm 4
implements this heuristic.

Again, this implementation of pR and pP is based on the same skeleton code for K-met-
ric and SE and LE as well as Cluster-F. The added code lines to Algorithm 1 are high-
lighted in bold.

Instance level: B‑cubed

This measures clustering performance at an instance-level. Three parts of this measure – B3
Recall (bR), B3 Precision (bP), and B3 F (bF)—are defined as follows (Levin et al. 2012):

(21)bR =
1

N

∑

t∈T

|P(t) ∩ T(t)|
|T(t)|

Table 6 An Illustration of Pairwise-F Calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3) → (1|2, 1|3, 2|3)
T2 = (4, 5) → (4|5)
T3 = (6, 7, 8) → (6|7, 6|8, 7|8)

P1 = (1, 2, 3) → (1|2, 1|3, 2|3)
P2 = (4, 5, 6, 7, 8)
→ (4|5, 4|6, 4|7, 4|8, 5|6, 5|7, 5|8, 6|7, 6|8, 7|8)

pR = 7/7 = 1.0
pP = 7/13 = 0.5385
pF = 2 × (1.0 × 0.5385)/

(1.0 + 0.5385) = 0.7000

675Scientometrics (2019) 120:661–681

1 3

Here, t is a name instance in truth clusters T. N is the total of instances in truth clusters
(T). T(t) means a truth cluster that contains a name instance t, while P(t) means a predicted
cluster that contains the name instance t.

Table 7 shows an illustration of B3 calculation. Starting with the instance 1 in T1 for
bR, for example, a predicted cluster containing it is detected: P(1) = P1 and T(1) = T1 .
Next, the intersection of the truth cluster (T1) and the predicted cluster (P1) is filtered (1,
2, and 3). Then, ||P1 ∩ T1

||∕||T1|| = 3/3 is obtained. This is repeated for instances 2 and 3 in
 T1, resulting in an array of (3/3, 3/3, 3/3) for T1. After the same procedure is applied to T2
and T3, the sum of |P(t) ∩ T(t)|∕|T(t)| for all name instances is divided by the total of those
instances (= 8), producing bR = 1.0.

Although B3 is an instance level metric, its calculation can be formulated as a cluster
level one. This is possible because in Eqs. 21 and 22, the calculation results for each name
instance in the same intersection are the same. In Table 7, for example, instances 4 and 5
in T2 have the same calculation outcome (= 2/2) as they appear together in the intersec-
tion of T2 and P2. So, we can re-write (2/2 + 2/2) as (2/2) × 2 = 22/2. Here, 2/2 (or 22) is the
calculation outcome for an instance, while 2 besides 2/2 is the number of instances in the
intersection (|T2 ∩ P2|). Drawing on this formulation, Eqs. 21 and 22 can be re-written as
follows.

(22)
bP =

1

N

∑

t∈T

|P(t) ∩ T(t)|
|P(t)|

(23)bF =
2 × bR × bP

bR + bP

(24)

bR =
1

N

∑

t∈T

|P(t) ∩ T(t)|
|T(t)|

=
1

N

∑

j∈T

∑

t∈Tj

|||P(t) ∩ Tj
|||

|||Tj
|||

=
1

N

∑

j∈T

∑

t∈Tj

∑

i∈P

|||Pi ∩ Tj
|||

|||Tj
|||

=
1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||

|||Tj
|||

×
|||Pi ∩ Tj

||| =
1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||
2

|||Tj
|||

= AAP

(25)

bP =
1

N

∑

t∈T

|P(t) ∩ T(t)|
|P(t)|

=
1

N

∑

j∈T

∑

t∈Tj

|||P(t) ∩ Tj
|||

|P(t)|
=

1

N

∑

j∈T

∑

t∈Tj

∑

i∈P

|||Pi ∩ Tj
|||

||Pi
||

=
1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||

||Pi
||

×
|||Pi ∩ Tj

||| =
1

N

∑

j∈T

∑

i∈P

|||Pi ∩ Tj
|||
2

||Pi
||

= ACP

676 Scientometrics (2019) 120:661–681

1 3

In Eq. 24, a cluster Tj is set first as a calculation unit (
∑

j∈T

∑
t∈Tj

()). This follows the
transformation of T(t) to Tj because all name instances in Tj have the same set elements
(themselves) and thus the same value for |T(t)| (= |||Tj

|||). Next, an instance t needs to be
checked cluster by cluster to decide where it appears in predicted clusters Pi(t) as in ∑

j∈T

∑
t∈Tj

∑
i∈P

���Pi(t) ∩ Tj
���∕
���Tj

��� . Evidently, Pi(t) is the same as Pi. Finally, the calculation
process can be simplified as

∑
j∈T

∑
i∈P

���Pi ∩ Tj
���∕
���Tj

��� ×
���Pi ∩ Tj

��� . This is because the calcu-
lation results of |||Pi ∩ Tj

|||∕
|||Tj

||| for name instances in the same cluster are the identical if the
instances appear in the same intersection (Pi ∩ Tj). That is why |||Pi ∩ Tj

|||∕
|||Tj

||| is multiplied
by the number of instances belonging to the intersection (|||Pi ∩ Tj

|||), omitting the part of
instance referencing in the nested summation (

∑
t∈Tj

()). The final re-writing is the same as
the calculation of AAP in Eq. 7. Likewise, bP can be re-written to match ACP (Eq. 25).
This transformation can be illustrated by the example in Table 8, where the calculation for
 B3 and K-metric is juxtaposed to show their similarity.

As such, Eqs. 24 and 25 indicate that bR and bP can be calculated by Algorithm 3 for
calculating AAP and ACP. A difference is that B3 F is a harmonic mean of AAP (= bR) and
ACP (= bP), while K is a geometric mean of AAP and ACP.

All‑in‑one calculation and runtime test

In Algorithm 2–5, five clustering measures are calculated using the same skeleton code in
Algorithm 1. This commonality enables us to integrate them in a single set of code, as in
Algorithm 6 below. Note that B3 precision and recall are not calculated because they pro-
duce the same results as ACP and AAP in K-metric.

Table 7 An Illustration of B3 F Calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3)
T2 = (4, 5)
T3 = (6, 7, 8)

P1 = (1, 2, 3)
P2 = (4, 5, 6, 7, 8)

bR = ((3/3 + 3/3 + 3/3) + (2/2 + 2/2) + (3/3 + 3/3 + 3/3))/8 = 1.0
bP = ((3/3 + 3/3 + 3/3) + (2/5 + 2/5 + 3/5 + 3/5 + 3/5))/8 = 0.7
bF = 2 × (1.0 × 0.7)/(1.0 + 0.7) = 0.8235

Table 8 An Illustration of B3 F Calculation in comparison with K-metric Calculation

Truth clusters (T) Predicted clusters (P) Calculation

T1 = (1, 2, 3)
T2 = (4, 5)
T3 = (6, 7, 8)

P1 = (1, 2, 3)
P2 = (4, 5, 6, 7, 8)

bR = ((3/3 + 3/3 + 3/3) + (2/2 + 2/2) + (3/3 + 3/3 + 3/3))/8 = 1.0
AAP = ((32/3) + (22/2) + (32/3))/8 = 1.0
bP = ((3/3 + 3/3 + 3/3) + (2/5 + 2/5 + 3/5 + 3/5 + 3/5))/8 = 0.7
ACP = ((32/3) + (22/5 + 32/5))/8 = 0.7
bF = 2 × (1.0 × 0.7)/(1.0 + 0.7) = 0.8235
K =

√
1.0 × 0.7 = 0.8367

677Scientometrics (2019) 120:661–681

1 3

Besides integrating multiple measures in a single framework, Algorithm 6 reduces
computation runtime. To illustrate this, a total of 41,358 name instances in KISTI were
used again to evaluate the clustering performance of DBLP’s disambiguation by the five

678 Scientometrics (2019) 120:661–681

1 3

measures as in Fig. 2. For this, especially, the steps implied in the original equations of
each measure were implemented straightforwardly. For example, instance pairs per cluster
for Pairwise-F were generated (797,297 truth pairs and 826,187 predicted pairs) and com-
pared one by one to find their intersection. Execution time of each measure was measured
in seconds and compared to that of the same measure implemented by its corresponding
Algorithms 2–5.4 Table 9 reports the runtime results.

Table 9 reports that Algorithms 2–5 calculated each measure less than 0.057 s, while
straightforward implementations took approximately 47 (Cluster-F) up to 23,433 (6.5 h,
Pairwise-F) seconds. All measures could be calculated in less than 0.065 s by the All-In-
One algorithm.

To test the scalability of Algorithm 6, a set of 1.2 M name instances associated with
unique identifiers in a high-energy physics publication library, INSPIRE, was obtained
(Louppe et al. 2016). Using the INSPIRE unique identifiers as ground truth of author iden-
tity, the performance of all-initials-based name disambiguation5 was evaluated by the five
measures. This task is challenging, especially for the calculation of Pairwise-F, because the
number of instance pairs in truth clusters (= 15,388 authors) approximates 213.4 M, while
that in predicted clusters (= 18,672) was almost 194.5 M (intersection pairs ≈ 179.9 M).
Algorithm 6 produced evaluation results by all measures in 1.583 s. Tested only for the
Pairwise-F calculation by Algorithm 5, the runtime was 1.552 s, which is comparable to
12.903 s by the Generalized Merged Distance (GMD) algorithm6 (Menestrina et al. 2010),
the most runtime-efficient method for calculating Pairwise-F so far.

Conclusion and discussion

This paper demonstrated that five measures of clustering performance in author name dis-
ambiguation can be integrated into one calculation framework. This was possible mainly
because name instances in truth and predicted clusters were compared not by a brute-force
cluster-by-cluster comparison but by the use of two hash tables recording instances with
their predicted cluster indices and their frequencies in the predicted-truth cluster intersec-
tion. Using set notations, each measure’s equations were formulated to fit into the integra-
tive framework.

Table 9 Runtime (in seconds) of measure Calculation by straightforward implementation versus proposed
algorithms

Calculation Cluster-F K-metric SE & LE Pairwise-F B3

Straightforward 46.920 231.975 119.925 23433.140 138.956
Proposed (Algorithms 2–5) 0.025 0.055 0.057 0.055 0.055
All-in-one (Algorithm 6) 0.064

4 Runtime was tested on a desktop with Intel Core i7-7700 CPU (3.60 GHz), 32G RAM, and 64-bit Win-
dows OS by running code in Strawberry Perl 64-bit (ver. 5.26). Runtime was tested 10 times for each meas-
ure and best results were reported for each.
5 Two name instances that share the same full surname and initials of all forenames are predicted to refer to
the same person. For details, see Kim (2018).
6 The GMD method was implemented by Algorithm 1 in Menestrina et al. (2010).

679Scientometrics (2019) 120:661–681

1 3

A few contributions of this paper are worth noting. First, as there is no standard collec-
tion of code for the five clustering measures above, this paper can provide an anchoring
place for scholars to implement them and validate their correctness using efficient code and
samples. Second, the proposed integration of measures dramatically reduces runtime com-
pared to the straightforward implementation of the measures because it uses hash tables
instead of brute-force cluster-by-cluster and instance-by-instance comparisons which can
increase runtime up to O(n2). Especially, calculating Pairwise-F was re-formulated using a
heuristic to count pairs in a cluster for fast caculation. The scalability of the integrative cal-
culation can help scholars evaluate the clustering performance of a disambiguation method
at a large scale, for example, using several millions of name instances associated with
Researcher IDs in Web of Science (Backes 2018). This paper demonstrated this potential
by evaluating the clustering results of 1.2 M name instances in INSPIRE.

Another contribution is that K-metric and B3 measures were shown to produce the same
recall and precision scores. This means that studies using either K-metric or B3 have evalu-
ated their clustering results in almost the same way and thus are comparable to one another.
Also, this can be good news to scholars who use K-metric because B3 has been argued
to evaluate clustering results better than others on challenging cases (Amigó et al. 2009).
In addition, the usage frequency of these two measures in Table 1 equals that of Pair-
wise-F (= 15), which makes them a family of major clustering measures in author name
disambiguation.

Most importantly, the integrative calculation shows that the five measures can be under-
stood within a single framework for their similarities and differences. This can help us
modify current measures or propose new ones that assess disambiguation performance
from distinctive perspectives. In addition, this integrative framework can incorporate other
clustering measures such as Closest-Cluster-F (Menestrina et al. 2010) and Variation of
Information (Meilă 2003) which have been rarely used in author name disambiguation.
Such integration will not only guide us to select measures characterizing best disambigua-
tion performance but also help future efforts to compare different evaluation approaches
under diverse ambiguity conditions for entity resolution in general beyond author name
disambiguation.

Acknowledgements This work was supported by grants from the National Science Foundation (#1561687
and #1535370), the Alfred P. Sloan Foundation and the Ewing Marion Kauffman Foundation.

References

Amigó, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic clustering evaluation
metrics based on formal constraints. Information Retrieval, 12(4), 461–486. https ://doi.org/10.1007/
s1079 1-008-9066-8.

Backes, T. (2018). The impact of name-matching and blocking on author disambiguation. In Paper pre-
sented at the proceedings of the 27th ACM international conference on information and knowledge
management, Torino, Italy. https ://doi.org/10.1145/32692 06.32716 99

Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the
number of publications and cited references. Journal of the Association for Information Science and
Technology, 66(11), 2215–2222. https ://doi.org/10.1002/asi.23329 .

Cota, R. G., Ferreira, A. A., Nascimento, C., Gonçalves, M. A., & Laender, A. H. F. (2010). An unsuper-
vised heuristic-based hierarchical method for name disambiguation in bibliographic citations. Jour-
nal of the American Society for Information Science and Technology, 61(9), 1853–1870. https ://doi.
org/10.1002/asi.21363 .

https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1145/3269206.3271699
https://doi.org/10.1002/asi.23329
https://doi.org/10.1002/asi.21363
https://doi.org/10.1002/asi.21363

680 Scientometrics (2019) 120:661–681

1 3

Delgado, A. D., Martínez, R., Montalvo, S., & Fresno, V. (2017). Person name disambiguation in the web
using adaptive threshold clustering. Journal of the Association for Information Science and Technol-
ogy, 68(7), 1751–1762.

Fan, X., Wang, J., Pu, X., Zhou, L., & Lv, B. (2011). On graph-based name disambiguation. Journal of Data
and Information Quality, 2(2), 1–23. https ://doi.org/10.1145/18918 79.18918 83.

Fegley, B. D., & Torvik, V. I. (2013). Has large-scale named-entity network analysis been resting on a
flawed assumption? PLoS ONE. https ://doi.org/10.1371/journ al.pone.00702 99.

Ferreira, A. A., Gonçalves, M. A., & Laender, A. H. F. (2012). A brief survey of automatic methods for
author name disambiguation. Sigmod Record, 41(2), 15–26.

Ferreira, A. A., Veloso, A., Gonçalves, M. A., & Laender, A. H. F. (2014). Self-training author name dis-
ambiguation for information scarce scenarios. J Assoc Inf Sci Technol, 65(6), 1257–1278. https ://doi.
org/10.1002/asi.22992 .

Han, H., Yao, C., Fu, Y., Yu, Y., Zhang, Y., & Xu, S. (2017). Semantic fingerprints-based author name dis-
ambiguation in Chinese documents. Scientometrics, 111(3), 1879–1896. https ://doi.org/10.1007/s1119
2-017-2338-6.

Huang, J., Ertekin, S., & Giles, C. L. (2006). Efficient name disambiguation for large-scale databases. Ber-
lin: Springer.

Hussain, I., & Asghar, S. (2017). A survey of author name disambiguation techniques: 2010–2016. The
Knowledge Engineering Review, 32, e22.

Hussain, I., & Asghar, S. (2018). DISC: Disambiguating homonyms using graph structural clustering. Jour-
nal of Information Science, 44(6), 830–847. https ://doi.org/10.1017/S0269 88891 70001 82.

Kang, I. S., Kim, P., Lee, S., Jung, H., & You, B. J. (2011). Construction of a large-scale test set for author
disambiguation. Information Processing and Management, 47(3), 452–465. https ://doi.org/10.1016/j.
ipm.2010.10.001.

Kim, J. (2018). Evaluating author name disambiguation for digital libraries: A case of DBLP. Scientomet-
rics, 116(3), 1867–1886. https ://doi.org/10.1007/s1119 2-018-2824-5.

Kim, J., & Diesner, J. (2015). The effect of data pre-processing on understanding the evolution of collabora-
tion networks. Journal of Informetrics, 9(1), 226–236. https ://doi.org/10.1016/j.joi.2015.01.002.

Kim, J., & Diesner, J. (2016). Distortive effects of initial-based name disambiguation on measurements of
large-scale coauthorship networks. Journal of the Association for Information Science and Technology,
67(6), 1446–1461. https ://doi.org/10.1002/asi.23489 .

Kim, J., & Kim, J. (2018). The impact of imbalanced training data on machine learning for author name dis-
ambiguation. Scientometrics, 117(1), 511–526. https ://doi.org/10.1007/s1119 2-018-2865-9.

Kim, K., Sefid, A., & Giles, C. L. (2017). Scaling author name disambiguation with CNF Blocking. arXiv
preprint arXiv :1709.09657 .

Lerchenmueller, M. J., & Sorenson, O. (2016). Author disambiguation in PubMed: Evidence on the preci-
sion and recall of authority among NIH-funded scientists. PLoS ONE, 11(7), e0158731. https ://doi.
org/10.1371/journ al.pone.01587 31.

Levin, M., Krawczyk, S., Bethard, S., & Jurafsky, D. (2012). Citation-based bootstrapping for large-scale
author disambiguation. Journal of the American Society for Information Science and Technology,
63(5), 1030–1047. https ://doi.org/10.1002/asi.22621 .

Ley, M. (2009). DBLP: Some lessons learned. Proceedings of the VLDB Endowment, 2(2), 1493–1500.
Li, G. C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., et al. (2014). Disambiguation and

co-authorship networks of the US patent inventor database (1975–2010). Research Policy, 43(6), 941–
955. https ://doi.org/10.1016/j.respo l.2014.01.012.

Liu, W., Islamaj Dogan, R., Kim, S., Comeau, D. C., Kim, W., Yeganova, L., et al. (2014). Author name dis-
ambiguation for PubMed. Journal of the Association for Information Science and Technology, 65(4),
765–781. https ://doi.org/10.1002/asi.23063 .

Liu, Y., Li, W., Huang, Z., & Fang, Q. (2015). A fast method based on multiple clustering for name disam-
biguation in bibliographic citations. Journal of the Association for Information Science and Technol-
ogy, 66(3), 634–644. https ://doi.org/10.1002/asi.23063 .

Louppe, G., Al-Natsheh, H. T., Susik, M., & Maguire, E. J. (2016). Ethnicity sensitive author disambigua-
tion using semi-supervised learning. Knowledge Engineering and Semantic Web, Kesw, 2016(649),
272–287. https ://doi.org/10.1007/978-3-319-45880 -9_21.

Maidasani, H., Namata, G., Huang, B., Getoor, L. (2012). Entity resolution evaluation measures. Retrieved
from http://honor s.cs.umd.edu/repor ts/hites h.pdf.

Meilă, M. (2003). Comparing clusterings by the variation of information. In Learning theory and kernel
machines (pp. 173–187). Berlin: Springer.

Menestrina, D., Whang, S. E., & Garcia-Molina, H. (2010). Evaluating entity resolution results. Proceed-
ings of the VLDB Endowment, 3(1–2), 208–219.

https://doi.org/10.1145/1891879.1891883
https://doi.org/10.1371/journal.pone.0070299
https://doi.org/10.1002/asi.22992
https://doi.org/10.1002/asi.22992
https://doi.org/10.1007/s11192-017-2338-6
https://doi.org/10.1007/s11192-017-2338-6
https://doi.org/10.1017/S0269888917000182
https://doi.org/10.1016/j.ipm.2010.10.001
https://doi.org/10.1016/j.ipm.2010.10.001
https://doi.org/10.1007/s11192-018-2824-5
https://doi.org/10.1016/j.joi.2015.01.002
https://doi.org/10.1002/asi.23489
https://doi.org/10.1007/s11192-018-2865-9
http://arxiv.org/abs/1709.09657
https://doi.org/10.1371/journal.pone.0158731
https://doi.org/10.1371/journal.pone.0158731
https://doi.org/10.1002/asi.22621
https://doi.org/10.1016/j.respol.2014.01.012
https://doi.org/10.1002/asi.23063
https://doi.org/10.1002/asi.23063
https://doi.org/10.1007/978-3-319-45880-9_21
http://honors.cs.umd.edu/reports/hitesh.pdf

681Scientometrics (2019) 120:661–681

1 3

Momeni, F., & Mayr, P. (2016). Evaluating Co-authorship networks in author name disambiguation for
common names. Paper presented at the 20th international conference on theory and practice of digital
libraries (TPDL 2016), Hannover, Germany. https ://doi.org/10.1007/978-3-319-43997 -6_31

Müller, M. C., Reitz, F., & Roy, N. (2017). Data sets for author name disambiguation: An empirical analysis
and a new resource. Scientometrics, 111(3), 1467–1500. https ://doi.org/10.1007/s1119 2-017-2363-5.

Pereira, D. A., Ribeiro-Neto, B., Ziviani, N., Laender, A. H. F., Gonçalves, M. A., & Ferreira, A. A. (2009).
Using web information for author name disambiguation. Paper presented at the Proceedings of the 9th
ACM/IEEE-CS joint conference on Digital libraries, Austin, TX, USA.

Qian, Y., Zheng, Q., Sakai, T., Ye, J., & Liu, J. (2015). Dynamic author name disambiguation for grow-
ing digital libraries. Information Retrieval Journal, 18(5), 379–412. https ://doi.org/10.1007/s1079
1-015-9261-3.

Reitz, F., & Hoffmann, O. (2013). Learning from the Past: An Analysis of Person Name Corrections in the
DBLP Collection and Social Network Properties of Affected Entities. In T. Özyer, J. Rokne, G. Wag-
ner, & A. H. P. Reuser (Eds.), The influence of technology on social network analysis and mining (pp.
427–453). Vienna: Springer Vienna.

Santana, A. F., Gonçalves, M. A., Laender, A. H. F., & Ferreira, A. A. (2017). Incremental author name
disambiguation by exploiting domain-specific heuristics. Journal of the Association for Information
Science and Technology, 68(4), 931–945. https ://doi.org/10.1002/asi.23726 .

Shin, D., Kim, T., Choi, J., & Kim, J. (2014). Author name disambiguation using a graph model with node
splitting and merging based on bibliographic information. Scientometrics, 100(1), 15–50. https ://doi.
org/10.1007/s1119 2-014-1289-4.

Smalheiser, N. R., & Torvik, V. I. (2009). Author name disambiguation. Annual Review of Information Sci-
ence and Technology, 43, 287–313.

Strotmann, A., & Zhao, D. Z. (2012). Author name disambiguation: What difference does it make in author-
based citation analysis? Journal of the American Society for Information Science and Technology,
63(9), 1820–1833. https ://doi.org/10.1002/asi.22695 .

Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions
on Knowledge Discovery from Data. https ://doi.org/10.1145/15523 03.15523 04.

Wu, H., Li, B., Pei, Y. J., & He, J. (2014). Unsupervised author disambiguation using Dempster–Shafer
theory. Scientometrics, 101(3), 1955–1972. https ://doi.org/10.1007/s1119 2-014-1283-x.

Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name disambiguation in AMiner: Clustering, maintenance,
and human in the loop. Paper presented at the Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK.

Zhu, J., Wu, X., Lin, X., Huang, C., Fung, G. P. C., & Tang, Y. (2018). A novel multiple layers name disam-
biguation framework for digital libraries using dynamic clustering. Scientometrics, 114(3), 781–794.
https ://doi.org/10.1007/s1119 2-017-2611-8.

https://doi.org/10.1007/978-3-319-43997-6_31
https://doi.org/10.1007/s11192-017-2363-5
https://doi.org/10.1007/s10791-015-9261-3
https://doi.org/10.1007/s10791-015-9261-3
https://doi.org/10.1002/asi.23726
https://doi.org/10.1007/s11192-014-1289-4
https://doi.org/10.1007/s11192-014-1289-4
https://doi.org/10.1002/asi.22695
https://doi.org/10.1145/1552303.1552304
https://doi.org/10.1007/s11192-014-1283-x
https://doi.org/10.1007/s11192-017-2611-8

	A fast and integrative algorithm for clustering performance evaluation in author name disambiguation
	Abstract
	Introduction
	Literature review
	Methods
	Results
	Cluster level: Cluster-F
	Cluster level: K-metric
	Cluster level: Splitting and Lumping Error
	Pairwise level: Pairwise-F
	Instance level: B-cubed
	All-in-one calculation and runtime test

	Conclusion and discussion
	Acknowledgements
	References

