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Abstract
To train algorithms for supervised author name disambiguation, many studies have relied 
on hand-labeled truth data that are very laborious to generate. This paper shows that labeled 
data can be automatically generated using information features such as email address, 
coauthor names, and cited references that are available from publication records. For this 
purpose, high-precision rules for matching name instances on each feature are decided 
using an external-authority database. Then, selected name instances in target ambiguous 
data go through the process of pairwise matching based on the rules. Next, they are merged 
into clusters by a generic entity resolution algorithm. The clustering procedure is repeated 
over other features until further merging is impossible. Tested on 26 K instances out of the 
population of 228 K author name instances, this iterative clustering produced accurately 
labeled data with pairwise F1 = 0.99. The labeled data represented the population data in 
terms of name ethnicity and co-disambiguating name group size distributions. In addition, 
trained on the labeled data, machine learning algorithms disambiguated 24  K names in 
test data with performance of pairwise F1 = 0.90–0.92. Several challenges are discussed 
for applying this method to resolving author name ambiguity in large-scale scholarly data.
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Introduction

Researchers analyzing scholarly data have faced a common challenge: author names are 
often ambiguous. For example, many distinct authors may have the same names (homo-
nyms), while an author may use several name variants (synonyms). If name strings are 
used to identify unique authors, these ambiguous names can lead to misidentification by 
merging identities associated with homonyms or splitting identities with synonyms.

To date the ambiguity problem has mostly been solved using simple heuristics such as 
identifying distinct authors by matching their names on forename initials and full surname 
(Newman 2001), which has been a dominant practice in bibliometrics for decades (Strot-
mann and Zhao 2012). However, name ambiguity can lead this simple approach to produce 
distorted and sometimes, false positive findings, which has also been well acknowledged 
by scholars who have relied on the heuristics (Kim and Diesner 2016).

Computer and information scientists have devised various computational approaches to 
resolve this problem, showing that supervised machine learning algorithms are promising 
in disambiguating author names (for a detailed survey, see Ferreira et al. 2012; Smalheiser 
and Torvik 2009). High-performing supervised disambiguation methods tend to be mod-
eled and validated on a few hundreds to thousands of human-labeled cases (for a review 
on representative hand-labeled data, see Müller et al. 2017). There are no general, canoni-
cal labeled datasets that can be used across studies (Ferreira et al. 2012). So, disambigua-
tion scholars usually generate labeled data by hand before training and testing supervised 
machine learning algorithms.

Generating the hand-labeled data is, however, a daunting task because it requires expen-
sive human coders even for a few thousand name instances. Such labor-intensive methods 
do not guarantee representativeness or accuracy. For instance, Liu et  al. (2014) reported 
inter-coder disagreement in up to 23% of name instance pairs. As an alternative to manual 
labeling, some scholars have used the list of name pairs that match on specific criteria such 
as self-citation relation and shared coauthors, demonstrating that large-scale labeled data 
can be made automatically (Ferreira et al. 2014; Levin et al. 2012; Torvik and Smalheiser 
2009). Despite their contributions, this matching-based labeling has several known limita-
tions. First, criteria are rarely verified for matching accuracy. Second, performance relies 
heavily on information availability (e.g., matching on common coauthors may underper-
form in fields where small teams or sole authorship are the norm). Most importantly, this 
approach can produce only positive matching pairs of name instances, demanding addi-
tional schemes for generating non-matching pairs to train and evaluate algorithmic disam-
biguation models.

This paper proposes and demonstrates that by synthesizing prior automatic labeling 
methods, training data for supervised author name disambiguation can be automatically 
generated by iteratively clustering name instances through the triangulation of metadata 
and auxiliary information extracted from publication records. Using such automatically 
labeled data, various supervised machine learning models can be tested for best perfor-
mance and ambiguity resolution results can be evaluated. In addition, the proposed labe-
ling can be repeated without the added cost of hiring human coders. This can be good news 
to digital libraries struggling to handle ever-growing, ambiguous bibliographic data. Auto-
matically labeled data can help digital libraries to optimize algorithmic disambiguation 
models to newly added and updated bibliographic datasets and evaluate their performance 
on a routine, continuing basis (e.g., every month) at relatively low cost. The following sec-
tion describes related work to contextualize the proposed method of this paper.
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Related work

Labeled data (also called “gold standard” or “ground truth” data) for author name dis-
ambiguation are made up of ambiguous name instances1 and their associated publication 
records (such as coauthor names, affiliation, title, venue, publication year, cited references, 
etc.). A distinct author entity is determined for each name instance using an identifica-
tion tag (e.g., a unique alphanumeric string). This entity tagging process is called labeling. 
Depending on how author tags or labels are assigned to name instances, most labeled data 
can be grouped in three types (Kim 2018).2

The first labeling type is author labels tagged by human coders (e.g., Han et al. 2004). 
Typically, this labeling process starts by collating target ambiguous names. Using a digi-
tal library or online author profiles, researchers gather ambiguous names based on pre-
defined criteria such as names that have the same first forename initial and full surname. 
Then, the top k large groups of names that meet such criteria are selected and publica-
tion records related to each name instance are collected. Next, human coders decide which 
name belongs to whom after comparing each name instance’s coauthor name, affiliation, or 
email address.

This manual process is suited for generating labeled data containing a few hundreds to 
thousands of name instances. However, hand-labeling is a labor-intensive process even for 
a small number of names, that is also prone to error due to missing information and inter-
coder reliability issues (Han et al. 2005a, b; Liu et al. 2014; Smalheiser and Torvik 2009; 
Song et  al. 2015). Even if human coders reach an agreement on the labeling of certain 
name instances, their decision can be wrong as shown for the hand-labeled data of Han 
et al. (2004) (Müller et al. 2017; Santana et al. 2015; Shin et al. 2014).3 Moreover, hand-
labeled data tend to consist of ambiguous names that are exceptionally difficult to disam-
biguate (e.g., C. Chen) and, thus may not represent the population of target data in need of 
disambiguation.

To complement the costly hand-labeled data, some scholars have compared ambigu-
ous author name instances with author profiles registered in other data sources such as 
authority-controlling digital libraries (e.g., Müller et al. 2017), national researcher profile 
databases (e.g., D’Angelo et  al. 2011), and grant data from funding organizations (e.g., 
Lerchenmueller and Sorenson 2016).

This data-linkage method can produce labeled data quickly and sometimes at a large 
scale without human labor. Unlike most hand-labeled data created to train and evaluate 
disambiguation models, however, the external-authority-based labeling has been utilized 
mostly for measuring disambiguation performance. Such a limited use is mainly because 
amounts of linked name instances are decided by coverage of external databases that might 

1 This paper distinguishes meanings of author, name, and name instance. An author refers to a distinct 
entity, a name to a textual string representing the author, and a name instance to an individual occurrence of 
the name in data. For example, an author (the distinguished professor Mark E. J. Newman at the University 
of Michigan Department of Physics) can be represented by one or more names (Mark Newman, M. E. J. 
Newman, etc.) that appear hundreds of times (i.e., instances) through his publication records in bibliometric 
data.
2 Other than these three types, a few studies have used synthetic labeled data (e.g., Milojević 2013). 
Another noticeable labeling approach is to use the intersection set of disambiguation results by multiple 
algorithms (Vogel et al. 2014).
3 This does not imply that only Han et al. (2004)’s data contain flaws. No other labeled data than Han et al. 
(2004)’s have received such intensive scrutiny for errors.
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be biased toward authors who are grant winners, working in specific nations, or have papers 
indexed by specific bibliometric services (Lerchenmueller and Sorenson 2016).

The third type of labeled data have been constructed by generating a list of name pairs 
that match on a specific identity-matching criterion. Drawing on the observation that 
authors tend to cite their own papers, for example, some scholars have assumed that if a cit-
ing-and-cited pair of papers has the same author name, two instances of the name in each 
paper indicate the same author identity (for an illustration, see “Appendix A: Construction 
of self-citation relation” section). These self-citation name pairs have been used as labeled 
data usually for evaluating disambiguation results (e.g., Liu et al. 2014; Torvik and Smal-
heiser 2009) but sometimes also for training algorithms (e.g., Levin et  al. 2012). Other 
scholars have used email addresses and coauthor names as identity-matching criteria (e.g., 
Cota et al. 2010; Ferreira et al. 2014; Schulz et al. 2014; Torvik and Smalheiser 2009).

Like the second type of labeled data, this matching-based labeling can automatically 
produce large-scale, representative labeled data. Unlike the second type, however, this 
method uses information mostly obtainable in publication records and can, thus, label 
name instances that are un-linkable using external authority data. Despite such advantages, 
this approach to automatic labeling still has a room for improvement.

Problem 1

Whether matching pairs really represent the same author or not can be uncertain. Although 
matching accuracy was sometimes validated, for example, via authors’ confirmation email 
(Levin et al. 2012), the common practice of many studies is to presume the accuracy of 
matching pairs once they meet a pre-defined criterion. An example of incorrect match 
is the case of two name instances that match on the first-name initial and full surname 
but have different full first-names (e.g., Mark Newman vs. Mike Newman): they will be 
decided as a self-citation pair by the common practice using the first-name initial and full 
surname match for self-citation detection.

Problem 2

A second issue is that a criterion can produce different amounts of matching results 
depending on information availability. For instance, author names from research fields 
where coauthorship is not prevalent may produce fewer matching pairs than those in areas 
where team production is a norm.

Problem 3

Third and finally, this approach to labeling can produce only true matching pairs for posi-
tive training/evaluation sets. In other words, it leaves many true matching pairs undetected 
and is also unable to identify true non-matching pairs, thus failing to generate negative 
training/evaluation sets. To address this shortcoming, several studies using this method 
have devised heuristics (e.g., name pairs different in string and sharing no coauthor) to 
generate non-matching pairs for negative training/evaluation sets, potentially producing 
trained disambiguation models biased against cases that conform to the negative-matching 
heuristics but refer to the same authors.
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This study synthesizes the second and third types of automatic labeling methods to 
show that large-scale, representative labeled data can be automatically generated by pair-
ing ambiguous author name instances based on publication metadata and auxiliary infor-
mation such as self-citation, email addresses, and coauthor names. For this, a set of pub-
lication records of computer science articles indexed in the Web of Science (WOS) are 
selected as a target dataset for author name disambiguation. To improve the accuracy of 
each identity-matching criterion for names in the WOS data, matching name pairs are com-
pared to author profile information in an external authority source (ORCID) for validation 
of identity matching (Solution to Problem 1). To increase the amounts of matching pairs, 
this study triangulates multiple matching criteria to detect matching pairs unfindable by a 
single criterion (Solution to Problem 2). Most importantly, the triangulation-based method 
produces clusters of name instances that belong to distinct authors, which can be used to 
generate true non-matching pairs as well as true matching pairs for training and evaluating 
disambiguation algorithms (Solution to Problem 3). Details of this automatic labeling pro-
cess are explained in the following section with the introduction of a real-world example to 
demonstrate its applicability.

Methodology

Automatic labeling procedure

Step1) Finding Feature Matching Rules The proposed method for automatic labeling begins 
by finding the best matching rules for matching features to solve the Problem 1. Specifi-
cally, given a dataset of ambiguous names, three information features (email address, coau-
thor names, and self-citation) which name instance pairs will be matched on are chosen. 
Then, name instances associated with these features are collected from the dataset. Next, 
each feature is tested to find a high-accuracy matching rule.

In this study, the matching accuracy of each feature is evaluated using ORCID author 
profiles. ORCID is an authorship data platform housing publication profiles of more than 5 
million authors worldwide. Once registered in ORCID, an author is assigned an ORCID id, 
which is associated with publication records that are claimed by the author and added by 
metadata organizations such as Crossref4 and Europe PMC5 under the author’s authoriza-
tion (Haak et al. 2012). For accuracy measurement, each name instance for labeling and 
its associated publication record is compared to the ORCID author profiles. If a matching 
author profile is found, its unique ORCID id is assigned to the target name instance. Then, 
if two name instances judged to be the same by a matching feature are associated with 
the same ORCID ids, they are regarded as a correct matching case. Linking ORCID ids 
to name instances in this way allows a high-accuracy matching rule for each feature to be 
found. Specifically, ratios of correctly matched pairs over the total matched pairs by differ-
ent matching schemes can be compared to find the best performer.

Step2) Per-Feature Clustering The second step groups name instances into clusters rep-
resenting distinct authors by applying the high-precision matching rules obtained in the 
first step. Table 1 illustrates the basic idea of this clustering step with a simplified example.

4 https ://www.cross ref.org/.
5 https ://europ epmc.org/.

https://www.crossref.org/
https://europepmc.org/
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In the example, five different name instances are related to a matching feature: email 
address. Initially, each of five instances constitutes a singleton cluster denoted as [#1], 
[#2], [#3], [#4], and [#5], respectively. Let’s assume that Instance #1 and #3 are decided 
to have the same email address (E1–E4) according to a matching rule. This email match 
joins #1 and #3 into a cluster, denoted as [#1|#3], while leaving three singleton clus-
ters ([#2], [#4], and [#5]) intact. Next, let’s assume that E2 of Instance #1 is decided 
by the matching rule to be the same as E5 of Instance #4, which produces another 
joined cluster [#1|#4]. If two clusters [#1|#3] and [#1|#4] exist, they can be merged into 
[#1|#3|#4] because Instance #1 appears in both clusters. The result is a newly gener-
ated matching pair [#3|#4]. This transitivity closure enables the discovery of additional 
matches, as presumed in many entity disambiguation studies (Schulz et al. 2014; Whang 
et al. 2009). As a consequence of such email address matching and transitivity closure, 
Instance #1, #3, and #4 are assigned the same ids because they belong to the same clus-
ter. Newly assigned cluster ids are shown in Table 2 below (see “Cluster ID” column).

This per-feature clustering process is described in the pseudo-code below. Here, code 
lines 1–10 describe the generation of input data to be processed for feature matching. 
Specifically, the input Records is a list of ids of name instances or clusters with feature 
information. For example, a name instance consists of an id (#1), a name string (e.g., 
Mark Newman), an email address (e.g., mejn@umich.edu), coauthor names (e.g., S. H. 
Strogatz; D. J. Watts), and a list of citing papers (paper1; paper2; paper3, etc.). This 
information is mapped into a hash table, recordMap, for next procedures.

Table 1  An example of per-
feature clustering (before 
clustering)

Instance no. Name Email address

#1 Mark Newman E1, E2
#2 M. Newman E3
#3 M.E.J. Newman E4
#4 Newman M. E5
#5 M. Newman E6

Table 2  An example of 
per-feature clustering (after 
clustering)

Instance no. Cluster ID Name Email address

#1 001 Mark Newman E1, E2
#2 002 M. Newman E3
#3 001 M.E.J. Newman E4
#4 001 Newman M. E5
#5 002 M. Newman E6
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Lines 11–19 show the matching procedure using the matching function (matchRule) 
decided in Step 1. For example, let’s assume that recordMap has 5 keys, as in Table 1. The 
first key (i = #1) is compared to the second key (j = #2) for deciding whether their asso-
ciated features (L; e.g., email addresses) match by matchRule (e.g., full string match of 
pre-@ part for email address). If features are found to match, the pair of i and j is inserted 
into clusterList as [#1|#2]. This process is repeated j = 2, 3, 4, and 5 for i = 1, and j = 3, 4, 
and 5 for i = 2, and so on.

Lines 20–34 are implemented for transitivity closure. Given clusterList = {[#1|#3], [#1|#4], 
[#2|#5]}, for example, cluster1 [#1|#3] is compared with cluster2 [#1|#4] to be merged 
into cluster [#1|#3|#4] because they share #1 (= cluster1 ∩ cluster2 ). The merged cluster 
(= cluster1 ∪ cluster2 ) replaces cluster1 [#1|#3] and removes cluster2 [#1|#4] from clusterList. 
Now, cluster1 [#1|#3|#4] is compared to cluster2 [#2|#5].6 This process is repeated until the 

6 Note that the cluster [#2|#5] is indexed as j = 2, not j = 3 because the prior merging removes cluster2 
[#1|#4] from clusterList.
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length of clusterList does not change any more (lenList1 = lenList2). The final output is a list 
of clusters (clusterList), where each cluster represents a distinct author. In the example, two 
clusters remain: cluster 001 = [#1|#3|#4] and cluster 002 = [#2|#5].

Step3) Iterative Clustering across Features The final step is to repeat the per-feature clus-
tering over other features to address the Problem 2. Table 3 illustrates the situation where each 
name instance is associated with three information features: email address, self-citation, and 
coauthor. As a result of Step2 above, five instances are grouped into two clusters (Cluster ID 
001 and 002), which are now compared for coauthor match. Let’s assume that, per a coauthor-
matching rule (e.g., full name string match), Instance #4 in Cluster 001 (= [#1|#3|#4]) and 
Instance #5 share the same coauthor (C4 ≈ C5). This matching merges #5 into Cluster 001, 
also attaching [#2] because #2 and #5 belong to the same cluster based on the rule articulated 
above. Or, Cluster 001(= [#1|#3|#4|#5]) is merged with [#2] as Instance #1 in Cluster 001 is 
presumed to be in a self-citation relation with Instance #2 (#2 cites #1), thus amalgamating #5, 
too. This cross-clustering is performed iteratively until no more cluster-merging is possible.

When name instances are merged into clusters across features, feature information asso-
ciated with a name instance is gathered to be attached to the merged cluster. In Table 3, for 
example, Instance #1, #3, and #4 were grouped into Cluster 001 through the email-address-
based clustering in Step 2, and their associated coauthor information (C1, C3, and C4) is now 
attached to Cluster 001. When per-feature clustering is conducted over coauthor, matching is 
performed per cluster (with enriched coauthor information), not instance, and the aggregate 
coauthor information is used for matching (code lines 1–10 in Algorithm). This information 
attachment enables the iterative clustering to detect matching instances that cannot be found 
by relying on their initially associated information (Ferreira et al. 2014; Whang et al. 2009).

After this iterative process produces clusters of name instances, instances in the same clus-
ter are taken to indicate the same author, while instances belonging to different clusters are 
taken to indicate different authors. This means that true matching pairs of name instances (i.e., 
positive training sets for machine learning) can be constructed by choosing any two instances 
from the same cluster and true non-matching pairs (i.e., negative training sets) can be obtained 
by picking up any two instances from two different clusters. This solves the Problem 3.

Data and pre‑processing

Data

We apply the proposed automatic labeling to real-world data, “full records” (i.e., includ-
ing author full names, if available, email addresses, and cited references) of research 
articles published between 2012 and 2016 in top 100 computer science journals, which 

Table 3  An example of iterative clustering over multiple features

Instance no. Cluster ID Name Email address Coauthor Self-citation

#1 001 Mark Newman E1, E2 C1 cites #9
#2 002 M. Newman E3 C2 cites #1
#3 001 M.E.J. Newman E4 C3 cites #10
#4 001 Newman M. E5 C4 cites #99
#5 002 M. Newman E6 C5 cites #11
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were obtained from the Web of Science (WOS).7 WOS is frequently used by bibliometric 
researchers and many disambiguation studies have worked on computer scientist names 
(Ferreira et al. 2012). The ranking of journals was based on the Journal Impact Score in 
2016 Journal Citation Report8 for all Computer Science categories. A total of 228,041 
name instances were found in 64,991 publication records excluding ones in which author 
name is null (1 paper) or anonymous (14 papers).

Email address

A total of 154,363 email address instances were found in the downloaded WOS data. 
As the downloaded data do not tell which email in a paper is associated with what 
name instance, each email address was matched to an author name automatically. 
For this, especially, non-alphabetical characters such as dash, dot, and numbers were 
removed and remaining characters were lower-cased. Then, various combinations 
of full text string and initials of forename and surname of each name instance (e.g., 
mejnewman, mnewman, markn, mejn, etc. for Mark E. J. Newman) were compared 
to the local part (alphabet string before the @ symbol; e.g., ‘mejn’ in ‘mejn@xxxxx.
yyy’) of email addresses in a paper in which the name instance appears. If two or more 
name instances were candidates for ownership of an email address, a name instance 
matched to an email address by one or more full strings was given a priority. If a name 
instance was matched with two or more emails, the case was excluded from consid-
eration. This matching process associated a total of 140,451 name instances (61.80% 
of all name instances) with email address instances (one-to-one match). The match-
ing accuracy was 99.2% when evaluated manually on a random sample of 1000 ‘email 
address-name instance’ pairs.

Citation relations and coauthorship

To extract citation relationships among papers, DOIs of papers in “cited references” 
were compared with those of citing papers. For papers without DOIs, an external data-
set9 recording the paper-level citation relations of 1568 computer science journals (includ-
ing most journals in this study’s WOS data) was utilized to enhance matching results. A 
total of 105,051 citation relations among 43,809 papers were found. Generating a coauthor 
list for an author name instance was straightforward. If three author names (A, B, and C) 
appear in a paper’s byline, each name will have two coauthor names: A’s coauthors are B 
and C, B’s are A and C, and C’s are A and B.

ORCID‑linkage

The performance of automatic labeling and name disambiguation is evaluated using 
ORCID ids linked to name instances as a proxy of ground truth, following Kim (2018). 
A public data file (released on 10/26/2017) containing 3564,158 ORCID author profiles 

7 https ://clari vate.com/produ cts/web-of-scien ce/web-scien ce-form/web-scien ce-core-colle ction /.
8 https ://clari vate.com/produ cts/journ al-citat ion-repor ts/.
9 https ://stati c.amine r.org/lab-datas ets/citat ion/dblp.v10.zip.

https://clarivate.com/products/web-of-science/web-science-form/web-science-core-collection/
https://clarivate.com/products/journal-citation-reports/
https://static.aminer.org/lab-datasets/citation/dblp.v10.zip


262 Scientometrics (2019) 118:253–280

1 3

in JSON format was obtained.10 To link author name instances in the downloaded WOS 
data to ORCID ids, author publication records with DOIs in ORCID data were matched 
to paper DOIs in the WOS data. Then, a WOS name instance that has the same first-name 
initial and full surname of the owner author of the matched ORCID record was assigned 
the author’s ORCID id. If two or more name instances are candidates to an ORCID id, 
they were excluded from linkage. This matching produced a total of 29,386 ORCID id-
linked name instances in the WOS data. Among them, 4945 instances are used to validate 
the accuracy of matching rules and the iterative clustering performance. The remaining 
instances (24,441) are set aside as test data.

Performance measurement

A standard evaluation measure for name disambiguation, pairwise F, is used to assess the 
quality of name instances assignments to authors. A suite of pairwise F metrics—pairwise 
Precision (pP), pairwise Recall (pR), and pairwise F1 (pF1)—are defined as follows.

Results

Best matching rules for per‑feature clustering

Email address match

Using the ORCID ids linked to name instances in the WOS data, best matching schemes 
for email address, self-citation, and coauthorship were found. Three different matching 
methods were tested for email addresses. First, if two name instances were associated 
with email addresses sharing the full string format, their ORCID ids were compared to 
see if they actually refer to the same author. Second, as authors may have multiple email 
addresses with the same local part (i.e., pre-@) but different domain (i.e., post-@), the 
accuracy of local part match was also tested. In addition, we also checked whether two 
email addresses that have the same alphanumeric strings with mechanics (e.g., dots) 
deleted (for pre-@ part) are associated with the same author. According to the results in 
Table 4, the full-string-based matching worked best (99.73%) for detecting name instances 
likely to represent the same author.

(1)pP =
|Name pairs in labeled data ∩ name pairs in ORCID ids data|

|Name pairs in labeled data|

(2)pR =
|Name pairs in labeled data ∩ name pairs inORCID ids data|

|Name pairs in ORCID ids data|

(3)pF1 =
2 × pP × pR

pP + pR
.

10 https ://figsh are.com/artic les/ORCID _Publi c_Data_File_2017/54797 92/1.

https://figshare.com/articles/ORCID_Public_Data_File_2017/5479792/1
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Self‑citation match

Self-citation relationships between two name instances were decided by two different 
schemes. First, two name instances with the same first forename initial and surname 
were checked to see if they appear as authors on cited-citing paper pairs. This first-ini-
tial-based matching is the common practice of prior studies to decide self-citation name 
pairs (e.g., Liu et al. 2014; Schulz et al. 2014; Torvik and Smalheiser 2009). As reported 
in Table 5, the matching accuracy tested on ORCID ids was very high (99.60%). How-
ever, the full-name-based matching performed slightly better (99.91%) than the initial-
based method. Although initial-based detection produced more matching pairs, the full-
string matching approach was chosen to favor high-precision over high-recall because 
in the clustering stage, incorrectly matched instance pairs can increase the number of 
incorrectly merged clusters across iterations, which can lead errors to propagate.

Coauthor match

Typically, disambiguation studies compare the coauthor names of two ambiguous name 
instances having the same first forename initial and surname (e.g., Cota et  al. 2010; 
Ferreira et  al. 2014; Levin et  al. 2012). In addition, coauthor name instances tend to 
be compared by their first forename initial and surname. Following this convention, 
this study initialized first forenames of coauthor name instances as well as author 
name instances before matching. Also, how the number of shared coauthors affects the 
matching accuracy was tested because several scholars have used different thresholds 
of coauthor numbers to establish a match (e.g., Ferreira et al. 2014; Levin et al. 2012). 
The results are presented in Table  6 under the “First Initial” column. As the number 
of shared coauthors increase, the amounts of pairs to be matched become smaller. But 
increasing the thresholds improved match accuracy. Besides this initial-based match-
ing, this study tested how using full-strings improves match accuracy. According to 
the “Full String” column in Table 6, full-string-based matching (for both coauthor and 
author names) produced smaller amounts of matching pairs with higher accuracy than 
the initial-based method. Again favoring a high-precision rule to limit error propagation 
across iterations, we chose full-string matching with a threshold of one coauthor, which 

Table 4  Accuracy of email-based identity matching methods

Matching scheme Match pairs True match Accuracy (%)

Full address 26,942 26,870 99.73
Pre-@ part 29,706 29,081 97.90
Alphanumeric character only 29,984 29,259 97.58

Table 5  Accuracy of self-citation 
instance pair detection methods

Matching scheme Match pairs True match Accuracy (%)

First initial 6035 6011 99.60
Full string 5513 5508 99.91
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produced large numbers of matching pairs (19,446 > 7044 > 2275) with little loss of pre-
cision (99.83% < 99.86% > 99.82%).

Evaluation of clustering results

Per‑feature clustering

Utilizing the matching rules above, name instances associated with email address, self-
citation, and coauthor information were clustered using the iterative clustering method 
explained in the Methodology section. A total of 26,566 name instances (11.69% of all 
name instances in the downloaded WOS data) that are related to any of the three features 
were processed for clustering. Table 7 reports the results when the name instances are clus-
tered based solely on a single feature (by Step 2 Algorithm). The clustering performance 
was tested on 4945 ORCID ids linked to the name instances.

According to ORCID ids, the name instances should be clustered into 1953 distinct 
clusters. In comparison to this truth, the instances clustered only by self-citation resulted 
in 2208 clusters, recording a high pairwise precision of 0.9991 but a low pairwise recall of 
0.6945. This means that name instances paired by self-citations generally refer to the same 
authors due to the high-precision matching rule reported in Table 5. However, many name 
instances that belong to the same authors but are not on self-citing papers failed to be cor-
rectly paired as evidenced by low recall. Clustering results by coauthor and email address 
also show the same pattern of high precision and low recall, implying that clustering based 
on a single feature is not enough to find all true matching pairs.

Iterative clustering

As the clustering was repeated over other features, the clustering performance increased 
gradually, as shown in Table 8. For example, the number of clusters decreased from 2208 

Table 6  Accuracy of coauthor-based identity matching methods

Matching scheme First-initial Full string

No. of shared coau-
thors

Match pairs True match Accuracy (%) Match pairs True match Accuracy (%)

≥ 1 24,185 23,104 95.53 19,446 19,412 99.83
≥ 2 8112 8038 99.09 7044 7034 99.86
≥ 3 2625 2599 99.01 2275 2271 99.82

Table 7  Evaluation of initial 
clustering results per feature 
(before iteration)

Feature Number of clusters Pairwise F

ORCID Labeled Precision Recall F1

Self-citation 1953 2208 0.9991 0.6945 0.8194
Coauthor 1953 2585 0.9974 0.6105 0.7574
Email address 1953 2354 0.9992 0.8279 0.9055
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(self-citation) to 2071 (coauthor) and in the end to 1954 (email address), getting closer to 
the number of true clusters (1953). This means that iterative clustering successfully found 
name instances that belong to the same authors but that were not detected by prior clus-
tering stages. This performance improvement can be confirmed by the recall score which 
increased incrementally from 0.6945 (self-citation) to 0.8505 (coauthor) and finally to 
0.9969 (email address).

The final results of this iterative clustering procedure were robust to different order-
ing of features. As illustrated in Table 9, clustering conducted in the order of self-citation, 
email address, and coauthor matching produced the same final results as the clustering 
done in the order of self-citation, coauthor, and email address matching. The difference 
lies in the performance of the middle stage. For example, the number of labeled clusters by 
email address after self-citation-based clustering was 1958, which is smaller than 2071 by 
the coauthor-based clustering performed after self-citation-based one in Table 8. After an 
additional clustering iteration on coauthors, the final number of clusters was 1954, which 
is the same as the final clustering results in Table 8. The final results were all the same 
even if the initial clustering started with either coauthor or email address, followed by any 
clustering order of additional features. A caution is, however, that this is not a natural out-
come of the proposed iterative clustering but specific to the case of this study where all 
name instances are associated with email address, self-citation, and coauthor information. 
In other words, the iterative clustering may produce different final results on other datasets.

This re-ordered clustering also shows that one feature can be more useful than others 
in finding true matching pairs of name instances. For example, the recall gains by email 
address matching from the baseline result by self-citation-based method were + 0.2989 
(= 0.9934–0.6945), which is larger than + 0.1560 (= 0.8505–0.6945) by coauthor-based 
clustering applied to the same baseline. This is, however, not unexpected as the email 
address as a single clustering feature showed the highest recall performance in Table 7.

Representativeness checks

A total of 26,566 instances out of 228,041 author name instances in the downloaded 
WOS data were labeled as one of 8218 distinct authors (= clusters) through our iterative 

Table 8  Evaluation of iterative 
clustering results (incremental 
in the order of self-citation, 
coauthor, and email address)

Feature Number of clusters Pairwise F

ORCID Labeled Precision Recall F1

Self-citation 1953 2208 0.9991 0.6945 0.8194
+Coauthor 1953 2071 0.9978 0.8505 0.9183
+Email address 1953 1954 0.9961 0.9969 0.9965

Table 9  Evaluation of iterative 
clustering results (incremental in 
the order of self-citation, email 
address, and coauthor)

Feature Number of clusters Pairwise F

ORCID Labeled Precision Recall F1

Self-citation 1953 2208 0.9991 0.6945 0.8194
+Email address 1953 1958 0.9961 0.9934 0.9948
+Coauthor 1953 1954 0.9961 0.9969 0.9965
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clustering process. The size of the resulting labeled data is comparable to that (41,673 
instances) of one of the largest hand-labeled datasets for name disambiguation that was 
manually curated for several months by Korean researchers (KISTI; Kang et  al. 2011). 
Table 10 shows the distribution of name instances per author in the labeled data. As the 
labeled data in this study consist of name instances that are in self-citation relation with at 
least one other instance, the minimum number of instances per author is two. Almost 65% 
of all authors in the labeled data have only two instances. One author has the maximum 
number of 109 instances that belong to her/him.

Name ethnicity distribution

As the true number of distinct authors in the whole data (of 228,041 name instances) is 
unknown, it is not clear how these labeled data represent the population data. To address 
this issue, this study compares the ratios of ethnicity types linked with name instances in 
the labeled data and the entire dataset. Several disambiguation studies have categorized 
name instances into groups with different levels of ambiguity based on the findings that 
some ethnic names are harder to disambiguate than others due to, for instance, common 
surnames of East Asian authors (e.g., Gomide et al. 2017; Kim and Diesner 2016). This 
grouping has been used to test the sensitivity of disambiguation performance against differ-
ent types of ethnic names (Lerchenmueller and Sorenson 2016; Louppe et al. 2016).

In this study, an ethnicity tag was assigned to an author name instance by querying its 
surname to Ethnea, an ethnicity classification system (Torvik and Agarwal 2016).11 Eth-
nea assigns a class of ethnicity to a name based on the name’s association with its most 
frequent geo-locations (e.g., “Kim” is most frequently associated with Korea-based institu-
tions), which is weighted by multiclass logistic regression model and probabilistic smooth-
ing (for details see Torvik 2015). For the case of name instances unseen in the system, 
“Null” is assigned.

In Fig.  1, ratios of the ten most frequent ethnicities in the whole dataset were com-
pared to those in the labeled data. Although Chinese names are over-represented and Eng-
lish names are under-represented in the labeled data, other name ethnicities are shown to 
appear in similar proportions with those in the whole data. This means that, at least regard-
ing name derived ethnicities, the labeled data decently represent the whole data.

Block size distribution

Another way to see how the labeled dataset represents the whole dataset is to compare their 
distributions of block sizes. Here, a block size is the number of name instances that match 

Table 10  Name instance distribution per author

No. of instances 2 3 4 5 6 7 8 9 10≤ Total

No. of authors 5305 1118 685 316 199 143 105 75 37 8218
Ratio (%) 64.55 13.60 8.34 3.85 2.42 1.74 1.28 0.91 0.45 100.00

11 https ://doi.org/10.13012 /B2IDB -90875 46_V1.

https://doi.org/10.13012/B2IDB-9087546_V1
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on the first-name initial and full surname. This name grouping has been widely used in 
disambiguation studies to reduce computation complexity because name instances belong-
ing to different blocks are not compared (e.g., Levin et al. 2012; Louppe et al. 2016; Schulz 
2016).

To check representativeness in terms of block size, this study grouped name instances if 
they share the same initialized forename with a full surname. Next, numbers of blocks with 
n or more instances are counted to calculate their ratios against the total number of blocks. 
The calculated ratios are then used for comparing block size distributions in the whole and 
labeled data.

In Fig. 2, the ratios of blocks that have n or more instances are plotted on a cumulative 
log–log scale for the cases of the labeled (circles), whole (crosses), and random datasets 
(triangles). In the whole data, for example, the ratio of blocks with the size of 2 or more is 
0.3651 (= 36.51%) of all groups. As depicted in the figure, small-size blocks make up the 
majority of blocks in the whole data (e.g., blocks with 10 or less make up almost 96%). 
The labeled data show a similar pattern that small blocks make up the majority. But the 
plots start on the x-axis value of 2 (and y-axis value of 1) because the smallest blocks in the 
labeled data contain two instances because each name instance in the labeled data have at 
least one instance that matches by self-citation relation.

Fig. 1  Ratios of name ethnic-
ity in labeled data compared to 
whole data

Fig. 2  Cumulative ratios of block 
size on log–log scale
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As observed in Fig. 2, the circle plots of the labeled data show a similar trend with the 
trend for the whole dataset as the value of n increases until around 10, when the labeled 
data trend starts to deviate downward. For a comparison purpose, a subset of the whole 
data with the same size of the labeled data was randomly generated and its block size dis-
tribution (triangles) was depicted on the figure. Slightly different starting points excepted, 
plots of the labeled and random datasets show a very similar pattern until roughly the size 
of 60, which constitutes 99.5% of all blocks in the labeled data and 99.92% of all blocks 
in the random data. These plot trends (1 ≤ n ≤ 60) were fitted to very similar power-law 
slopes: for the labeled data (− 2.523, R2

= 0.998 ) and the random subset of the entire data-
set (− 2.557, R2

= 0.995 ). The two distributions also show a similar downward curvature 
towards their tails. This implies that the labeled data produced a block size distribution 
very similar to that of randomly selected instances from the whole data.

Supervised disambiguation using automatically labeled data

Training, development, and test data

To demonstrate the use of automatically labeled data, this study disambiguated 24,441 
ORCID-linked name instances (test data) in the whole data by training machine learn-
ing algorithms on the automatically labeled data (training data). As a result of the afore-
said clustering iterated over three features, a total of 26,566 author name instances were 
assigned (= labeled) to 8218 distinct authors (= clusters). These labeled name instances 
and their associated information (coauthor and title) are split randomly into two subsets of 
equal size: the first half as training data to be fed into three commonly used classification 
algorithms and the second half as development data to optimize thresholds for the hierar-
chical agglomerative clustering algorithm.

To see how automatically labeled data can contribute distinctively to name disambigua-
tion, the disambiguation results of algorithms trained on them are compared in three ways. 
First, the same name instances (and associated information) labeled by a single feature—
email address, self-citation, and coauthor—are used as baseline training datasets. These 
baseline datasets are analogous to those used in previous studies that constructed automati-
cally labeled data using each feature: email address (Torvik and Smalheiser 2009), self-
citation (Schulz et al. 2014), and coauthor (Ferreira et al. 2014). Table 11 summarizes the 
source and characteristics of these automatically labeled data.

Second, three hand-labeled datasets in previous studies—AMINER (Wang et al. 2011), 
KISTI (Kang et al. 2011), and QIAN (Qian et al. 2015)—are used as training and develop-
ment data to disambiguate name instances in the test data. Table 12 summarizes the source 
and characteristics of these hand-labeled data. This comparison is based on the idea that if 
training data created for other disambiguation tasks can produce as much successful disam-
biguation results as automatically labeled data for the WOS data, generating automatically 
labeled data for the WOS data would be less meaningful.

Third, the iterative clustering proposed for data labeling is applied to the test data using 
the same matching rules described in the section “Best Matching Rules for Per-Feature 
Clustering,” above. As shown in the section “Results > Evaluation of Clustering Results,” 
the iterative clustering produced labeling (= disambiguation) results high in precision, 
recall, and F1 scores. This implies that the iterative clustering method we propose may be 
directly applied to disambiguate any test data, possibly eliminating the need of the burden-
some machine learning procedure.
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Machine learning features

The feature selection, pre-processing, and similarity calculation described hereafter follows 
Kim and Kim (2018) and applies to all (automatically and manually) labeled training data-
sets. Three features—author name, coauthor name and title word—are chosen because they 
have been used in many author name disambiguation studies. They have been reported to 
be highly effective in distinguishing author names (Ferreira et al. 2012; Schulz 2016; Wang 
et al. 2012). In addition, if many features are used, the effectiveness of labeled data on dis-
ambiguation performance cannot be differentiated from that of feature selection.

To pre-process text strings, alphabetical characters were changed into lower-case and 
encoded into ASCII format. Also, Characters other than alphabets and numbers were 
replaced by spaces. Commas were, however, left intact because they separate the first-
name and surname (last-name) of an author name. After stop-words12 were deleted, title 
words were stemmed by the Porter’s Stemmer (Porter 1980).13 As a result of this pre-pro-
cessing, a data instance is formatted as follows: 1(author id)[tab]1(instance id)[tab]kim, 
jinseok(author name to disambiguate)[tab]kim, jinmo| owen-smith, jason (coauthor names)
[tab]automat label data (title words). Similarity between pairs of name instances over each 
feature was computed by the Term Frequency cosine similarity of 2, 3, and 4-grams (Han 
et al. 2005a, b; Kim and Kim 2018; Levin et al. 2012; Louppe et al. 2016; Santana et al. 
2015; Treeratpituk and Giles 2009). For example, ‘jinseok’ is converted into a string array 
of {ji, in, ns, se, eo, ok, jin, ins, nse, seo, eok, jins, inse, nseo, seok}. This is based on the 
proposition that this n-gram segmentation can be applied consistently across names and 
title words, contrary to several disambiguation studies that have applied different sets of 
string comparison rules for names and titles.

Table 11  Summary of automatically labeled data for training algorithms (All, Email, Coauthor, and Self-
Cite) and test data (P = Positive, N = Negative)

Data name Labeling method No. of author 
name instances

No. of 
unique 
authors

No. of training pairs No. of 
development 
pairs

All Iterative clustering over email, 
coauthor, and self-citation

26,566 8218 P: 19,898 P: 20,167
N: 29,070 N: 31,944

Email Per-feature clustering over 
email

26,566 10,826 P: 15,733 P: 15,534
N: 34,967 N: 34,987

Coauthor Per-feature clustering over 
coauthor

26,566 11,394 P: 11,894 P: 12,688
N: 38,236 N: 38,204

SelfCite Per-feature clustering over 
self-citation

26,566 9436 P: 13,861 P: 15,410
N: 35,615 N: 36,062

Test data ORCID ids-linkage 24,441 14,936 P: 28,799
N: 18,107

12 https ://githu b.com/stanf ordnl p/CoreN LP/blob/maste r/data/edu/stanf ord/nlp/patte rns/surfa ce/stopw ords.
txt.
13 https ://tarta rus.org/marti n/Porte rStem mer/.

https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.txt
https://tartarus.org/martin/PorterStemmer/
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Classification and clustering

Pairs of name instances were compared for similarity across three features. Note that com-
parison was conducted only on names that match on the first-name and full surname (i.e., 
same block) following the common practice (e.g., Han et al. 2004; Levin et al. 2012; San-
tana et al. 2015; Wang et al. 2011). Pairwise similarity scores calculated for positive (refer-
ring to the same authors) and negative (referring to different authors) pairs constitute train-
ing data for three classifiers—Logistic Regression (LR), Naïve Bayes (NB), and Random 
Forest (RF)14—that have been baseline algorithms in many disambiguation studies (e.g., 
Han et al. 2005a, b; Kim and Kim 2018; Levin et al. 2012; Santana et al. 2015; Torvik and 
Smalheiser 2009; Treeratpituk and Giles 2009; Wang et al. 2012).

Meanwhile, name instances in development and test data were also compared for simi-
larity over each feature by the same procedure applied to training data. Then, disambigua-
tion models of trained algorithms assigned probability scores for the likelihood that two 
instances represent the same author in each pair in the development and test data. Next, 
the hierarchical agglomerative clustering algorithm collated name instances of a distinct 
author based on the pairwise probability scores. Here, a probability score between a pair of 
name instance represents a similarity distance between the pair. A mean probability score 
of blocks that maximizes the clustering performance evaluated on the development data15 
was selected as a threshold value in hierarchical clustering algorithms applied to the test 
data.

Performance evaluation

First, the disambiguation results by three algorithms (LR, NB, and RF) trained on four 
labeled datasets (Email = labeled by email address matching, Coauthor = labeled by coau-
thor match, SelfCite = labeled by self-citation match, and All = labeled iteratively over 
email address, coauthor, and self-citation) were evaluated by pairwise precision, recall, and 
F1. A set of 24,441 ORCID-linked name instances in the whole data (for details, see Meth-
odology ≫ Data and Pre-processing ≫ ORCID Linkage) was used as a proxy of ground 
truth for evaluation (test data). Figure 3 shows the evaluation results in bar graphs.

According to Fig.  3, algorithms trained on Coauthor and SelfCite scored slightly 
higher precision than those trained on All (see Fig. 3a). Regarding recall, however, models 
learned by algorithms from All achieved higher scores than others learned from single-fea-
ture-based labeled data (see Fig. 3b). The performance gains in recall by All-based models 
were so substantial that their harmonic means of precision and recall (i.e., F1 scores; see 
Fig. 3c) were higher than those of Email, Coauthor, and SelfCite.

These observations align well with the clustering performance reports in Tables 7 and 
8 where single-feature-based clustering produced higher precisions and lower recalls than 
those by iterative clustering. This implies that the high-recall labeled data by iterative 

15 The hierarchical agglomerative clustering algorithm and overall training-test procedure were imple-
mented by modifying codes in Louppe et al. (2016).

14 Classifiers were implemented with parameter settings as follows: L2 Regularization with class 
weight = 1 (LR), Gaussian Naïve Bayes with maximum likelihood estimator (NB), and 500 trees (after grid 
search) with Gini Impurity for split quality measure (RF). For more details, see http://sciki t-learn .org/stabl 
e/index .html.

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
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Fig. 3  Evaluation of disambigua-
tion results by three algorithms 
trained on four automatically 
labeled data
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clustering might affect the high recall on test data by algorithms trained on them. Likewise, 
the loss of precision by the iterative clustering (possibly due to matching errors) during 
the generation of labeled data might affect the slightly lower precision of All-trained algo-
rithms on test data than those obtained by the same algorithms trained on baseline labeled 
datasets with higher precision. Although Naïve Bayes models trained on Coauthor and 
SelfCite performed quite similarly with the All-trained one, the overall evaluation results 
indicate that iterative clustering produced labeled data that can improve the performance of 
disambiguation algorithms.

Next, the disambiguation results by three algorithms trained on four labeled datasets 
(WOS = automatically labeled from the WOS data; AMINER, KISTI, and QIAN) were 
evaluated. Figure 4 shows that overall, models trained on automatically labeled data pro-
duced better results than those trained on hand-labeled data.

An interesting observation is, however, that models trained on KISTI (for LR, NB, and 
RF) and QIAN (for NB) produced quite similar (sometimes slightly better) performances 
to WOS, while those trained on the other hand-labeled datasets performed worse. Such per-
formances of KISTI and QIAN might be possible in part because the hand-labeled datasets 
were created from publications in computer science. As the name instances of this study 
were obtained from computer science papers, the hand-labeled datasets might contain the 
domain-specific characteristics of name distributions (e.g., Chinese names are prevalent; 
for details, see Fig. 1 and Appendix B Fig. 7), collaboration pattern, and title term use/
frequency that are critical to disambiguating names of computer scientists. Outside of com-
puter science, however, extensive hand-labeled datasets are rare. Thus, the good perfor-
mance of manually labeled data may not be replicable in other fields. So, author name 
disambiguation can get benefits from automatic labeling of training data as proposed in this 
study.

Finally, the disambiguation results by three algorithms trained on our automatically 
labeled training data were compared to those by the iterative clustering using three fea-
tures—email address, self-citation, and coauthor—run on the test data (I-Clustering). Fig-
ure 5 reports that the performance by iterative clustering (I-Clustering) is high in preci-
sion but low in recall compared to those by the algorithms trained on automatically labeled 
data. This is not unexpected because iterative clustering works well when feature informa-
tion is sufficiently complete (e.g., all names have email addresses, self-citation relation, and 
coauthors as in the automatically labeled data). In the test data, however, the majority of 
name instances are not associated with one of three features. This indicates that the itera-
tive clustering method has a limitation as a disambiguation method for the test data defi-
cient in feature information.

Conclusion and discussion

This study showed that large-scale, representative labeled data for machine-learning-
based author name disambiguation can be generated using publication metadata such as 
email addresses, coauthor names, and cited references without human curation. Using an 
external-authority database, high-precision rules for matching name instances could be 
determined for email address, coauthor names, and self-citation features. Based on these 
matching rules, name instances were grouped into clusters by a generic entity resolution 
algorithm able to find matching instance pairs through enhanced feature information and 
transitivity closure. This clustering was repeated over other features, generating accurately 



274 Scientometrics (2019) 118:253–280

1 3

Fig. 4  Evaluation of disambigua-
tion results by three algorithms 
trained on automatically (WOS) 
and manually (AMINER, KISTI, 
and QIAN) labeled datasets
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labeled data. The resulting clusters in the labeled data share similar features with the popu-
lation data in terms of name ethnicity and block size distributions.

In addition, the labeled data were used to train three machine learning algorithms to 
disambiguate name instances in the test data with high performance. Models trained on 
iteratively clustered labeled data improved greatly recall at the slight loss of precision 
compared to models trained on the same data but labeled by a single-feature-based clus-
tering and external hand-labeled data. This demonstrated that the proposed method can 
be utilized for studies in need of ad-hoc labeled data to train and test the performance of 
various disambiguation algorithms. The high performance and scalability of the method 
has a potential to be applied to supervised machine learning approaches that aim to dis-
ambiguate big scholarly data. In addition, such automatically labeled data can be used to 
evaluate unsupervised machine learning approaches or rule-based methods for author name 
disambiguation.

To fully realize this method’s potential, however, some issues need to be addressed. 
First, like other matching-based labeling methods, the performance of the proposed method 
relies on the availability of matching features. This method may not provide accurately 
labeled data for digital libraries that do not record email addresses and cited references. 
A plausible solution to this problem would be to link other data sources (e.g., AMiner 
or Microsoft Academic Graph) to the target digital library data to fill missing auxiliary 
information. Another problem is that as some studies compellingly demonstrate, email 
addresses are mostly available for recent publications and not all author name instances 
are associated with them (Levin et al. 2012; Torvik and Smalheiser 2009). In addition, the 
number of publications available for disambiguation and the accuracy of their cited refer-
ences can determine whether self-citation information is rich or relatively scarce. These 
problems call for an in-depth study about how the imbalance of matching-feature informa-
tion associated with name instances affects the performance of automatic labeling. Match-
ing feature imbalance is especially critical to expanding the proposed automatic labeling 
to, for example, a whole dataset in a digital library to obtain representative labeled data.

Second, as shown in Tables 4, 5 and 6, even the best matching schemes can produce 
errors as evidenced by slight decreases in precision with each iteration. Such accuracy 
decay will impact the performance of iterative clustering because errors propagate in suc-
cessive stages. This implies that a better understanding of error propagation in iterative 
clustering algorithms is necessary before applying this study’s method to labeling data 

Fig. 5  Evaluation of disambigua-
tion results by three algorithms 
(LR logistic regression, NB Naïve 
Bayes, and RF random forest) 
trained on automatically labeled 
data (All in Fig. 3) in comparison 
with results by iterative cluster-
ing (I-clustering)
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involving many iterations. Together, these two problems indicate that automatic labeling 
can be improved by expanding accurate and publicly available matching features beyond 
the three tested in this study. Affiliation information in publication records or multiple 
sources of researcher ids in other digital libraries may enhance automatic labeling efforts.

Finally, different coverage in target data can lead to challenges for validation of match-
ing rules and measurement of labeling accuracy. As an evaluation source, this study relied 
on ORCID ids which is author managed and covers a wide range of scientific domains. 
The high accuracy of ORCID’s author profiling was confirmed for more than 700,000 
name instances in DBLP associated with ORCID ids,16 and, for that reason, ORCID data 
were used for evaluating name disambiguation performance of DBLP (Kim 2018). But 
its accuracy for other domains than computer science has not properly evaluated. Another 
important limitation is that ORCID records may not cover all publications of an author 
because individual authors decide the entry and update of their publication information in 
the ORCID system. Also, ORCID ids-linked authors in our data over-represent Hispanic 
authors while they under-represent Chinese authors (for details, see “Appendix B: Repre-
sentativeness checks for ORCID-linked data” section). Chinese author names tend to be 
more difficult to disambiguate than other ethnic names (Kim and Diesner 2016; Strotmann 
and Zhao 2012). So, the ORCID-derived ground truth may provide optimistic performance 
results as Chinese names are disproportionally excluded from evaluation.

Despite such issues, this study is expected to motivate talented scholars to have inter-
est in automatic labeling for author name disambiguation. As more publications and new 
names enter digital libraries at an unprecedented rate (Bornmann and Mutz 2015), auto-
matic labeling can provide many practical solutions to supervised author name disam-
biguation for digital libraries. Identifying conditions of high-performing automatic labeling 
can benefit both scholars and stakeholders like academic institutions in need of unambigu-
ous scholarly data for knowledge discovery and scholarly evaluation.
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Appendix A: Construction of self‑citation relation

If a paper cites another paper, they are in citing-cited relation. From this paper-level cita-
tion information, scholars have constructed author-level citation relation. In Fig. 6, Author 
A and Author B coauthors Paper 1, while Author C and Author D writes together Paper 2. 
If Paper 2 cites Paper 1 (paper-level citation), authors in Paper 2 are assumed to refer to 
authors in Paper 1. Thus, Author C is depicted to cite Author A and Author B, and Author 
D to cite Author A and Author B. If Author C is the same as Author A, they are in self-
citation relation.

16 http://dblp.org/faq/17334 571.

http://dblp.org/faq/17334571
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Appendix B: Representativeness checks for ORCID‑linked data

This section checks how the ORCID-linked data (Methodology > Data and Pre-process-
ing > ORCID-Linkage) represent the whole data in this study. Following the method described 
in Representativeness Checks of Results, the ratios of name ethnicity and block size of 
ORCID-linked data are compared to those of the whole data. Figure 7 shows that in ORCID-
linked data, Chinese names are under-represented while Hispanic and Italian names are over-
represented while other ethnic names show similar ratios. This observation is contrasted to 
that from Fig. 1 where Chinese names are slightly over-represented and English names are a 
little under-represented.

Regarding the block size distribution in Fig. 8, the distribution plot of ORCIDs starts higher 
in y-axis (= ratio) than that of Random Data but falls below as x-value (= block size) increases. 
This means that ORCID-linked data contain more small blocks and less large blocks com-
pared to randomly selected subset with the same number of name instances as ORCID-linked 
data, while automatically labeled data produce block size distribution quite similar to that of 
random data in Fig. 2.

Fig. 6  An illustration of con-
struction of self-citation relation

Fig. 7  Ratios of name ethnicity 
in ORCID-linked data (ORCIDs) 
compared to whole data
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