
Vol.:(0123456789)

Scientometrics (2019) 120:87–104
https://doi.org/10.1007/s11192-019-03110-2

1 3

Predicting authors’ citation counts and h‑indices
with a neural network

Tobias Mistele1 · Tom Price1 · Sabine Hossenfelder1

Received: 6 July 2018 / Published online: 4 May 2019
© Akadémiai Kiadó, Budapest, Hungary 2019

Abstract
We here describe and present results of a simple neural network that predicts individual
researchers’ future citation counts based on a variety of data from the researchers’ past. For
publications available on the open access-server arXiv.org we find a higher predictability
than previous studies.

Keywords Neural network · h-index · Arxiv · Citation metrics

Introduction

Measuring and predicting scientific excellence is as daunting as controversial. But regard-
less of how one feels about quantifying quality, measures for scientific success are being
used, and they will continue to be used. The best that we, as scientists, can do is to at least
come up with good measures.

The attempt to quantify scientific success by the number of publications dates back to
the early nineteenth century (Csiszar 2017), but the idea really took off with the advent
of the internet when data for publications and citations became easily accessible. Since
then, a large variety of different measures has been suggested. Dozens of variants exist
of the Hirsch-index (Hirsch 2007) (hereafter h-index) alone, such as the g-index, the hg-
index, the h-b-index, the m-index, the A-index, R-index, tapered-h-index, and more [for a
review see (Alonso et al. 2009)]. Besides other ways to evaluate citations—such as using
algorithms similar to Google’s PageRank on citation networks (Samuel 2015)—there are
measures based on entirely different data, for example download statistics, the connectivity
of co-citation networks, or social media engagement. A brief review can be found in Van
Noorden (2012) and a more complete survey in Waltman (2015).

Despite the variety of measures, those based on citation counts have remained the most
widely used, probably to no small part because they are fairly straight-forward to calcu-
late from bibliometric data. Because of their widespread use, the question whether citation
indices in their various forms can be predicted for individual researchers has attracted quite

 * Sabine Hossenfelder
 hossi@fias.uni-frankfurt.de

1 Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main,
Germany

http://orcid.org/0000-0002-2515-3842
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-019-03110-2&domain=pdf

88 Scientometrics (2019) 120:87–104

1 3

some attention. The interested reader is referred to eg Yan et al. (2012), Dong et al. (2014),
Zhang et al. (2016), Nezhadbiglari et al. (2016) and references therein.

We maintain that the best way to assess a researcher’s promise is to study their work
in depth. But bowing to the need to have a tool for administrative and organizational pur-
poses that is fast and easy to use and allows at least superficial evaluation, we here report
on the training of a neural network to improve the predictive models of presently existing
measures.

Due to the large variety of existing measures and their predictors, we will not compare
the method presented here to all of them. We will focus in particular on three previous
studies that put our work into perspective. This is (1) the original paper about the predictiv-
ity of the Hirsch-index (Hirsch 2007), (2) a 2012 study (Acuna and Allesina 2012) which
used a linear regression model to predict the h-index for research in the life sciences, and
(3) a 2017 report (Weihs and Etzioni 2017) on various machine learning models used to
predict the h-index for a large cohort of authors in the computer sciences.

Our paper is organized as follows. In the next section we clarify exactly what we aim to
achieve. In the third section we document which input data we have used and how we have
encoded it. In the fourth section we explain how we set up the neural network, and in the
fifth section we will present our results. We finish with a discussion and conclusion in the
sixth section.

Aim

Before we build a neural network, we first need to make precise what we mean by “predic-
tive” and how we will measure this “predictiveness.”

Our neural network will be fed publication data (third section) for a training group of
researchers during a first phase of publishing activity, hereafter referred to as the ‘initial
period’. The aim is then to use the neural network (fourth section) to predict individual
authors’ performance in a second phase of publishing activity, hereafter referred to as the
‘forecasting period’. The input data for the initial period does not include citations from
papers that were only published during the forecasting period. The prediction period starts
at 1/1/2008 which is chosen such that we can evaluate the neural network’s performance
for predictions up to 10 years into the future of the initial period.

Once the network has learned forecasting from the training group, we make a forecast
for the remaining researchers—the “validation group”—and evaluate how good our fore-
cast was. This is to say, in this present study we do not make actual future forecasts because
we want to assess how well out network performs, but our method is designed so that it
could be used to make real forecasts.

We will use two different approaches to evaluate the forecasting performance in the val-
idation group.

The first approach (see “Comparison with the h-index” section) follows the procedure
used in Hirsch (2007), which evaluated the predictiveness of the h-index for various quan-
tities in terms of the correlation coefficient, r. In this approach, we do not include citations
from papers in the initial period in the number of citations to be forecasted in the forecast-
ing period. In making this clean separation, we get a better grasp on predicting future sci-
entific achievement as opposed to cumulative achievement.

For this first approach, we follow the notation of Hirsch (2007) and denote the num-
ber of citations received between t1 and t2 , i.e. during the forecasting period, as Nc(t1, t2) .

89Scientometrics (2019) 120:87–104

1 3

Since it is known that the h-index roughly scales with the square-root of citations, we
will more precisely use Nc(t1, t2)

1∕2 to make it easier to compare our results with those
of Hirsch (2007).

The second approach (see the “Comparison with earlier machine learning predic-
tions” section) follows a different procedure which is better suited for comparison with
the results of Acuna and Allesina (2012), Weihs and Etzioni (2017). For this, we feed
the neural network the same input data as in the first approach but then predict the
cumulative h-index after n years until the end of the forecasting period. Furthermore, in
this second approach we use the coefficient of determination, R2 , instead of the correla-
tion coefficient, r, to quantify the goodness of our prediction because the same proce-
dure was followed in Acuna and Allesina (2012), Weihs and Etzioni (2017).

Unless otherwise stated, our general procedure is to employ 20 rounds of Monte
Carlo cross-validation—i.e. redo the random split into training and validation data 20
times and retrain the neural network—and report the mean as well as the standard devia-
tion. One reason for employing cross-validation is that different splits of our dataset into
training and validation data lead to slightly different results as will be further discussed
below. Another reason is that our dataset is not particularly large. Cross-validation then
allows to avoid splitting our dataset into a training, a validation, and test group while
still avoiding overfitting to a particular split into training and validation data.

We did not tune the hyperparameters of the neural network. We chose the batch size
and the number of epochs to train once and never changed them (see also the fourth sec-
tion). All other hyperparameters were left at their default values.

Data

We have obtained the publications for each author from the arXiv through the publicly
available Open Archives Initiative https ://arxiv .org/help/oa/index and corresponding
citation data from Paperscape http://paper scape .org. Paperscape citations contain only
references that can also be identified with an arXiv paper. The fraction of these papers
is highly dependent on the field. In the fields that for historical reasons most dominate
the arXiv (hep), the identification rate is as high as 80%, while in some categories that
are fairly new to the arXiv, it may be as small as 5%. The categories with the low iden-
tification rate are however also the categories that overall do not contribute much to the
sample. For details please refer to https ://githu b.com/paper scape /paper scape -data/.

For the purposes of this present work, we consider only the arXiv publications in
the ‘physics’ set, which gives us a total of 934,650 papers. Journal impact factors (JIFs)
are taken from Clarivate Analytics (2017). We group together similar author names and
treat them as a single author by the same procedure as laid out in Price and Hossen-
felder (2018). The featurization of our data is described in more detail in “Appendix 1”.

From the complete dataset, we select a sample of authors and trim it in various
ways. First, we require that they published their first arXiv paper between 1/1/1996 and
1/1/2003. We have chosen that period to span the time between 5 and 12 years prior to
the cutoff which matches the procedure of Weihs and Etzioni (2017).

We then remove authors who have published fewer than 5 or more than 500 papers
to avoid statistical outliers which would unduly decrease the predictivity of our method.

https://arxiv.org/help/oa/index
http://paperscape.org
https://github.com/paperscape/paperscape-data/

90 Scientometrics (2019) 120:87–104

1 3

Finally, we exclude large collaborations, since their publication activity differs greatly
from that of individuals. For this, we remove all author names that contain the word ‘col-
laboration’ and all papers with more than 30 authors.

After this, we are left with a sample of 39,371 author IDs. From these, we randomly
chose a subset of 28,000 as the ‘training group’. The rest is our validation data by help of
which we evaluate how well the neural network performs after training is completed. Note
that this random split into training and validation data is done independently for each round
of cross-validation.

The neural network

The neural network itself is built using Keras (Chollet et al. 2015) with the TensorFlow
backend (Abadi et al. 2015).

We used a feedforward neural network, which means that the neural network consists of
layers of neurons where the input of the neurons in one layer is the output of the neurons
in the previous layer and the layers are not arranged as a cycle. The output of the first layer
are the input data described in “Appendix 1”, and the output of the last layer is taken as the
output of the whole neural network. In our case, the last layer consists of ten neurons such
that the neural network’s output is list of ten real numbers.

For this network, the output of the neurons in one layer follows from the output of the
neurons in the previous layer by

Here, x′ is a vector which contains the outputs of the N′ neurons in one layer, x is a vec-
tor which contains the outputs of the N neurons in the previous layer, W is a real N� × N
matrix whose elements are called the weights and b is a real vector with N′ elements which
are called the biases. Further, � is a function which is applied to each element of the vector
W ⋅ x + b and is called the activation function. The weights and biases are different for each
layer, so that for each added layer one gets another weight matrix and another bias vector.
These are the free parameters of the neural network which are determined by the training
procedure.

During the training of the neural network, the output of the neural network is calculated
with the training data described above as input and the weights and biases are optimized
to get the output of the neural network for each author as close as possible to the actual
Nc(t1, t2)

1∕2 . More precisely, the weights and biases are adjusted in order to minimize the
so-called loss function which we take to be the mean squared error across all authors in
the training set. Note that for a so-called fully-connected layer all elements of the weights
matrix and the bias vector are independently adjusted, while for other types of layers, e.g.
so-called convolutional layers, some structure is imposed. As will be explained below, we
use both types of layers.

Since our dataset is not particularly large, we tried to avoid overfitting by reducing
the number of parameters. This is achieved by the following network structure which has
12,750 parameters (see Fig. 1):

• The first layer is a convolutional layer and contains k = 70 neurons for each paper.
Although convolutional layers are normally used to exploit translational symmetry in
the input data, we use a convolutional layer with a convolution window of a single
paper in order to ensure invariance under permutations of the papers. The effect of this

(1)x
� = �(W ⋅ x + b) .

91Scientometrics (2019) 120:87–104

1 3

is that each paper has a corresponding set of 70 neurons which see only the data from
that paper, and each paper’s neuron-set has matching weights and biases. The input to
this layer contains every input except the broadness value, i.e., it contains all per paper
input but not the per author input.

• In a next step, these 70 neurons per paper are reduced to 70 neurons in total by averag-
ing each of the 70 neurons over the different papers. After this, no information about
individual papers is left, and only average values are retained in the remaining 70 neu-
rons. This layer does not add free parameters to the neural network. Note that the zero-
padding makes this averaging equivalent to a summation with an author-independent
normalization (see “Appendix 1”).

• After that, a fully-connected layer with 70 neurons is added. In addition to the output
of the previous layer, this layer obtains input which is specific to the author not to the
individual papers.

• The final layer is a fully-connected layer with ten neurons with a ReLu activation func-
tion. The first neuron represents the prediction 1 year after the cutoff and the other
neurons represent the differences between the prediction after n and n − 1 years. For
instance, if the neural network’s output is [5, 0, 1,…] , the corresponding prediction is
5 for 1 / 1 / 2009, 5 for 1 / 1 / 2010, 6 for 1 / 1 / 2011, etc. This ensures that the neural
network’s prediction is a monotonically increasing time series.

A detailed list of input data for each level can be found in “Appendix 1”. The neural net-
work architecture described above can be implemented in Keras with just a few lines of
code which are reproduced in “Appendix 2”.

The neurons, except for the neurons in the output layer, are taken to have tanh activa-
tion functions. Training is done using an Adam optimizer and a mean squared error loss

Paper 1

Paper 1
Feature 1

Paper 1
Feature 2

Paper 1
Feature k

Feature 1
Average

Feature 2
Average

Feature k
Average

Dense 1

Dense 2

Dense k

Paper 2

Paper 2
Feature 1

Paper 2
Feature 2

Paper 2
Feature k

Paper p

Paper p
Feature 1

Paper p
Feature 2

Paper p
Feature k

Author
Input+W

W

W

1

2

k

W
W

W

1

2

k

W
W

W

1

2

k

Output
Year 1

Output
Year 2

Output
Year 10

Fig. 1 Flow diagram of the neural network. Network elements surrounded by single thin lines are single
neurons; those with double thin lines are collections of neurons. Connections shown with bold lines have a
fixed weight of 1

92 Scientometrics (2019) 120:87–104

1 3

function. No regularization is employed and the final result is obtained after 150 epochs of
training with a batch size of 50.

Training for 150 epochs takes about 15 minutes on a modern quad-core CPU with
3.8GHz and 16GB of RAM.

We would like to end this section with a comment on the way the neural network
described above makes predictions for different years n after the cutoff. As described
above, each year n corresponds to one of the 10 neurons in the very last layer of the neural
network. An alternative would be to have 10 neural networks with only a single neuron in
the output layer. Each of the networks would then be trained to make a prediction for one
particular n. One might argue that this alternative leaves more freedom for the neural net-
works to learn the specific requirements in making a prediction for one specific n instead of
for all n at the same time.

However, it seems this is not the case in practice, since we have tried both approaches
with the only difference in the neural network architecture being the number of neurons in
the output layer and the resulting performance was very similar.

One explanation for this could be that the cumulative h-index and Nc(t1, t2)
1∕2 are highly

correlated for different n, so that making a prediction for a single year n is not much differ-
ent from making a prediction for multiple years n. Another explanation could be that the
first layers in the network learn representations which generalize across different years n,
while the later layers use these representations to make the actual predictions depending on
n.

Results

For both approaches, we will compare the neural network’s performance to that of a naive
h-index predictor which is given only the h-index of an author for which a prediction is to
be made. By this naive h-index predictor we mean the following: for a given quantity to
predict, e.g. the future cumulative h-index or Nc(t1, t2)

1∕2 , take all authors in the training set
with a given h-index h0 at the time of the cutoff. Then, calculate the arithmetic mean of the
quantity to be predicted and take this mean value as a prediction for authors in the valida-
tion set given their h0.

Note that there may be authors in the validation set with, typically high, values of h0
that are not present in the training set. For those authors, the prediction is determined as
follows. First, a linear polynomial is fitted to the naive h-index predictor for the values of
h0 that can be calculated in the way described in the previous paragraph. Then, the value of
the fitted polynomial is taken as the prediction for the other values of h0.

We further compare the neural network’s performance to that of a second, less naive,
random forest baseline predictor (Breiman 2001). Like the neural network, this random for-
est predictor is trained on the training set and its performance is then evaluated on the vali-
dation set. We choose the hyperparameters of the random forest predictor to be the same as
in Weihs and Etzioni (2017).

Comparison with the h‑index

For the neural network trained to predict Nc(t1, t2)
1∕2 , we are only interested in the predic-

tion for n = 10 years after the cutoff. Therefore, we ignore the prediction of both the neural
network and the naive h-index predictor for the first 9 years after the cutoff.

93Scientometrics (2019) 120:87–104

1 3

The correlation coefficients r betweeen the neural network’s prediction and Nc(t1, t2)
1∕2

is r = 0.728 ± 0.006 (see Fig. 2). The error here and in the following is the standard
deviation across the 20 rounds of cross-validation. In comparison, the naive h-index pre-
dictor described above yields r = 0.552 ± 0.009 and the random forest predictor yields
r = 0.676 ± 0.008 . We see that the neural network performs significantly better than the
naive h-index predictor as well as the random forest predictor.

As one sees in Fig. 2, the network performs badly for authors with a very high number
of citations. For those cases, the network’s predictions are significantly lower than than the
actual values. The likely reason for this is that the group of authors with a total number of
citations larger than (60)2 is very small (61 in total, about 18 in each validation set), so that

Fig. 2 The neural network’s and
the baseline predictors’ predic-
tions for Nc(t1, t2)

1∕2 compared to
the actual value for all authors in
the validation dataset. Shown is
the result from the first round of
cross-validation

r = 0.723

0

10

20

30

40

50

60

70

ne
ur
al

ne
t
pr
ed

ic
ti
on

0 20 40 60 80 100 120 140 160

Nc(t1, t2)1/2

r = 0.673

0

10

20

30

40

50

60

70
ra
nd

om
fo
re
st

pr
ed

ic
ti
on

0 20 40 60 80 100 120 140 160

Nc(t1, t2)1/2

r = 0.541

0

10

20

30

40

50

60

70

na
iv
e
h
-i
nd

ex
pr
ed

ic
ti
on

0 20 40 60 80 100 120 140 160

Nc(t1, t2)1/2

94 Scientometrics (2019) 120:87–104

1 3

the network has no chance to learn how to properly predict them. We have removed this
group of authors from the validation set to see how much this influences the network’s per-
formance, and find that the performance doesn’t change by much.1

Next, we tested whether any one type of input data is especially important to the per-
formance of the neural network by training the network with single types of input data
separately removed. This, we found, barely changes the results. The biggest impact comes
from removing the paper dates and the number of citations, which make the correlation
coefficient drop to r = 0.687 ± 0.008 and r = 0.720 ± 0.005 , respectively, which is still
very close to the original r = 0.728 ± 0.006 . We may speculate that the network gathers
its information from combinations of input which are themselves partly redundant, so that
removing any single one has little effect.

Finally, we checked whether the neural net still performs better than the h-index when
given only citation counts as input data. This resulted in a correlation coefficient of
r = 0.579 ± 0.010 . We see that the neural net performs better than the h-index even with
only the number of citations as input data. In contrast, the random forests predictor per-
forms slightly better than the neural network with only the number of citations as input,
r = 0.582 ± 0.009 , but this difference is not significant when compared to the error bars.

For more details on the comparison between our results and those of Hirsch (2007),
please see “Appendix 3”.

Comparison with earlier machine learning predictions

For the second approach, we compare the predicted with the actual cumulative h-index for
n = 1, 2… 10 years after the cutoff date. We quantify the goodness of this prediction with
the coefficient of determination, R2 , both for the neural network and for the naive h-index
predictor discussed at the beginning of this section. Note that we calculate R2 separately
for each n by restricting the predictions as well as the actual values to that particular n. The
result is shown in Fig. 3. The error bars show ±1 standard deviations calculated from the 20
rounds of cross-validation.

We see that the neural net, the naive h-index predictor, and the random forest predictor
are similarly predictive for n = 1 , but the neural network’s prediction becomes better in
comparison for larger n. This agrees with the findings Acuna and Allesina (2012), Weihs
and Etzioni (2017).

An alternative to R2 , also used in Weihs and Etzioni (2017), is the mean absolute
percentage error (MAPE). We cannot calculate percentage errors for all authors in our
data set since the set contains authors which have an h-index of 0. Therefore, at each
n, we instead calculate the MAPE only for the set of authors with non-zero h-index.
For n = 10 years, this set contains 571 authors. Since we trained the network for all
predictors including authors with zero h-index, one must be careful with interpreting
the MAPE calculated by excluding these authors. Nevertheless, these MAPE values
for authors with non-zero h-index are shown in Fig. 4, left. We see that for n ≤ 2 , the

1 More concretely, we have calculated the correlation coefficient and the mean absolute percentage error
(MAPE, as discussed in the “Comparison with earlier machine learning predictions” section). The corre-
lation coefficient drops by about 0.01 and the MAPE improves by about 0.1. Given that correlation coef-
ficients cannot be simply compared between different subsets, the drop in the correlation cannot be inter-
preted straightforwardly. However, the small change in the MAPE indicates that the removed authors only
have a small effect on the results.

95Scientometrics (2019) 120:87–104

1 3

baseline models have a better MAPE than the neural network. In contrast, for larger n,
the neural network again performs better than the baseline models.

As one sees in Fig. 4, the fluctuations of the MAPE for the neural network are much
larger than those of the other predictors, as indicated by the error bars. We think these
large fluctuations in the MAPE are likely due to our choice of the loss function with
which the neural network is trained. In particular, our loss function is the mean squared
error which does not penalize large percentage errors as long as the absolute squared
error stays small. For authors with small h-index, the network is therefore free to intro-
duce relatively large percentage errors. This freedom can lead to large fluctuations of
the MAPE, since the neural network can make this choice independently for each round

Fig. 3 R2 of the prediction of the
cumulative h-index as a function
of years after cutoff

Net
Acuna
h-index
Random forest

0.7

0.75

0.8

0.85

0.9

0.95

1.0

R
2

1 2 3 4 5 6 7 8 9 10

Years

Net
Acuna
h-index
Random forest

10

15

20

25

30

35

40

45

50

M
A
P
E

Years

Net
Acuna
h-index
Random forest

5

10

15

20

25

30

35

M
A
P
E

(m
in

h
-i
nd

ex
:
5)

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Years

Fig. 4 Left: MAPE of the prediction of the cumulative h-index as a function of years after cutoff, only for
authors with a non-zero true h-index at the respective n. Right: MAPE of the prediction of the cumulative
h-index as a function of years after cutoff, only for authors with a minimum h-index of 5 at the respective n

96 Scientometrics (2019) 120:87–104

1 3

of cross-validation. Indeed, the mean squared error fluctuates much less than the MAPE
(for n = 10 , the mean squared error is 5.88 ± 0.15 compared to the MAPE’s 34.0 ± 4.3).

To test whether authors with a small h-index are indeed the origin of the large fluctua-
tions, we have repeated the calculation while excluding all authors with an h-index smaller
than 5 at each n. As one sees in Fig. 4, right, this significantly reduces the errror bars for
the neural network, but only slightly for the other predictors, as the above interpretation
suggests.

As mentioned in the “Aim” section, there are fluctuations of the neural network’s per-
formance with the rounds of cross-validation. These fluctuations are illustrated in Fig. 5.
In particular, Fig. 5 shows the neural network’s R2 (Fig. 5, left) and r (Fig. 5, right) after
n = 10 years for the different rounds of cross-validation. We see that there are non-negli-
gible fluctuations in the network’s performance. A possible explanation could be that the
fluctuations are due to the neural network overfitting on particular kinds of splits of the
whole dataset into training and validation data. However, we think it is more likely that the
fluctuations are due to intrinsic properties of the dataset. This is because the naive h-index
predictor has only a few tens of parameters so that overfitting should not be an issue but
Fig. 5 shows that there are comparable fluctuations in this naive h-index predictor’s perfor-
mance nonetheless.

In Fig. 6, left, we show the result for the neural network operating on the training and
validation datasets of the first round of cross-validation when training for 5 and 10 addi-
tional epochs. We see that there are fluctuations of the neural network’s performance with
the training epoch which typically affect R2 at or below the one percent level. In Fig. 6,
right, we show the result of averaging across all round of cross-validation, where the aver-
aging is done separately for the neural networks obtained after training for 150, 155, and
160 epochs. We see that the fluctuations with the training epoch have cancelled and the
difference between the averages after training for 150, 155, and 160 epochs is negligible.

Quantitatively, our results give higher values of R2 than both Acuna and Allesina
(2012) (0.48 after 10 years) and Weihs and Etzioni (2017) (0.72 after 10 years). How-
ever, since not only our neural network but also our simple h-index predictor give higher
R2-values than Acuna and Allesina (2012) and Weihs and Etzioni (2017), this differ-
ence is probably partly due to the different datasets. We have therefore also applied the

Net
Net +5 epochs
Net +10 epochs
h-index
Random forest

0.7

0.75

0.8

0.85

0.9

0.95
R

2

Cross-validation round

Net
Net +5 epochs
Net +10 epochs
h-index
Random forest

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

r

1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19

Cross-validation round

Fig. 5 Left: Neural network’s and baseline predictors’ R2 after n = 10 years for each round of cross-valida-
tion. Right: Neural network’s and baseline predictors’ r after n = 10 years for each round of cross-validation

97Scientometrics (2019) 120:87–104

1 3

predictor proposed in Acuna and Allesina (2012) to our data-set, with the results shown
in Fig. 3 (see “Appendix 4” for details). The predictability of our data-set is indeed
higher than that studied in Acuna and Allesina (2012), but the prediction of our network
still outperforms the previous study. Unfortunately, a similar direct comparison to the
results from Weihs and Etzioni (2017) which used yet another data-set is not possible.
Still, our value of R2 = 0.857 ± 0.004 after ten years is remarkably predictive, especially
given that the methods we have employed here are likely to improve further in the soon
future.

Net default
Net +5 epochs
Net +10 epochs

0.8

0.84

0.88

0.92

0.96

1.0

R
2

Years

Net default (mean)
Net +5 epochs (mean)
Net +10 epochs (mean)

0.8

0.84

0.88

0.92

0.96

1.0

R
2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Years

Fig. 6 Left: Network trained by our default value of 150 epochs, compared with training for 155 and 160
epochs for the first round of cross-validation. Right: Average across 20 rounds of cross-validation of the
network trained by our default value of 150 epochs, compared with training for 155 and 160 epochs

#1 actual
#1 net
#2 actual
#2 net
#3 actual
#3 net

5

10

15

20

25

30

35

40

h
-i
nd

ex

Years

#4 actual
#4 net
#5 actual
#5 net
#6 actual
#6 net

3

4

5

6

7

8

9

10

11

h
-i
nd

ex

Years

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. 7 Example trajectories for actual development of the h-index over time (solid/squares) and trajectories
predicted by the network (dashed, circles) for the training and validation data of the first round of cross-
validation

98 Scientometrics (2019) 120:87–104

1 3

Since the value of R2 by itself is not so illuminating, we show in Fig. 7 some examples
for which we display the actual h-index versus the network-prediction with the training and
validation datasets from the first round of cross-validation.2

Here too we have investigated how important various input data are to the neural net-
work’s performance by removing one at a time. The results are shown in Fig. 8, where we
plot the ratio of the coefficients of determination with all input (R2) and with certain inputs
removed (R2

rem
). The lower the ratio, the more important the removed input was. The error

bars show ±1 standard deviations calculated from the 20 rounds of cross-validation.
We see that for n = 1 , the number of citations is the only important input, while for

n > 1 other inputs gain importance with the number of citations still being the most impor-
tant one. That the citation data are most important for n = 1 agrees with the results of
Acuna and Allesina (2012) and Weihs and Etzioni (2017). We also see from Fig. 8 that
R2
rem

∕R2 is always larger than 0.9 which again indicates that the input data are partly redun-
dant. However, the changes we notice due to some input removals are so small that fluctua-
tions in the training results are no longer negligible.

We have investigated further how important various input data are by removing all
except one at a time to give us an idea how much information can be extracted from single
types of input. The results are shown in Fig. 9 where we plot the ratio of the coefficients
of determination with all input (R2) and with all except certain inputs removed (R2

rem,except
).

We see that also with only a single input at a time the neural network’s R2
rem,except

∕R2 never
drops below 0.6. The single input from which the neural network can get the best perfor-
mance is the number of citations, which gives R2

rem,except
∕R2

> 0.9 for all n. But also the JIF
comes close to an R2

rem,except
∕R2 of 0.9. Note that there are inputs like the paper pagerank

which give a relatively high R2
rem,except

∕R2 but a R2
rem

∕R2 close to 1. This again indicates that
our inputs are partly redundant.

When interpreting these numbers, however, one must keep in mind that the neural
network always implicitly knows the number of papers of an author in addition to the

broadness
#citations
date
length
topics

0.90

0.92

0.94

0.96

0.98

1.00

R
2 re
m
/
R

2

Years

JIF
#coauthors
coauthor pagerank
categories
paper pagerank

0.90

0.92

0.94

0.96

0.98

1.00

R
2 re
m
/
R

2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Years

Fig. 8 Ratio of R2 of the neural net to the same indicator for the neural net with various input data removed,
R2
rem

 , as a function of years past cutoff

2 The reader be warned that these examples were not randomly chosen. We hand-selected a set of notice-
ably different h-index outcomes for purely illustrative purposes.

99Scientometrics (2019) 120:87–104

1 3

input we give it explicitly, see the network architecture described in the “The neural net-
work” section and “Appendix 1”.

Discussion

We have demonstrated here that neural nets are powerful tools to make predictions for
the citations a researcher’s work accumulates. These predictions are likely to improve
in the future. One of the major limitations of this present study, for example, is that our
sample does not include papers which are not on the arXiv, and that about one of five
published papers could not be associated with a Journal Impact Factor (see “Appen-
dix 1”). But the more bibliometric data becomes available the more input the network
can be fed, and thus predictivity is bound to become better for some more time.

The methods we used here are straight-forward to implement and do not require
much computing resources. It is thus foreseeable that in the near future the use of neural
nets to predict researcher’s promise will become more widely spread.

We therefore want to urge the community to not ignore this trend in the hope it will
go away. It would benefit academic research if scientists themselves proposed a variety
of predictors, and offered a variety of data, to more accurately present the variety of
ways to do high-quality research.

In this work we focused on the h-index in order to compare our results with previous
results, and also because this value is easy to extract from existing data. But a lot of val-
uable information about researchers and their work is presently difficult or impossible
to obtain and analyze. For example, how often researchers are named in acknowledge-
ments, their seminar and conference activity, the frequency by which they act as peer
reviewers and/or editors, or how specialized their research topic is. All these are impor-
tant factuals about the many individual approaches to research. Providing and analyzing
such data would enable us to develop measures for success tailored to specific purposes
and thereby avoid that researchers focus efforts on optimizing citation counts.

broadness
#citations
date
#coauthors
topics

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1.0
R

2 re
m
,e
xc
ep

t/
R

2

1 2 3 4 5 6 7 8 9 10

Years

JIF
length
coauthor pagerank
categories
paper pagerank

0.7

0.75

0.8

0.85

0.9

0.95

1.0

R
2 re
m
,e
xc
ep

t/
R

2

1 2 3 4 5 6 7 8 9 10

Years

Fig. 9 Ratio of R2 of the neural net to the same indicator for the neural net with all except certain input data
removed, R2

rem,except
 , as a function of years past cutoff

100 Scientometrics (2019) 120:87–104

1 3

Acknowledgements Tobias Mistele thanks Sebastian Weichwald for helpful discussions. This work was
supported by the Foundational Questions Institute (FQXi).

Appendix 1

The building blocks of most of the input data for the neural network are lists where the
position in the list corresponds to a paper and the value at a certain position corresponds
to some input data associated with the corresponding paper. E.g. there is a list containing
the number of citations for each paper of the given author which in Python syntax would
look like [130, 57,…] , meaning the most-cited paper of this author has 130 citations, the
second-most cited paper has 57 citations etc. A corresponding list for the number of coau-
thors would look like [0, 1,…] , meaning the paper with 130 citations was a single-authored
paper, the paper with 57 citations has two authors etc.

Since different authors have different numbers of papers, these lists will have differ-
ent lengths for different authors. However, our neural network requires a fixed-size input.
Therefore, we take the lists for all authors to have the same length as those of the author
with the largest number of papers, namely 169. The positions in the lists that do not cor-
respond to a paper are filled with zeros.

Note that the averaging in the second layer of our neural network (see the “The neu-
ral network” section) includes the neurons that do not correspond to a paper. Therefore,
this averaging is equivalent to a summation normalized by an author-independent constant,
namely the number of papers of the author with the largest number of papers. Since the
neural network knows which neurons correspond to a paper (see below), it can, in princi-
ple, average over the number of papers of each individual author in a later layer. However,
we do not impose this in the network architecture. This is because it makes sense for fea-
tures to contribute cumulatively, since authors with more papers are likely to receive more
citations.

The biggest part of the input to the neural network is then the list of all the lists
described above and consists of

 1. A list which contains 1 at each position in the list which corresponds to a paper and 0
at each position which corresponds to zero-padding.

 2. A list which contains the number of citations of each paper.
 3. A list which contains the publication date of each paper relative to the cutoff date.
 4. A list which contains each paper’s pagerank (Samuel 2015), an interactive measure of

relevance that works similar to Google’s pagerank algorithm just that, instead being
based on hyperlinks, a paper’s pagerank is based on the citation graph. The pagerank
is calculated from the citation graph at the cutoff date, 1/1/2008.

 5. A list which contains each paper’s length.
 6. A list which contains 0 for each paper with an empty journal reference and 1 for each

paper with a non-empty journal reference.
 7. A list which contains the JIF of the journal each paper is published in (further details

below). If a paper is not published or no JIF is known for a journal, we take the cor-
responding input to be 0. The JIFs are taken at the cutoff date.

 8. A list which contains the number of coauthors of each paper.
 9. Three lists which contain the coauthors’ minimum, maximum, and average pagerank.

Here, the pagerank is calculated from the coauthor graph at the cutoff date.

101Scientometrics (2019) 120:87–104

1 3

 10. For each arXiv category a list which contains zeros except at position which corre-
spond to papers which are in the respective category. In order to reduce the amount
of data, categories of the form a.b are all treated as category a, e.g. astro-ph.CO and
astro-ph.HE are treated as the same category.

 11. For each paper, a 50-dimensional vector representing a paper’s latent topic distribu-
tion, obtained from the keyword analysis done by Price and Hossenfelder (2018) when
operating on the arXiv data up to the cutoff.

The final input to the neural network is a ‘broadness’ value calculated from a keyword analysis
(Price and Hossenfelder 2018) with the same data as the paper topics described above. This
broadness quantifies how widely spread the topics which an author publishes on are over all
arXiv categories. Since this broadness value is one value per author and not one value per
paper it is handled separately from the other inputs to the neural network.

All input data except the categories and the paper vectors is normalized to unit variance
and zero mean. More specifically, for each input (e.g. number of citations, publication date,
broadness, ...) a transformation is determined from the training data such that this transfor-
mation brings the given input to zero mean and unit variance for the training data across all
authors. This transformation is then applied both to the training and the validation input data.

To assign the JIFs, we associate papers in our database with a journal by heuristically
matching the journal reference given in the arXiv metadata to the journal abbreviation from
Clarivate Analytics (2017). Concretely, we reduce both the journal reference in the arXiv
metadata and the journal abbreviation from Clarivate Analytics (2017) to lower-case alphanu-
meric characters and cut at the first numeric character. Next, we remove the suffixes ’vol’ and
’volume’ if present. If the two values obtained this way are identical, we consider the given
arXiv paper to be published in the corresponding journal.

To reduce the number of papers where this procedure does not work, we have further used
a manually assembled translation table. This table contains identifications between reduced
arXiv journal references to journals from Clarivate Analytics (2017) for which the method
outlined in the previous paragraph does not work. The table allows us to match the 69 most
frequent reduced journal references from the arXiv that could not be mapped by the previ-
ous method. By this procedure, we have assigned a Journal Impact Factor to 378,134 of the
477,176 papers with a non-empty arXiv journal reference.

Appendix 2

This is how the neural network architecture described in the “The neural network” section can
be implemented with Keras (Chollet et al. 2015). The full code for reproducing our results can
be found at https ://githu b.com/tmist ele/predi cting -citat ion-count s-net.

https://github.com/tmistele/predicting-citation-counts-net

102 Scientometrics (2019) 120:87–104

1 3

Appendix 3

The correlation coefficient obtained from the naive h-index predictor is roughly the same as
the correlation coefficient obtained by plotting Nc(t1, t2)

1∕2 over the h-index at the time of the
cutoff for both the training and validation data and calculating the correlation coefficient from
that, see Fig. 10. Note that this second way of calculating a correlation coefficient corresponds
to what was done in Hirsch (2007).

The correlation coefficients from Fig. 10 are consistenly smaller than those of the sample
PRB80 from Hirsch (2007) but higher than those of the sample APS95 from Hirsch (2007).
See Hirsch (2007) for a discussion of the differences between the samples PRB80 and APS95
regarding their differing correlation coefficients. Our sample differs from both PRB80 and
APS95 in both the data source and the cuts applied. Therefore, it is not surprising that there
are differences in the resulting correlation coefficients and the results are not directly compa-
rable. One important difference is that we employ the same cutoff, 1/1/2008, for all authors
while Hirsch (2007) applies a different cutoff for each author at 12 years after each author’s
first paper.

103Scientometrics (2019) 120:87–104

1 3

Appendix 4

We used what the authors of Acuna and Allesina (2012) refer to as the “simplified
model,” that—as they have shown—performs almost as well as their full model on their
data-set. We changed the selected journals from Nature, Science, Nature Neurosci-
ence, PNAS and Neuron to Science, Nature, PNAS, and PRL. As laid out in the sup-
plementary material of Acuna and Allesina (2012), we used the R-package ‘glmnet’
with � = 0.2 . Note that we did not employ our own Monte Carlo cross-validation here.
Instead—as was done in Acuna and Allesina (2012)—we relied on the cross-validation
included in the ‘glmnet’ package.

r = 0.84

0

50

100

150

200

N
c
(t

2
)1

/
2

0 10 20 30 40 50 60

h(t1)

r = 0.88

0

50

100

150

200

N
c
(t

2
)1

/
2

0 20 40 60 80 100 120

Nc(t1)1/2

r = 0.87

0

10

20

30

40

50

60

70

80

90

h
(t

2
)

0 10 20 30 40 50 60

h(t1)

r = 0.55

0

20

40

60

80

100

120

140

160

N
c
(t

1
,t

2
)1

/
2

0 10 20 30 40 50 60

h(t1)

r = 0.52

0

20

40

60

80

100

120

140

160
N

c
(t

1
,t

2
)1

/
2

0 20 40 60 80 100 120 140 160

Nc(t1)1/2

r = 0.56

0

10

20

30

40

50

60

h
(t

1
,t

2
)

0 10 20 30 40 50 60

h(t1)

Fig. 10 Correlation of various quantities calculated from the complete dataset including both training and
validation data with the respective correlation coefficient r. The notation is that of Hirsch (2007). E.g., h(t1)
is the h-index as calculated from an author’s first 10 years of publishing, h(t2) is the cumulative h-index
after an author’s first 20 years of publishing, and h(t1, t2) is the h-index calculated from the second 10 years
of an author’s publishing excluding papers written and citations received outside this period of time. For
different datasets, these plots can be found in Hirsch (2007)

104 Scientometrics (2019) 120:87–104

1 3

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kai-
ser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). Tensorflow: Large-
scale machine learning on heterogeneous systems. https ://www.tenso rflow .org/. Accessed Apr 2018.

Acuna, D. E., & Allesina, S. (2012). Predicting scientific success. Nature, 489(7415), 201–202.
Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., & Herrera, F. (2009). h-index: A review focused in its

variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4),
273–289.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Chollet, F., et al. (2015) Keras. https ://githu b.com/keras -team/keras . Accessed Apr 2018.
Clarivate Analytics. 2001–2009 journal citation reports (2017).
Csiszar, A. (2017). The catalogue that made metrics, and changed science. Nature, 551(7679), 163–165.
Dong, Y., Johnson, R. A., & Chawla, N. V. (2014). Will this paper increase your h-index? Scientific impact

prediction. CoRR, arXiv :1412.4754.
George, D. P., & Knegjens, R. Paperscape. http://paper scape .org.
Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sci-

ences, 104(49), 19193–19198.
Nezhadbiglari, M., Gonçalves, M., & Almeida, J. M. (2016). Early prediction of scholar popularity. 2016

IEEE/ACM joint conference on digital libraries (JCDL) (pp. 181–190).
Open archive initiative, arxiv download url. https ://arxiv .org/help/oa/index . Accessed Apr 2018.
Paperscape documentation on github. https ://githu b.com/paper scape /paper scape -data/. Accessed Apr 2018.
Price, T., & Hossenfelder, S. (2018). Measuring scientific broadness. arXiv :1805.04647 [physics.soc-ph].
Samuel, M.H. (2015) Pagerank + sparse matrices+ python (ipython notebook). http://blog.samue lmh.

com/2015/02/pager ank-spars e-matri ces-pytho n-ipyth on.html. Accessed Dec 2017.
Van Noorden, R. (2012). Metrics: A profusion of measures. Nature, 465, 864–866.
Waltman, L. (2015). A review of the literature on citation impact indicators. arXiv :1507.02099 [cs.DL].
Weihs, L., & Etzioni, O. (2017). Learning to predict citation-based impact measures. In: 2017 ACM/IEEE

joint conference on digital libraries (JCDL) (pp. 1–10).
Yan, R., Huang, C., Tang, J., Zhang, Y., & Li, X. (2012). To better stand on the shoulder of giants. In JCDL.
Zhang, C., Liu, C., Yu, L., Zhang, Z.-K., & Zhou, Tao. (2016). Identifying the academic rising stars. CoRR,

arXiv :1606.05752 .

https://www.tensorflow.org/
https://github.com/keras-team/keras
http://arxiv.org/abs/1412.4754
http://paperscape.org
https://arxiv.org/help/oa/index
https://github.com/paperscape/paperscape-data/
http://arxiv.org/abs/1805.04647
http://blog.samuelmh.com/2015/02/pagerank-sparse-matrices-python-ipython.html
http://blog.samuelmh.com/2015/02/pagerank-sparse-matrices-python-ipython.html
http://arxiv.org/abs/1507.02099
http://arxiv.org/abs/1606.05752

	Predicting authors’ citation counts and h-indices with a neural network
	Abstract
	Introduction
	Aim
	Data
	The neural network
	Results
	Comparison with the h-index
	Comparison with earlier machine learning predictions

	Discussion
	Acknowledgements
	References

