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Abstract
Patent classification is an essential task in patent information management and patent knowl-

edge mining. However, this task is still largely done manually due to the unsatisfactory per-

formance of current algorithms. Recently, deep learningmethods such as convolutional neural

networks (CNN) have led to great progress in image processing, voice recognition, and speech

recognition, which has yet to be applied to patent classification. We proposed DeepPatent, a

deep learning algorithm for patent classification based on CNN and word vector embedding.

We evaluated the algorithm on the standard patent classification benchmark dataset CLEF-IP

and compared it with other algorithms in the CLEF-IP competition. Experiments showed that

DeepPatent with automatic feature extraction achieved a classification precision of 83.98%,

which outperformed all the existing algorithms that used the same information for training. Its

performance is better than the state-of-art patent classifier with a precision of 83.50%, whose

performance is, however, based on 4000 characters from the description section and a lot of

feature engineering while DeepPatent only used the title and abstract information. DeepPatent

is further tested on USPTO-2M, a patent classification benchmark data set that we contributed

with 2,000,147 records after data cleaning of 2,679,443 USA raw utility patent documents in

637 categories at the subclass level. Our algorithms achieved a precision of 73.88%.
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Introduction

Patent documents are important intellectual resources, from which valuable technical

knowledge such as creative designs and technical knowhow can be obtained for engi-

neering design. It can also help design engineers to understand detailed concepts and

underlying component technology (Li et al. 2012). Companies usually use patents as an

effective way to protect their intellectual property (IP) and new products’ market domi-

nation (Trappey et al. 2012). Patents have been a kind of strategic resource for information

and knowledge management. More and more technology companies use the huge amount

of technical information in patent databases to enhance their research and development

(R&D) activities such as new product development (Li et al. 2013), technology transfer

(Lemley and Feldman 2016), technology innovation (Lee et al. 2012), technology fore-

casting (Altuntas et al. 2015) and mergers and technology acquisitions (M&A) analysis

(Park et al. 2013, 2017), etc. Since the state-of-the-art technical knowledge can often be

found in related patent documents, taking full advantage of patent information allows one

to track the progress and frontier of related technologies, which may help to avoid rein-

venting the wheel and can thus save research cost and shorten research time. Moreover,

patent information usually stays current as most patent applications are published

18 months after the first filing, irrespective of their country of origin (Wagner and

Wakeman 2016).

With the rapid development in various technology areas, the number of patents has

increased dramatically in recent years. In total, innovators filed about 3.1 million patent

applications worldwide in 2016, up 8.3% from 2015. For each year since 2003, with the

exception of 2009, patent applications have grown every year (WIPO 2018).The enormous

increase in the number of patent applications is creating significant challenges for the entire

patent system and all patent information users. In reality, patent classification is typically a

task which is undertaken almost exclusively by patent experts and patent examiners. The

most fundamental task of patent analysis. Besides that, patent classification faces several

challenges. Firstly, the IPC taxonomy is a complicated hierarchical structure. Each patent

must be assigned one or more sub-group level labels. Secondly, the distribution of patents

among categories are highly unbalanced with about 80% of all the documents classified in

about 20% of the categories. Furthermore, patent documents are often lengthy and full of

technical and legal terminologies, which increases the challenge to efficiently analyze even

for domain experts. Automated technologies are thus strongly needed to assist patent

analysts in patent processing and analysis.

One of the most frequent tasks of patent processing at a patent office is patent classi-

fication, which classifies patent texts into various categories defined in advance by the

researchers (Korde and Mahender 2012). The efficiency and accuracy of patent analysis

will be greatly improved if we can use artificial intelligence technology to speed up the

patent classification process. In the past few years, a number of different algorithms and

models have been proposed for patent classification such as the k-Nearest Neighbor (k-NN)

(Fall et al. 2003), support vector machine (SVM) (Wu et al. 2010; Fall et al. 2003; D’Hondt

et al. 2013), Naı̈ve Bayes (NB) (Fall et al. 2003; D’Hondt et al. 2013), k-means clustering

(Kim et al. 2008), and artificial neural network (ANN) (Trappey et al. 2006; Guyot et al.

2010), but all with limited success. And especially, most of these algorithms are trained

and evaluated with relatively old datasets (at least 10 years ago) while in reality we are

faced with millions of new patents. Recently, a few researchers have applied the break-

through deep learning techniques such as recursive neural networks (RNN) (Luong et al.
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2013) and convolutional neural networks (CNNs) (Zhang et al. 2015; Kim 2014) to solve

the text classification problem. However, to the best of our knowledge, there is no study

that has applied deep neural networks to solve the large-scale patent classification task.

The performance of patent classification algorithms depends on many factors such as

the choice of machine learning algorithms, selection of text features, or preparation of

training and test data sets. Among all, the selection of relevant features and their encoding

is the key factor that affect a model’s classification performance (Blum and Langley 1997).

Most approaches for text classification use the Bag-of-Word (BoW) (D’Hondt et al. 2013),

Term Frequency–Inverse Document Frequency (TF–IDF) (Azam and Yao 2012) or

N-grams model to represent the text (D’Hondt et al. 2013). These methods represent each

document by the contained words, ignoring the semantics of the words and disregard word

order in the original document. Empirical results showed that a fairly simple set of features

can be used to get decent classification performance (D’hondt et al. 2012, 2013). However,

we can achieve significant performance gain by using carefully constructed features based

on thorough understanding of the task. To address the limitation of word frequency fea-

tures, Word vector (Mikolov 2013b) has been proposed and demonstrated that it can

capture meaningful syntactic and semantic regularities and can identify content and subsets

of content. It makes it possible to learn high dimensional word vectors practically and can

be used to represent a large amount of data precisely. Word embedding features have since

been applied to more and more text classification tasks (Kim 2014).

Currently, there is no common automatic classification system used by patent offices

and no comprehensive approach to automatically classifying the entire set of patents

available in patent office due to scalability issue (Meireles et al. 2016). In this study, we

propose DeepPatent, a deep neural network model combined with word embedding to

address the patent classification problem with a large corpus. Our algorithm exploits the

automated hierarchical feature extraction of convolutional neural networks and powerful

modeling power of deep neural networks to achieve the competitive patent classification

result. It first effectively transforms word tokens into feature vectors. Then, lexical level

vectors are concatenated to form the text level dense matrix. Meanwhile, text level features

are learned using a convolutional approach. Finally, the features are fed into a sigmoid

function to predict the patent category label out of 637 categories.

The rest of this paper is organized as follows: In ‘‘Background and related works’’

Section, we summarized the core background knowledge of patent classification and

reviewed related literature. In ‘‘Methods’’ Section, we proposed our deep neural network

model for patent classification, describe the word representation scheme and the details of

our convolutional neural network training. In ‘‘Experiments’’ Section, we described how to

prepare and select patent text datasets for experiments, and how to use skip-gram to pre-

train the entire dataset to get the 200-dimension word vector set. Besides, a series of

experiments on the word vector set and the patent text were done. Furthermore, we con-

ducted a series of classification experiments of English patent documents at the subclass

level (637 classes) of the International Patent Classification (IPC) and evaluated the results

as the CLEF-IP evaluation campaigns. Our results showed that our approach appears more

effective than the performance of traditional machine learning algorithms evaluated on the

large dataset composed of 2 million patents. In ‘‘Conclusions’’ Section, we drew our

conclusions and presented our future study directions.
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Background and related works

In this section, we first give a brief overview of current patent classification schemes in

typical patent information processing and describe the International Patent Classification

hierarchy. Then we summarize the literature related to this area, including text feature

extraction and patent classification algorithms.

Patent classification scheme

When a patent application is ready to be published and made open to the public, one or

more classification codes must be assigned to the patent document based on its textual

content for the purpose of efficient management and retrieval. Several patent authorities

maintain their own classification hierarchies, such as the International Patent Classification

(IPC) organized by the World Intellectual Property Organization (WIPO), the Cooperative

Patent Classification (CPC) organized by the United States Patent and Trademark Office

(USPTO) and the European Patent Office (EPO) and the United States Patent Classification

(USPC) organized by the USPTO.

Among all the classification schemes, IPC is the most popular patent classification

scheme used worldwide in more than 100 countries to classify their national patent

applications. Moreover, the IPC is available in more than ten languages, such as Chinese,

English, German, Japanese, Korean, Russian, etc. IPC was established in 1971 based the on

Patent Cooperation Treaty (PCT) which was concluded in 1970. Specifically, the IPC

taxonomy contains 8 sections, 130 classes, 640 subclasses, 7400 main groups and

approximately 72,000 sub-groups. In IPC taxonomy, the section part was represented by

capital letter from A to H, including (A) ‘‘Human Necessities’’; (B) ‘‘Performing Opera-

tions; Transporting’’; (C) ‘‘Chemistry; Metallurgy’’; (D) ‘‘Textiles; Paper’’; (E) ‘‘Fixed

Constructions; (F) ‘‘Mechanical Engineering; Lighting; Heating; Weapons; Blasting’’;

(G) ‘‘Physics’’; (H) ‘‘Electricity’’. And the second level of IPC taxonomy is a class which

Section

Class

Sub-class

Group

Sub-Group

F Mechanical engineering ; Lighting; Heating; Weapons; Blasting

F02 Combustion engines ; hot-gas or combustion-product engine plants

F02D Controlling combustion engines

F02D 41 Electrical control of supply of 
combustible mixture or its constituents

F02D 41/02 Circuit arrangements 
for generating control signals

Fig. 1 An example of IPC
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was represented by a numeral. Then the following level is sub-class, group, and subgroup.

Figure 1 shows an example of IPC.

The patent coding process currently is done manually in most patent offices around the

world. Text classification algorithms are needed to automate this tedious information

processing step, which involves the design of representation scheme of patent texts, the

selection and design of the classifier algorithms, and the preparation and training of the

prediction models.

Each IPC code consists of Arabic numerals and letters of the Latin alphabet. To

illustrate the IPC hierarchy, Fig. 1 describes the class label ‘‘F02D 41/02’’ and its

ancestors. The ‘‘F02D 41/02’’ class label, which groups circuit arrangements for generating

control signals, fall under section F ‘‘Mechanical Engineering; Lighting; Heating; Weap-

ons; Blasting’’, class F02 ‘‘Combustion engines; hot-gas or combustion-product engine

plants’’, subclass F02D ‘‘Controlling combustion engines’’, group F02D 41 ‘‘Electrical

control of supply of combustible mixture or its constituents’’, sub-group F02D 41/02

‘‘Circuit arrangements for generating control signals’’.

Text feature extraction

One of the main steps of text classification is text representation or feature extraction,

which is also a fundamental problem in information retrieval. Different text representation

schemes extract different text features, which have big influence on text classification

accuracy. Lewis (1992) proposed phrases as index terms for text classification. It was

found that different syntactic phrase indexing schemes led to different text classification

performance. The bag-of-words model (D’Hondt et al. 2013) is another standard approach

for text encoding, which represents a document by the words’ occurrences, ignoring their

ordering and grammar in the original document. Empirical results show that (n-gram)

phrase encoding contains more information than single-word scheme and could lead to

better classification performance. However, longer phrases may lead to the explosion of the

resulting dataset size. For example, in the Web 1T 5-gram (Brants and Franz 2006) dataset,

Google provides the webpage text dataset with the encoding length ranging from unigrams

to five-grams. When the length of phrases grows to five, the size of data has exploded to

approximately 1 terabyte. Li et al. (2012) proposed a POS and stemming model to count

the term more accurately and used a classical TF-IDF algorithm to represent patent doc-

uments. They first used Part-Of-Speech (POS) tagging method to identify the part of

speech of words in a sentence. After word segmentation and POS tagging, the sentences

are then tokenized. In order to count the term frequency accurately, they employed a

stemming algorithm to stem all words to their original forms. Beyond that, they also count

the term frequency of the corpus and a specific patent to calculate TF–IDF. D’hondt et al.

(2013) used four kinds of text representations (unigram, bigram, Stanford, and AEGIR) to

represent the patent documents and compared the impact of adding statistical phrases and

linguistic phrases. They found that extending statistical phrases and/or linguistic phrases

brought significant improvement in classification performance when compared to the

unigram baseline. Specifically, the best classification performance appears when all kinds

of text representation are combined. These studies indicate that we could represent a text

using the BOW model to get decent performance. But due to the loss of information, n-

grams features cannot encode complex expressions. A major limitation of such traditional

BOW representation models is that in these methods, words as treated as discrete atomic

symbols, which provide no useful information regarding the relationships that may exist
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between the individual symbols. This means that the model can leverage very little of what

it has learned about a word when it is processing data about a related word. Representing

words as unique, discrete ids furthermore leads to data sparsity.

Using vector representations can overcome some of these obstacles. In vector space

models (VSMs), words are represented (embedded) in a continuous vector space where

semantically similar words are mapped to nearby points. One of the preeminent VSMs text

encoding approach is the emerging word vector (Mikolov et al. 2013b), which has been

shown to be able to capture meaningful syntactic and semantic regularities and identify text

contents and subsets of the content. Word vector models are developed based on the

distributional hypothesis (Sahlgren 2008), which states that words that appear in the same

contexts share similar semantic meaning. That also means words that occur in similar

contexts may have similar embeddings. This encoding approach makes it possible to learn

high dimensional word vectors practically and to represent a large amount of data precisely

and could be used to improve text classification results. Zhang et al. (2015) proposed a

method for sentiment classification based on word vector and SVM. They use word vector

to cluster similar features in the selected domain (Chinese language) and put the features

into an SVM algorithm, which achieved superior performance in sentiment classification.

Matt Taddy (Taddy 2015) applied word vector to 2 million sentences from Yelp reviews

and used a classifier to class the sentences into categories. They found that it is a simple,

scalable, interpretable, and effective option for text classification. Furthermore, it performs

equally well or better than other complex custom-designed algorithms. This paper aims to

explore the potential of word vector text representation approach for the large scale patent

classification problem.

Patent text classification

Many algorithms have been used to classify patent documents, among which ANN, SVMs,

and kNN are the most commonly used algorithms in the field of automated patent clas-

sification (Benzineb and Guyot 2011). But, it’s hard to draw a clear conclusion with regard

to their performances from previous research because there are no standard data sets used

among these studies in patent analysis. Furthermore, the difference in task definitions such

as mono-category versus multi-category classification at different levels in the category

hierarchy and the choices of data sets also make objective evaluation and comparison of

existing methods a challenging task. Here we just survey some leading results based on the

reported performance, which should be interpreted in the context of their test datasets. The

accuracy scores among different studies are not necessarily comparable.

Li et al. (2012) proposed a two-layered feed-forward ANN and employed Levenberg–

Marquardt algorithm to train the ANN for 1948 patent documents from USPC 360/324.

The authors used a stemming approach, the Brown Corpus, to handle most irregular words.

They achieved accuracy of 73.38% and 77.12% on two categories set. Wu et al. (2010)

extracted key words from 234 patent documents and split the documents into two sets (41

correct patent documents and 193 incorrect patent documents). A hybrid genetic algorithm

support vector machines (SVMs) was then applied on this data set, which reached an

accuracy of 82%. They found that their HGA-SVM was able to increase the prediction

accuracy by 1.7% of the SVM patent classification system. However, the significance of

these two studies is limited by their small datasets. Chen and Chang (2012) presented a

three-phase categorization method which contains SVM, K-means, and kNN algorithms.

This hierarchical method employed TF–IDF to select discriminative terms to classify
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21,104 patent documents (12,042 for training and 9062 for testing) down to the sub-group

level and achieved 36.07% accuracy at the sub-group level. They reported that hierarchical

methods work better than single level methods even though the overall performance is

apparent far from being satisfactory.

Current approaches for patent classification all used the conventional text encoding

approach and traditional machine learning algorithms to assign the IPC labels to patent

documents. These approaches have several major limitations: (1) they use conventional

text features/encoding scheme, which lead to sparsity issue for the training process; (2) the

encoding approach cannot capture the complex contents; (3) they are not suitable for

massive data processing (Najafabadi et al. 2015) as shown by either their experiments on

small datasets or their poor performance on large datasets; (4) there lacks an effective

approach to learn features from the training data automatically.

To address above issues in patent classification, we propose to a deep convolutional

neural network model combined with distributed word vector encoding to achieve high-

performance patent classification. Our work is inspired by an increasing number of studies

that employ deep learning models for text classification. Zhang et al. (2015) built a

character-level CNNs for text classification trained on several large-scale datasets, which

achieved state-of-the-art or competitive results. They treated texts as a kind of raw signal at

the character level and applied one-dimensional CNNs to it. Kim (2014) reported a series

of experiments with CNNs on pre-train word vectors at the sentence level. He trained a

simple CNN with one layer of convolution on top of word vectors obtained from an

unsupervised neural language model. The results showed that CNN achieved excellent

performance on multiple benchmarks.

Methods

We propose a deep learning algorithm, DeepPatent for large-scale patent classification by

combining word vector representation and a well-designed convolutional neural network.

Our study has two stages: at the first stage, we extract title and abstract sections from two

patent corpuses USPTO-2 M and CLEF-IP 2011 (Piroi et al. 2011), and then use the skip-

gram model to transform words in the extracted text into encoding real-value vectors. At

the second stage, we first use the pre-trained word embedding lookup table to find the

vector of each word and concatenate the vectors into a dense matrix. We then fed the

matrices input into a convolutional neural network model with multi-size filters. Our CNN

model includes multiple convolutional layers, max-pooling layers, and fully connected

layers. Dropout regularization is used also to avoid over-fitting. The details of our

DeepPatent model are described as follows:

Overview of the DeepPatent algorithm

Convolutional neural networks (CNN) have been widely using for computer vision and

speech recognition in recent years, and have achieved remarkably strong results. In this

work, we implemented the W2V-CNN model with an unsupervised neural language model

and a simple CNN architecture. The CNN model uses the patent text vectors as the input,

which is trained by the continuous skip-gram language model. The CNN model can per-

form both mono-label and multi-label tasks. In the case of multi-class classification, it is

flexible on the number of labels with each label predicted with a probability that a given

sample belongs to that labelled class.
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Each word from the patent dataset was represented as a 200-dimensional global vector.

All the vectors are stored in a lookup table. Thus, we can convert a given patent text

description into a matrix by looking up the vector table. Besides, we pad each text to the

same length. We append special\unk[ vector to all other text matrices to make them have

the same shape, which is useful because it allows us to efficiently batch our data since each

sample in a batch must be of the same size for CNN training. Besides, words not present in

the pre-trained vector table initialize with\unk[ vector.

The detailed hyper-parameters are described as follows. For our DeepPatent, the

number of training epoches was set to 50, the training batch size was set as 2048, and the

number of input words was set to 100 when only the title and abstract sections are extracted

from the entire patent document. The first layers perform convolutions over the 200-di-

mensional vectors using multiple convolutional filtering kernels. There are three sizes of

convolution kernels in our model: 3 9 200, 4 9 200 and 5 9 200. We initialize each

kernel with 512 filters. In the next layer, we applied the max-pool operation to the result of

the convolutional layer to generate a feature vector. Next, a dropout regularization oper-

ation is applied to the feature vector. Finally, the model uses the softmax function to

predict the probabilities for all categories. The sigmoid cross entropy was used here to

calculate the loss between the true labels and the prediction labels. A sophisticated back-

propagation algorithm ADAM (Kingma and Ba 2014) optimizer was used to reduce the

loss during the training stage.

Word representation

A word representation method deals with how to represent words by continuous vectors.

There is a long history of representation of words as continuous vectors (Hinton 1984;

Rumelhart et al. 1986). Bengio et al. (2003) proposed a very popular model to estimate a

neural network language model (NNLM), which is a feed-forward neural network with a

linear projection layer and a nonlinear hidden layer. A back-propagation training algorithm

is used to train a statistical language model that learns to map words into vector repre-

sentations. In this paper, we use the skip-gram model proposed by Mikolov et al. (2013a)

as our distributed word representation approach. This model is based on the distribution

hypothesis that words in similar contexts have similar meanings. It can be used for learning

high-quality word vectors from huge data sets with billions of words, and with millions of

words in the vocabulary. Figure 2 shows the architecture of the skip-gram model.

In this model, w1;w2;w3; . . .;wn. are the training words, and c1; c2; c3; . . .; cn. denote
their context, which can be generated according to the center word wi, k is the number of

context words. The word-context dependency relationship can be represented by a con-

ditional probability p calculated as:

p ¼ pðciþkjwiÞ ð1Þ

The goal of the skip-gram model is to maximize the average log probability:

max
1

n

Xn

i¼1

X

�k� j� k;j 6¼0

logðpðciþjjwiÞÞ
 !

ð2Þ

A larger k result in a larger context and thus can lead to higher accuracy (Pennington

et al. 2014). It also costs more time to train. When (1) is put into the softmax function, we

get:
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p cjw; hð Þ ¼ evc �vwP
c02C e

vc0 �vw
ð3Þ

where C is the vocabulary set of the context, W is the set of training words

w1;w2;w3; . . .;wn, D is the set of C and W, vw and vc0 are the ‘‘input’’ and ‘‘output’’ vector

representations of w. Put probability (3) into the objective function (2), we have:

max
X

w;cð Þ2D
log p cjwð Þð Þ

0
@

1
A ¼ max

X

w;cð Þ2D
ðlogevc �vw � log

X

c0
evc0 �vwÞ

0
@

1
A ð4Þ

But calculting objective function (4) is non-trivial because of the computing cost since

log p cjw; hð Þð Þ is proportional to W, which is often large (in our case 1,308,700,935 words).

To address this issue, negative-sampling (Mikolov et al. 2013a) can be used to reduce the

cost of computation. The main idea of negative-sampling is optimizing a different

objective function. As mentioned earlier, D is the set of random (w, c) pairs that are all

correct. Correspondingly, we can generate D0 as the set of random (w, c) pairs that are all

incorrect. Then the optimization objective function becomes:

Input layer

Hidden layer

Output layer

wi

N-dim

K-dim

M-dim

c1i

c2i

cki

···

WN×M

W' M×K

W' M×K

W' M×K

Fig. 2 The architecture of skip-
gram model
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max
X

w;cð Þ2D
log

1

1þ e�vc�vw þ
X

w;cð Þ2D0

log
1

1þ evc�vw

0
@

1
A ð5Þ

Let d xð Þ ¼ 1
1þe�x then the objective function (5) can be expressed as:

max
X

w;cð Þ2D
logdðvc � vwÞ þ

X

w;cð Þ2D0

logdð�vc � vwÞ

0
@

1
A ð6Þ

Compared to the objective (4), we can easily find that objective (6) will offset cumu-

lative items. Thus the cost for computing will be significantly reduced.

Convolutional neural network model

A convolutional neural network (CNN) (Lecun et al. 1998) is a multilayer neural network

composed of a sequence of layers including the convolutional layer, the pooling layer,

and the fully-connected layer. The main unique feature of CNNs is the convolution layer

composed of a set of filters; each can learn to extract local features from the input using the

back-propagation algorithm. By concatenating multiple convolution layers, the CNN

model can be trained to learn a hierarchy of features of increasing contexts/scope. This

unique capability of CNNs makes it to be one the most successful deep neural network

model in deep learning. In DeepPatent, our CNN model architecture is shown in Fig. 3.

We first converted each patent text document into a dense text matrix using the pre-

trained word vectors by concatenating the vectors of each word of a patent document.

a
method 

and 
system 

for
large 
data 

transfer 
between 

a 
·
·
·

the 
sender 

transmits 
to 
the 

receiver 
a 

plurality 
of

data 

··· ···

··· 

··· 

··· ···

··· ···

·········

······
···

·········

··· ··· ···
··· ··· ···

··· ··· ···

···
···

···

···
···

···

Convolutional layerText matrix

Filter size 3*200

Filter size 4*200

Filter size 5*200

Max-pooling Fully connected layer

Length*200

Fig. 3 The architecture of the CNN model in DeepPatent algorithm
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Secondly, the algorithm performs convolutions over the dense word vector matrix using

filters of different sizes. Next, we apply max-pooling operations to the result of the con-

volutional layers to create feature vectors, along with dropout regularization. Finally, we

use the sigmoid function with cross entropy to calculate the probability outputs. The

activation function used here is the Rectified Linear Units (ReLU) function.

In our model, as mentioned earlier, we use w1;w2;w3; . . .;wn. to denote training words,

we use v1; v2; v3; . . .; vn to denote the corresponding m-dimensional word vector. A text of

length l can then be represented as:

Vi ¼ v1 � v2 � v3 � . . .� vl ð7Þ

Here �. is the concatenation operator, Vi. is our model’s inmatrix, here the size of Vi is

l 9 m. The next layer is the convolutional layer which exploits the party of spatial local-

correlations in the text by enforcing local connectivity pattern between neurons of adjacent

layers. It employs a set of filters K ¼ k1; k2; k3; . . .; knf g to the text matrix to produce

feature map Ci. For each feature c
j
i . in Ci., the feature map is generated by the convolution

operation of the text matrix with a linear filter, adding a bias term and applying a non-linear

function. Thus, the c
j
i can be represented as follows:

c
j
i ¼ f

X

p2m�wþ1

V
p
i � k

j
i þ bi

 !
ð8Þ

Here the size of ki. is w � m where w. is the width of convocation filters, and f xð Þ ¼
max 0; xð Þ is the ReLU activation function and bi. is the bias term. By applying three kinds

of filters (the number of filters of each kind is n) to the text matrix Vi, a feature map can be

obtained as:

Ci ¼ c1i ; c
2
i ; c

3
i ; . . .; c

3�n
i

� �
ð9Þ

We can then apply a max-pooling operation over time (Taylor et al. 2010) to the feature

map c
j
i , and take the max value from c

j
i ,

ĉ
j
i ¼ max c

j
i

� �
as the are corresponding to each

specific filter. The idea of the pooling layer is to capture the most important features by

picking the highest value to represent each feature. Finally, after the pooling layer, a fully

connected layer takes all features in the previous layer and generates the probabilities

distribution over each label.

Evaluation criteria for patent classification

In this study, the patent classification problem is a multi-label classification task. For each

experiment, we use the followings evaluation metrics as used in CLEP-IP competition

(Piroi et al. 2011) to evaluate various methods. Firstly, we predict 1, 4 and 50 classification

labels for each patent document. Then we calculate Precisonscore, Recallscore, and F1score for

each prediction. The precision score is the number of correct predictions divided by the

number of all returned predictions.

Precisonscore ¼
correct predictions

all predictions
ð10Þ
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The recall score is the number of correct predictions divided by the number of all

relevant patent documents.

Recallscore ¼
correct predictions

all relevant patent documents
ð11Þ

F1score ¼ 2� Precisonscore � Recallscore

Precisonscore þ Recallscore
ð12Þ

The Precisonscore, Recallscore, and F1score are denoted as Precision, Recall, and F1

respectively. We use # to denote the number of topmost labels returned by the models then

we can denote the measures as Precision@#, Recall@#, and F1@# respectively.

Experiments

In this section, we introduce our benchmark datasets and experimental results. First, we

describe the preparation of USPTO-2M, a large-scale benchmark pant classification dataset

that we contribute to the community, which is used to evaluate the real-world performance

of patent classifiers. Then, the skip-gram scheme for pre-training the entire data to get

200-dimension word vectors are evaluated. Finally, a series of experiments are conducted

on the USPTO-2M and CLEF-IP datasets to evaluate and compare the performance of our

DeepPatent algorithm with that of other existing algorithms.

Preparation of benchmark datasets

To evaluate the real-world performance of patent classification algorithms, two large-scale

benchmark datasets are included in this study: USPTO-2M and CLEF-IP. The USPTO-2M

dataset is a large-scale dataset that we prepared for benchmark studies of patent classifi-

cation algorithms, of which the raw patent data are obtained from the online website of the

United States Patent and Trademark Office (USPTO). The bulk data contains the full texts

of all patents since 1976. There are over 9.4 million records in the dataset. We collected

2,679,443 utility patent documents in 637 categories at the subclass level in last 10 years,

namely USPTO-2M. Figure 4 shows the statistic of the number of published patents from

0
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Yearly grant patents

Fig. 4 Yearly distribution of the patents in the USPTO-2M dataset
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2006 to 2015. Similar to the CLEF-IP classification task, we extract all the subclass labels

from the raw data as our training and test labels.

In total, about 2.7 million patent applications are filed worldwide in 2014, up 4.5% from

2013. For each year since 2003 except for 2009, the number of patent applications has been

increasing every year.

A patent document usually includes bibliographic information, the title, the document

number, the issued date, the patent type, classification information, a list of inventors, a list

of applicant companies or individuals, abstract, claims section, and a full-text description.

Figure 5 shows the detail of a sample patent. More specifically, the title of a patent

indicates the name of the patent; the abstract part gives a brief technical description of the

innovation; the patent type explains patent’s type, and the classification part presents one

or multiple class labels. The claim section’s main function is to protect the inventors’ right

without any detailed technical information. The description section describes the process,

the machine, manufacture, composition of matter, or improvement invented, a brief

summary and the background of the invention, the detailed description, and a brief

description of its application. The documents also contain meta-information on assignee,

date of application, inventor, etc. We did not collect any meta-data in our dataset since we

focus on text representation.

Fig. 5 Sample patent record in the bulk data
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The title, abstract, and the beginning of the description are generally considered as the

most informative sections of a patent (Benzineb and Guyot 2011). D’hondt and Verberne

(2010) showed that the title and abstract sections are more informative than the full-text

representation of the patent document for patent retrieval. It improved the classification

results on the CLEF-IP 2010 dataset. Wu et al. (2010) applied various types SVM kernel

functions to various source datasets created by using the title, abstract, claim, and the

description part of the English patent documents. They found that title and abstract sections

provide high-quality information for patent classification.

From the raw patent dataset, we selected all the patents that contain the title, abstract,

and at least one IPC label in the\classifications-ipcr[ field. In total, there are eight

different sections at the section level, 130 different classes at the main class level, 637

different subclasses at the subclass level, 72,000 different sub-group classes at the sub-

groups level. On average, in our dataset, each patent has 1.34 classification labels at the

subclass level. Table 1 shows essential information of USPTO-2M corpus.

After data cleaning, the dataset contains 2,000,147 patents with the title and abstract

sections. To approach the realistic situation, we split the patent document based on the time

axis. We used earlier patents for training and used the later patents for testing. Specifically,

we used the 2006–2014 yearly data as our training data and used the 2015 patents as the

test data. The longest text in a patent document has 514 words, and there are only eight

words in the shortest document. However, we only chose those patents with texts of more

the ten words. On average there are 118 words in a document.

To compare DeepPatent with other patent classification algorithms, we also collect the

CLEF-IP dataset and conduct experiments on the dataset as the baseline of patent classi-

fication. This dataset contains 2.6 million patent documents (about 1.3 million patents,

each patent can consist of one or more patent documents) from the European Patent Office

(EPO) and 400,000 documents from the World Intellectual Property Organization (WIPO),

which published between 1985 and 2011. These 3 million documents include three lan-

guages, English, German, and French. For CLEF-IP dataset, we extract and clean the

documents which are written in English. Table 2 lists the essential information of CLEF-IP

2011 corpus.

The effectiveness of pre-trained word embedding

In this study, the continuous skip-gram (Mikolov et al. 2013b) model is used to pre-train

our dataset, which can capture a large number of precise syntactic and semantic word

relationships and learn high-quality distributed vector representations for real-world patent

classification processing.

Our word embedding model is pre-trained as follows: firstly, we parse the XML files

into text files and then extract the title and abstract sections. Next, we delete all punctu-

ations and lowercase words in the whole text. We also delete the words whose occurrence

frequency are below five. Thirdly, we set the parameter window size in the skip-gram

Table 1 The essential informa-
tion of USPTO-2M corpus

Training data Test data

Number of patents 1,950,247 49,900

Number of different IPC-R subclasses 637 606

Average number IPC labels per patent 1.32 1.93
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model as five, meaning five words ahead and five words behind, and then split the whole

text into dependent pairs (word and context) for the word vector training stage. Then, we

use the dependent pairs to generate 200-dimensional word vectors. The word embedding

model is fixed after training.

To evaluate the pre-trained word embedding approach, we conduct several experiments

on the word analogy and a variety of word similarity tasks. We setup a collection of

questions, such as ‘‘a is to b as c is to _?’’. The questions set contains two categories, a

syntactic category, and a semantic category. The syntactic questions are mainly analogy

about the plural of nouns or verb tenses, such as ‘‘image is to images as unit is to _?’’. The

semantic questions are typically analogy about synonyms and antonyms, such as ‘‘inside is

to outside as liquid is to _?’’. To find the correct answer to the question, the model should

find the unique term. We give the answer to the question ‘‘a is to b as c is to _?’’ by finding

the word d whose representation is closest to according the cosine similarity. We employ

the t-SNE (Laurens 2014) to project the learned vectors down to 2 dimensions.

The subplots in Fig. 6 are created by projecting the 200-dimensional vectors of syn-

tactic questions and semantic questions to two-dimension space. Subplot A and B indicate

that the skip-gram model has the ability to capture the antonym of each word. The subplot

C shows that the model can capture the semantic changes of singular and plural. The

subplot D indicates that it can capture nominalization.

Figure 6 illustrates the capability of the skip-gram model to automatically organize

concepts and learn implicitly the relationships among these concepts. The subplots showed

that the skip-gram model can capture word antonyms and semantic changes between

singular and plural as well as capture nominalization. It should be noted that during the

training process, we did not provide any supervised information about what a specific word

means. It shows that our trained word embedding can find semantically similar or related

words.

Performance of DeepPatent on patent classification

We conducted a series of patent classification experiments on the English patent docu-

ments at the subclass level (637 classes) of the International Patent Classification (IPC)

from the USPTO-2M and the CLEF-IP datasets. The evaluation measures used by the

CLEF-IP patent classification campaign are applied here for evaluation and comparison of

DeepPatent with existing algorithms. We also studied how different parts of a patent

description such as the title, the abstract, the full text and their combination affect the

classification performance. This allows us to choose the right sections from the patent

description to better represent a patent document for classification. Furthermore, we use a

varying number of words from the title and abstract sections as the model input to

determine the number of words that can sufficiently represent the whole document. Finally,

Table 2 The essential information of CLEF-IP 2011 corpus

EPO WIPO Test data

Number of patents 580,546 161,551 1350

Number of different IPC-R subclasses 622 613 341

Average number of IPC per patent 1.96 1.99 2.09
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we compared the performance of DeepPatent with other classification algorithms over the

standard benchmark dataset CLEF-IP.

Firstly, we conducted a series of experiments on the USPTO-2M dataset to evaluate

how different sections of the patent description can lead to best classification performance.

We compared the prediction performances of DeepPatent and other four algorithms using

different individual or combinations of the patent description sections including titles,

abstracts, and their combination. The experimental results are shown in Fig. 7. As shown in

Fig. 7a, when only the title section is used as input, the classical BP networks achieved

better performance than the others in terms of top5 precision, recall, and F1 measures. Our

DeepPatent algorithm instead only achieved the best performance for top1 precision. This

shows that using title information only is insufficient for DeepPatent to exploit the power

of feature extraction by the convolutional neural networks. Figure 7b shows the perfor-

mance of all 5 algorithms when only the abstract text is used as input. First, we found that

our DeepPatent algorithm outperformed all other 4 algorithms in terms of all four evalu-

ation criteria including top1 precision, top5 precision, top5 recall, and top5 F1. The BP

Fig. 6 Successful learning of semantic relationships among words by the skip-gram model
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networks achieved the second best performance overall. In addition, it is found that the

prediction performance has been improved compared to those in Fig. 7a, which only uses

the title as the sample information. Figure 7c shows the experimental results achieved by
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Fig. 7 Performance comparison
of different algorithms on
datasets with different text fields
(title and abstract) evaluated on
the USPTO-2M dataset.
a Performance comparison on
datasets with title
section. b Performance
comparison on datasets with
abstract section. c Performance
comparison on datasets with title
and abstract section
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all five algorithms using both title and abstract sections from the USPTO-2 M dataset.

Again, first, the performance of all algorithms have improved compared to Fig. 7a, b. Also,

the DeepPatent algorithm shows the best results in terms of all 4 criteria.

Our experimental results showed that the abstract section has the key information for

patent classification and reasonable results can be achieved using only the abstract section,

which can be further improved by combining abstract with title section. We also found that

the DeepPatent model cannot show its advantage when only the title section is used as the

input even though it has achieved competitive results compared with other benchmark

algorithms. However, when both the title and abstract are used as the input content,

DeepPatent showed its superior performance in terms of all criteria.

Another important parameter in our CNN model is the number of words used to rep-

resent a patent, which determines the input dimension of our input data. We tested the

performance of our CNN models using a different number of words from the title and

abstract sections as the input to determine how many words can well represent the patent

information for effective patent classification. We trained and evaluated the DeepPatent

models using the top words in the patent text as input samples ranging from 10 words to

514 words. We used the DeepPatent models to predict top 1, 5 and 10 classification labels

for each patent document respectively. The model performances in terms of precision with

a different number of words are reported in Fig. 8. As we can see from Fig. 8, the number

of input words a huge effect on the classification performance of our CNN models. The

precision score @top1 continuously increases from 61.43 to 73.88% as the number of

words goes up towards 100. Similar trends have been observed also for the precision scores

of top 5 and top 10 results. We found that the significant increase of the precision scores

happens when the word number increases from 10 to 70. When the number of input words

reaches 100, the performance tends to stagnate.

Similarly, we checked how the recall scores of DeepPatent changes with different

numbers of input words used as the model input. The recall scores @ top 5 and 10 are

shown in Fig. 9. The best recall score @ top 5 is 73.66% using 80 words while the best

recall score @ top 10 is 82.74% using 70 words. Similar to the effect of word number on

the prediction precision, it has the similar effect on the recall scores of the CNN models as

shown in Fig. 9: the top5 recall scores first increase as the number of words goes up from

10 to 70 words, which stagnates and then decreases as the word number increases over 100

words. Top 10 recall scores showed a similar trend. These results illustrate that appro-

priately setting the number of input words (which is 100 for our final models) for patents

helps to ensure good performance of our CNN models.
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Fig. 8 The precision scores
achieved by DeepPatent versus
the number of words using
USPTO-2M dataset
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Combining the precision and recall scores, we calculated the F1 scores for the CNN

models with different numbers of word number to comprehensively understand the effects

of word number on classification performance. As shown in Fig. 10, we can find that the

best performance was achieved when the number of input words is around 70 to 100. The

F1 scores tend to slowly decrease when the number of input words is more than 100. This

general trend can be explained as follows: when the number of words used to represent the

patent is too small to capture the patent information, the prediction performance is low. At

this stage, increasing the number of words to represent the patent will increase the clas-

sification performance. When the number of words reaches more than 100, the benefit of

including more information is then balanced by the increased input dimension. Potentially,

for patent classification, the most important words might be the first words, so more words

do not give a gain since most of the relevant information is already captured. Besides,

when the number of samples is the same, CNN models with a dramatic increase of model

complexity may lead to more severe overfitting or sparsity issues, leading to lower pre-

diction performance on the test dataset.

Based on above experiment results, we use the title and abstract sections as the infor-

mation source and select top 100 words as the input information for our DeepPatent model.

Finally, in order to evaluate how our DeepPatent model performs in patent classifica-

tion, we performed a series of patent classification experiments on the CLEF-IP dataset to

compare DeepPatent against 9 other patent classification schemes. We found that it is

challenging to conduct completely fair completion as neither the softwares or the web

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

R
ec

al
l 

Recall@Top5

Recall@Top10

Fig. 9 The recall scores
achieved by DeepPatent with
different numbers of words over
the USPTO-2M dataset
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services of other patent classification algorithms are available and different patent infor-

mation (such as the title, abstract, description, or full content) is used as the classifier input.

It is thus necessary to consider all these factors in comparing and interpreting the per-

formance differences. We used 580,546 EPO patents and 161,551 WIPO patents from 1985

to 2011 out of the CLEF-IP dataset as the training samples and 1350 patents from 2012 to

2015 as test samples to train these classifiers and evaluated their classification perfor-

mances in terms of top1 precision, top4 precision/recall/F1 as well as top 50 recall score.

Table 3 shows the performance comparisons of DeepPatent with other algorithms. It is

found that our DeepPatent algorithm significantly outperforms most of the other methods

using only the title and abstract information of the patents, achieving a Top1 precision of

83.98%, better than 69.95% and 71.85% of SVMLight (which use the abstract information)

and 74.43% by LCS (which uses abstract and description). DeepPatent also performs better

than the SVM-based algorithm reported in (Derieux et al. 2010) that uses two types of

human-designed features including similarity and semantic and statistics along with full

content information as input. The performance of DeepPatent with 83.98% top1 precision

is better than the state-of-the-art result of 82.1% top1 precision achieved by the SVM with

full content information of the patent as sample input and complicated human-designed

features. Out of the 11 methods compared in Table 3, DeepPatent, SVMLights, and LCS all

use the abstract with or without titles, which makes their performance to be more com-

parable. From the first 3 rows of Table 3, it can be found that DeepPatent apparently

achieved the best performance with Top 4 F1 score of 55.09% compared to 47.42% and

48.56% of SVMLight. The top 50 recall scores of DeepPatent are also much higher than of

those of SVMLight (97.35% compared to 87.61% and 89.56%).

To gain more insight over the failure cases of our algorithm, 214 wrongly classified

samples are identified in the scenario of predicting 1 label for each document. Misclas-

sifications of these samples can be attributed to three types of errors: non-relevant error,

section-correct error, and main-class-correct error. The non-relevant error means that a

prediction label does not match either the label at the section level or at the main class

level. The section-correct error means that a prediction label only matches the label at the

section level. While the main-class-correct error means that a prediction label matches the

label at the main class level. There are 90 (42%), 64 (30%) and 60 (28%) mis-classified

samples that belong to these three error types, respectively. The non-relevant error maybe

partially caused by the dynamical nature of the IPC due to the creation and deprecation (or

merge) of categories over time in the IPC system. This definitely affects the performance

of our model, since the definitions of some categories could be modified in different

versions of the IPC, and the documents in the training data may contain various IPC

version labels. As for the section-correct and main-class-correct errors, our DeepPatent

could correctly predict the superset of the subclass level labels. For example, for test

samples No. 68, 81, 354, 487, 494, and 531, the true labels are C07C, C08F, H04L, B41J,

F04B and H04Q, while the prediction labels are C07G, C08L, H04N, B41N, F04C and

H04J. Actually, the true and prediction labels are siblings, which means that the true labels

and prediction labels have very similar meaning. At the same time, the main text in those

patent documents may be written ambiguously. Those are the chief reasons contributing to

the section-correct-errors and main-class-correct-errors.

Table 3 also shows that for the same classifier, the prediction performance varies when

different features are used. For example, the SVM-based model using combined hand-

crafted similarity and semantic features achieved the best performance (82.1% top1 pre-

cision) over the EPO corpus when the full content is used. Instead, our DeepPatent

algorithm achieved competitive performance despite its use of less information with only
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100 words from title and abstract as input. It has additional benefits of avoiding the tedious

manual feature engineering process. Our CNN model thus provides a promising way to do

patent classification without handcrafted features.

Conclusions

Patent pre-classification and classification is typically a task currently undertaken almost

exclusively by patent experts and patent examiners. In this paper, we proposed an effective

patent classification algorithm DeepPatent, based on word vector and convolutional neural

networks to solve the large-scale, unbalanced, multilabel, multiclass patent classification

problem.

We collected and published the USPTO-2M dataset, the largest patent classification

data set so far for benchmark studies of patent classification algorithms. It contains

2,000,147 records after data cleaning of 2,679,443 raw utility patent documents in 637

categories at the subclass level from US patent office. We have identified the best strategy

to select patent sections and number of words for patent representation to achieve better

classification performance. Evaluated on the USPTO-2M dataset, we found that using the

top 100 words from the title and abstract sections achieved the best result. With this setting,

our DeepPatent algorithm achieved a classification precision of 73.88% over the USPTO-

2M dataset. We further evaluated the performance of DeepPatent along with 6 other patent

classification algorithms over the CLEF-IP benchmark dataset. Our DeepPatent algorithm

with automatic feature extraction has achieved a precision of 81.11% for top 1 label

predictions, which is better than all traditional machine learning algorithms except for one

SVM method with precision score 82.1% that was derived with a large amount of feature

engineering effort and using the full content as input.

To the best of our knowledge, our work is the first study that developed and applied a

deep learning model and algorithm to large scale real-world patent classification. Com-

pared with traditional machine learning algorithms, the DeepPatent model has several

advantages in large-scale patent classification including free of hand crafted features,

straightforward models, and easy to implement without tedious feature engineering. Our

CNN models are flexible to accommodate variable-size word embedding and can easily be

applied to classify different levels of the IPC hierarchy (e.g., group and sub-group). This

method can also be easily applied to other text processing tasks.

There are several ways to further improve the DeepPatent algorithm. Firstly, the corpus

for training word embedding is not large enough currently. We can collect more patent

documents to generate a bigger patent corpus for training patent domain vectors for word

embedding. Secondly, due to the fact that patents have a large number of category labels, it

is hard to predict the exact number of labels for each patent. In the future, we can improve

the capability of the model to determine the threshold to predict the categories and the

number of labels.
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