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Abstract
In supervised machine learning for author name disambiguation, negative training data are

often dominantly larger than positive training data. This paper examines how the ratios of

negative to positive training data can affect the performance of machine learning algo-

rithms to disambiguate author names in bibliographic records. On multiple labeled data-

sets, three classifiers—Logistic Regression, Naı̈ve Bayes, and Random Forest—are trained

through representative features such as coauthor names, and title words extracted from the

same training data but with various positive-to-negative training data ratios. Results show

that increasing negative training data can improve disambiguation performance but with a

few percent of performance gains and sometimes degrade it. Logistic and Naı̈ve Bayes

learn optimal disambiguation models even with a base ratio (1:1) of positive and negative

training data. Also, the performance improvement by Random Forest tends to quickly

saturate roughly after 1:10*1:15. These findings imply that contrary to the common

practice using all training data, name disambiguation algorithms can be trained using part

of negative training data without degrading much disambiguation performance while

increasing computational efficiency. This study calls for more attention from author name

disambiguation scholars to methods for machine learning from imbalanced data.

Keywords Author name disambiguation � Negative training data � Imbalanced training

data � Supervised machine learning

Introduction

Author name ambiguity has been a daunting challenge to scholars who mine bibliographic

data for scientific knowledge (Garfield 1969). Many scholars have solved the problem

using simple heuristics such as forename-initial-based matching (i.e., two author names are
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regarded to refer to the same author if they match on a forename initial(s) and full

surname) (e.g., Barabási et al. 2002; Newman 2001). As noted in several recent studies,

these heuristics can merge and split author entities (e.g., two authors with the same

forename initials and full surname can be mistakenly regarded as a single entity), leading

to inaccurate understanding of bibliographic data (e.g., Fegley and Torvik 2013; Kim and

Diesner 2016).

A proactive approach to the name ambiguity problem is to use computing algorithms to

distinguish author entities. A variety of algorithm-based disambiguation methods has been

developed by computer and information scientists (Smalheiser and Torvik 2009). Among

them, supervised machine learning has been reported to produce decent to highly accurate

disambiguation results, although its performance can vary depending on characteristics of

target bibliographic data (e.g., small, medium, and large data with different levels of name

ambiguity) and types of algorithms (Ferreira et al. 2012).

Regardless of algorithmic variations, supervised machine learning for author name

disambiguation typically requires labeled training data in which author identification tags

(i.e., labels) are assigned to author name instances by, in most cases, laborious manual

identity checking (Muller et al. 2017). Pairs of name instances with the same labels

constitute a ‘‘positive’’ training dataset, while pairs with different labels construct a

‘‘negative’’ training dataset. Then, name instances within positive and negative training

datasets are compared pairwisely for calculating their similarity across various features

such as coauthor names, affiliation, paper title, and publication venue. The resulting

similarity profiles (often vectors of similarity scores) between comparison pairs are fed into

machine learning algorithms so that the algorithms can learn disambiguation patterns to

decide whether any pair of name instances under test refers to the same author or not.

This study is motivated by the observation that in many labeled data for author name

disambiguation, positive and negative training data are often imbalanced. This situation is

illustrated in Table 1. Let’s assume that five name instances (#1–#5) require disam-

biguation in Table 1, where each instance is labeled with one of four distinct authors (A, B,

C, and D). Among ten possible pairwise comparison pairs, only one positive pair (Instance

1 and Instance 2 with the same label A) exists, leaving nine pairs as negative sets. Such

imbalance can increase dramatically if the number of names to disambiguate is large while

those names are associated with many distinct authors.

This positive and negative training data imbalance can be observed in many labeled data

generated by collating most ambiguous name instances (Muller et al. 2017). In a study of

blocking methods for author name disambiguation (Kim et al. 2017), for example, its

labeled data contained 3964 name instances of 214 distinct authors who are associated with

Table 1 An illustration of positive and negative training data imbalance in author name disambiguation

Name instance # Name string Author label Pairs

Positive Negative

1 J. Kim A 1-2 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, 4-5

2 J. Kim A

3 J. Kim B

4 J. Kim C

5 J. Kim D
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10 ambiguous names (e.g., S Kim, C lee, J Smith, etc.). Among a total of 7.8 M com-

parison pairs, only 51,052 (0.65%) pairs were positive training pairs.

As such, negative training data can be more abundant than positive training data in

supervised machine learning for author name disambiguation, consuming much compu-

tation time and resources. But how such prevalence of negative training data can affect the

performance of author name disambiguation algorithms has been insufficiently discussed.

To contribute to the discussion, this study examines the impact of positive and negative

training data imbalance on machine learning for disambiguating author names in publi-

cation records. For this purpose, this study compares the performances of three machine

learning algorithms—Logistic Regression, Naı̈ve Bayes, and Random Forest—that are

tested on different positive–negative training data ratios. By doing so, this study aims to

help scholars determine the optimal positive–negative training data ratios to yield good

disambiguation results with increased computational efficiency. In following section, prior

work on imbalanced training data is presented to contextualize this study.

Related work

In machine learning research, the problem of imbalanced data has continued to receive

scholarly attention (Bickel et al. 2009; He and Garcia 2009; Shimodaira 2000). But most

studies have been focused on addressing the imbalance across training and test data,

resulting in a variety of sampling methods to improve the performance of machine learning

models trained on imbalanced data. Meanwhile, a few studies have investigated the

imbalanced training data problem for text classification tasks. For example, arguing that

negative training data do not improve much machine learning performance and sometimes

degrade it, several scholars have proposed the PU learning model that discards negative

training data and relies only positive (P) and unlabeled (U) training data (Li et al. 2010; Liu

et al. 2003).

In bio- and chemical informatics, the training data imbalance has been actively studied

because negative training data tend to be dominant while positive training data can be

scarce (e.g., non-cancer vs. cancer patients) (Chawla et al. 2002; Woods et al. 1993). Some

studies found that increasing the ratio of negative to positive training data improves

machine learning performance but such improvement was negligible after the positive-to-

negative training data ratios of around 1:10 (Heikamp and Bajorath 2013; Kurczab et al.

2014). In addition, Kurczab et al. (2014) reported that with increased training data, recall

tends to suffer from degraded performance while precision is improved.

Scholars in author name disambiguation have also faced the training data imbalance

problem. Typically, the number of comparison pairs in a block (i.e., a group of name

instances to be compared with one another for author name disambiguation) increases

quadratically with the block size. Among them, the number of positive pairs of name

instances (i.e., referring to the same authors) can be very small, while the number of

negative pairs (i.e., referring to different authors) can be large. This situation was illus-

trated in Table 1 using a simple scenario. Facing this problem, many scholars have used

various methods to partition name instances into blocks so that only name instances that

are likely to refer to the same authors are collected in the same blocks, thereby reducing the

number of non-matching (negative) comparison pairs (for a recent review, see Kim et al.

2017). Once blocks are generated, however, the common practice in author name dis-

ambiguation research is to utilize all comparison pairs in each block or in a rare case,
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uniformly sample training pairs regardless of whether they are positive or negative ones

(e.g., Han et al. 2004).

So, the impact of imbalanced positive and negative training data on machine learning is

still an under-researched topic for author name disambiguation. Studying this topic can

provide methodological insights for future disambiguation research and its application to

disambiguating author names in growing digital libraries. As reported in aforesaid

chemical informatics studies, for example, part of negative training data may be used to

train name disambiguation algorithms with negligible performance degradation on test

data, improving further computational efficiency in conjunction with well-designed

blocking schemes. In contrast, however, partial use of negative data may not be so useful.

According to Levin et al. (2012), for example, reducing negative training data size leads to

a poor performance while using all negative data produces the best outcome.

Therefore, this study takes the impact analysis approach of aforesaid studies such as

Kurczab et al. (2014) and Levin et al. (2012) to obtain a better understanding of how the

imbalance of positive and negative training data can affect algorithmic author name dis-

ambiguation. Specifically, this study empirically tests the performances of three repre-

sentative machine learning algorithms for author name disambiguation—Logistic

Regression, Naı̈ve Bayes, and Random Forest—that are trained on various labeled data in

which positive–negative data ratios are incrementally increased from the equal ratio.

Details of labeled data for analysis and machine learning settings are provided in the

following section.

Methodology

Data

GILES: For the impact analysis of imbalanced training data, this study uses three repre-

sentative labeled data for author name disambiguation (Muller et al. 2017). The first data1

were generated by Dr. Giles’s research lab at the Pennsylvania State University (Han et al.

2004, 2005). The GILES (hereafter) data have been widely used for training various author

name disambiguation algorithms (e.g., Cota et al. 2010; Santana et al. 2015). The data

consist of 8453 highly ambiguous name instances (e.g., A. Gupta, S. Lee, and J. Smith) and

their associated publication records that are gathered from the computing research library

DBLP and webpages of authors. Distinct author labels were assigned to name instances

manually by human coders. Recently, several studies have noted that the original GILES

data contain duplicate and erroneous records (Muller et al. 2017; Santana et al. 2015; Shin

et al. 2014). Following Kim (2018), this study removed duplicate records in the original

GILES data and, for error correction (e.g., missing coauthor names), updated records in the

de-duplicated GILES data by publication records in DBLP2 that were matched to GILES

records through the comparison of author name, year, title, and venue. If a record in GILES

has no match in DBLP, it was excluded from analysis. This cleaning process resulted in a

total of 5018 name instances and their associated records (59% of the original GILES data)

labeled for 480 distinct authors.3

1 http://clgiles.ist.psu.edu/data/nameset_author-disamb.tar.zip.
2 dblp.org/xml/release/dblp-2017-09-03.xml.gz.
3 Available for download at https://figshare.com/articles/DBLPderived_labeled_data_for_author_name_
disambiguation/6840281.

123

514 Scientometrics (2018) 117:511–526

http://clgiles.ist.psu.edu/data/nameset_author-disamb.tar.zip
https://figshare.com/articles/DBLPderived_labeled_data_for_author_name_disambiguation/6840281
https://figshare.com/articles/DBLPderived_labeled_data_for_author_name_disambiguation/6840281


KANG: The second labeled data (KANG hereafter)4 were created by Korean scholars

(Kang et al. 2011) and have been used in several disambiguation studies (e.g., Santana

et al. 2015). The KANG data contain 41,673 author name instances and their publication

records extracted from DBLP. Labels of 6921 unique authors were assigned to each name

instance through a semi-manual disambiguation by triangulating Google search results and

human inspection.

TANG: Another labeled data (TANG hereafter)5 were constructed by Chinese scholars

led by Dr. Tang at the Tsinghua University in China to train disambiguation algorithms for

the computing research digital library AMiner (Tang et al. 2012; Wang et al. 2011). Dr.

Tang’s team gathered 7528 name instances associated with 110 ambiguous full names and

manually disambiguated them, assigning 1546 unique author labels.

Machine learning settings

Overview: Broadly speaking, there are two approaches to author name disambiguation:

author clustering and author assignment (Ferreira et al. 2012). This study uses the author

clustering method which typically consists of two phases—(1) classification of match/non-

match between pairs of name instances and (2) clustering name instances based on the

classification decision. The first phase is to decide which pairs of these name instances are

likely or unlikely to refer to the same author by comparing information extracted from

features such coauthor names. During this process, a classification algorithm is used to

learn the match/non-match patterns from training data and predict match/non-match of

newly seen pairs in test data. As a result of this classification, we have pairs of name

instances that refer to same authors and pairs to refer to different authors. Next step is to

collate name instances that refer to same authors using these pairwise decisions, which is

called ‘‘clustering.’’ Here, a problem arises when dyadic match/non-match decisions can

contradict each other. Let’s take an example of Instance A = Instance B, Instance

B = Instance C, and Instance A = Instance C. According to a transitivity rule, Instance

A = Instance C is logical but algorithms can often produce such contradictory decisions

because they conduct prediction only at a pair level. To resolve this problem, many

disambiguation studies use supervised or unsupervised clustering algorithms to detect

optimal groups of name instances that are likely to refer to same authors after the pairwise

classification decisions. For this, specifically, the pairwise classification decisions by

algorithms are output as similarity scores usually between 0 and 1 calculated across fea-

tures, instead of match/non-match binary decisions. Then, clustering algorithms group

name instances based on these similarity scores. Number of resulting clusters (= number of

distinct authors) can vary depending on the threshold of similarity scores. If a truth number

of clusters is given, clustering algorithms will find the best threshold to produce that

number of clusters. In this paper, the truth number of clusters is given by labeled test data.

Training Data: In many author name disambiguation studies, name instances that share

the first forename initial and full surname are collated into a block (i.e., blocking) as a pre-

disambiguation step to reduce the amount of pairwise comparison pairs (e.g., Han et al.

2004; Levin et al. 2012; Santana et al. 2015; Wang et al. 2011). Following this common

practice, this study conducted algorithmic disambiguation on names in the same block.

Name instances and their associated publication records in each block were randomly

4 http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/at_download/file.
5 http://arnetminer.org/lab-datasets/disambiguation/rich-author-disambiguation-data.zip.
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divided into two subsets—training data (50%) and test data (50%). Then, positive (i.e.,

with identical labels) and negative (i.e., with different labels) pairs of name instances were

generated from the per-block training data with different positive–negative pair ratios. For

this, specifically, the number of positive pairs was first counted. Then, among all possible

negative pairs, a subset of them was randomly selected to make the ratios of negative to

positive training pairs increased incrementally from 1:1 up to 1: R, where R is the maxi-

mum ratio that equals to the (round-down) integer of the total of negative training pairs

divided by the total of all positive training pairs.

Feature Selection: In author name disambiguation research, many features have been

engineered and tested to find ones that contribute most to disambiguation performance

(Tang and Walsh 2010; Wang et al. 2012). This study aims to show how the different ratios

of negative to positive training data may affect performances of disambiguation algo-

rithms. A challenge is that if we use many features, we cannot distinguish the impact of

different positive–negative training data ratios from the impact of feature effectiveness. So,

we tried to select a minimum set of features—coauthor names and title words—which are

commonly used in most disambiguation studies and have been found to be effective in

disambiguating names (Ferreira et al. 2012; Schulz 2016; Wang et al. 2012). Another

reason is that these two features are available across all labeled datasets used in this study,

while other features such as affiliation, journal names, and references are recorded in some

data but not in another. To run disambiguation tests fairly on all labeled datasets, therefore,

two commonly used features—coauthor names and title words—that are associated with

name instances in training data were chosen to generate a similarity score vector between a

pair of name instances. Across features, all text strings were lower-cased and special

characters were encoded into ASCII. Non-alphanumeric characters were replaced by

spaces except commas because they separate the forename of an author name from its

surname. Each title word was stemmed by the Porter’s Stemmer (Porter 1980)6 after

common English words such as pronouns and prepositions were stop-listed.7 All (co)author

names were converted into the format of first forename initial and full surname (e.g., J.

Wang) as KANG and TANG record many author names in full name while GILES records

the majority of names in the format of full surname and initialized-forename. This pre-

processing of author names was conducted to reduce the confounding impact of name

string on disambiguation performance other than positive–negative training data ratios

(Han et al. 2005; Louppe et al. 2016). Similarity scores between a pair of name instances

were calculated by the cosine similarity of TF-IDF for 2, 3, and 4-grams over each feature,

following the practice of several studies (e.g., Han et al. 2005; Levin et al. 2012; Louppe

et al. 2016; Santana et al. 2015; Treeratpituk and Giles 2009).

Classifiers and Clustering: The resulting pairwise similarity scores for positive and

negative training pairs were used for training three machine learning algorithms—Logistic

Regression, Naı̈ve Bayes, and Random Forest8—that represent base classifiers frequently

run in author disambiguation research (e.g., Han et al. 2005; Levin et al. 2012; Santana

et al. 2015; Torvik and Smalheiser 2009; Treeratpituk and Giles 2009; Wang et al. 2012).

The trained models by these algorithms were applied to disambiguating author name

instances in test data. Specifically, name instances in test data were pairwisely compared

6 Codes by Martin Porter are available at https://tartarus.org/martin/PorterStemmer/.
7 https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/patterns/surface/stopwords.
txt.
8 Three classifiers were implemented by Scikit-Learn Python packages (with default hyper-parameter
settings) at http://scikit-learn.org/stable/index.html.
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for a similarity profile in the same way name instances in training data were compared.

Then, each pair of name instances was assigned a probability score to refer to the same

author based on the disambiguation model learned from training data by each algorithm.

Using the probability score between a pair as a proxy of similarity distance between them

(higher score means closer distance between a pair), the hierarchical agglomerative

clustering algorithm grouped name instances that belong to the same author into a cluster.

A threshold distance to decide the number of distinct clusters in test data was determined

by trying various threshold values to maximize the clustering accuracy which was eval-

uated on the labels associated with name instances in test data (Louppe et al. 2016).9

Accuracy measure

A suite of B-Cubed (B3) metrics (Bagga and Baldwin 1998) was used to calculate dis-

ambiguation accuracy. Three parts of this measure—B3 Precision (bP), B3 Recall (bR), and

B3 F1 (bF1)—are defined as follows:

bP ¼ 1

N
�
X

i2L

CD ið Þ \ CL ið Þj j
CD ið Þj j ð1Þ

bR ¼ 1

N
�
X

i2L

CD ið Þ \ CL ið Þj j
CL ið Þj j ð2Þ

bF1 ¼ 2� bP� bR

bPþ bR
ð3Þ

Here, CD(i) means a cluster of name instances that contains the name instance i and is

decided to refer to the same author as a result of algorithmic disambiguation, while

CL(i) means a cluster of name instances that contains the name instance i and refer to the

same author in labeled data. N is the number of name instances (L) in labeled data.

The B3 metrics and its variations have been used in many entity resolution studies as

well as author name disambiguation research (Ferreira et al. 2014; Levin et al. 2012;

Louppe et al. 2016; Menestrina et al. 2010). The B3 metrics were chosen over another

frequently used pairwise-F metrics because the former calculates disambiguation accuracy

at an instance level while the latter excludes an instance with no comparable pair from

calculation. This can impact the disambiguation evaluation for data in which many dis-

ambiguated instances form singleton clusters. In addition, as the number of comparison

pairs increases in a quadratic way with the size of instances in a cluster, the results of the

pairwise-F calculation can be biased towards large clusters, while by the instance-based

B-Cubed measure clusters affect calculation linearly with their size (Levin et al. 2012;

Louppe et al. 2016).

9 Substantial part of the training and test procedure was conducted by modifying Python codes shared by
Louppe et al. (2016). The original codes are available at https://github.com/glouppe/paper-author-
disambiguation.
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Results

Per-block analysis

To observe the impact of imbalanced positive–negative training data on the disambiguation

performances of three classification algorithms, name blocks in GILES were used for the

training and test simulation per positive–negative training data ratio. A summary of

training data in GILES is reported per block in Table 2. The GILES data contain a total of

14 blocks: A. Gupta, A. Kumar, C. Chen, D. Johnson, J. Lee, J. Martin, J. Robinson, J.

Smith, K. Tanaka, M. Brown, M. Jones, M. Miller, S. Lee, and Y. Chen. For the purpose of

simplicity, four blocks with R B 5 were excluded from analysis: A. Kumar (R = 3), D.

Johnson (R = 2), M. Miller (R = 3), and K. Tanaka (R = 2). The table shows that negative

training pairs are more abundant than positive ones across blocks (see the ‘‘No. of Training

Pairs’’ column in Table 2). The maximum ratios (R) of negative to positive training pairs

range from 1:7 (M. Brown and M. Jones) to 1:47 (J. Lee).

The train-and-test procedure detailed in the ‘‘Machine Learning Settings’’ section was

repeated 10 times for each positive–negative training data ratio per block and accuracy

scores were averaged for report. The average B3 precision (bP), recall (bR), and harmonic

mean (bF1) scores of three classifiers per positive-negative data ratio are presented in

Fig. 1 (C. Chen, J. Lee, S. Lee, and Y. Chen) and Fig. 2 (A. Gupta, J. Martin, J. Robinson,

J. Smith, M. Brown, and M. Jones). In subfigures of Figs. 1 and 2, positive-negative

training data ratios (1 up to R) are denoted on x-axes, while mean accuracy scores are on y-

axes. A note is that endpoints of trend lines (i.e., R ? 1 on x-axes) represent accuracy

scores when all negative training data are used for machine learning.

An overall trend in both Figs. 1 and 2 is that increasing the ratios of negative training

data improved the precision (bP) scores by three classifiers in many blocks. This precision

improvement is visually represented by plots moving slightly toward the upper-right

corners in each ‘‘Precision’’ subfigure. Such improvement became, however, less pro-

nounced with larger negative training data, which is depicted by the flattened accuracy

Table 2 Summary of training pairs per block in GILES data (R represents the maximum ratio of negative to
positive training pairs)

Block No. of instances
(train ? test)

No. of authors
(train ? test)

No. of training pairs 1…R

Total Positive Negative

A. Gupta 470 27 27,495 2936 24,559 1…8

C. Chen 475 61 27,966 903 27,063 1…29

J. Lee 855 100 90,525 1853 88,672 1…47

J. Martin 94 16 1081 112 969 1…8

J. Robinson 142 12 2485 347 2138 1…6

J. Smith 479 30 28,441 3032 25,409 1…8

M. Brown 109 13 1431 170 1261 1…7

M. Jones 166 13 3403 392 3011 1…7

S. Lee 960 86 114,960 5027 109,933 1…21

Y. Chen 547 71 37,128 929 36,231 1…38
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Fig. 1 Trends of mean accuracy of author name disambiguation per positive–negative training pair ratio for
four blocks in GILES Data (x-axes denote positive–negative training pair ratios from 1:1 to 1:R while y-axes
denote mean accuracy scores of B-cubed precision, recall, and F1 measured on test data)

Fig. 2 Trends of mean accuracy of author name disambiguation per positive–negative training pair ratio for
six blocks in GILES Data (x-axes denote positive–negative training pair ratios from 1:1 to 1:R while y-axes
denote mean accuracy scores of B-cubed precision, recall, and F1 measured on test data)

123

Scientometrics (2018) 117:511–526 519



plots. In addition, some author name blocks such as J. Lee (Fig. 1), A. Gupta (Fig. 2), and

M. Jones (Fig. 2) showed degraded performances by Logistic Regression and Naı̈ve Bayes

as the negative training data size increased.

Likewise, the recall (bR) plots showed mixed trends depending on name blocks and

classifiers. In all four blocks in Fig. 1, for example, performance gains by the increased

negative training data were clearly observed for Random Forest over the positive-negative

ratio range of roughly 1:1–1:15. But bR trends by Logistic Regression and Naı̈ve Bayes

tended to move downward or flattened as their positive–negative training data ratios

increased.

Compared to pronounced variations in precision and recall, their harmonic mean (bF1)

did not show much score variations across name blocks and classifiers. The bF1 plots for

Logistic Regression (LR) and Naı̈ve Bayes (NB) in Fig. 1 moved rightward horizontally

without much fluctuation. The bF1 plots for Random Forest (RF) showed slightly rising

trends until the ratios of negative to positive reached roughly 1:10*1:15 but almost

flattened beyond those ratios. For small blocks in Fig. 2, a similar not-so-much wavering

pattern was observed for bF1 plots by LR and NB, while those by RF showed a mixture of

up and down movements. This indicates that for each classifier, precision gains from the

increased negative training data were often offset by recall losses.

The aforesaid observations indicate that part of negative training data can be effective in

training machine learning algorithms for author name disambiguation. For large blocks in

Fig. 1, specifically, the performance gains (bF1) by Random Forest tended to be substantial

as the negative data size increased but this improvement reached a saturation point at

around R = 10–15. Regarding Naı̈ve Bayes and Logistic Regression classifiers, however,

the added performance gains by the increased negative training data were negligible: their

bF1 plots were flat across most positive-negative data ratios. Even for small blocks in

Fig. 2, the change of negative training data ratios did not produce much enhanced results

by Logistic Regression and Naı̈ve Bayes algorithms in terms of bF1, while Random Forest

produced slightly improved performance with larger negative training data. This means

that two algorithms—Logistic Regression and Naı̈ve Bayes—produced optimal models

very quickly using small part of negative training data, while Random Forest continued to

improve models from increased negative training data. Another noteworthy observation is

that adding negative training data can be detrimental to disambiguation performances

depending on the types of accuracy measure (precision vs. recall) and classifiers, as

illustrated by J. Lee in Fig. 1 (see LR and NB for precision) and most blocks in Fig. 2 (see

NB and RF for recall). For example, the J. Lee block showed decreases in all B3 scores

occasionally by Random Forest as the negative training data size increased.

Cross-data comparison

The idea that part of negative training data may be effective to train name disambiguation

algorithms was tested on three labeled datasets—GILES, KANG, and TANG—applying

the same train-and-test procedure detailed in the ‘‘Machine Learning Settings’’ section. For

this purpose, especially, only blocks containing 100 or more name instances were selected

from original KANG and TANG datasets to be consistent with the GILES data in which all

blocks have almost 100 or more instances.

Based on the aforementioned observations from 10 blocks in GILES, three bounds of

R—1:1, 1:10, and 1:All—were set to represent three scenarios of machine learning from

imbalanced positive–negative training data. First, training data with the equal positive and
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negative data (1:1) were generated per block for each dataset. If the number of negative

training pairs in a block is larger than that of positive ones, negative pairs of the amount

matched to positive pairs by 1:1 were randomly selected once. If the number of negative

pairs in a block is smaller than that of positive pairs, all negative pairs were fed into

classifiers. These selection schemes also applied to the 1:10 scenario. Blocks with no

negative training pairs were excluded from analysis in all scenarios.

Table 3 summarizes the numbers of blocks that belong to different R ranges in each

dataset. In KANG data, for example, 30 blocks (34.88% of all blocks) have ratios of

positive–negative training data capped at 1:1. Therefore, when disambiguated for the equal

positive and negative (1:1) ratio scenario, all negative pairs in each of 30 blocks will be

used for training, while in 56 blocks with R[ 1 negative pairs will be uniformly sampled

to match the size of positive pairs by 1:1 for per-block training.

The disambiguation accuracy of three classifiers per scenario is presented in Fig. 3.

Accuracy scores—bP, bR, and bF1—were averaged over per-block values. According to

Fig. 3a, d and g, increasing the ratios of negative training data from 1:1 to 1:10 to 1:All

increased the precision (bP) by Random Forest (RF) across three datasets. However, the

performances of the other two classifiers were not consistent. Logistic Regression (LR)

produced slightly higher precision with larger training data in TANG (Fig. 3g) but per-

formed slightly worse in GILES (Fig. 3a) and KANG (Fig. 3d). Naı̈ve Bayes (NB) showed

a similar pattern: its precision was improved in GILES but decreased in TANG or stalled in

KANG. This overall pattern was also observed for recall (see Fig. 3b, e, h).

In contrast to slight variations in precision and recall, their harmonic mean (bF1) scores

by Logistic Regression and Naı̈ve Bayes were not much differentiated with the increased

negative training data. In Fig. 3c, f, i, specifically, their bar heights are almost the same

regardless of positive–negative training data ratios. Random Forest produced a little higher

bF1 using increased negative training data across three datasets but with a few percent of

performance gains. Especially, using the 1:10 ratio of positive-to-negative training data led

to the accuracy scores as high as those obtained from all-out use of training data.

These cross-data observations agree with the observations on 10 individual blocks in

GILES (Figs. 1, 2). Increased precision with larger negative training data tend to be offset

by decreased recall. In addition, due to such a cancelling-out effect between precision and

recall, classifiers produced similar bF1 scores over different ratios of negative to positive

training data. Most importantly, the results aggregated from per-block and cross-data

analyses imply that training some classifiers for author name disambiguation may be

insensitive to the imbalance of positive and negative training data or sometimes, be

adversely affected by increased negative training data.

Table 3 Summary of block distribution per R in GILES, KANG, and TANG data (R represents the max-
imum ratio of negative to positive training pairs and the percentage of R blocks over all blocks is reported in
parentheses)

Data No. of instances
(train ? test)

No. of authors
(train ? test)

No. of blocks (name instances C 100)

All 0\R B 1 1\R B 10 10\R

GILES 5017 480 14 – 10 (71.43%) 4 (28.57%)

KANG 13,041 2061 86 30 (34.88%) 32 (37.21%) 24 (27.91%)

TANG 3984 792 19 6 (31.58%) 5 (26.32%) 8 (42.11%)
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Conclusion and discussion

This paper empirically tested how the ratios of negative to positive training data can affect

the performances of machine learning algorithms in disambiguating author names. Using

multiple labeled datasets, three classifiers—Logistic Regression, Naı̈ve Bayes, and Ran-

dom Forest—were trained through two representative features (coauthor names and title

words) extracted from the same labeled data but with various positive–negative data ratios.

In terms of the B-cubed precision, recall, and F1 scores, increasing negative training data

against positive data improved disambiguation performance by Random Forest, but not

much by Logistic Regression and Naı̈ve Bayes classifiers. Even the performance

Fig. 3 Mean accuracy of author name disambiguation per positive–negative training pair ratio for GILES,
KANG, and TANG Data (y-axes denote mean accuracy scores of B-cubed precision, recall, and F1
measured on test data for 1:1, 1:10, and 1:All positive–negative training ratio scenarios per classifier)
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improvement by Random Forest, however, tended to quickly saturate: adding more neg-

ative training data beyond certain positive–negative ratios did not contribute much to

disambiguation performances. Such findings were tested by repeating 10 times the process

of random sampling of negative training sets. One-standard-deviations of disambiguation

outcomes from the repeated sampling were less than 2% of mean values across the sample

sizes, which indicates that the trends reported in Figs. 1 and 2 are quite robust to the

sampling of negative training sets. Such a negligible impact of negative training data on

name disambiguation was also confirmed in tests on two other labeled datasets (KANG and

TANG in conjunction with GILES in Figs. 1 and 2) which are different in size and

composition of name ambiguity.

The findings of this study corroborate those of a few studies for predicting pharma-

cological compounds for virtual screening (Heikamp and Bajorath 2013; Kurczab et al.

2014). According to the studies, increased negative training data led to the improvement of

precision and Mathews Correlation Coefficient (MCC, a measure for balancing precision

and recall) and degradation of recall by several algorithms including Random Forest.

Beyond the positive–negative data ratio of 1:9 or 1:10, the improvement by added negative

training data became negligible, which was also observed in this study. Another interesting

finding is that in this study, adding more negative training data led to deteriorating per-

formance depending on classifiers and accuracy measures. This is in line with the afore-

mentioned virtual screening study reporting degraded recall by added negative training

data and also supports partially the PU (positive-unlabeled data) learning approach arguing

that ‘‘negative training data can be harmful’’ to machine learning for text classification (Li

et al. 2010; Liu et al. 2003).

The results of this study suggest that machine learning algorithms for author name

disambiguation can be trained using part of negative training data without much degraded

performance. This can be good news for scholars who conduct research on supervised

author name disambiguation in which negative training sets generated from large name

blocks can skew heavily the distribution of the whole training data. In other words,

scholars can use a subset of negative training data for machine learning in author name

disambiguation tasks, which can improve the computational efficiency (less amount of

negative training data) while similar levels of algorithmic effectiveness are obtainable

(similar or slightly degraded disambiguation performance).

Before applying this study’s findings to disambiguation tasks, however, several issues

must be addressed. First, as reported in Levin et al. (2012), utilizing all available negative

training data can be effective in certain circumstances. For example, negative training data

size may become impactful to machine learning for author name disambiguation when

some features such as author affiliation and publication venue are added or other classifiers

than Logistic Regression, Naı̈ve Bayes, and Random Forest are used for model learning.

Second, in-depth research is needed to understand why negative training data do not

affect much author name disambiguation. A plausible explanation is that name instances

that refer to different authors tend not to share common coauthors and research topics (in

terms of title words), producing similarity profiles that are not much discriminative. This

means that as information in negative training sets is redundant (i.e., most name pairs in

comparison do not share coauthor names and title keywords), the random subsets of

negative training sets would contain information similar to that of population. This might

explain why the amount of negative training sets does not matter on disambiguation

performance of algorithms: whether the amount is small or large, the information an

algorithm can be trained is almost the same. Note that the negligible impact of negative

training sets was found after the ratio of positive to negative training sets was around 1:10
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for the highly imbalanced cases in Fig. 1 by Random Forest. This exception might be

because Random Forest classifier utilizes the majority voting of outcomes based on

sampling of training data (i.e. samples of sampled negative training data) and thus can be

more sensitive to sample sizes of negative training data than Logistic Regression and Naı̈ve

Bayes. But this conjecture should be investigated in conjunction with why precision gains

from increased negative training data tend to be offset by recall losses. Findings from this

future investigation can be utilized to increase precision while controlling the adverse

impact of negative training data on recall or vice versa. In addition, a more elaborated

theory than the aforementioned conjecture would be helpful, which can be modeled by

testing the findings of this study on a variety of labeled data under different conditions.

Third, research on the impact of positive training data as well as negative data would be

useful. In-depth studies about the relationship between positive and negative training data

may help us develop effective training data sampling methods suited for author name

disambiguation at scale. Ultimately, this study is expected to motivate scholars to pay more

attention to research on supervised machine learning for author name disambiguation with

imbalanced (training ? test) data in general furthering the scope of studying imbalanced

training data.
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