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Abstract
The highly cited papers defined by Clarivate Analytics’ Essential Science Indicators (ESI) 
have been widely used to measure the scientific performance of scientists, research institu-
tions, universities and countries. However, researchers have seldom studied which factors 
can affect a paper to be an ESI highly cited paper. The prediction of ESI highly cited papers 
is much less studied, too. According to the existing researches about factors influencing 
paper’s citations, four classical papers’ factors are chosen in this study, which are scien-
tific impact of the first author, scientific impact of the potential leader, scientific impact 
of the team and the relevance of authors’ existing papers. Similar to the definition of ESI 
highly cited papers, we develop a new measure of papers’ scientific impact. Firstly, we get 
statistics properties of four factors with APS data and Nobel data in order to study four 
factors’ performance of ESI highly cited papers. Then, Spearman correlation and Logistic 
regression are applied to explore the relationship between four factors and papers’ scien-
tific impact. At last, we try to predict highly cited papers by NN algorithms incorporating 
four factors. The results show that the potential leader factor plays a more important role in 
the short term than in the long term, while the team factor is on the contrary, more impor-
tant in the long term. Interestingly, the first author factor doesn’t have an obvious effect on 
papers’ scientific impact among top 1%. The prediction results are better than random.

Keywords ESI · Citation network · Scientific impact · Prediction

Introduction

Nowadays with the development of science, the number of published papers has increased 
exponentially. As a result it becomes impossible for researchers to investigate all papers 
related to their research field to find useful ones. To identify papers’ scientific impact makes 
both theoretical and practical significance for scientists whose time and energy are limited 
(Wang et  al. 2013). A lot of studies have been conducted quantifying papers’ scientific 
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impact in citation networks. The simplest and most straightforward measure is the number 
of citations which are the number of links of a node (Redner 1998). Based on citations, we 
can classify papers in specific categories (Glänzel and Schubert 1988). Then some variants 
about citations arise (Radicchi et al. 2008; Chatterjee et al. 2016). Afterwards, PageRank 
and its variants are commonly implemented in citation networks to rank scientific impact 
of publications (Chen et al. 2007; Mariani et al. 2016; Yao et al. 2014; Zhou et al. 2016). In 
addition to these measurements, growing models are also utilized to measure publications’ 
scientific impact (Jeong et al. 2003; Bianconi and Barabási 2001; Wang et al. 2013) . But, 
these definitions of papers’ scientific impact haven’t taken into account the influence of 
other papers published in the same year like ESI highly cited papers have.

Essential Science Indicators (ESI) was proposed in 2002. According to highly cited 
papers defined by ESI, ESI highly cited papers need to receive enough citations to place 
them in the top 1% of their academic fields from each of 10 database years. Since its intro-
duction, ESI highly cited papers have been widely used to evaluate research institutions, 
universities and countries (Zhu et al. 2004; Pouris 2007; Soteriades and Falagas 2005; Hu 
and Rousseau 2009). As we know, the highly cited papers have been attached great impor-
tance to the science of science (Zeng et al. 2017).

Scientists have tried to explore the characteristics of highly cited papers due to their 
importance. Compared with “ordinary” papers, Aksnes finds that the number of authors of 
highly cited papers is large and authors usually internationally collaborate (Aksnes 2003). 
In addition, Noorhidawati et al. observe that ESI highly cited papers in Malaysia have nine 
characteristics such as lowly self-cited and publication in the First Quartile of the sci-
ence discipline publications (Noorhidawati et al. 2017). Besides these features of papers, 
some other factors of publication are also important. The first-mover advantage proposed 
by Newman indicates that if a paper is the first paper in the field, it will get enormously 
higher citations than other papers published after it, regardless of its content (Newman 
2009). Zhang and Guan (2017) find papers with lower scientific relatedness (extract from 
knowledge element coupling network) and higher intellectual base (extract from citation 
network) are more likely to be highly cited. More importantly, the initial citation of a paper 
is highly correlated with the long-term citation of the paper and can be used as an indica-
tor for the prediction of highly cited papers (Adams 2005; Ponomarev et al. 2014; Winnink 
and Tijssen 2015; Winnink et  al. 2016). The prediction of highly cited papers can help 
scientists track research trends and identify significant work in advance. Regardless of the 
definition of highly cited papers, these papers have the same characteristic: high citations. 
With this feature, scientists have tried to predict citations of papers to solve the problem of 
predicting highly cited papers. There are three main ways to predict papers’ citations.

The first way is to use regression models. Hurley et al. get author-level attributes and 
article-level attributes of collaborations to build a logistic regression model. They find the 
strongest predictors are the language and journal of the paper (Hurley et  al. 2013). Yan 
et al. extract some features (topic rank, diversity, recency, h-index, author rank, productiv-
ity, sociality, authority, venue rank and venue centrality) to build several predictive models 
including linear regression, k-nearest neighbor, support vector regression, classification and 
regression tree. According to their results, author expertise and venue impact are regarded 
as strongest predictors. Author rank and venue rank can make papers become more attrac-
tive, however content features in isolation are not valuable to prediction (Yan et al. 2011). 
Similarly, Yu et al. consider the external features of a paper, features of authors, features of 
the journal of publication, and features of citations to set up a stepwise regression model 
to predict papers’ citations after the first 5 years of publication. Their model is effective 
within Information Science & Library Science (Yu et al. 2014).
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The second way is to use machine learning which has a similar research pattern with 
regression models. The method of their research starts by selecting effective factors 
among papers’ characteristics. After that, those factors are applied to regression models or 
machine learning to predict papers’ citations. Wang et al extract the external features (six-
teen features coming from three aspects: the authors, the journals, and the external features 
of the paper itself) and quality features (nine features coming from papers’ citing diffusion 
properties and the information of papers’ first citation) to develop a case-based classifier 
(CBC) to predict highly cited papers. The result shows that the paper’s quality, the journal 
factors and the research ability of the first author are most predictive (Wang et al. 2012). 
Furthermore, Xiao et al. propose a machine learning prediction model considering not only 
papers’ intrinsic popularity (paper-specific covariates) but also impact decaying over time 
and recency-sensitive citation triggering and this model has better performance than previ-
ous methods (Xiao et al. 2016).

The third way is to set up dynamic models based on citation dynamics to predict papers’ 
citations. Ponomarev et  al. (2014) propose two curve-fitting models about papers’ cita-
tions dynamics to predict highly cited papers. Wang et al. build a citation dynamic model 
through a set of parameters by employing maximum likelihood estimation and three factors 
(fitness term representing paper’s intrinsic value; the aging effect over time; the reinforce-
ment term showing highly cited papers). This citation dynamic model performs well in 
predicting papers’ citations (Wang et al. 2013). In addition to these three main methods, 
there are other ways to predict impact of papers’ citations. For example, Cao et al. propose 
a model by matching the appropriate database and finding the similar citation pattern of a 
paper to predict citations of a paper. The model performs well (Cao et al. 2016). Newman 
(2014) uses first-mover advantage to predict highly cited papers with high prediction accu-
racy. As we all know, there are some studies on ESI highly cited papers. However, we did 
not find any paper about the predictions of ESI highly cited papers.

In this study, we select four factors, which are scientific impact of first author, scientific 
impact of potential leader, scientific impact of team and the relevance of authors’ exist-
ing papers. Firstly, we put forward a new measure of papers’ scientific impact similar to 
ESI. Then we apply spearman rank correlation analysis and logistic regression analysis 
to papers in APS database which is about physics field from 1980 to 1989 to investigate 
the relationship between papers’ scientific impact and these four factors in 3 years and in 
10 years after publication respectively. At last, we try to predict ESI highly cited papers by 
a combination of four factors using Neural networks algorithm.

Method

Data

The database used in this paper covers all papers published in American Physical Soci-
ety (APS) journals from 1893 to 2009, which are Physical Review series and Reviews of 
Modern Physics. There are 198,476 authors, 458,863 papers and 4,658,283 citations in this 
dataset.

In APS database, there is no unique author identifier. Some authors used different name 
forms in their papers. In order to assign each paper to each author, we first give a unique 
identifier to each author. In the APS data, the author names with the same surname and the 
same first letter of the given name is considered as from one author. For example, Kikuji 
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Hirose and K Hirose are identified as the same author while F Green and A Green are iden-
tified two. In particular, we get Nobel authors and papers from wiki website, each of them 
is identified manually.

Measure of papers’ scientific impact

Based on the definition of highly cited papers in ESI, we put forward a new measure of 
papers’ scientific impact, considering not only the number of citations but also the rank 
of citations in all papers published in that year. For paper i, if its citation rank among all 
papers published in the same year is N and the total number of papers published in that 
year is R, then the scientific impact of paper i is N/R. According to such scientific impact 
measure, papers whose rank are in the top 1% are highly cited papers. Papers published in 
different time have different features. Those published earlier must have more time to accu-
mulate citations. The traditional way to select highly cited papers makes decision based on 
citations, which is unfair to new papers. However, our highly cited papers selection only 
takes papers published in the same year into consideration, thus more reasonable. Three 
years and 10 years are two kind of time window which represent short term and long term 
(Abramo et al. 2011; Wang et al. 2013). In this article, we choose papers’ scientific impact 
in 3 years and in 10 years after papers publish as two kind of representative values.

We apply this measure to the Nobel prize-winning papers. There are 28 Nobel prize-
winning papers from 1946 to 2000. Their scientific impact value and total citations each 
year from the publication year to 2009 are shown in Fig. 1. Citations of papers increase 
monotonically with variant growth rate all the time. However, the measure we proposed 
manages to show changes in scientific impact. We can know whether papers become more 
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Fig. 1  a The scientific impact value of three Nobel prize-winning papers in each year from the year pub-
lished to 2009. b The total citations
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influential compared with papers published in the same year. Table 1 shows Nobel prize-
winning papers’ scientific impact in 3 years after publication, in 10 years after publication 
and in the awarded year, as well as whether they are highly cited papers in these years 
respectively. We could see 13 Nobel prize-winning papers are ESI highly cited papers in 
3  years after publication. This number increases to 15 in 10  years after publication and 
reaches a maximum of 16 in the awarded year. People usually think of Nobel prize-wining 
papers as high quality papers (Niu et al. 2016; Qi et al. 2017). Not all Nobel prize-wining 
papers are highly cited papers in the short term, but most of them gradually become highly 
cited papers in the long term. 

Factors influencing papers’ scientific impact

Based on the way that we measure the paper’s scientific impact, the number of papers 
published in a year and the paper’s citation rank among all papers published in that year 
are two direct factors influencing papers’ scientific impact. As we know, the number of 
published papers has increased exponentially. Present studies show that paper citations are 
influenced by a lot of characteristics, such as author characteristics, field characteristics, 
article characteristics, journal characteristics and so on (Danell 2011; Biscaro and Giup-
poni 2014; Yu et al. 2014; Wang et al. 2012).

The number of co-authored publications has increased substantially in science. First 
authors should get more credits in scientific credit allocation because of more contribu-
tions in some disciplines (Shen and Barabási 2014). There are some evidences suggest-
ing that the scientific impact of first author has a positive effect on paper citations. Yu 
et al. (2014) showed that citation impact can be predicted by some features including the 
total number of citations to the papers previously published by the first author. The Mat-
thew Effect suggests that people are more willing to cite reputable scholars (Merton 1968). 
Garfield and Welljamsdorof (1992) observe that use of a high citation list of authors can 
significantly predict Nobel Prize laureates. Another study conducted by Maske et al. (2003) 
shows expert author with a deeper ability in publishing ideas. In scientific credit alloca-
tion, the corresponding authors get higher allocation credit in disciplines, such as physics. 
For group leaders in scientific research, their names often appear at the bottom (or top) of 
the list of authors in the co-author’s paper (Kosmulski 2012). Based on these studies, we 
select two factors: the scientific influence of the first author and the scientific influence 
of potential leaders. There are several ways to measure the scientific impact of scientists, 
such as the total number of papers published, the total number of citations obtained or the 
mean number of citations per paper and h-index (Hirsch 2007). Stewart (1983) found that 
the average author quality, measured by the average citations of his published papers, is an 
important author characteristic that influences the citations of the paper. In this article, the 
average citations of the author’s publications is used as the author’s scientific influence. 
Collaborations are universal among scientists. A rapidly increasing trend in co-authorship 
has been observed in both social science and natural science. Through collaboration, sci-
entists exchange and refine ideas, producing higher quality publications. It’s revealed that 
cooperation can promote production efficiency (Maske et  al. 2003). Previous research 
has shown that the number of co-authors is a predictor of research productivity (Yu et al. 
2014). Experience in the field has a positive effect on the paper’s impact. Biscaro and 
Giupponi (2014) quantified experience as the maximum of number of articles published by 
each co-author prior to the paper. Specialized authors are better known within the field. In 
the expertise field, scientists can choose their representative work. A research conducted by 



114 Scientometrics (2019) 118:109–125

1 3

Ta
bl

e 
1 

 N
ob

el
 p

riz
e-

w
in

ni
ng

 p
ap

er
s’

 s
ci

en
tifi

c 
im

pa
ct

 in
 3

 y
ea

rs
 a

fte
r p

ub
lic

at
io

n,
 in

 1
0 

ye
ar

s 
af

te
r p

ub
lic

at
io

n 
an

d 
in

 th
e 

aw
ar

de
d 

ye
ar

, a
s 

w
el

l a
s 

w
he

th
er

 th
ey

 a
re

 h
ig

hl
y 

ci
te

d 
pa

pe
rs

 in
 th

es
e 

ye
ar

s r
es

pe
ct

iv
el

y

N
o.

D
O

I
Pu

bl
is

hi
ng

 y
ea

r
A

w
ar

di
ng

 y
ea

r
Th

re
e 

ye
ar

 S
I

Te
n 

ye
ar

 S
I

A
w

ar
di

ng
 y

ea
r S

I
Y-

3 
or

 N
-3

Y-
10

 o
r N

-1
0

Y-
A

w
a 

or
 

N
-A

w
a

1
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

.6
9.

37
19

46
19

52
26

4.
00

66
.0

0
13

2.
00

Y
N

Y
2

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
.7

2.
24

1
19

47
19

55
31

3.
00

50
.0

8
52

.1
7

Y
N

N
3

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
.7

3.
67

9
19

48
19

81
28

9.
00

86
7.

00
43

3.
50

Y
Y

Y
4

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
.8

3.
33

3
19

51
19

94
82

.8
9

21
3.

14
16

5.
78

N
Y

Y
5

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
.1

22
.3

45
19

61
20

08
53

.7
8

13
5.

52
56

4.
67

N
Y

Y
6

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
9.

43
9

19
62

20
02

4.
66

2.
64

2.
44

N
N

N
7

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
10

.8
4

19
63

20
05

34
.2

2
41

.0
6

11
4.

06
N

N
Y

8
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

13
.5

08
19

64
20

13
1.

99
41

.5
0

17
3.

17
N

N
–

9
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

13
.3

21
19

64
20

13
4.

49
44

.8
4

19
3.

15
N

N
–

10
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

20
.1

20
5

19
68

20
02

6.
78

15
.6

0
14

8.
21

N
N

Y
11

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
28

.8
85

19
72

19
96

97
.4

7
43

.2
7

34
.8

1
Y

N
N

12
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

29
.1

22
7

19
72

20
03

64
.7

6
21

.3
4

14
.2

9
N

N
N

13
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

30
.1

34
3

19
73

20
04

24
06

.5
0

24
06

.5
0

12
03

.2
5

Y
Y

Y
14

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
30

.1
34

6
19

73
20

04
48

13
.0

0
48

13
.0

0
16

04
.3

3
Y

Y
Y

15
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

35
.1

48
9

19
75

19
95

15
39

.3
3

76
9.

67
28

8.
63

Y
Y

Y
16

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
48

.1
55

9
19

82
19

98
27

48
.5

0
27

48
.5

0
18

32
.3

3
Y

Y
Y

17
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

50
.1

39
5

19
83

19
98

57
73

.0
0

57
73

.0
0

57
73

.0
0

Y
Y

Y
18

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
55

.4
8

19
85

19
97

64
.0

8
46

.2
9

46
.9

2
N

N
N

19
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

57
.2

44
2

19
86

20
07

6.
30

94
7.

00
12

62
.6

7
N

Y
Y

20
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

58
.1

49
0

19
87

20
02

35
3.

96
25

6.
90

26
1.

11
Y

Y
Y

21
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

61
.1

69
19

88
20

13
38

.9
8

78
.8

6
66

.1
2

N
N

–
22

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
61

.2
47

2
19

88
20

07
91

.4
5

42
98

.0
0

42
98

.0
0

N
Y

Y
23

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
61

.8
26

19
88

19
97

14
.3

3
15

2.
14

14
0.

92
N

Y
Y

24
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

75
.3

96
9

19
95

20
01

12
,9

90
.0

0
12

,9
90

.0
0

12
,9

90
.0

0
Y

Y
Y

https://doi.org/10.1103/PhysRev.69.37
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRev.83.333
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1103/PhysRevLett.9.439
https://doi.org/10.1103/PhysRevLett.10.84
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.20.1205
https://doi.org/10.1103/PhysRevLett.28.885
https://doi.org/10.1103/PhysRevLett.29.1227
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.35.1489
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1103/PhysRevLett.55.48
https://doi.org/10.1103/PhysRevLett.57.2442
https://doi.org/10.1103/PhysRevLett.58.1490
https://doi.org/10.1103/PhysRevLett.61.169
https://doi.org/10.1103/PhysRevLett.61.2472
https://doi.org/10.1103/PhysRevLett.61.826
https://doi.org/10.1103/PhysRevLett.75.3969


115Scientometrics (2019) 118:109–125 

1 3

”–
” 

m
ea

ns
 th

at
 b

ec
au

se
 o

f t
he

 d
at

a 
lim

it,
 w

e 
ca

n’
t c

al
cu

la
te

 th
e 

va
lu

e

Ta
bl

e 
1 

 (c
on

tin
ue

d)

N
o.

D
O

I
Pu

bl
is

hi
ng

 y
ea

r
A

w
ar

di
ng

 y
ea

r
Th

re
e 

ye
ar

 S
I

Te
n 

ye
ar

 S
I

A
w

ar
di

ng
 y

ea
r S

I
Y-

3 
or

 N
-3

Y-
10

 o
r N

-1
0

Y-
A

w
a 

or
 

N
-A

w
a

25
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

76
.1

79
6

19
96

20
12

12
99

.6
0

68
4.

00
68

4.
00

Y
Y

–
26

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
77

.4
88

7
19

96
20

12
55

3.
02

11
81

.4
5

11
81

.4
5

Y
Y

–
27

ht
tp

s :
//d

oi
.o

rg
/1

0.
11

03
/P

hy
sR

 ev
Le

t t.
84

.3
23

2
20

00
20

05
9.

58
6.

21
8.

70
N

–
N

28
ht

tp
s :

//d
oi

.o
rg

/1
0.

11
03

/P
hy

sR
 ev

Le
t t.

84
.5

10
2

20
00

20
05

31
.5

9
30

.6
1

27
.2

7
N

–
N

https://doi.org/10.1103/PhysRevLett.76.1796
https://doi.org/10.1103/PhysRevLett.77.4887
https://doi.org/10.1103/PhysRevLett.84.3232
https://doi.org/10.1103/PhysRevLett.84.5102


116 Scientometrics (2019) 118:109–125

1 3

Niu et al. (2016) argued that the representative work of a scientist should be an important 
publication in his area of expertise and they proposed a self-avoiding preferential diffusion 
(SPD) process to identify one’s representative work. Based on SPD, we put forward the rel-
evance of authors’ existing papers. This factor focuses on measuring the relevance between 
the paper’s topic and topics of authors’ existing papers through the paper’s reference list.

In this paper, we pick four factors according to present studies as our main analytical 
factors.

(1) Scientific impact of the first author
  We calculate the first author’s average number of citations among all his papers pub-

lished before the year when this certain paper was published as our first factor named 
The First Author Factor.

(2) Scientific impact of the potential leader
  We calculate every author’s average number of citations among all his papers pub-

lished before the year when this certain paper was published and choose the biggest 
one as our second factor named The Potential Leader Factor.

(3) Scientific impact of the research team
  We compute the average number of all authors’ previous paper citations as our third 

factor named The Team Factor.
(4) Relevance of authors’ existing papers
  First, we gather all papers previously written by each author (PLIST), all papers cit-

ing these previously written papers (CLIST) and all papers cited by these previously 
written papers (RLIST) to get three lists and their union set. Then, we get the reference 
list of this certain paper, PCLIST. Finally, the number of papers in the intersection 
between PCLIST and the union set is our fourth factor named relevance of authors’ 
existing papers factor (RAEP Factor).

Spearman correlation analysis

To investigate the relationship between four factors and scientific impact, we apply Spear-
man correlation analysis to four factors and scientific impact in different categories. When 
we calculate the correlation coefficients between each factor and the scientific impact, we 
would delete samples whose factor are zero at first.

Logistic regression

In order to explore the relationship between the four factors and papers’ scientific impact 
synthetically, we apply a stepwise logistic regression to post-treatment data where samples 
with at least one zero-value factor from 1980 to 1989 are deleted both in the short and long 
term cases.

Neural‑net algorithms

The multilayer perceptron is one type of artificial neural networks. It is widely used as a 
tool for prediction, function approximation and classification. The advantages of the mul-
tilayer perceptron approach are obvious in applications where a full theoretical model can-
not be established, and particularly when handling with non-linear systems (Gardner and 
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Dorling 1998). The multilayer perceptron is known as a feed-forward neural networks and 
consists of several layers of neutrons. The input layer is only used to pass the input vector 
to the network. There are one or more hidden layers and finally an output layer in a multi-
layer perceptron. In this paper, the training data are all papers from 1980 to 1986 and test 
data are all papers from 1987 to 1989.

Results

Statistics properties of four factors

We classify papers from 1980 to 1989 by scientific impact compared with papers published 
in the same year into four categories, papers among top 1%, papers among top 5%, papers 
among top 25% and all papers. Then we get the statistical properties of four factors within 
each category respectively. There are 695 samples among top 1%, 3626 samples among 
top 5%, 19,001 samples among top 25% and 67,474 samples in total. The range of first 
author scientific impact factor is from 0 to 147.33, same as the potential leader scientific 
impact factor. The team scientific impact factor has a range from 0 to 116 and the rele-
vance of authors’ existing papers has a range from 0 to 71. The mean, median and standard 
deviation of papers in the top 1% category among four factors are the biggest, followed by 
papers among top 5%, papers among top 25% and all papers both in 3 years and in 10 years 
after papers published. If we delete samples as long as one of the four factors is zero, there 
are 387 samples left among top 1%, 1964 samples among 5%, 10,104 samples among 25% 
and 37,252 samples in total. Their mean, median and standard deviation in four categories 
satisfy the same pattern as before.

We focus on the statistical properties of highly cited papers, which are among top 1% in 
each year from 1980 to 1989. The total number of papers published from 1980 to 1989 are 
4688, 5140, 5497, 5773, 6073, 6921, 7576, 7964, 8596, 9246. In 3 years and in 10 years 
after highly cited papers published, the mean and standard deviation of the four factors are 
shown in Figs. 2 and 3. The mean of four factors just fluctuate a little both in 3 years and 
in 10 years after publication. However, the standard deviation of four factors changes more 
obviously in different years from 1980 to 1989 in both cases. 

We also calculate the above four factors for each Nobel prize-winning paper. We clas-
sify Nobel prize-winning papers into six classes, which are papers in top 1% in 3 years 
after publication (Y-3), papers not in top 1% in 3 years after publication (N-3), papers in 
top 1% in 10 years after publication (Y-10), papers not in top 1% in 10 years after publica-
tion (N-10), papers in top 1% in the awarded year (Y-Awa), papers not in top 1% in the 
awarded (N-Awa). Then we compute the mean and standard deviation of these four factors 
in each class. Results are shown in Fig. 4. For all four factors, the in-top-1% classes all 
exhibit higher mean and standard deviation.

The relationship between papers’ scientific impact and four factors

From Spearman correlation analysis, four factors all have positive correlations with papers’ 
scientific impact no matter in 3 years or in 10 years after publication for all papers. How-
ever, papers in the top 1% category demonstrate a different pattern. In 3 years after publica-
tion, the first author factor doesn’t have significant correlation with scientific impact, and 
the potential leader factor in 1983 has negative relationship with scientific impact while in 
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(a) (b)

(c) (d)

Fig. 2  The erro bar of four factors in the top 1% in 3 years after papers published. a The first author factor. 
b The potential leader factor. c The team factor. d The relevance of authors’ existing papers factor

(a) (b)

(c) (d)

Fig. 3  The erro bar of four factors in the top 1% in 10 years after papers published. a The first author factor. 
b The potential leader factor. c The team factor. d The relevance of authors’ existing papers factor
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1986 the relationship between them became positive. The pattern of RAEP factor is similar 
to that of the potential leader factor and the team factor have positive effect on scientific 
impact only in 1988. In 10 years after publication, the first author factor and the team factor 
have a positive effect on papers’ scientific impact in 1987. The RAEP factor has negative 
effect on papers’ scientific impact in 1984. Additionally, papers in the top 5% category 
have little correlation coefficients passing the significance test among the first author factor 
and the RAEP factor. But the correlation coefficients passing the significance test of the 
potential leader factor and the team factor are more. Situation has changed in papers in the 
top 25% category, among four factors, in most years, correlations coefficients are signifi-
cant in both 3 years and 10 years after publication (Figs. 5 and 6). 

Results of stepwise logistic regression to post-treatment data are displayed in Tables 2 
and 3. In 3 years after publication, papers’ scientific impact in the top 1% category has a 
positive relationship with the potential leader factor, the team factor and the RAEP factor. 
What’s more, the coefficient of the potential leader factor is the highest. Situations coincide 
when looking into papers in the top 5% category and in the top 25% category. In 10 years 
after publication, papers’ scientific impact in the top 1% category has a positive relation-
ship with the potential leader factor, the team factor and the RAEP factor where the coef-
ficient of the team factor is the highest. There are same three factors positively related to 
papers’ scientific impact in the top 5% and in the top 25%. In the top 5%, the highest coef-
ficient is the team factor while in the top 25% the highest coefficient is the potential leader 
factor. 

Are logistic regression results stable in each year from 1980 to 1989? To answer this 
question, we apply logistic regression to data in each year respectively. Results in 3 years 
and in 10 years are showed in Figs. 7 and 8. We find that for papers in the 3 years after 

(a) (b)

(c) (d)

Fig. 4  The erro bar of four factors in six kinds of Nobel prize-winning papers. a The first author factor. b 
The potential leader factor. c The team factor. d The relevance of authors’ existing papers factor
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(a) (b)

(c) (d)

Fig. 5  Spearman correlation coefficients between four factors and the scientific impact of papers in 3 years 
after publication. The shaded labels represent those that haven’t passed the significance test. a Top 1% cat-
egory. b Top 5% category. c Top 25% category. d All papers category

(a) (b)

(c) (d)

Fig. 6  Spearman correlation coefficients between four factors and the scientific impact of papers in 10 years 
after publication. The shaded labels represent those that haven’t passed the significance test. a Top 1% cat-
egory. b Top 5% category. c Top 25% category. d All papers category
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Table 2  Logistic regression coefficients of four factors in 3 years after publication

Model (1%) Model (5%) Model (25%)

Intercept − 5.234 − 3.457 − 1.502
The first author scientific impact – – –
The potential leader scientific impact 3.28 3.249 4.448
The team scientific impact 2.999 2.711 1.398
The relevance of authors’ exsiting papers 2.45 2.467 3.194

Table 3  Logistic regression coefficients of four factors in 10 years after publication

Model (1%) Model (5%) Model (25%)

Intercept − 5.198 − 3.53 − 1.607
The first author scientific impact – – –
The potential leader scientific impact 1.361 2.513 3.438
The team scientific impact 4.153 3.37 2.165
The relevance of authors’ exsiting papers 2.761 2.526 3.26

(a)

(b)

(c)

Fig. 7  Logistic regression coefficients of four factors in 3 years after publication from 1980 to 1989. a Top 
1% category. b Top 5% category. c Top 25% category
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publication case, the potential leader factor and RAEP factor are two important factors of 
logistic regression in all categories. While in 10 years after publication, the team factor and 
RAEP factor dominate both in the top 1% and in the top 5%, and the potential leader factor 
and the RAEP factor dominate in the top 25%. 

Prediction

In this paper, the training data are all papers from 1980 to 1986 and test data are all 
papers from 1987 to 1989. The features in neural-net algorithms are the four factors: 
scientific impact of first author, scientific impact of potential leader, scientific impact 
of team and relevance of authors’ existing papers. In each category, the labels of data 
are only two kinds, 0 or 1. For example, for all papers in top 1% category, if papers’ 
scientific impact rank belong to 1%, data’s labels are 1 and the left are 0. So do data in 
5% category and 25% category. In our data, the data whose labels are 1 are 1%, 5% and 
25%. The precision is low, because most prediction values are 0. The accuracy in total 
is high: in top 1% category is almost 99%, in top 5% category is almost 95% and in top 
25% category is almost 74%. Here, we change the way to calculate prediction accuracy. 
After we train the model well, we get the test data predictions probability by the trained 
model and sort the predictions probability values in a descending order. Then we choose 
top 1% dataset and calculate the size of the intersection between the predicted top 1% 
and the actual dataset top 1%. Prediction accuracy is the size of the intersection divided 
by the size of the actual dataset top 1%. Prediction accuracy is displayed in Table  4. 

Fig. 8  Logistic regression coefficients of four factors in 10 years after publication in each year from 1980 to 
1989. a Top 1% category. b Top 5% category. c Top 25% category
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From Table 4, we can see the accuracy in papers among top 1% is better than choosing 
randomly, but still low. The prediction accuracy is higher in papers among top 5% and 
among top 25%. What’s more, prediction accuracy is higher in 10 years after papers 
publications than in 3 years after publication.

Conclusions and discussion

In this paper, we mainly focus on four factors which can be used to predict ESI highly 
cited papers. Three factors come from the author aspects, which are the first author’s 
scientific impact, the potential leader’s scientific impact and the team’s scientific 
impact. The last factor comes from the content of the paper, which is the relevance of 
the author’s existing paper. We analyze the relationship between the four factors and 
papers’ scientific impact both in short term and in long term. Our findings indicate that 
four factors are positively correlated with the paper’s scientific impact. The potential 
leader factor plays a more important role in short term instead of in the long run. On 
the contrary, team factor is more important in the long term. When we combine the 
four factors to predict the top 1% of the papers through neural network algorithms, the 
prediction results are better than the random selection, but the prediction accuracy is 
still low. This means that these four factors can partially but not sufficiently explain the 
pattern of ESI highly cited papers. It also shows that people cannot manipulate these 
factors to achieve the goal of making a paper be ESI highly cited paper. We know that 
the possibility of becoming ESI highly cited papers depends not only on their own qual-
ity, but also on the quality of other papers and the number of papers published each 
year. The ESI highly cited papers are truly high quality papers. It shows that they can be 
used as valuable indicators for assessing the scientific performance of an organization 
or a scientist, helping policy makers make decisions such as funding, promotions and so 
on.

Because of the limit of database, in this research we cannot get information such as 
the corresponding author scientific impact, the key words, the abstract, the journal qual-
ity and so on. Our research is the first attempt to predict ESI high cited papers. Although 
we have obtained some results, we have to admit that those chosen factors are not suffi-
cient enough. Finding appropriate and sufficient factors to predict ESI high cited papers 
remains a challenge. In further research, we will try to obtain more information to find 
more useful factors to solve the problem of predicting ESI highly cited papers. In addi-
tion, the APS data set can only represent the physical field. We can apply the models to 
different kinds of fields to verify the results later.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant 
Nos. 61603046 and 61374175) and the Natural Science Foundation of Beijing (Grant No. L160008).

Table 4  The accuracy of 
different kinds of neural-net 
models

nn net (years) Model (1%) Model (5%) Model (25%)

3 4.20% 14.92% 38.66%
10 6.02% 16.79% 40.06%
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